123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743 |
- //===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the target-independent interfaces which should be
- // implemented by each target which is using a TableGen based code generator.
- //
- //===----------------------------------------------------------------------===//
- // Include all information about LLVM intrinsics.
- include "llvm/IR/Intrinsics.td"
- //===----------------------------------------------------------------------===//
- // Register file description - These classes are used to fill in the target
- // description classes.
- class HwMode<string FS> {
- // A string representing subtarget features that turn on this HW mode.
- // For example, "+feat1,-feat2" will indicate that the mode is active
- // when "feat1" is enabled and "feat2" is disabled at the same time.
- // Any other features are not checked.
- // When multiple modes are used, they should be mutually exclusive,
- // otherwise the results are unpredictable.
- string Features = FS;
- }
- // A special mode recognized by tablegen. This mode is considered active
- // when no other mode is active. For targets that do not use specific hw
- // modes, this is the only mode.
- def DefaultMode : HwMode<"">;
- // A class used to associate objects with HW modes. It is only intended to
- // be used as a base class, where the derived class should contain a member
- // "Objects", which is a list of the same length as the list of modes.
- // The n-th element on the Objects list will be associated with the n-th
- // element on the Modes list.
- class HwModeSelect<list<HwMode> Ms> {
- list<HwMode> Modes = Ms;
- }
- // A common class that implements a counterpart of ValueType, which is
- // dependent on a HW mode. This class inherits from ValueType itself,
- // which makes it possible to use objects of this class where ValueType
- // objects could be used. This is specifically applicable to selection
- // patterns.
- class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts>
- : HwModeSelect<Ms>, ValueType<0, 0> {
- // The length of this list must be the same as the length of Ms.
- list<ValueType> Objects = Ts;
- }
- // A class representing the register size, spill size and spill alignment
- // in bits of a register.
- class RegInfo<int RS, int SS, int SA> {
- int RegSize = RS; // Register size in bits.
- int SpillSize = SS; // Spill slot size in bits.
- int SpillAlignment = SA; // Spill slot alignment in bits.
- }
- // The register size/alignment information, parameterized by a HW mode.
- class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []>
- : HwModeSelect<Ms> {
- // The length of this list must be the same as the length of Ms.
- list<RegInfo> Objects = Ts;
- }
- // SubRegIndex - Use instances of SubRegIndex to identify subregisters.
- class SubRegIndex<int size, int offset = 0> {
- string Namespace = "";
- // Size - Size (in bits) of the sub-registers represented by this index.
- int Size = size;
- // Offset - Offset of the first bit that is part of this sub-register index.
- // Set it to -1 if the same index is used to represent sub-registers that can
- // be at different offsets (for example when using an index to access an
- // element in a register tuple).
- int Offset = offset;
- // ComposedOf - A list of two SubRegIndex instances, [A, B].
- // This indicates that this SubRegIndex is the result of composing A and B.
- // See ComposedSubRegIndex.
- list<SubRegIndex> ComposedOf = [];
- // CoveringSubRegIndices - A list of two or more sub-register indexes that
- // cover this sub-register.
- //
- // This field should normally be left blank as TableGen can infer it.
- //
- // TableGen automatically detects sub-registers that straddle the registers
- // in the SubRegs field of a Register definition. For example:
- //
- // Q0 = dsub_0 -> D0, dsub_1 -> D1
- // Q1 = dsub_0 -> D2, dsub_1 -> D3
- // D1_D2 = dsub_0 -> D1, dsub_1 -> D2
- // QQ0 = qsub_0 -> Q0, qsub_1 -> Q1
- //
- // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
- // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
- // CoveringSubRegIndices = [dsub_1, dsub_2].
- list<SubRegIndex> CoveringSubRegIndices = [];
- }
- // ComposedSubRegIndex - A sub-register that is the result of composing A and B.
- // Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
- class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
- : SubRegIndex<B.Size, !cond(!eq(A.Offset, -1): -1,
- !eq(B.Offset, -1): -1,
- true: !add(A.Offset, B.Offset))> {
- // See SubRegIndex.
- let ComposedOf = [A, B];
- }
- // RegAltNameIndex - The alternate name set to use for register operands of
- // this register class when printing.
- class RegAltNameIndex {
- string Namespace = "";
- // A set to be used if the name for a register is not defined in this set.
- // This allows creating name sets with only a few alternative names.
- RegAltNameIndex FallbackRegAltNameIndex = ?;
- }
- def NoRegAltName : RegAltNameIndex;
- // Register - You should define one instance of this class for each register
- // in the target machine. String n will become the "name" of the register.
- class Register<string n, list<string> altNames = []> {
- string Namespace = "";
- string AsmName = n;
- list<string> AltNames = altNames;
- // Aliases - A list of registers that this register overlaps with. A read or
- // modification of this register can potentially read or modify the aliased
- // registers.
- list<Register> Aliases = [];
- // SubRegs - A list of registers that are parts of this register. Note these
- // are "immediate" sub-registers and the registers within the list do not
- // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
- // not [AX, AH, AL].
- list<Register> SubRegs = [];
- // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
- // to address it. Sub-sub-register indices are automatically inherited from
- // SubRegs.
- list<SubRegIndex> SubRegIndices = [];
- // RegAltNameIndices - The alternate name indices which are valid for this
- // register.
- list<RegAltNameIndex> RegAltNameIndices = [];
- // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
- // These values can be determined by locating the <target>.h file in the
- // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
- // order of these names correspond to the enumeration used by gcc. A value of
- // -1 indicates that the gcc number is undefined and -2 that register number
- // is invalid for this mode/flavour.
- list<int> DwarfNumbers = [];
- // CostPerUse - Additional cost of instructions using this register compared
- // to other registers in its class. The register allocator will try to
- // minimize the number of instructions using a register with a CostPerUse.
- // This is used by the ARC target, by the ARM Thumb and x86-64 targets, where
- // some registers require larger instruction encodings, by the RISC-V target,
- // where some registers preclude using some C instructions. By making it a
- // list, targets can have multiple cost models associated with each register
- // and can choose one specific cost model per Machine Function by overriding
- // TargetRegisterInfo::getRegisterCostTableIndex. Every target register will
- // finally have an equal number of cost values which is the max of costPerUse
- // values specified. Any mismatch in the cost values for a register will be
- // filled with zeros. Restricted the cost type to uint8_t in the
- // generated table. It will considerably reduce the table size.
- list<int> CostPerUse = [0];
- // CoveredBySubRegs - When this bit is set, the value of this register is
- // completely determined by the value of its sub-registers. For example, the
- // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
- // covered by its sub-register AX.
- bit CoveredBySubRegs = false;
- // HWEncoding - The target specific hardware encoding for this register.
- bits<16> HWEncoding = 0;
- bit isArtificial = false;
- }
- // RegisterWithSubRegs - This can be used to define instances of Register which
- // need to specify sub-registers.
- // List "subregs" specifies which registers are sub-registers to this one. This
- // is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
- // This allows the code generator to be careful not to put two values with
- // overlapping live ranges into registers which alias.
- class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
- let SubRegs = subregs;
- }
- // DAGOperand - An empty base class that unifies RegisterClass's and other forms
- // of Operand's that are legal as type qualifiers in DAG patterns. This should
- // only ever be used for defining multiclasses that are polymorphic over both
- // RegisterClass's and other Operand's.
- class DAGOperand {
- string OperandNamespace = "MCOI";
- string DecoderMethod = "";
- }
- // RegisterClass - Now that all of the registers are defined, and aliases
- // between registers are defined, specify which registers belong to which
- // register classes. This also defines the default allocation order of
- // registers by register allocators.
- //
- class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
- dag regList, RegAltNameIndex idx = NoRegAltName>
- : DAGOperand {
- string Namespace = namespace;
- // The register size/alignment information, parameterized by a HW mode.
- RegInfoByHwMode RegInfos;
- // RegType - Specify the list ValueType of the registers in this register
- // class. Note that all registers in a register class must have the same
- // ValueTypes. This is a list because some targets permit storing different
- // types in same register, for example vector values with 128-bit total size,
- // but different count/size of items, like SSE on x86.
- //
- list<ValueType> RegTypes = regTypes;
- // Size - Specify the spill size in bits of the registers. A default value of
- // zero lets tablegen pick an appropriate size.
- int Size = 0;
- // Alignment - Specify the alignment required of the registers when they are
- // stored or loaded to memory.
- //
- int Alignment = alignment;
- // CopyCost - This value is used to specify the cost of copying a value
- // between two registers in this register class. The default value is one
- // meaning it takes a single instruction to perform the copying. A negative
- // value means copying is extremely expensive or impossible.
- int CopyCost = 1;
- // MemberList - Specify which registers are in this class. If the
- // allocation_order_* method are not specified, this also defines the order of
- // allocation used by the register allocator.
- //
- dag MemberList = regList;
- // AltNameIndex - The alternate register name to use when printing operands
- // of this register class. Every register in the register class must have
- // a valid alternate name for the given index.
- RegAltNameIndex altNameIndex = idx;
- // isAllocatable - Specify that the register class can be used for virtual
- // registers and register allocation. Some register classes are only used to
- // model instruction operand constraints, and should have isAllocatable = 0.
- bit isAllocatable = true;
- // AltOrders - List of alternative allocation orders. The default order is
- // MemberList itself, and that is good enough for most targets since the
- // register allocators automatically remove reserved registers and move
- // callee-saved registers to the end.
- list<dag> AltOrders = [];
- // AltOrderSelect - The body of a function that selects the allocation order
- // to use in a given machine function. The code will be inserted in a
- // function like this:
- //
- // static inline unsigned f(const MachineFunction &MF) { ... }
- //
- // The function should return 0 to select the default order defined by
- // MemberList, 1 to select the first AltOrders entry and so on.
- code AltOrderSelect = [{}];
- // Specify allocation priority for register allocators using a greedy
- // heuristic. Classes with higher priority values are assigned first. This is
- // useful as it is sometimes beneficial to assign registers to highly
- // constrained classes first. The value has to be in the range [0,63].
- int AllocationPriority = 0;
- // Generate register pressure set for this register class and any class
- // synthesized from it. Set to 0 to inhibit unneeded pressure sets.
- bit GeneratePressureSet = true;
- // Weight override for register pressure calculation. This is the value
- // TargetRegisterClass::getRegClassWeight() will return. The weight is in
- // units of pressure for this register class. If unset tablegen will
- // calculate a weight based on a number of register units in this register
- // class registers. The weight is per register.
- int Weight = ?;
- // The diagnostic type to present when referencing this operand in a match
- // failure error message. If this is empty, the default Match_InvalidOperand
- // diagnostic type will be used. If this is "<name>", a Match_<name> enum
- // value will be generated and used for this operand type. The target
- // assembly parser is responsible for converting this into a user-facing
- // diagnostic message.
- string DiagnosticType = "";
- // A diagnostic message to emit when an invalid value is provided for this
- // register class when it is being used an an assembly operand. If this is
- // non-empty, an anonymous diagnostic type enum value will be generated, and
- // the assembly matcher will provide a function to map from diagnostic types
- // to message strings.
- string DiagnosticString = "";
- // Target-specific flags. This becomes the TSFlags field in TargetRegisterClass.
- bits<8> TSFlags = 0;
- }
- // The memberList in a RegisterClass is a dag of set operations. TableGen
- // evaluates these set operations and expand them into register lists. These
- // are the most common operation, see test/TableGen/SetTheory.td for more
- // examples of what is possible:
- //
- // (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
- // register class, or a sub-expression. This is also the way to simply list
- // registers.
- //
- // (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
- //
- // (and GPR, CSR) - Set intersection. All registers from the first set that are
- // also in the second set.
- //
- // (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
- // numbered registers. Takes an optional 4th operand which is a stride to use
- // when generating the sequence.
- //
- // (shl GPR, 4) - Remove the first N elements.
- //
- // (trunc GPR, 4) - Truncate after the first N elements.
- //
- // (rotl GPR, 1) - Rotate N places to the left.
- //
- // (rotr GPR, 1) - Rotate N places to the right.
- //
- // (decimate GPR, 2) - Pick every N'th element, starting with the first.
- //
- // (interleave A, B, ...) - Interleave the elements from each argument list.
- //
- // All of these operators work on ordered sets, not lists. That means
- // duplicates are removed from sub-expressions.
- // Set operators. The rest is defined in TargetSelectionDAG.td.
- def sequence;
- def decimate;
- def interleave;
- // RegisterTuples - Automatically generate super-registers by forming tuples of
- // sub-registers. This is useful for modeling register sequence constraints
- // with pseudo-registers that are larger than the architectural registers.
- //
- // The sub-register lists are zipped together:
- //
- // def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
- //
- // Generates the same registers as:
- //
- // let SubRegIndices = [sube, subo] in {
- // def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
- // def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
- // }
- //
- // The generated pseudo-registers inherit super-classes and fields from their
- // first sub-register. Most fields from the Register class are inferred, and
- // the AsmName and Dwarf numbers are cleared.
- //
- // RegisterTuples instances can be used in other set operations to form
- // register classes and so on. This is the only way of using the generated
- // registers.
- //
- // RegNames may be specified to supply asm names for the generated tuples.
- // If used must have the same size as the list of produced registers.
- class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs,
- list<string> RegNames = []> {
- // SubRegs - N lists of registers to be zipped up. Super-registers are
- // synthesized from the first element of each SubRegs list, the second
- // element and so on.
- list<dag> SubRegs = Regs;
- // SubRegIndices - N SubRegIndex instances. This provides the names of the
- // sub-registers in the synthesized super-registers.
- list<SubRegIndex> SubRegIndices = Indices;
- // List of asm names for the generated tuple registers.
- list<string> RegAsmNames = RegNames;
- }
- //===----------------------------------------------------------------------===//
- // DwarfRegNum - This class provides a mapping of the llvm register enumeration
- // to the register numbering used by gcc and gdb. These values are used by a
- // debug information writer to describe where values may be located during
- // execution.
- class DwarfRegNum<list<int> Numbers> {
- // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
- // These values can be determined by locating the <target>.h file in the
- // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
- // order of these names correspond to the enumeration used by gcc. A value of
- // -1 indicates that the gcc number is undefined and -2 that register number
- // is invalid for this mode/flavour.
- list<int> DwarfNumbers = Numbers;
- }
- // DwarfRegAlias - This class declares that a given register uses the same dwarf
- // numbers as another one. This is useful for making it clear that the two
- // registers do have the same number. It also lets us build a mapping
- // from dwarf register number to llvm register.
- class DwarfRegAlias<Register reg> {
- Register DwarfAlias = reg;
- }
- //===----------------------------------------------------------------------===//
- // Pull in the common support for MCPredicate (portable scheduling predicates).
- //
- include "llvm/Target/TargetInstrPredicate.td"
- //===----------------------------------------------------------------------===//
- // Pull in the common support for scheduling
- //
- include "llvm/Target/TargetSchedule.td"
- class Predicate; // Forward def
- class InstructionEncoding {
- // Size of encoded instruction.
- int Size;
- // The "namespace" in which this instruction exists, on targets like ARM
- // which multiple ISA namespaces exist.
- string DecoderNamespace = "";
- // List of predicates which will be turned into isel matching code.
- list<Predicate> Predicates = [];
- string DecoderMethod = "";
- // Is the instruction decoder method able to completely determine if the
- // given instruction is valid or not. If the TableGen definition of the
- // instruction specifies bitpattern A??B where A and B are static bits, the
- // hasCompleteDecoder flag says whether the decoder method fully handles the
- // ?? space, i.e. if it is a final arbiter for the instruction validity.
- // If not then the decoder attempts to continue decoding when the decoder
- // method fails.
- //
- // This allows to handle situations where the encoding is not fully
- // orthogonal. Example:
- // * InstA with bitpattern 0b0000????,
- // * InstB with bitpattern 0b000000?? but the associated decoder method
- // DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
- //
- // The decoder tries to decode a bitpattern that matches both InstA and
- // InstB bitpatterns first as InstB (because it is the most specific
- // encoding). In the default case (hasCompleteDecoder = 1), when
- // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
- // hasCompleteDecoder = 0 in InstB, the decoder is informed that
- // DecodeInstB() is not able to determine if all possible values of ?? are
- // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
- // decode the bitpattern as InstA too.
- bit hasCompleteDecoder = true;
- }
- // Allows specifying an InstructionEncoding by HwMode. If an Instruction specifies
- // an EncodingByHwMode, its Inst and Size members are ignored and Ts are used
- // to encode and decode based on HwMode.
- class EncodingByHwMode<list<HwMode> Ms = [], list<InstructionEncoding> Ts = []>
- : HwModeSelect<Ms> {
- // The length of this list must be the same as the length of Ms.
- list<InstructionEncoding> Objects = Ts;
- }
- //===----------------------------------------------------------------------===//
- // Instruction set description - These classes correspond to the C++ classes in
- // the Target/TargetInstrInfo.h file.
- //
- class Instruction : InstructionEncoding {
- string Namespace = "";
- dag OutOperandList; // An dag containing the MI def operand list.
- dag InOperandList; // An dag containing the MI use operand list.
- string AsmString = ""; // The .s format to print the instruction with.
- // Allows specifying a canonical InstructionEncoding by HwMode. If non-empty,
- // the Inst member of this Instruction is ignored.
- EncodingByHwMode EncodingInfos;
- // Pattern - Set to the DAG pattern for this instruction, if we know of one,
- // otherwise, uninitialized.
- list<dag> Pattern;
- // The follow state will eventually be inferred automatically from the
- // instruction pattern.
- list<Register> Uses = []; // Default to using no non-operand registers
- list<Register> Defs = []; // Default to modifying no non-operand registers
- // Predicates - List of predicates which will be turned into isel matching
- // code.
- list<Predicate> Predicates = [];
- // Size - Size of encoded instruction, or zero if the size cannot be determined
- // from the opcode.
- int Size = 0;
- // Code size, for instruction selection.
- // FIXME: What does this actually mean?
- int CodeSize = 0;
- // Added complexity passed onto matching pattern.
- int AddedComplexity = 0;
- // Indicates if this is a pre-isel opcode that should be
- // legalized/regbankselected/selected.
- bit isPreISelOpcode = false;
- // These bits capture information about the high-level semantics of the
- // instruction.
- bit isReturn = false; // Is this instruction a return instruction?
- bit isBranch = false; // Is this instruction a branch instruction?
- bit isEHScopeReturn = false; // Does this instruction end an EH scope?
- bit isIndirectBranch = false; // Is this instruction an indirect branch?
- bit isCompare = false; // Is this instruction a comparison instruction?
- bit isMoveImm = false; // Is this instruction a move immediate instruction?
- bit isMoveReg = false; // Is this instruction a move register instruction?
- bit isBitcast = false; // Is this instruction a bitcast instruction?
- bit isSelect = false; // Is this instruction a select instruction?
- bit isBarrier = false; // Can control flow fall through this instruction?
- bit isCall = false; // Is this instruction a call instruction?
- bit isAdd = false; // Is this instruction an add instruction?
- bit isTrap = false; // Is this instruction a trap instruction?
- bit canFoldAsLoad = false; // Can this be folded as a simple memory operand?
- bit mayLoad = ?; // Is it possible for this inst to read memory?
- bit mayStore = ?; // Is it possible for this inst to write memory?
- bit mayRaiseFPException = false; // Can this raise a floating-point exception?
- bit isConvertibleToThreeAddress = false; // Can this 2-addr instruction promote?
- bit isCommutable = false; // Is this 3 operand instruction commutable?
- bit isTerminator = false; // Is this part of the terminator for a basic block?
- bit isReMaterializable = false; // Is this instruction re-materializable?
- bit isPredicable = false; // 1 means this instruction is predicable
- // even if it does not have any operand
- // tablegen can identify as a predicate
- bit isUnpredicable = false; // 1 means this instruction is not predicable
- // even if it _does_ have a predicate operand
- bit hasDelaySlot = false; // Does this instruction have an delay slot?
- bit usesCustomInserter = false; // Pseudo instr needing special help.
- bit hasPostISelHook = false; // To be *adjusted* after isel by target hook.
- bit hasCtrlDep = false; // Does this instruction r/w ctrl-flow chains?
- bit isNotDuplicable = false; // Is it unsafe to duplicate this instruction?
- bit isConvergent = false; // Is this instruction convergent?
- bit isAuthenticated = false; // Does this instruction authenticate a pointer?
- bit isAsCheapAsAMove = false; // As cheap (or cheaper) than a move instruction.
- bit hasExtraSrcRegAllocReq = false; // Sources have special regalloc requirement?
- bit hasExtraDefRegAllocReq = false; // Defs have special regalloc requirement?
- bit isRegSequence = false; // Is this instruction a kind of reg sequence?
- // If so, make sure to override
- // TargetInstrInfo::getRegSequenceLikeInputs.
- bit isPseudo = false; // Is this instruction a pseudo-instruction?
- // If so, won't have encoding information for
- // the [MC]CodeEmitter stuff.
- bit isExtractSubreg = false; // Is this instruction a kind of extract subreg?
- // If so, make sure to override
- // TargetInstrInfo::getExtractSubregLikeInputs.
- bit isInsertSubreg = false; // Is this instruction a kind of insert subreg?
- // If so, make sure to override
- // TargetInstrInfo::getInsertSubregLikeInputs.
- bit variadicOpsAreDefs = false; // Are variadic operands definitions?
- // Does the instruction have side effects that are not captured by any
- // operands of the instruction or other flags?
- bit hasSideEffects = ?;
- // Is this instruction a "real" instruction (with a distinct machine
- // encoding), or is it a pseudo instruction used for codegen modeling
- // purposes.
- // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
- // instructions can (and often do) still have encoding information
- // associated with them. Once we've migrated all of them over to true
- // pseudo-instructions that are lowered to real instructions prior to
- // the printer/emitter, we can remove this attribute and just use isPseudo.
- //
- // The intended use is:
- // isPseudo: Does not have encoding information and should be expanded,
- // at the latest, during lowering to MCInst.
- //
- // isCodeGenOnly: Does have encoding information and can go through to the
- // CodeEmitter unchanged, but duplicates a canonical instruction
- // definition's encoding and should be ignored when constructing the
- // assembler match tables.
- bit isCodeGenOnly = false;
- // Is this instruction a pseudo instruction for use by the assembler parser.
- bit isAsmParserOnly = false;
- // This instruction is not expected to be queried for scheduling latencies
- // and therefore needs no scheduling information even for a complete
- // scheduling model.
- bit hasNoSchedulingInfo = false;
- InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
- // Scheduling information from TargetSchedule.td.
- list<SchedReadWrite> SchedRW;
- string Constraints = ""; // OperandConstraint, e.g. $src = $dst.
- /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
- /// be encoded into the output machineinstr.
- string DisableEncoding = "";
- string PostEncoderMethod = "";
- /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
- bits<64> TSFlags = 0;
- ///@name Assembler Parser Support
- ///@{
- string AsmMatchConverter = "";
- /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
- /// two-operand matcher inst-alias for a three operand instruction.
- /// For example, the arm instruction "add r3, r3, r5" can be written
- /// as "add r3, r5". The constraint is of the same form as a tied-operand
- /// constraint. For example, "$Rn = $Rd".
- string TwoOperandAliasConstraint = "";
- /// Assembler variant name to use for this instruction. If specified then
- /// instruction will be presented only in MatchTable for this variant. If
- /// not specified then assembler variants will be determined based on
- /// AsmString
- string AsmVariantName = "";
- ///@}
- /// UseNamedOperandTable - If set, the operand indices of this instruction
- /// can be queried via the getNamedOperandIdx() function which is generated
- /// by TableGen.
- bit UseNamedOperandTable = false;
- /// Should generate helper functions that help you to map a logical operand's
- /// index to the underlying MIOperand's index.
- /// In most architectures logical operand indicies are equal to
- /// MIOperand indicies, but for some CISC architectures, a logical operand
- /// might be consist of multiple MIOperand (e.g. a logical operand that
- /// uses complex address mode).
- bit UseLogicalOperandMappings = false;
- /// Should FastISel ignore this instruction. For certain ISAs, they have
- /// instructions which map to the same ISD Opcode, value type operands and
- /// instruction selection predicates. FastISel cannot handle such cases, but
- /// SelectionDAG can.
- bit FastISelShouldIgnore = false;
- /// HasPositionOrder: Indicate tablegen to sort the instructions by record
- /// ID, so that instruction that is defined earlier can be sorted earlier
- /// in the assembly matching table.
- bit HasPositionOrder = false;
- }
- /// Defines a Pat match between compressed and uncompressed instruction.
- /// The relationship and helper function generation are handled by
- /// CompressInstEmitter backend.
- class CompressPat<dag input, dag output, list<Predicate> predicates = []> {
- /// Uncompressed instruction description.
- dag Input = input;
- /// Compressed instruction description.
- dag Output = output;
- /// Predicates that must be true for this to match.
- list<Predicate> Predicates = predicates;
- /// Duplicate match when tied operand is just different.
- bit isCompressOnly = false;
- }
- /// Defines an additional encoding that disassembles to the given instruction
- /// Like Instruction, the Inst and SoftFail fields are omitted to allow targets
- // to specify their size.
- class AdditionalEncoding<Instruction I> : InstructionEncoding {
- Instruction AliasOf = I;
- }
- /// PseudoInstExpansion - Expansion information for a pseudo-instruction.
- /// Which instruction it expands to and how the operands map from the
- /// pseudo.
- class PseudoInstExpansion<dag Result> {
- dag ResultInst = Result; // The instruction to generate.
- bit isPseudo = true;
- }
- /// Predicates - These are extra conditionals which are turned into instruction
- /// selector matching code. Currently each predicate is just a string.
- class Predicate<string cond> {
- string CondString = cond;
- /// AssemblerMatcherPredicate - If this feature can be used by the assembler
- /// matcher, this is true. Targets should set this by inheriting their
- /// feature from the AssemblerPredicate class in addition to Predicate.
- bit AssemblerMatcherPredicate = false;
- /// AssemblerCondDag - Set of subtarget features being tested used
- /// as alternative condition string used for assembler matcher. Must be used
- /// with (all_of) to indicate that all features must be present, or (any_of)
- /// to indicate that at least one must be. The required lack of presence of
- /// a feature can be tested using a (not) node including the feature.
- /// e.g. "(all_of ModeThumb)" is translated to "(Bits & ModeThumb) != 0".
- /// "(all_of (not ModeThumb))" is translated to
- /// "(Bits & ModeThumb) == 0".
- /// "(all_of ModeThumb, FeatureThumb2)" is translated to
- /// "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
- /// "(any_of ModeTumb, FeatureThumb2)" is translated to
- /// "(Bits & ModeThumb) != 0 || (Bits & FeatureThumb2) != 0".
- /// all_of and any_of cannot be combined in a single dag, instead multiple
- /// predicates can be placed onto Instruction definitions.
- dag AssemblerCondDag;
- /// PredicateName - User-level name to use for the predicate. Mainly for use
- /// in diagnostics such as missing feature errors in the asm matcher.
- string PredicateName = "";
- /// Setting this to '1' indicates that the predicate must be recomputed on
- /// every function change. Most predicates can leave this at '0'.
- ///
- /// Ignored by SelectionDAG, it always recomputes the predicate on every use.
- bit RecomputePerFunction = false;
- }
- /// NoHonorSignDependentRounding - This predicate is true if support for
- /// sign-dependent-rounding is not enabled.
- def NoHonorSignDependentRounding
- : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
- class Requires<list<Predicate> preds> {
- list<Predicate> Predicates = preds;
- }
- /// ops definition - This is just a simple marker used to identify the operand
- /// list for an instruction. outs and ins are identical both syntactically and
- /// semantically; they are used to define def operands and use operands to
- /// improve readability. This should be used like this:
- /// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
- def ops;
- def outs;
- def ins;
- /// variable_ops definition - Mark this instruction as taking a variable number
- /// of operands.
- def variable_ops;
- /// PointerLikeRegClass - Values that are designed to have pointer width are
- /// derived from this. TableGen treats the register class as having a symbolic
- /// type that it doesn't know, and resolves the actual regclass to use by using
- /// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
- class PointerLikeRegClass<int Kind> {
- int RegClassKind = Kind;
- }
- /// ptr_rc definition - Mark this operand as being a pointer value whose
- /// register class is resolved dynamically via a callback to TargetInstrInfo.
- /// FIXME: We should probably change this to a class which contain a list of
- /// flags. But currently we have but one flag.
- def ptr_rc : PointerLikeRegClass<0>;
- /// unknown definition - Mark this operand as being of unknown type, causing
- /// it to be resolved by inference in the context it is used.
- class unknown_class;
- def unknown : unknown_class;
- /// AsmOperandClass - Representation for the kinds of operands which the target
- /// specific parser can create and the assembly matcher may need to distinguish.
- ///
- /// Operand classes are used to define the order in which instructions are
- /// matched, to ensure that the instruction which gets matched for any
- /// particular list of operands is deterministic.
- ///
- /// The target specific parser must be able to classify a parsed operand into a
- /// unique class which does not partially overlap with any other classes. It can
- /// match a subset of some other class, in which case the super class field
- /// should be defined.
- class AsmOperandClass {
- /// The name to use for this class, which should be usable as an enum value.
- string Name = ?;
- /// The super classes of this operand.
- list<AsmOperandClass> SuperClasses = [];
- /// The name of the method on the target specific operand to call to test
- /// whether the operand is an instance of this class. If not set, this will
- /// default to "isFoo", where Foo is the AsmOperandClass name. The method
- /// signature should be:
- /// bool isFoo() const;
- string PredicateMethod = ?;
- /// The name of the method on the target specific operand to call to add the
- /// target specific operand to an MCInst. If not set, this will default to
- /// "addFooOperands", where Foo is the AsmOperandClass name. The method
- /// signature should be:
- /// void addFooOperands(MCInst &Inst, unsigned N) const;
- string RenderMethod = ?;
- /// The name of the method on the target specific operand to call to custom
- /// handle the operand parsing. This is useful when the operands do not relate
- /// to immediates or registers and are very instruction specific (as flags to
- /// set in a processor register, coprocessor number, ...).
- string ParserMethod = ?;
- // The diagnostic type to present when referencing this operand in a
- // match failure error message. By default, use a generic "invalid operand"
- // diagnostic. The target AsmParser maps these codes to text.
- string DiagnosticType = "";
- /// A diagnostic message to emit when an invalid value is provided for this
- /// operand.
- string DiagnosticString = "";
- /// Set to 1 if this operand is optional and not always required. Typically,
- /// the AsmParser will emit an error when it finishes parsing an
- /// instruction if it hasn't matched all the operands yet. However, this
- /// error will be suppressed if all of the remaining unmatched operands are
- /// marked as IsOptional.
- ///
- /// Optional arguments must be at the end of the operand list.
- bit IsOptional = false;
- /// The name of the method on the target specific asm parser that returns the
- /// default operand for this optional operand. This method is only used if
- /// IsOptional == 1. If not set, this will default to "defaultFooOperands",
- /// where Foo is the AsmOperandClass name. The method signature should be:
- /// std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;
- string DefaultMethod = ?;
- }
- def ImmAsmOperand : AsmOperandClass {
- let Name = "Imm";
- }
- /// Operand Types - These provide the built-in operand types that may be used
- /// by a target. Targets can optionally provide their own operand types as
- /// needed, though this should not be needed for RISC targets.
- class Operand<ValueType ty> : DAGOperand {
- ValueType Type = ty;
- string PrintMethod = "printOperand";
- string EncoderMethod = "";
- bit hasCompleteDecoder = true;
- string OperandType = "OPERAND_UNKNOWN";
- dag MIOperandInfo = (ops);
- // MCOperandPredicate - Optionally, a code fragment operating on
- // const MCOperand &MCOp, and returning a bool, to indicate if
- // the value of MCOp is valid for the specific subclass of Operand
- code MCOperandPredicate;
- // ParserMatchClass - The "match class" that operands of this type fit
- // in. Match classes are used to define the order in which instructions are
- // match, to ensure that which instructions gets matched is deterministic.
- //
- // The target specific parser must be able to classify an parsed operand into
- // a unique class, which does not partially overlap with any other classes. It
- // can match a subset of some other class, in which case the AsmOperandClass
- // should declare the other operand as one of its super classes.
- AsmOperandClass ParserMatchClass = ImmAsmOperand;
- }
- class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
- : DAGOperand {
- // RegClass - The register class of the operand.
- RegisterClass RegClass = regclass;
- // PrintMethod - The target method to call to print register operands of
- // this type. The method normally will just use an alt-name index to look
- // up the name to print. Default to the generic printOperand().
- string PrintMethod = pm;
- // EncoderMethod - The target method name to call to encode this register
- // operand.
- string EncoderMethod = "";
- // ParserMatchClass - The "match class" that operands of this type fit
- // in. Match classes are used to define the order in which instructions are
- // match, to ensure that which instructions gets matched is deterministic.
- //
- // The target specific parser must be able to classify an parsed operand into
- // a unique class, which does not partially overlap with any other classes. It
- // can match a subset of some other class, in which case the AsmOperandClass
- // should declare the other operand as one of its super classes.
- AsmOperandClass ParserMatchClass;
- string OperandType = "OPERAND_REGISTER";
- // When referenced in the result of a CodeGen pattern, GlobalISel will
- // normally copy the matched operand to the result. When this is set, it will
- // emit a special copy that will replace zero-immediates with the specified
- // zero-register.
- Register GIZeroRegister = ?;
- }
- let OperandType = "OPERAND_IMMEDIATE" in {
- def i1imm : Operand<i1>;
- def i8imm : Operand<i8>;
- def i16imm : Operand<i16>;
- def i32imm : Operand<i32>;
- def i64imm : Operand<i64>;
- def f32imm : Operand<f32>;
- def f64imm : Operand<f64>;
- }
- // Register operands for generic instructions don't have an MVT, but do have
- // constraints linking the operands (e.g. all operands of a G_ADD must
- // have the same LLT).
- class TypedOperand<string Ty> : Operand<untyped> {
- let OperandType = Ty;
- bit IsPointer = false;
- bit IsImmediate = false;
- }
- def type0 : TypedOperand<"OPERAND_GENERIC_0">;
- def type1 : TypedOperand<"OPERAND_GENERIC_1">;
- def type2 : TypedOperand<"OPERAND_GENERIC_2">;
- def type3 : TypedOperand<"OPERAND_GENERIC_3">;
- def type4 : TypedOperand<"OPERAND_GENERIC_4">;
- def type5 : TypedOperand<"OPERAND_GENERIC_5">;
- let IsPointer = true in {
- def ptype0 : TypedOperand<"OPERAND_GENERIC_0">;
- def ptype1 : TypedOperand<"OPERAND_GENERIC_1">;
- def ptype2 : TypedOperand<"OPERAND_GENERIC_2">;
- def ptype3 : TypedOperand<"OPERAND_GENERIC_3">;
- def ptype4 : TypedOperand<"OPERAND_GENERIC_4">;
- def ptype5 : TypedOperand<"OPERAND_GENERIC_5">;
- }
- // untyped_imm is for operands where isImm() will be true. It currently has no
- // special behaviour and is only used for clarity.
- def untyped_imm_0 : TypedOperand<"OPERAND_GENERIC_IMM_0"> {
- let IsImmediate = true;
- }
- /// zero_reg definition - Special node to stand for the zero register.
- ///
- def zero_reg;
- /// undef_tied_input - Special node to indicate an input register tied
- /// to an output which defaults to IMPLICIT_DEF.
- def undef_tied_input;
- /// All operands which the MC layer classifies as predicates should inherit from
- /// this class in some manner. This is already handled for the most commonly
- /// used PredicateOperand, but may be useful in other circumstances.
- class PredicateOp;
- /// OperandWithDefaultOps - This Operand class can be used as the parent class
- /// for an Operand that needs to be initialized with a default value if
- /// no value is supplied in a pattern. This class can be used to simplify the
- /// pattern definitions for instructions that have target specific flags
- /// encoded as immediate operands.
- class OperandWithDefaultOps<ValueType ty, dag defaultops>
- : Operand<ty> {
- dag DefaultOps = defaultops;
- }
- /// PredicateOperand - This can be used to define a predicate operand for an
- /// instruction. OpTypes specifies the MIOperandInfo for the operand, and
- /// AlwaysVal specifies the value of this predicate when set to "always
- /// execute".
- class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
- : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
- let MIOperandInfo = OpTypes;
- }
- /// OptionalDefOperand - This is used to define a optional definition operand
- /// for an instruction. DefaultOps is the register the operand represents if
- /// none is supplied, e.g. zero_reg.
- class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
- : OperandWithDefaultOps<ty, defaultops> {
- let MIOperandInfo = OpTypes;
- }
- // InstrInfo - This class should only be instantiated once to provide parameters
- // which are global to the target machine.
- //
- class InstrInfo {
- // Target can specify its instructions in either big or little-endian formats.
- // For instance, while both Sparc and PowerPC are big-endian platforms, the
- // Sparc manual specifies its instructions in the format [31..0] (big), while
- // PowerPC specifies them using the format [0..31] (little).
- bit isLittleEndianEncoding = false;
- // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
- // by default, and TableGen will infer their value from the instruction
- // pattern when possible.
- //
- // Normally, TableGen will issue an error if it can't infer the value of a
- // property that hasn't been set explicitly. When guessInstructionProperties
- // is set, it will guess a safe value instead.
- //
- // This option is a temporary migration help. It will go away.
- bit guessInstructionProperties = true;
- // TableGen's instruction encoder generator has support for matching operands
- // to bit-field variables both by name and by position. While matching by
- // name is preferred, this is currently not possible for complex operands,
- // and some targets still reply on the positional encoding rules. When
- // generating a decoder for such targets, the positional encoding rules must
- // be used by the decoder generator as well.
- //
- // This option is temporary; it will go away once the TableGen decoder
- // generator has better support for complex operands and targets have
- // migrated away from using positionally encoded operands.
- bit decodePositionallyEncodedOperands = false;
- // When set, this indicates that there will be no overlap between those
- // operands that are matched by ordering (positional operands) and those
- // matched by name.
- //
- // This option is temporary; it will go away once the TableGen decoder
- // generator has better support for complex operands and targets have
- // migrated away from using positionally encoded operands.
- bit noNamedPositionallyEncodedOperands = false;
- }
- // Standard Pseudo Instructions.
- // This list must match TargetOpcodes.def.
- // Only these instructions are allowed in the TargetOpcode namespace.
- // Ensure mayLoad and mayStore have a default value, so as not to break
- // targets that set guessInstructionProperties=0. Any local definition of
- // mayLoad/mayStore takes precedence over these default values.
- class StandardPseudoInstruction : Instruction {
- let mayLoad = false;
- let mayStore = false;
- let isCodeGenOnly = true;
- let isPseudo = true;
- let hasNoSchedulingInfo = true;
- let Namespace = "TargetOpcode";
- }
- def PHI : StandardPseudoInstruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins variable_ops);
- let AsmString = "PHINODE";
- let hasSideEffects = false;
- }
- def INLINEASM : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins variable_ops);
- let AsmString = "";
- let hasSideEffects = false; // Note side effect is encoded in an operand.
- }
- def INLINEASM_BR : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins variable_ops);
- let AsmString = "";
- // Unlike INLINEASM, this is always treated as having side-effects.
- let hasSideEffects = true;
- // Despite potentially branching, this instruction is intentionally _not_
- // marked as a terminator or a branch.
- }
- def CFI_INSTRUCTION : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins i32imm:$id);
- let AsmString = "";
- let hasCtrlDep = true;
- let hasSideEffects = false;
- let isNotDuplicable = true;
- }
- def EH_LABEL : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins i32imm:$id);
- let AsmString = "";
- let hasCtrlDep = true;
- let hasSideEffects = false;
- let isNotDuplicable = true;
- }
- def GC_LABEL : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins i32imm:$id);
- let AsmString = "";
- let hasCtrlDep = true;
- let hasSideEffects = false;
- let isNotDuplicable = true;
- }
- def ANNOTATION_LABEL : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins i32imm:$id);
- let AsmString = "";
- let hasCtrlDep = true;
- let hasSideEffects = false;
- let isNotDuplicable = true;
- }
- def KILL : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins variable_ops);
- let AsmString = "";
- let hasSideEffects = false;
- }
- def EXTRACT_SUBREG : StandardPseudoInstruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
- let AsmString = "";
- let hasSideEffects = false;
- }
- def INSERT_SUBREG : StandardPseudoInstruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
- let AsmString = "";
- let hasSideEffects = false;
- let Constraints = "$supersrc = $dst";
- }
- def IMPLICIT_DEF : StandardPseudoInstruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins);
- let AsmString = "";
- let hasSideEffects = false;
- let isReMaterializable = true;
- let isAsCheapAsAMove = true;
- }
- def SUBREG_TO_REG : StandardPseudoInstruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
- let AsmString = "";
- let hasSideEffects = false;
- }
- def COPY_TO_REGCLASS : StandardPseudoInstruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins unknown:$src, i32imm:$regclass);
- let AsmString = "";
- let hasSideEffects = false;
- let isAsCheapAsAMove = true;
- }
- def DBG_VALUE : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins variable_ops);
- let AsmString = "DBG_VALUE";
- let hasSideEffects = false;
- }
- def DBG_VALUE_LIST : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins variable_ops);
- let AsmString = "DBG_VALUE_LIST";
- let hasSideEffects = 0;
- }
- def DBG_INSTR_REF : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins variable_ops);
- let AsmString = "DBG_INSTR_REF";
- let hasSideEffects = false;
- }
- def DBG_PHI : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins variable_ops);
- let AsmString = "DBG_PHI";
- let hasSideEffects = 0;
- }
- def DBG_LABEL : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins unknown:$label);
- let AsmString = "DBG_LABEL";
- let hasSideEffects = false;
- }
- def REG_SEQUENCE : StandardPseudoInstruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins unknown:$supersrc, variable_ops);
- let AsmString = "";
- let hasSideEffects = false;
- let isAsCheapAsAMove = true;
- }
- def COPY : StandardPseudoInstruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins unknown:$src);
- let AsmString = "";
- let hasSideEffects = false;
- let isAsCheapAsAMove = true;
- let hasNoSchedulingInfo = false;
- }
- def BUNDLE : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins variable_ops);
- let AsmString = "BUNDLE";
- let hasSideEffects = false;
- }
- def LIFETIME_START : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins i32imm:$id);
- let AsmString = "LIFETIME_START";
- let hasSideEffects = false;
- }
- def LIFETIME_END : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins i32imm:$id);
- let AsmString = "LIFETIME_END";
- let hasSideEffects = false;
- }
- def PSEUDO_PROBE : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins i64imm:$guid, i64imm:$index, i8imm:$type, i32imm:$attr);
- let AsmString = "PSEUDO_PROBE";
- let hasSideEffects = 1;
- }
- def ARITH_FENCE : StandardPseudoInstruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins unknown:$src);
- let AsmString = "";
- let hasSideEffects = false;
- let Constraints = "$src = $dst";
- }
- def STACKMAP : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
- let hasSideEffects = true;
- let isCall = true;
- let mayLoad = true;
- let usesCustomInserter = true;
- }
- def PATCHPOINT : StandardPseudoInstruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
- i32imm:$nargs, i32imm:$cc, variable_ops);
- let hasSideEffects = true;
- let isCall = true;
- let mayLoad = true;
- let usesCustomInserter = true;
- }
- def STATEPOINT : StandardPseudoInstruction {
- let OutOperandList = (outs variable_ops);
- let InOperandList = (ins variable_ops);
- let usesCustomInserter = true;
- let mayLoad = true;
- let mayStore = true;
- let hasSideEffects = true;
- let isCall = true;
- }
- def LOAD_STACK_GUARD : StandardPseudoInstruction {
- let OutOperandList = (outs ptr_rc:$dst);
- let InOperandList = (ins);
- let mayLoad = true;
- bit isReMaterializable = true;
- let hasSideEffects = false;
- bit isPseudo = true;
- }
- def PREALLOCATED_SETUP : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins i32imm:$a);
- let usesCustomInserter = true;
- let hasSideEffects = true;
- }
- def PREALLOCATED_ARG : StandardPseudoInstruction {
- let OutOperandList = (outs ptr_rc:$loc);
- let InOperandList = (ins i32imm:$a, i32imm:$b);
- let usesCustomInserter = true;
- let hasSideEffects = true;
- }
- def LOCAL_ESCAPE : StandardPseudoInstruction {
- // This instruction is really just a label. It has to be part of the chain so
- // that it doesn't get dropped from the DAG, but it produces nothing and has
- // no side effects.
- let OutOperandList = (outs);
- let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
- let hasSideEffects = false;
- let hasCtrlDep = true;
- }
- def FAULTING_OP : StandardPseudoInstruction {
- let OutOperandList = (outs unknown:$dst);
- let InOperandList = (ins variable_ops);
- let usesCustomInserter = true;
- let hasSideEffects = true;
- let mayLoad = true;
- let mayStore = true;
- let isTerminator = true;
- let isBranch = true;
- }
- def PATCHABLE_OP : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins variable_ops);
- let usesCustomInserter = true;
- let mayLoad = true;
- let mayStore = true;
- let hasSideEffects = true;
- }
- def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins);
- let AsmString = "# XRay Function Enter.";
- let usesCustomInserter = true;
- let hasSideEffects = true;
- }
- def PATCHABLE_RET : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins variable_ops);
- let AsmString = "# XRay Function Patchable RET.";
- let usesCustomInserter = true;
- let hasSideEffects = true;
- let isTerminator = true;
- let isReturn = true;
- }
- def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins);
- let AsmString = "# XRay Function Exit.";
- let usesCustomInserter = true;
- let hasSideEffects = true;
- let isReturn = false; // Original return instruction will follow
- }
- def PATCHABLE_TAIL_CALL : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins variable_ops);
- let AsmString = "# XRay Tail Call Exit.";
- let usesCustomInserter = true;
- let hasSideEffects = true;
- let isReturn = true;
- }
- def PATCHABLE_EVENT_CALL : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins ptr_rc:$event, unknown:$size);
- let AsmString = "# XRay Custom Event Log.";
- let usesCustomInserter = true;
- let isCall = true;
- let mayLoad = true;
- let mayStore = true;
- let hasSideEffects = true;
- }
- def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins unknown:$type, ptr_rc:$event, unknown:$size);
- let AsmString = "# XRay Typed Event Log.";
- let usesCustomInserter = true;
- let isCall = true;
- let mayLoad = true;
- let mayStore = true;
- let hasSideEffects = true;
- }
- def FENTRY_CALL : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins);
- let AsmString = "# FEntry call";
- let usesCustomInserter = true;
- let isCall = true;
- let mayLoad = true;
- let mayStore = true;
- let hasSideEffects = true;
- }
- def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction {
- let OutOperandList = (outs);
- let InOperandList = (ins variable_ops);
- let AsmString = "";
- let hasSideEffects = true;
- }
- // Generic opcodes used in GlobalISel.
- include "llvm/Target/GenericOpcodes.td"
- //===----------------------------------------------------------------------===//
- // AsmParser - This class can be implemented by targets that wish to implement
- // .s file parsing.
- //
- // Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
- // syntax on X86 for example).
- //
- class AsmParser {
- // AsmParserClassName - This specifies the suffix to use for the asmparser
- // class. Generated AsmParser classes are always prefixed with the target
- // name.
- string AsmParserClassName = "AsmParser";
- // AsmParserInstCleanup - If non-empty, this is the name of a custom member
- // function of the AsmParser class to call on every matched instruction.
- // This can be used to perform target specific instruction post-processing.
- string AsmParserInstCleanup = "";
- // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
- // written register name matcher
- bit ShouldEmitMatchRegisterName = true;
- // Set to true if the target needs a generated 'alternative register name'
- // matcher.
- //
- // This generates a function which can be used to lookup registers from
- // their aliases. This function will fail when called on targets where
- // several registers share the same alias (i.e. not a 1:1 mapping).
- bit ShouldEmitMatchRegisterAltName = false;
- // Set to true if MatchRegisterName and MatchRegisterAltName functions
- // should be generated even if there are duplicate register names. The
- // target is responsible for coercing aliased registers as necessary
- // (e.g. in validateTargetOperandClass), and there are no guarantees about
- // which numeric register identifier will be returned in the case of
- // multiple matches.
- bit AllowDuplicateRegisterNames = false;
- // HasMnemonicFirst - Set to false if target instructions don't always
- // start with a mnemonic as the first token.
- bit HasMnemonicFirst = true;
- // ReportMultipleNearMisses -
- // When 0, the assembly matcher reports an error for one encoding or operand
- // that did not match the parsed instruction.
- // When 1, the assembly matcher returns a list of encodings that were close
- // to matching the parsed instruction, so to allow more detailed error
- // messages.
- bit ReportMultipleNearMisses = false;
- }
- def DefaultAsmParser : AsmParser;
- //===----------------------------------------------------------------------===//
- // AsmParserVariant - Subtargets can have multiple different assembly parsers
- // (e.g. AT&T vs Intel syntax on X86 for example). This class can be
- // implemented by targets to describe such variants.
- //
- class AsmParserVariant {
- // Variant - AsmParsers can be of multiple different variants. Variants are
- // used to support targets that need to parse multiple formats for the
- // assembly language.
- int Variant = 0;
- // Name - The AsmParser variant name (e.g., AT&T vs Intel).
- string Name = "";
- // CommentDelimiter - If given, the delimiter string used to recognize
- // comments which are hard coded in the .td assembler strings for individual
- // instructions.
- string CommentDelimiter = "";
- // RegisterPrefix - If given, the token prefix which indicates a register
- // token. This is used by the matcher to automatically recognize hard coded
- // register tokens as constrained registers, instead of tokens, for the
- // purposes of matching.
- string RegisterPrefix = "";
- // TokenizingCharacters - Characters that are standalone tokens
- string TokenizingCharacters = "[]*!";
- // SeparatorCharacters - Characters that are not tokens
- string SeparatorCharacters = " \t,";
- // BreakCharacters - Characters that start new identifiers
- string BreakCharacters = "";
- }
- def DefaultAsmParserVariant : AsmParserVariant;
- // Operators for combining SubtargetFeatures in AssemblerPredicates
- def any_of;
- def all_of;
- /// AssemblerPredicate - This is a Predicate that can be used when the assembler
- /// matches instructions and aliases.
- class AssemblerPredicate<dag cond, string name = ""> {
- bit AssemblerMatcherPredicate = true;
- dag AssemblerCondDag = cond;
- string PredicateName = name;
- }
- /// TokenAlias - This class allows targets to define assembler token
- /// operand aliases. That is, a token literal operand which is equivalent
- /// to another, canonical, token literal. For example, ARM allows:
- /// vmov.u32 s4, #0 -> vmov.i32, #0
- /// 'u32' is a more specific designator for the 32-bit integer type specifier
- /// and is legal for any instruction which accepts 'i32' as a datatype suffix.
- /// def : TokenAlias<".u32", ".i32">;
- ///
- /// This works by marking the match class of 'From' as a subclass of the
- /// match class of 'To'.
- class TokenAlias<string From, string To> {
- string FromToken = From;
- string ToToken = To;
- }
- /// MnemonicAlias - This class allows targets to define assembler mnemonic
- /// aliases. This should be used when all forms of one mnemonic are accepted
- /// with a different mnemonic. For example, X86 allows:
- /// sal %al, 1 -> shl %al, 1
- /// sal %ax, %cl -> shl %ax, %cl
- /// sal %eax, %cl -> shl %eax, %cl
- /// etc. Though "sal" is accepted with many forms, all of them are directly
- /// translated to a shl, so it can be handled with (in the case of X86, it
- /// actually has one for each suffix as well):
- /// def : MnemonicAlias<"sal", "shl">;
- ///
- /// Mnemonic aliases are mapped before any other translation in the match phase,
- /// and do allow Requires predicates, e.g.:
- ///
- /// def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
- /// def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
- ///
- /// Mnemonic aliases can also be constrained to specific variants, e.g.:
- ///
- /// def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
- ///
- /// If no variant (e.g., "att" or "intel") is specified then the alias is
- /// applied unconditionally.
- class MnemonicAlias<string From, string To, string VariantName = ""> {
- string FromMnemonic = From;
- string ToMnemonic = To;
- string AsmVariantName = VariantName;
- // Predicates - Predicates that must be true for this remapping to happen.
- list<Predicate> Predicates = [];
- }
- /// InstAlias - This defines an alternate assembly syntax that is allowed to
- /// match an instruction that has a different (more canonical) assembly
- /// representation.
- class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> {
- string AsmString = Asm; // The .s format to match the instruction with.
- dag ResultInst = Result; // The MCInst to generate.
- // This determines which order the InstPrinter detects aliases for
- // printing. A larger value makes the alias more likely to be
- // emitted. The Instruction's own definition is notionally 0.5, so 0
- // disables printing and 1 enables it if there are no conflicting aliases.
- int EmitPriority = Emit;
- // Predicates - Predicates that must be true for this to match.
- list<Predicate> Predicates = [];
- // If the instruction specified in Result has defined an AsmMatchConverter
- // then setting this to 1 will cause the alias to use the AsmMatchConverter
- // function when converting the OperandVector into an MCInst instead of the
- // function that is generated by the dag Result.
- // Setting this to 0 will cause the alias to ignore the Result instruction's
- // defined AsmMatchConverter and instead use the function generated by the
- // dag Result.
- bit UseInstAsmMatchConverter = true;
- // Assembler variant name to use for this alias. If not specified then
- // assembler variants will be determined based on AsmString
- string AsmVariantName = VariantName;
- }
- //===----------------------------------------------------------------------===//
- // AsmWriter - This class can be implemented by targets that need to customize
- // the format of the .s file writer.
- //
- // Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
- // on X86 for example).
- //
- class AsmWriter {
- // AsmWriterClassName - This specifies the suffix to use for the asmwriter
- // class. Generated AsmWriter classes are always prefixed with the target
- // name.
- string AsmWriterClassName = "InstPrinter";
- // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
- // the various print methods.
- // FIXME: Remove after all ports are updated.
- int PassSubtarget = 0;
- // Variant - AsmWriters can be of multiple different variants. Variants are
- // used to support targets that need to emit assembly code in ways that are
- // mostly the same for different targets, but have minor differences in
- // syntax. If the asmstring contains {|} characters in them, this integer
- // will specify which alternative to use. For example "{x|y|z}" with Variant
- // == 1, will expand to "y".
- int Variant = 0;
- }
- def DefaultAsmWriter : AsmWriter;
- //===----------------------------------------------------------------------===//
- // Target - This class contains the "global" target information
- //
- class Target {
- // InstructionSet - Instruction set description for this target.
- InstrInfo InstructionSet;
- // AssemblyParsers - The AsmParser instances available for this target.
- list<AsmParser> AssemblyParsers = [DefaultAsmParser];
- /// AssemblyParserVariants - The AsmParserVariant instances available for
- /// this target.
- list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
- // AssemblyWriters - The AsmWriter instances available for this target.
- list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
- // AllowRegisterRenaming - Controls whether this target allows
- // post-register-allocation renaming of registers. This is done by
- // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1
- // for all opcodes if this flag is set to 0.
- int AllowRegisterRenaming = 0;
- }
- //===----------------------------------------------------------------------===//
- // SubtargetFeature - A characteristic of the chip set.
- //
- class SubtargetFeature<string n, string a, string v, string d,
- list<SubtargetFeature> i = []> {
- // Name - Feature name. Used by command line (-mattr=) to determine the
- // appropriate target chip.
- //
- string Name = n;
- // Attribute - Attribute to be set by feature.
- //
- string Attribute = a;
- // Value - Value the attribute to be set to by feature.
- //
- string Value = v;
- // Desc - Feature description. Used by command line (-mattr=) to display help
- // information.
- //
- string Desc = d;
- // Implies - Features that this feature implies are present. If one of those
- // features isn't set, then this one shouldn't be set either.
- //
- list<SubtargetFeature> Implies = i;
- }
- /// Specifies a Subtarget feature that this instruction is deprecated on.
- class Deprecated<SubtargetFeature dep> {
- SubtargetFeature DeprecatedFeatureMask = dep;
- }
- /// A custom predicate used to determine if an instruction is
- /// deprecated or not.
- class ComplexDeprecationPredicate<string dep> {
- string ComplexDeprecationPredicate = dep;
- }
- //===----------------------------------------------------------------------===//
- // Processor chip sets - These values represent each of the chip sets supported
- // by the scheduler. Each Processor definition requires corresponding
- // instruction itineraries.
- //
- class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f,
- list<SubtargetFeature> tunef = []> {
- // Name - Chip set name. Used by command line (-mcpu=) to determine the
- // appropriate target chip.
- //
- string Name = n;
- // SchedModel - The machine model for scheduling and instruction cost.
- //
- SchedMachineModel SchedModel = NoSchedModel;
- // ProcItin - The scheduling information for the target processor.
- //
- ProcessorItineraries ProcItin = pi;
- // Features - list of
- list<SubtargetFeature> Features = f;
- // TuneFeatures - list of features for tuning for this CPU. If the target
- // supports -mtune, this should contain the list of features used to make
- // microarchitectural optimization decisions for a given processor. While
- // Features should contain the architectural features for the processor.
- list<SubtargetFeature> TuneFeatures = tunef;
- }
- // ProcessorModel allows subtargets to specify the more general
- // SchedMachineModel instead if a ProcessorItinerary. Subtargets will
- // gradually move to this newer form.
- //
- // Although this class always passes NoItineraries to the Processor
- // class, the SchedMachineModel may still define valid Itineraries.
- class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f,
- list<SubtargetFeature> tunef = []>
- : Processor<n, NoItineraries, f, tunef> {
- let SchedModel = m;
- }
- //===----------------------------------------------------------------------===//
- // InstrMapping - This class is used to create mapping tables to relate
- // instructions with each other based on the values specified in RowFields,
- // ColFields, KeyCol and ValueCols.
- //
- class InstrMapping {
- // FilterClass - Used to limit search space only to the instructions that
- // define the relationship modeled by this InstrMapping record.
- string FilterClass;
- // RowFields - List of fields/attributes that should be same for all the
- // instructions in a row of the relation table. Think of this as a set of
- // properties shared by all the instructions related by this relationship
- // model and is used to categorize instructions into subgroups. For instance,
- // if we want to define a relation that maps 'Add' instruction to its
- // predicated forms, we can define RowFields like this:
- //
- // let RowFields = BaseOp
- // All add instruction predicated/non-predicated will have to set their BaseOp
- // to the same value.
- //
- // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
- // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
- // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false' }
- list<string> RowFields = [];
- // List of fields/attributes that are same for all the instructions
- // in a column of the relation table.
- // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
- // based on the 'predSense' values. All the instruction in a specific
- // column have the same value and it is fixed for the column according
- // to the values set in 'ValueCols'.
- list<string> ColFields = [];
- // Values for the fields/attributes listed in 'ColFields'.
- // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
- // that models this relation) should be non-predicated.
- // In the example above, 'Add' is the key instruction.
- list<string> KeyCol = [];
- // List of values for the fields/attributes listed in 'ColFields', one for
- // each column in the relation table.
- //
- // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
- // table. First column requires all the instructions to have predSense
- // set to 'true' and second column requires it to be 'false'.
- list<list<string> > ValueCols = [];
- }
- //===----------------------------------------------------------------------===//
- // Pull in the common support for calling conventions.
- //
- include "llvm/Target/TargetCallingConv.td"
- //===----------------------------------------------------------------------===//
- // Pull in the common support for DAG isel generation.
- //
- include "llvm/Target/TargetSelectionDAG.td"
- //===----------------------------------------------------------------------===//
- // Pull in the common support for Global ISel register bank info generation.
- //
- include "llvm/Target/GlobalISel/RegisterBank.td"
- //===----------------------------------------------------------------------===//
- // Pull in the common support for DAG isel generation.
- //
- include "llvm/Target/GlobalISel/Target.td"
- //===----------------------------------------------------------------------===//
- // Pull in the common support for the Global ISel DAG-based selector generation.
- //
- include "llvm/Target/GlobalISel/SelectionDAGCompat.td"
- //===----------------------------------------------------------------------===//
- // Pull in the common support for Pfm Counters generation.
- //
- include "llvm/Target/TargetPfmCounters.td"
|