123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- llvm/Support/ScaledNumber.h - Support for scaled numbers -*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains functions (and a class) useful for working with scaled
- // numbers -- in particular, pairs of integers where one represents digits and
- // another represents a scale. The functions are helpers and live in the
- // namespace ScaledNumbers. The class ScaledNumber is useful for modelling
- // certain cost metrics that need simple, integer-like semantics that are easy
- // to reason about.
- //
- // These might remind you of soft-floats. If you want one of those, you're in
- // the wrong place. Look at include/llvm/ADT/APFloat.h instead.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_SUPPORT_SCALEDNUMBER_H
- #define LLVM_SUPPORT_SCALEDNUMBER_H
- #include "llvm/Support/MathExtras.h"
- #include <algorithm>
- #include <cstdint>
- #include <limits>
- #include <string>
- #include <tuple>
- #include <utility>
- namespace llvm {
- namespace ScaledNumbers {
- /// Maximum scale; same as APFloat for easy debug printing.
- const int32_t MaxScale = 16383;
- /// Maximum scale; same as APFloat for easy debug printing.
- const int32_t MinScale = -16382;
- /// Get the width of a number.
- template <class DigitsT> inline int getWidth() { return sizeof(DigitsT) * 8; }
- /// Conditionally round up a scaled number.
- ///
- /// Given \c Digits and \c Scale, round up iff \c ShouldRound is \c true.
- /// Always returns \c Scale unless there's an overflow, in which case it
- /// returns \c 1+Scale.
- ///
- /// \pre adding 1 to \c Scale will not overflow INT16_MAX.
- template <class DigitsT>
- inline std::pair<DigitsT, int16_t> getRounded(DigitsT Digits, int16_t Scale,
- bool ShouldRound) {
- static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
- if (ShouldRound)
- if (!++Digits)
- // Overflow.
- return std::make_pair(DigitsT(1) << (getWidth<DigitsT>() - 1), Scale + 1);
- return std::make_pair(Digits, Scale);
- }
- /// Convenience helper for 32-bit rounding.
- inline std::pair<uint32_t, int16_t> getRounded32(uint32_t Digits, int16_t Scale,
- bool ShouldRound) {
- return getRounded(Digits, Scale, ShouldRound);
- }
- /// Convenience helper for 64-bit rounding.
- inline std::pair<uint64_t, int16_t> getRounded64(uint64_t Digits, int16_t Scale,
- bool ShouldRound) {
- return getRounded(Digits, Scale, ShouldRound);
- }
- /// Adjust a 64-bit scaled number down to the appropriate width.
- ///
- /// \pre Adding 64 to \c Scale will not overflow INT16_MAX.
- template <class DigitsT>
- inline std::pair<DigitsT, int16_t> getAdjusted(uint64_t Digits,
- int16_t Scale = 0) {
- static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
- const int Width = getWidth<DigitsT>();
- if (Width == 64 || Digits <= std::numeric_limits<DigitsT>::max())
- return std::make_pair(Digits, Scale);
- // Shift right and round.
- int Shift = 64 - Width - countLeadingZeros(Digits);
- return getRounded<DigitsT>(Digits >> Shift, Scale + Shift,
- Digits & (UINT64_C(1) << (Shift - 1)));
- }
- /// Convenience helper for adjusting to 32 bits.
- inline std::pair<uint32_t, int16_t> getAdjusted32(uint64_t Digits,
- int16_t Scale = 0) {
- return getAdjusted<uint32_t>(Digits, Scale);
- }
- /// Convenience helper for adjusting to 64 bits.
- inline std::pair<uint64_t, int16_t> getAdjusted64(uint64_t Digits,
- int16_t Scale = 0) {
- return getAdjusted<uint64_t>(Digits, Scale);
- }
- /// Multiply two 64-bit integers to create a 64-bit scaled number.
- ///
- /// Implemented with four 64-bit integer multiplies.
- std::pair<uint64_t, int16_t> multiply64(uint64_t LHS, uint64_t RHS);
- /// Multiply two 32-bit integers to create a 32-bit scaled number.
- ///
- /// Implemented with one 64-bit integer multiply.
- template <class DigitsT>
- inline std::pair<DigitsT, int16_t> getProduct(DigitsT LHS, DigitsT RHS) {
- static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
- if (getWidth<DigitsT>() <= 32 || (LHS <= UINT32_MAX && RHS <= UINT32_MAX))
- return getAdjusted<DigitsT>(uint64_t(LHS) * RHS);
- return multiply64(LHS, RHS);
- }
- /// Convenience helper for 32-bit product.
- inline std::pair<uint32_t, int16_t> getProduct32(uint32_t LHS, uint32_t RHS) {
- return getProduct(LHS, RHS);
- }
- /// Convenience helper for 64-bit product.
- inline std::pair<uint64_t, int16_t> getProduct64(uint64_t LHS, uint64_t RHS) {
- return getProduct(LHS, RHS);
- }
- /// Divide two 64-bit integers to create a 64-bit scaled number.
- ///
- /// Implemented with long division.
- ///
- /// \pre \c Dividend and \c Divisor are non-zero.
- std::pair<uint64_t, int16_t> divide64(uint64_t Dividend, uint64_t Divisor);
- /// Divide two 32-bit integers to create a 32-bit scaled number.
- ///
- /// Implemented with one 64-bit integer divide/remainder pair.
- ///
- /// \pre \c Dividend and \c Divisor are non-zero.
- std::pair<uint32_t, int16_t> divide32(uint32_t Dividend, uint32_t Divisor);
- /// Divide two 32-bit numbers to create a 32-bit scaled number.
- ///
- /// Implemented with one 64-bit integer divide/remainder pair.
- ///
- /// Returns \c (DigitsT_MAX, MaxScale) for divide-by-zero (0 for 0/0).
- template <class DigitsT>
- std::pair<DigitsT, int16_t> getQuotient(DigitsT Dividend, DigitsT Divisor) {
- static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
- static_assert(sizeof(DigitsT) == 4 || sizeof(DigitsT) == 8,
- "expected 32-bit or 64-bit digits");
- // Check for zero.
- if (!Dividend)
- return std::make_pair(0, 0);
- if (!Divisor)
- return std::make_pair(std::numeric_limits<DigitsT>::max(), MaxScale);
- if (getWidth<DigitsT>() == 64)
- return divide64(Dividend, Divisor);
- return divide32(Dividend, Divisor);
- }
- /// Convenience helper for 32-bit quotient.
- inline std::pair<uint32_t, int16_t> getQuotient32(uint32_t Dividend,
- uint32_t Divisor) {
- return getQuotient(Dividend, Divisor);
- }
- /// Convenience helper for 64-bit quotient.
- inline std::pair<uint64_t, int16_t> getQuotient64(uint64_t Dividend,
- uint64_t Divisor) {
- return getQuotient(Dividend, Divisor);
- }
- /// Implementation of getLg() and friends.
- ///
- /// Returns the rounded lg of \c Digits*2^Scale and an int specifying whether
- /// this was rounded up (1), down (-1), or exact (0).
- ///
- /// Returns \c INT32_MIN when \c Digits is zero.
- template <class DigitsT>
- inline std::pair<int32_t, int> getLgImpl(DigitsT Digits, int16_t Scale) {
- static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
- if (!Digits)
- return std::make_pair(INT32_MIN, 0);
- // Get the floor of the lg of Digits.
- int32_t LocalFloor = sizeof(Digits) * 8 - countLeadingZeros(Digits) - 1;
- // Get the actual floor.
- int32_t Floor = Scale + LocalFloor;
- if (Digits == UINT64_C(1) << LocalFloor)
- return std::make_pair(Floor, 0);
- // Round based on the next digit.
- assert(LocalFloor >= 1);
- bool Round = Digits & UINT64_C(1) << (LocalFloor - 1);
- return std::make_pair(Floor + Round, Round ? 1 : -1);
- }
- /// Get the lg (rounded) of a scaled number.
- ///
- /// Get the lg of \c Digits*2^Scale.
- ///
- /// Returns \c INT32_MIN when \c Digits is zero.
- template <class DigitsT> int32_t getLg(DigitsT Digits, int16_t Scale) {
- return getLgImpl(Digits, Scale).first;
- }
- /// Get the lg floor of a scaled number.
- ///
- /// Get the floor of the lg of \c Digits*2^Scale.
- ///
- /// Returns \c INT32_MIN when \c Digits is zero.
- template <class DigitsT> int32_t getLgFloor(DigitsT Digits, int16_t Scale) {
- auto Lg = getLgImpl(Digits, Scale);
- return Lg.first - (Lg.second > 0);
- }
- /// Get the lg ceiling of a scaled number.
- ///
- /// Get the ceiling of the lg of \c Digits*2^Scale.
- ///
- /// Returns \c INT32_MIN when \c Digits is zero.
- template <class DigitsT> int32_t getLgCeiling(DigitsT Digits, int16_t Scale) {
- auto Lg = getLgImpl(Digits, Scale);
- return Lg.first + (Lg.second < 0);
- }
- /// Implementation for comparing scaled numbers.
- ///
- /// Compare two 64-bit numbers with different scales. Given that the scale of
- /// \c L is higher than that of \c R by \c ScaleDiff, compare them. Return -1,
- /// 1, and 0 for less than, greater than, and equal, respectively.
- ///
- /// \pre 0 <= ScaleDiff < 64.
- int compareImpl(uint64_t L, uint64_t R, int ScaleDiff);
- /// Compare two scaled numbers.
- ///
- /// Compare two scaled numbers. Returns 0 for equal, -1 for less than, and 1
- /// for greater than.
- template <class DigitsT>
- int compare(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale) {
- static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
- // Check for zero.
- if (!LDigits)
- return RDigits ? -1 : 0;
- if (!RDigits)
- return 1;
- // Check for the scale. Use getLgFloor to be sure that the scale difference
- // is always lower than 64.
- int32_t lgL = getLgFloor(LDigits, LScale), lgR = getLgFloor(RDigits, RScale);
- if (lgL != lgR)
- return lgL < lgR ? -1 : 1;
- // Compare digits.
- if (LScale < RScale)
- return compareImpl(LDigits, RDigits, RScale - LScale);
- return -compareImpl(RDigits, LDigits, LScale - RScale);
- }
- /// Match scales of two numbers.
- ///
- /// Given two scaled numbers, match up their scales. Change the digits and
- /// scales in place. Shift the digits as necessary to form equivalent numbers,
- /// losing precision only when necessary.
- ///
- /// If the output value of \c LDigits (\c RDigits) is \c 0, the output value of
- /// \c LScale (\c RScale) is unspecified.
- ///
- /// As a convenience, returns the matching scale. If the output value of one
- /// number is zero, returns the scale of the other. If both are zero, which
- /// scale is returned is unspecified.
- template <class DigitsT>
- int16_t matchScales(DigitsT &LDigits, int16_t &LScale, DigitsT &RDigits,
- int16_t &RScale) {
- static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
- if (LScale < RScale)
- // Swap arguments.
- return matchScales(RDigits, RScale, LDigits, LScale);
- if (!LDigits)
- return RScale;
- if (!RDigits || LScale == RScale)
- return LScale;
- // Now LScale > RScale. Get the difference.
- int32_t ScaleDiff = int32_t(LScale) - RScale;
- if (ScaleDiff >= 2 * getWidth<DigitsT>()) {
- // Don't bother shifting. RDigits will get zero-ed out anyway.
- RDigits = 0;
- return LScale;
- }
- // Shift LDigits left as much as possible, then shift RDigits right.
- int32_t ShiftL = std::min<int32_t>(countLeadingZeros(LDigits), ScaleDiff);
- assert(ShiftL < getWidth<DigitsT>() && "can't shift more than width");
- int32_t ShiftR = ScaleDiff - ShiftL;
- if (ShiftR >= getWidth<DigitsT>()) {
- // Don't bother shifting. RDigits will get zero-ed out anyway.
- RDigits = 0;
- return LScale;
- }
- LDigits <<= ShiftL;
- RDigits >>= ShiftR;
- LScale -= ShiftL;
- RScale += ShiftR;
- assert(LScale == RScale && "scales should match");
- return LScale;
- }
- /// Get the sum of two scaled numbers.
- ///
- /// Get the sum of two scaled numbers with as much precision as possible.
- ///
- /// \pre Adding 1 to \c LScale (or \c RScale) will not overflow INT16_MAX.
- template <class DigitsT>
- std::pair<DigitsT, int16_t> getSum(DigitsT LDigits, int16_t LScale,
- DigitsT RDigits, int16_t RScale) {
- static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
- // Check inputs up front. This is only relevant if addition overflows, but
- // testing here should catch more bugs.
- assert(LScale < INT16_MAX && "scale too large");
- assert(RScale < INT16_MAX && "scale too large");
- // Normalize digits to match scales.
- int16_t Scale = matchScales(LDigits, LScale, RDigits, RScale);
- // Compute sum.
- DigitsT Sum = LDigits + RDigits;
- if (Sum >= RDigits)
- return std::make_pair(Sum, Scale);
- // Adjust sum after arithmetic overflow.
- DigitsT HighBit = DigitsT(1) << (getWidth<DigitsT>() - 1);
- return std::make_pair(HighBit | Sum >> 1, Scale + 1);
- }
- /// Convenience helper for 32-bit sum.
- inline std::pair<uint32_t, int16_t> getSum32(uint32_t LDigits, int16_t LScale,
- uint32_t RDigits, int16_t RScale) {
- return getSum(LDigits, LScale, RDigits, RScale);
- }
- /// Convenience helper for 64-bit sum.
- inline std::pair<uint64_t, int16_t> getSum64(uint64_t LDigits, int16_t LScale,
- uint64_t RDigits, int16_t RScale) {
- return getSum(LDigits, LScale, RDigits, RScale);
- }
- /// Get the difference of two scaled numbers.
- ///
- /// Get LHS minus RHS with as much precision as possible.
- ///
- /// Returns \c (0, 0) if the RHS is larger than the LHS.
- template <class DigitsT>
- std::pair<DigitsT, int16_t> getDifference(DigitsT LDigits, int16_t LScale,
- DigitsT RDigits, int16_t RScale) {
- static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
- // Normalize digits to match scales.
- const DigitsT SavedRDigits = RDigits;
- const int16_t SavedRScale = RScale;
- matchScales(LDigits, LScale, RDigits, RScale);
- // Compute difference.
- if (LDigits <= RDigits)
- return std::make_pair(0, 0);
- if (RDigits || !SavedRDigits)
- return std::make_pair(LDigits - RDigits, LScale);
- // Check if RDigits just barely lost its last bit. E.g., for 32-bit:
- //
- // 1*2^32 - 1*2^0 == 0xffffffff != 1*2^32
- const auto RLgFloor = getLgFloor(SavedRDigits, SavedRScale);
- if (!compare(LDigits, LScale, DigitsT(1), RLgFloor + getWidth<DigitsT>()))
- return std::make_pair(std::numeric_limits<DigitsT>::max(), RLgFloor);
- return std::make_pair(LDigits, LScale);
- }
- /// Convenience helper for 32-bit difference.
- inline std::pair<uint32_t, int16_t> getDifference32(uint32_t LDigits,
- int16_t LScale,
- uint32_t RDigits,
- int16_t RScale) {
- return getDifference(LDigits, LScale, RDigits, RScale);
- }
- /// Convenience helper for 64-bit difference.
- inline std::pair<uint64_t, int16_t> getDifference64(uint64_t LDigits,
- int16_t LScale,
- uint64_t RDigits,
- int16_t RScale) {
- return getDifference(LDigits, LScale, RDigits, RScale);
- }
- } // end namespace ScaledNumbers
- } // end namespace llvm
- namespace llvm {
- class raw_ostream;
- class ScaledNumberBase {
- public:
- static constexpr int DefaultPrecision = 10;
- static void dump(uint64_t D, int16_t E, int Width);
- static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width,
- unsigned Precision);
- static std::string toString(uint64_t D, int16_t E, int Width,
- unsigned Precision);
- static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); }
- static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); }
- static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
- static std::pair<uint64_t, bool> splitSigned(int64_t N) {
- if (N >= 0)
- return std::make_pair(N, false);
- uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N);
- return std::make_pair(Unsigned, true);
- }
- static int64_t joinSigned(uint64_t U, bool IsNeg) {
- if (U > uint64_t(INT64_MAX))
- return IsNeg ? INT64_MIN : INT64_MAX;
- return IsNeg ? -int64_t(U) : int64_t(U);
- }
- };
- /// Simple representation of a scaled number.
- ///
- /// ScaledNumber is a number represented by digits and a scale. It uses simple
- /// saturation arithmetic and every operation is well-defined for every value.
- /// It's somewhat similar in behaviour to a soft-float, but is *not* a
- /// replacement for one. If you're doing numerics, look at \a APFloat instead.
- /// Nevertheless, we've found these semantics useful for modelling certain cost
- /// metrics.
- ///
- /// The number is split into a signed scale and unsigned digits. The number
- /// represented is \c getDigits()*2^getScale(). In this way, the digits are
- /// much like the mantissa in the x87 long double, but there is no canonical
- /// form so the same number can be represented by many bit representations.
- ///
- /// ScaledNumber is templated on the underlying integer type for digits, which
- /// is expected to be unsigned.
- ///
- /// Unlike APFloat, ScaledNumber does not model architecture floating point
- /// behaviour -- while this might make it a little faster and easier to reason
- /// about, it certainly makes it more dangerous for general numerics.
- ///
- /// ScaledNumber is totally ordered. However, there is no canonical form, so
- /// there are multiple representations of most scalars. E.g.:
- ///
- /// ScaledNumber(8u, 0) == ScaledNumber(4u, 1)
- /// ScaledNumber(4u, 1) == ScaledNumber(2u, 2)
- /// ScaledNumber(2u, 2) == ScaledNumber(1u, 3)
- ///
- /// ScaledNumber implements most arithmetic operations. Precision is kept
- /// where possible. Uses simple saturation arithmetic, so that operations
- /// saturate to 0.0 or getLargest() rather than under or overflowing. It has
- /// some extra arithmetic for unit inversion. 0.0/0.0 is defined to be 0.0.
- /// Any other division by 0.0 is defined to be getLargest().
- ///
- /// As a convenience for modifying the exponent, left and right shifting are
- /// both implemented, and both interpret negative shifts as positive shifts in
- /// the opposite direction.
- ///
- /// Scales are limited to the range accepted by x87 long double. This makes
- /// it trivial to add functionality to convert to APFloat (this is already
- /// relied on for the implementation of printing).
- ///
- /// Possible (and conflicting) future directions:
- ///
- /// 1. Turn this into a wrapper around \a APFloat.
- /// 2. Share the algorithm implementations with \a APFloat.
- /// 3. Allow \a ScaledNumber to represent a signed number.
- template <class DigitsT> class ScaledNumber : ScaledNumberBase {
- public:
- static_assert(!std::numeric_limits<DigitsT>::is_signed,
- "only unsigned floats supported");
- typedef DigitsT DigitsType;
- private:
- typedef std::numeric_limits<DigitsType> DigitsLimits;
- static constexpr int Width = sizeof(DigitsType) * 8;
- static_assert(Width <= 64, "invalid integer width for digits");
- private:
- DigitsType Digits = 0;
- int16_t Scale = 0;
- public:
- ScaledNumber() = default;
- constexpr ScaledNumber(DigitsType Digits, int16_t Scale)
- : Digits(Digits), Scale(Scale) {}
- private:
- ScaledNumber(const std::pair<DigitsT, int16_t> &X)
- : Digits(X.first), Scale(X.second) {}
- public:
- static ScaledNumber getZero() { return ScaledNumber(0, 0); }
- static ScaledNumber getOne() { return ScaledNumber(1, 0); }
- static ScaledNumber getLargest() {
- return ScaledNumber(DigitsLimits::max(), ScaledNumbers::MaxScale);
- }
- static ScaledNumber get(uint64_t N) { return adjustToWidth(N, 0); }
- static ScaledNumber getInverse(uint64_t N) {
- return get(N).invert();
- }
- static ScaledNumber getFraction(DigitsType N, DigitsType D) {
- return getQuotient(N, D);
- }
- int16_t getScale() const { return Scale; }
- DigitsType getDigits() const { return Digits; }
- /// Convert to the given integer type.
- ///
- /// Convert to \c IntT using simple saturating arithmetic, truncating if
- /// necessary.
- template <class IntT> IntT toInt() const;
- bool isZero() const { return !Digits; }
- bool isLargest() const { return *this == getLargest(); }
- bool isOne() const {
- if (Scale > 0 || Scale <= -Width)
- return false;
- return Digits == DigitsType(1) << -Scale;
- }
- /// The log base 2, rounded.
- ///
- /// Get the lg of the scalar. lg 0 is defined to be INT32_MIN.
- int32_t lg() const { return ScaledNumbers::getLg(Digits, Scale); }
- /// The log base 2, rounded towards INT32_MIN.
- ///
- /// Get the lg floor. lg 0 is defined to be INT32_MIN.
- int32_t lgFloor() const { return ScaledNumbers::getLgFloor(Digits, Scale); }
- /// The log base 2, rounded towards INT32_MAX.
- ///
- /// Get the lg ceiling. lg 0 is defined to be INT32_MIN.
- int32_t lgCeiling() const {
- return ScaledNumbers::getLgCeiling(Digits, Scale);
- }
- bool operator==(const ScaledNumber &X) const { return compare(X) == 0; }
- bool operator<(const ScaledNumber &X) const { return compare(X) < 0; }
- bool operator!=(const ScaledNumber &X) const { return compare(X) != 0; }
- bool operator>(const ScaledNumber &X) const { return compare(X) > 0; }
- bool operator<=(const ScaledNumber &X) const { return compare(X) <= 0; }
- bool operator>=(const ScaledNumber &X) const { return compare(X) >= 0; }
- bool operator!() const { return isZero(); }
- /// Convert to a decimal representation in a string.
- ///
- /// Convert to a string. Uses scientific notation for very large/small
- /// numbers. Scientific notation is used roughly for numbers outside of the
- /// range 2^-64 through 2^64.
- ///
- /// \c Precision indicates the number of decimal digits of precision to use;
- /// 0 requests the maximum available.
- ///
- /// As a special case to make debugging easier, if the number is small enough
- /// to convert without scientific notation and has more than \c Precision
- /// digits before the decimal place, it's printed accurately to the first
- /// digit past zero. E.g., assuming 10 digits of precision:
- ///
- /// 98765432198.7654... => 98765432198.8
- /// 8765432198.7654... => 8765432198.8
- /// 765432198.7654... => 765432198.8
- /// 65432198.7654... => 65432198.77
- /// 5432198.7654... => 5432198.765
- std::string toString(unsigned Precision = DefaultPrecision) {
- return ScaledNumberBase::toString(Digits, Scale, Width, Precision);
- }
- /// Print a decimal representation.
- ///
- /// Print a string. See toString for documentation.
- raw_ostream &print(raw_ostream &OS,
- unsigned Precision = DefaultPrecision) const {
- return ScaledNumberBase::print(OS, Digits, Scale, Width, Precision);
- }
- void dump() const { return ScaledNumberBase::dump(Digits, Scale, Width); }
- ScaledNumber &operator+=(const ScaledNumber &X) {
- std::tie(Digits, Scale) =
- ScaledNumbers::getSum(Digits, Scale, X.Digits, X.Scale);
- // Check for exponent past MaxScale.
- if (Scale > ScaledNumbers::MaxScale)
- *this = getLargest();
- return *this;
- }
- ScaledNumber &operator-=(const ScaledNumber &X) {
- std::tie(Digits, Scale) =
- ScaledNumbers::getDifference(Digits, Scale, X.Digits, X.Scale);
- return *this;
- }
- ScaledNumber &operator*=(const ScaledNumber &X);
- ScaledNumber &operator/=(const ScaledNumber &X);
- ScaledNumber &operator<<=(int16_t Shift) {
- shiftLeft(Shift);
- return *this;
- }
- ScaledNumber &operator>>=(int16_t Shift) {
- shiftRight(Shift);
- return *this;
- }
- private:
- void shiftLeft(int32_t Shift);
- void shiftRight(int32_t Shift);
- /// Adjust two floats to have matching exponents.
- ///
- /// Adjust \c this and \c X to have matching exponents. Returns the new \c X
- /// by value. Does nothing if \a isZero() for either.
- ///
- /// The value that compares smaller will lose precision, and possibly become
- /// \a isZero().
- ScaledNumber matchScales(ScaledNumber X) {
- ScaledNumbers::matchScales(Digits, Scale, X.Digits, X.Scale);
- return X;
- }
- public:
- /// Scale a large number accurately.
- ///
- /// Scale N (multiply it by this). Uses full precision multiplication, even
- /// if Width is smaller than 64, so information is not lost.
- uint64_t scale(uint64_t N) const;
- uint64_t scaleByInverse(uint64_t N) const {
- // TODO: implement directly, rather than relying on inverse. Inverse is
- // expensive.
- return inverse().scale(N);
- }
- int64_t scale(int64_t N) const {
- std::pair<uint64_t, bool> Unsigned = splitSigned(N);
- return joinSigned(scale(Unsigned.first), Unsigned.second);
- }
- int64_t scaleByInverse(int64_t N) const {
- std::pair<uint64_t, bool> Unsigned = splitSigned(N);
- return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
- }
- int compare(const ScaledNumber &X) const {
- return ScaledNumbers::compare(Digits, Scale, X.Digits, X.Scale);
- }
- int compareTo(uint64_t N) const {
- return ScaledNumbers::compare<uint64_t>(Digits, Scale, N, 0);
- }
- int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }
- ScaledNumber &invert() { return *this = ScaledNumber::get(1) / *this; }
- ScaledNumber inverse() const { return ScaledNumber(*this).invert(); }
- private:
- static ScaledNumber getProduct(DigitsType LHS, DigitsType RHS) {
- return ScaledNumbers::getProduct(LHS, RHS);
- }
- static ScaledNumber getQuotient(DigitsType Dividend, DigitsType Divisor) {
- return ScaledNumbers::getQuotient(Dividend, Divisor);
- }
- static int countLeadingZerosWidth(DigitsType Digits) {
- if (Width == 64)
- return countLeadingZeros64(Digits);
- if (Width == 32)
- return countLeadingZeros32(Digits);
- return countLeadingZeros32(Digits) + Width - 32;
- }
- /// Adjust a number to width, rounding up if necessary.
- ///
- /// Should only be called for \c Shift close to zero.
- ///
- /// \pre Shift >= MinScale && Shift + 64 <= MaxScale.
- static ScaledNumber adjustToWidth(uint64_t N, int32_t Shift) {
- assert(Shift >= ScaledNumbers::MinScale && "Shift should be close to 0");
- assert(Shift <= ScaledNumbers::MaxScale - 64 &&
- "Shift should be close to 0");
- auto Adjusted = ScaledNumbers::getAdjusted<DigitsT>(N, Shift);
- return Adjusted;
- }
- static ScaledNumber getRounded(ScaledNumber P, bool Round) {
- // Saturate.
- if (P.isLargest())
- return P;
- return ScaledNumbers::getRounded(P.Digits, P.Scale, Round);
- }
- };
- #define SCALED_NUMBER_BOP(op, base) \
- template <class DigitsT> \
- ScaledNumber<DigitsT> operator op(const ScaledNumber<DigitsT> &L, \
- const ScaledNumber<DigitsT> &R) { \
- return ScaledNumber<DigitsT>(L) base R; \
- }
- SCALED_NUMBER_BOP(+, += )
- SCALED_NUMBER_BOP(-, -= )
- SCALED_NUMBER_BOP(*, *= )
- SCALED_NUMBER_BOP(/, /= )
- #undef SCALED_NUMBER_BOP
- template <class DigitsT>
- ScaledNumber<DigitsT> operator<<(const ScaledNumber<DigitsT> &L,
- int16_t Shift) {
- return ScaledNumber<DigitsT>(L) <<= Shift;
- }
- template <class DigitsT>
- ScaledNumber<DigitsT> operator>>(const ScaledNumber<DigitsT> &L,
- int16_t Shift) {
- return ScaledNumber<DigitsT>(L) >>= Shift;
- }
- template <class DigitsT>
- raw_ostream &operator<<(raw_ostream &OS, const ScaledNumber<DigitsT> &X) {
- return X.print(OS, 10);
- }
- #define SCALED_NUMBER_COMPARE_TO_TYPE(op, T1, T2) \
- template <class DigitsT> \
- bool operator op(const ScaledNumber<DigitsT> &L, T1 R) { \
- return L.compareTo(T2(R)) op 0; \
- } \
- template <class DigitsT> \
- bool operator op(T1 L, const ScaledNumber<DigitsT> &R) { \
- return 0 op R.compareTo(T2(L)); \
- }
- #define SCALED_NUMBER_COMPARE_TO(op) \
- SCALED_NUMBER_COMPARE_TO_TYPE(op, uint64_t, uint64_t) \
- SCALED_NUMBER_COMPARE_TO_TYPE(op, uint32_t, uint64_t) \
- SCALED_NUMBER_COMPARE_TO_TYPE(op, int64_t, int64_t) \
- SCALED_NUMBER_COMPARE_TO_TYPE(op, int32_t, int64_t)
- SCALED_NUMBER_COMPARE_TO(< )
- SCALED_NUMBER_COMPARE_TO(> )
- SCALED_NUMBER_COMPARE_TO(== )
- SCALED_NUMBER_COMPARE_TO(!= )
- SCALED_NUMBER_COMPARE_TO(<= )
- SCALED_NUMBER_COMPARE_TO(>= )
- #undef SCALED_NUMBER_COMPARE_TO
- #undef SCALED_NUMBER_COMPARE_TO_TYPE
- template <class DigitsT>
- uint64_t ScaledNumber<DigitsT>::scale(uint64_t N) const {
- if (Width == 64 || N <= DigitsLimits::max())
- return (get(N) * *this).template toInt<uint64_t>();
- // Defer to the 64-bit version.
- return ScaledNumber<uint64_t>(Digits, Scale).scale(N);
- }
- template <class DigitsT>
- template <class IntT>
- IntT ScaledNumber<DigitsT>::toInt() const {
- typedef std::numeric_limits<IntT> Limits;
- if (*this < 1)
- return 0;
- if (*this >= Limits::max())
- return Limits::max();
- IntT N = Digits;
- if (Scale > 0) {
- assert(size_t(Scale) < sizeof(IntT) * 8);
- return N << Scale;
- }
- if (Scale < 0) {
- assert(size_t(-Scale) < sizeof(IntT) * 8);
- return N >> -Scale;
- }
- return N;
- }
- template <class DigitsT>
- ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
- operator*=(const ScaledNumber &X) {
- if (isZero())
- return *this;
- if (X.isZero())
- return *this = X;
- // Save the exponents.
- int32_t Scales = int32_t(Scale) + int32_t(X.Scale);
- // Get the raw product.
- *this = getProduct(Digits, X.Digits);
- // Combine with exponents.
- return *this <<= Scales;
- }
- template <class DigitsT>
- ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
- operator/=(const ScaledNumber &X) {
- if (isZero())
- return *this;
- if (X.isZero())
- return *this = getLargest();
- // Save the exponents.
- int32_t Scales = int32_t(Scale) - int32_t(X.Scale);
- // Get the raw quotient.
- *this = getQuotient(Digits, X.Digits);
- // Combine with exponents.
- return *this <<= Scales;
- }
- template <class DigitsT> void ScaledNumber<DigitsT>::shiftLeft(int32_t Shift) {
- if (!Shift || isZero())
- return;
- assert(Shift != INT32_MIN);
- if (Shift < 0) {
- shiftRight(-Shift);
- return;
- }
- // Shift as much as we can in the exponent.
- int32_t ScaleShift = std::min(Shift, ScaledNumbers::MaxScale - Scale);
- Scale += ScaleShift;
- if (ScaleShift == Shift)
- return;
- // Check this late, since it's rare.
- if (isLargest())
- return;
- // Shift the digits themselves.
- Shift -= ScaleShift;
- if (Shift > countLeadingZerosWidth(Digits)) {
- // Saturate.
- *this = getLargest();
- return;
- }
- Digits <<= Shift;
- }
- template <class DigitsT> void ScaledNumber<DigitsT>::shiftRight(int32_t Shift) {
- if (!Shift || isZero())
- return;
- assert(Shift != INT32_MIN);
- if (Shift < 0) {
- shiftLeft(-Shift);
- return;
- }
- // Shift as much as we can in the exponent.
- int32_t ScaleShift = std::min(Shift, Scale - ScaledNumbers::MinScale);
- Scale -= ScaleShift;
- if (ScaleShift == Shift)
- return;
- // Shift the digits themselves.
- Shift -= ScaleShift;
- if (Shift >= Width) {
- // Saturate.
- *this = getZero();
- return;
- }
- Digits >>= Shift;
- }
- } // end namespace llvm
- #endif // LLVM_SUPPORT_SCALEDNUMBER_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|