123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- llvm/Support/Parallel.h - Parallel algorithms ----------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_SUPPORT_PARALLEL_H
- #define LLVM_SUPPORT_PARALLEL_H
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/Config/llvm-config.h"
- #include "llvm/Support/Error.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/Threading.h"
- #include <algorithm>
- #include <condition_variable>
- #include <functional>
- #include <mutex>
- namespace llvm {
- namespace parallel {
- // Strategy for the default executor used by the parallel routines provided by
- // this file. It defaults to using all hardware threads and should be
- // initialized before the first use of parallel routines.
- extern ThreadPoolStrategy strategy;
- namespace detail {
- #if LLVM_ENABLE_THREADS
- class Latch {
- uint32_t Count;
- mutable std::mutex Mutex;
- mutable std::condition_variable Cond;
- public:
- explicit Latch(uint32_t Count = 0) : Count(Count) {}
- ~Latch() {
- // Ensure at least that sync() was called.
- assert(Count == 0);
- }
- void inc() {
- std::lock_guard<std::mutex> lock(Mutex);
- ++Count;
- }
- void dec() {
- std::lock_guard<std::mutex> lock(Mutex);
- if (--Count == 0)
- Cond.notify_all();
- }
- void sync() const {
- std::unique_lock<std::mutex> lock(Mutex);
- Cond.wait(lock, [&] { return Count == 0; });
- }
- };
- class TaskGroup {
- Latch L;
- bool Parallel;
- public:
- TaskGroup();
- ~TaskGroup();
- void spawn(std::function<void()> f);
- void sync() const { L.sync(); }
- };
- const ptrdiff_t MinParallelSize = 1024;
- /// Inclusive median.
- template <class RandomAccessIterator, class Comparator>
- RandomAccessIterator medianOf3(RandomAccessIterator Start,
- RandomAccessIterator End,
- const Comparator &Comp) {
- RandomAccessIterator Mid = Start + (std::distance(Start, End) / 2);
- return Comp(*Start, *(End - 1))
- ? (Comp(*Mid, *(End - 1)) ? (Comp(*Start, *Mid) ? Mid : Start)
- : End - 1)
- : (Comp(*Mid, *Start) ? (Comp(*(End - 1), *Mid) ? Mid : End - 1)
- : Start);
- }
- template <class RandomAccessIterator, class Comparator>
- void parallel_quick_sort(RandomAccessIterator Start, RandomAccessIterator End,
- const Comparator &Comp, TaskGroup &TG, size_t Depth) {
- // Do a sequential sort for small inputs.
- if (std::distance(Start, End) < detail::MinParallelSize || Depth == 0) {
- llvm::sort(Start, End, Comp);
- return;
- }
- // Partition.
- auto Pivot = medianOf3(Start, End, Comp);
- // Move Pivot to End.
- std::swap(*(End - 1), *Pivot);
- Pivot = std::partition(Start, End - 1, [&Comp, End](decltype(*Start) V) {
- return Comp(V, *(End - 1));
- });
- // Move Pivot to middle of partition.
- std::swap(*Pivot, *(End - 1));
- // Recurse.
- TG.spawn([=, &Comp, &TG] {
- parallel_quick_sort(Start, Pivot, Comp, TG, Depth - 1);
- });
- parallel_quick_sort(Pivot + 1, End, Comp, TG, Depth - 1);
- }
- template <class RandomAccessIterator, class Comparator>
- void parallel_sort(RandomAccessIterator Start, RandomAccessIterator End,
- const Comparator &Comp) {
- TaskGroup TG;
- parallel_quick_sort(Start, End, Comp, TG,
- llvm::Log2_64(std::distance(Start, End)) + 1);
- }
- // TaskGroup has a relatively high overhead, so we want to reduce
- // the number of spawn() calls. We'll create up to 1024 tasks here.
- // (Note that 1024 is an arbitrary number. This code probably needs
- // improving to take the number of available cores into account.)
- enum { MaxTasksPerGroup = 1024 };
- template <class IterTy, class ResultTy, class ReduceFuncTy,
- class TransformFuncTy>
- ResultTy parallel_transform_reduce(IterTy Begin, IterTy End, ResultTy Init,
- ReduceFuncTy Reduce,
- TransformFuncTy Transform) {
- // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
- // overhead on large inputs.
- size_t NumInputs = std::distance(Begin, End);
- if (NumInputs == 0)
- return std::move(Init);
- size_t NumTasks = std::min(static_cast<size_t>(MaxTasksPerGroup), NumInputs);
- std::vector<ResultTy> Results(NumTasks, Init);
- {
- // Each task processes either TaskSize or TaskSize+1 inputs. Any inputs
- // remaining after dividing them equally amongst tasks are distributed as
- // one extra input over the first tasks.
- TaskGroup TG;
- size_t TaskSize = NumInputs / NumTasks;
- size_t RemainingInputs = NumInputs % NumTasks;
- IterTy TBegin = Begin;
- for (size_t TaskId = 0; TaskId < NumTasks; ++TaskId) {
- IterTy TEnd = TBegin + TaskSize + (TaskId < RemainingInputs ? 1 : 0);
- TG.spawn([=, &Transform, &Reduce, &Results] {
- // Reduce the result of transformation eagerly within each task.
- ResultTy R = Init;
- for (IterTy It = TBegin; It != TEnd; ++It)
- R = Reduce(R, Transform(*It));
- Results[TaskId] = R;
- });
- TBegin = TEnd;
- }
- assert(TBegin == End);
- }
- // Do a final reduction. There are at most 1024 tasks, so this only adds
- // constant single-threaded overhead for large inputs. Hopefully most
- // reductions are cheaper than the transformation.
- ResultTy FinalResult = std::move(Results.front());
- for (ResultTy &PartialResult :
- makeMutableArrayRef(Results.data() + 1, Results.size() - 1))
- FinalResult = Reduce(FinalResult, std::move(PartialResult));
- return std::move(FinalResult);
- }
- #endif
- } // namespace detail
- } // namespace parallel
- template <class RandomAccessIterator,
- class Comparator = std::less<
- typename std::iterator_traits<RandomAccessIterator>::value_type>>
- void parallelSort(RandomAccessIterator Start, RandomAccessIterator End,
- const Comparator &Comp = Comparator()) {
- #if LLVM_ENABLE_THREADS
- if (parallel::strategy.ThreadsRequested != 1) {
- parallel::detail::parallel_sort(Start, End, Comp);
- return;
- }
- #endif
- llvm::sort(Start, End, Comp);
- }
- void parallelForEachN(size_t Begin, size_t End, function_ref<void(size_t)> Fn);
- template <class IterTy, class FuncTy>
- void parallelForEach(IterTy Begin, IterTy End, FuncTy Fn) {
- parallelForEachN(0, End - Begin, [&](size_t I) { Fn(Begin[I]); });
- }
- template <class IterTy, class ResultTy, class ReduceFuncTy,
- class TransformFuncTy>
- ResultTy parallelTransformReduce(IterTy Begin, IterTy End, ResultTy Init,
- ReduceFuncTy Reduce,
- TransformFuncTy Transform) {
- #if LLVM_ENABLE_THREADS
- if (parallel::strategy.ThreadsRequested != 1) {
- return parallel::detail::parallel_transform_reduce(Begin, End, Init, Reduce,
- Transform);
- }
- #endif
- for (IterTy I = Begin; I != End; ++I)
- Init = Reduce(std::move(Init), Transform(*I));
- return std::move(Init);
- }
- // Range wrappers.
- template <class RangeTy,
- class Comparator = std::less<decltype(*std::begin(RangeTy()))>>
- void parallelSort(RangeTy &&R, const Comparator &Comp = Comparator()) {
- parallelSort(std::begin(R), std::end(R), Comp);
- }
- template <class RangeTy, class FuncTy>
- void parallelForEach(RangeTy &&R, FuncTy Fn) {
- parallelForEach(std::begin(R), std::end(R), Fn);
- }
- template <class RangeTy, class ResultTy, class ReduceFuncTy,
- class TransformFuncTy>
- ResultTy parallelTransformReduce(RangeTy &&R, ResultTy Init,
- ReduceFuncTy Reduce,
- TransformFuncTy Transform) {
- return parallelTransformReduce(std::begin(R), std::end(R), Init, Reduce,
- Transform);
- }
- // Parallel for-each, but with error handling.
- template <class RangeTy, class FuncTy>
- Error parallelForEachError(RangeTy &&R, FuncTy Fn) {
- // The transform_reduce algorithm requires that the initial value be copyable.
- // Error objects are uncopyable. We only need to copy initial success values,
- // so work around this mismatch via the C API. The C API represents success
- // values with a null pointer. The joinErrors discards null values and joins
- // multiple errors into an ErrorList.
- return unwrap(parallelTransformReduce(
- std::begin(R), std::end(R), wrap(Error::success()),
- [](LLVMErrorRef Lhs, LLVMErrorRef Rhs) {
- return wrap(joinErrors(unwrap(Lhs), unwrap(Rhs)));
- },
- [&Fn](auto &&V) { return wrap(Fn(V)); }));
- }
- } // namespace llvm
- #endif // LLVM_SUPPORT_PARALLEL_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|