123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains some functions that are useful for math stuff.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_SUPPORT_MATHEXTRAS_H
- #define LLVM_SUPPORT_MATHEXTRAS_H
- #include "llvm/Support/Compiler.h"
- #include <cassert>
- #include <climits>
- #include <cmath>
- #include <cstdint>
- #include <cstring>
- #include <limits>
- #include <type_traits>
- #ifdef __ANDROID_NDK__
- #include <android/api-level.h>
- #endif
- #ifdef _MSC_VER
- // Declare these intrinsics manually rather including intrin.h. It's very
- // expensive, and MathExtras.h is popular.
- // #include <intrin.h>
- extern "C" {
- unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
- unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
- unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
- unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
- }
- #endif
- namespace llvm {
- /// The behavior an operation has on an input of 0.
- enum ZeroBehavior {
- /// The returned value is undefined.
- ZB_Undefined,
- /// The returned value is numeric_limits<T>::max()
- ZB_Max,
- /// The returned value is numeric_limits<T>::digits
- ZB_Width
- };
- /// Mathematical constants.
- namespace numbers {
- // TODO: Track C++20 std::numbers.
- // TODO: Favor using the hexadecimal FP constants (requires C++17).
- constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113
- egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620
- ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162
- ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392
- log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0)
- log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2)
- pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796
- inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541
- sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161
- inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197
- sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219
- inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1)
- sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194
- inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1)
- phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622
- constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113
- egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620
- ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162
- ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392
- log2ef = 1.44269504F, // (0x1.715476P+0)
- log10ef = .434294482F, // (0x1.bcb7b2P-2)
- pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796
- inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541
- sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161
- inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197
- sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193
- inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1)
- sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194
- inv_sqrt3f = .577350269F, // (0x1.279a74P-1)
- phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622
- } // namespace numbers
- namespace detail {
- template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
- static unsigned count(T Val, ZeroBehavior) {
- if (!Val)
- return std::numeric_limits<T>::digits;
- if (Val & 0x1)
- return 0;
- // Bisection method.
- unsigned ZeroBits = 0;
- T Shift = std::numeric_limits<T>::digits >> 1;
- T Mask = std::numeric_limits<T>::max() >> Shift;
- while (Shift) {
- if ((Val & Mask) == 0) {
- Val >>= Shift;
- ZeroBits |= Shift;
- }
- Shift >>= 1;
- Mask >>= Shift;
- }
- return ZeroBits;
- }
- };
- #if defined(__GNUC__) || defined(_MSC_VER)
- template <typename T> struct TrailingZerosCounter<T, 4> {
- static unsigned count(T Val, ZeroBehavior ZB) {
- if (ZB != ZB_Undefined && Val == 0)
- return 32;
- #if __has_builtin(__builtin_ctz) || defined(__GNUC__)
- return __builtin_ctz(Val);
- #elif defined(_MSC_VER)
- unsigned long Index;
- _BitScanForward(&Index, Val);
- return Index;
- #endif
- }
- };
- #if !defined(_MSC_VER) || defined(_M_X64)
- template <typename T> struct TrailingZerosCounter<T, 8> {
- static unsigned count(T Val, ZeroBehavior ZB) {
- if (ZB != ZB_Undefined && Val == 0)
- return 64;
- #if __has_builtin(__builtin_ctzll) || defined(__GNUC__)
- return __builtin_ctzll(Val);
- #elif defined(_MSC_VER)
- unsigned long Index;
- _BitScanForward64(&Index, Val);
- return Index;
- #endif
- }
- };
- #endif
- #endif
- } // namespace detail
- /// Count number of 0's from the least significant bit to the most
- /// stopping at the first 1.
- ///
- /// Only unsigned integral types are allowed.
- ///
- /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
- /// valid arguments.
- template <typename T>
- unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
- static_assert(std::numeric_limits<T>::is_integer &&
- !std::numeric_limits<T>::is_signed,
- "Only unsigned integral types are allowed.");
- return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
- }
- namespace detail {
- template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
- static unsigned count(T Val, ZeroBehavior) {
- if (!Val)
- return std::numeric_limits<T>::digits;
- // Bisection method.
- unsigned ZeroBits = 0;
- for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
- T Tmp = Val >> Shift;
- if (Tmp)
- Val = Tmp;
- else
- ZeroBits |= Shift;
- }
- return ZeroBits;
- }
- };
- #if defined(__GNUC__) || defined(_MSC_VER)
- template <typename T> struct LeadingZerosCounter<T, 4> {
- static unsigned count(T Val, ZeroBehavior ZB) {
- if (ZB != ZB_Undefined && Val == 0)
- return 32;
- #if __has_builtin(__builtin_clz) || defined(__GNUC__)
- return __builtin_clz(Val);
- #elif defined(_MSC_VER)
- unsigned long Index;
- _BitScanReverse(&Index, Val);
- return Index ^ 31;
- #endif
- }
- };
- #if !defined(_MSC_VER) || defined(_M_X64)
- template <typename T> struct LeadingZerosCounter<T, 8> {
- static unsigned count(T Val, ZeroBehavior ZB) {
- if (ZB != ZB_Undefined && Val == 0)
- return 64;
- #if __has_builtin(__builtin_clzll) || defined(__GNUC__)
- return __builtin_clzll(Val);
- #elif defined(_MSC_VER)
- unsigned long Index;
- _BitScanReverse64(&Index, Val);
- return Index ^ 63;
- #endif
- }
- };
- #endif
- #endif
- } // namespace detail
- /// Count number of 0's from the most significant bit to the least
- /// stopping at the first 1.
- ///
- /// Only unsigned integral types are allowed.
- ///
- /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
- /// valid arguments.
- template <typename T>
- unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
- static_assert(std::numeric_limits<T>::is_integer &&
- !std::numeric_limits<T>::is_signed,
- "Only unsigned integral types are allowed.");
- return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
- }
- /// Get the index of the first set bit starting from the least
- /// significant bit.
- ///
- /// Only unsigned integral types are allowed.
- ///
- /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
- /// valid arguments.
- template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
- if (ZB == ZB_Max && Val == 0)
- return std::numeric_limits<T>::max();
- return countTrailingZeros(Val, ZB_Undefined);
- }
- /// Create a bitmask with the N right-most bits set to 1, and all other
- /// bits set to 0. Only unsigned types are allowed.
- template <typename T> T maskTrailingOnes(unsigned N) {
- static_assert(std::is_unsigned<T>::value, "Invalid type!");
- const unsigned Bits = CHAR_BIT * sizeof(T);
- assert(N <= Bits && "Invalid bit index");
- return N == 0 ? 0 : (T(-1) >> (Bits - N));
- }
- /// Create a bitmask with the N left-most bits set to 1, and all other
- /// bits set to 0. Only unsigned types are allowed.
- template <typename T> T maskLeadingOnes(unsigned N) {
- return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
- }
- /// Create a bitmask with the N right-most bits set to 0, and all other
- /// bits set to 1. Only unsigned types are allowed.
- template <typename T> T maskTrailingZeros(unsigned N) {
- return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N);
- }
- /// Create a bitmask with the N left-most bits set to 0, and all other
- /// bits set to 1. Only unsigned types are allowed.
- template <typename T> T maskLeadingZeros(unsigned N) {
- return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
- }
- /// Get the index of the last set bit starting from the least
- /// significant bit.
- ///
- /// Only unsigned integral types are allowed.
- ///
- /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
- /// valid arguments.
- template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
- if (ZB == ZB_Max && Val == 0)
- return std::numeric_limits<T>::max();
- // Use ^ instead of - because both gcc and llvm can remove the associated ^
- // in the __builtin_clz intrinsic on x86.
- return countLeadingZeros(Val, ZB_Undefined) ^
- (std::numeric_limits<T>::digits - 1);
- }
- /// Macro compressed bit reversal table for 256 bits.
- ///
- /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
- static const unsigned char BitReverseTable256[256] = {
- #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
- #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
- #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
- R6(0), R6(2), R6(1), R6(3)
- #undef R2
- #undef R4
- #undef R6
- };
- /// Reverse the bits in \p Val.
- template <typename T>
- T reverseBits(T Val) {
- unsigned char in[sizeof(Val)];
- unsigned char out[sizeof(Val)];
- std::memcpy(in, &Val, sizeof(Val));
- for (unsigned i = 0; i < sizeof(Val); ++i)
- out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
- std::memcpy(&Val, out, sizeof(Val));
- return Val;
- }
- #if __has_builtin(__builtin_bitreverse8)
- template<>
- inline uint8_t reverseBits<uint8_t>(uint8_t Val) {
- return __builtin_bitreverse8(Val);
- }
- #endif
- #if __has_builtin(__builtin_bitreverse16)
- template<>
- inline uint16_t reverseBits<uint16_t>(uint16_t Val) {
- return __builtin_bitreverse16(Val);
- }
- #endif
- #if __has_builtin(__builtin_bitreverse32)
- template<>
- inline uint32_t reverseBits<uint32_t>(uint32_t Val) {
- return __builtin_bitreverse32(Val);
- }
- #endif
- #if __has_builtin(__builtin_bitreverse64)
- template<>
- inline uint64_t reverseBits<uint64_t>(uint64_t Val) {
- return __builtin_bitreverse64(Val);
- }
- #endif
- // NOTE: The following support functions use the _32/_64 extensions instead of
- // type overloading so that signed and unsigned integers can be used without
- // ambiguity.
- /// Return the high 32 bits of a 64 bit value.
- constexpr inline uint32_t Hi_32(uint64_t Value) {
- return static_cast<uint32_t>(Value >> 32);
- }
- /// Return the low 32 bits of a 64 bit value.
- constexpr inline uint32_t Lo_32(uint64_t Value) {
- return static_cast<uint32_t>(Value);
- }
- /// Make a 64-bit integer from a high / low pair of 32-bit integers.
- constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
- return ((uint64_t)High << 32) | (uint64_t)Low;
- }
- /// Checks if an integer fits into the given bit width.
- template <unsigned N> constexpr inline bool isInt(int64_t x) {
- return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
- }
- // Template specializations to get better code for common cases.
- template <> constexpr inline bool isInt<8>(int64_t x) {
- return static_cast<int8_t>(x) == x;
- }
- template <> constexpr inline bool isInt<16>(int64_t x) {
- return static_cast<int16_t>(x) == x;
- }
- template <> constexpr inline bool isInt<32>(int64_t x) {
- return static_cast<int32_t>(x) == x;
- }
- /// Checks if a signed integer is an N bit number shifted left by S.
- template <unsigned N, unsigned S>
- constexpr inline bool isShiftedInt(int64_t x) {
- static_assert(
- N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
- static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
- return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
- }
- /// Checks if an unsigned integer fits into the given bit width.
- ///
- /// This is written as two functions rather than as simply
- ///
- /// return N >= 64 || X < (UINT64_C(1) << N);
- ///
- /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
- /// left too many places.
- template <unsigned N>
- constexpr inline std::enable_if_t<(N < 64), bool> isUInt(uint64_t X) {
- static_assert(N > 0, "isUInt<0> doesn't make sense");
- return X < (UINT64_C(1) << (N));
- }
- template <unsigned N>
- constexpr inline std::enable_if_t<N >= 64, bool> isUInt(uint64_t) {
- return true;
- }
- // Template specializations to get better code for common cases.
- template <> constexpr inline bool isUInt<8>(uint64_t x) {
- return static_cast<uint8_t>(x) == x;
- }
- template <> constexpr inline bool isUInt<16>(uint64_t x) {
- return static_cast<uint16_t>(x) == x;
- }
- template <> constexpr inline bool isUInt<32>(uint64_t x) {
- return static_cast<uint32_t>(x) == x;
- }
- /// Checks if a unsigned integer is an N bit number shifted left by S.
- template <unsigned N, unsigned S>
- constexpr inline bool isShiftedUInt(uint64_t x) {
- static_assert(
- N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
- static_assert(N + S <= 64,
- "isShiftedUInt<N, S> with N + S > 64 is too wide.");
- // Per the two static_asserts above, S must be strictly less than 64. So
- // 1 << S is not undefined behavior.
- return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
- }
- /// Gets the maximum value for a N-bit unsigned integer.
- inline uint64_t maxUIntN(uint64_t N) {
- assert(N > 0 && N <= 64 && "integer width out of range");
- // uint64_t(1) << 64 is undefined behavior, so we can't do
- // (uint64_t(1) << N) - 1
- // without checking first that N != 64. But this works and doesn't have a
- // branch.
- return UINT64_MAX >> (64 - N);
- }
- /// Gets the minimum value for a N-bit signed integer.
- inline int64_t minIntN(int64_t N) {
- assert(N > 0 && N <= 64 && "integer width out of range");
- return UINT64_C(1) + ~(UINT64_C(1) << (N - 1));
- }
- /// Gets the maximum value for a N-bit signed integer.
- inline int64_t maxIntN(int64_t N) {
- assert(N > 0 && N <= 64 && "integer width out of range");
- // This relies on two's complement wraparound when N == 64, so we convert to
- // int64_t only at the very end to avoid UB.
- return (UINT64_C(1) << (N - 1)) - 1;
- }
- /// Checks if an unsigned integer fits into the given (dynamic) bit width.
- inline bool isUIntN(unsigned N, uint64_t x) {
- return N >= 64 || x <= maxUIntN(N);
- }
- /// Checks if an signed integer fits into the given (dynamic) bit width.
- inline bool isIntN(unsigned N, int64_t x) {
- return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
- }
- /// Return true if the argument is a non-empty sequence of ones starting at the
- /// least significant bit with the remainder zero (32 bit version).
- /// Ex. isMask_32(0x0000FFFFU) == true.
- constexpr inline bool isMask_32(uint32_t Value) {
- return Value && ((Value + 1) & Value) == 0;
- }
- /// Return true if the argument is a non-empty sequence of ones starting at the
- /// least significant bit with the remainder zero (64 bit version).
- constexpr inline bool isMask_64(uint64_t Value) {
- return Value && ((Value + 1) & Value) == 0;
- }
- /// Return true if the argument contains a non-empty sequence of ones with the
- /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
- constexpr inline bool isShiftedMask_32(uint32_t Value) {
- return Value && isMask_32((Value - 1) | Value);
- }
- /// Return true if the argument contains a non-empty sequence of ones with the
- /// remainder zero (64 bit version.)
- constexpr inline bool isShiftedMask_64(uint64_t Value) {
- return Value && isMask_64((Value - 1) | Value);
- }
- /// Return true if the argument is a power of two > 0.
- /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
- constexpr inline bool isPowerOf2_32(uint32_t Value) {
- return Value && !(Value & (Value - 1));
- }
- /// Return true if the argument is a power of two > 0 (64 bit edition.)
- constexpr inline bool isPowerOf2_64(uint64_t Value) {
- return Value && !(Value & (Value - 1));
- }
- /// Count the number of ones from the most significant bit to the first
- /// zero bit.
- ///
- /// Ex. countLeadingOnes(0xFF0FFF00) == 8.
- /// Only unsigned integral types are allowed.
- ///
- /// \param ZB the behavior on an input of all ones. Only ZB_Width and
- /// ZB_Undefined are valid arguments.
- template <typename T>
- unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
- static_assert(std::numeric_limits<T>::is_integer &&
- !std::numeric_limits<T>::is_signed,
- "Only unsigned integral types are allowed.");
- return countLeadingZeros<T>(~Value, ZB);
- }
- /// Count the number of ones from the least significant bit to the first
- /// zero bit.
- ///
- /// Ex. countTrailingOnes(0x00FF00FF) == 8.
- /// Only unsigned integral types are allowed.
- ///
- /// \param ZB the behavior on an input of all ones. Only ZB_Width and
- /// ZB_Undefined are valid arguments.
- template <typename T>
- unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
- static_assert(std::numeric_limits<T>::is_integer &&
- !std::numeric_limits<T>::is_signed,
- "Only unsigned integral types are allowed.");
- return countTrailingZeros<T>(~Value, ZB);
- }
- namespace detail {
- template <typename T, std::size_t SizeOfT> struct PopulationCounter {
- static unsigned count(T Value) {
- // Generic version, forward to 32 bits.
- static_assert(SizeOfT <= 4, "Not implemented!");
- #if defined(__GNUC__)
- return __builtin_popcount(Value);
- #else
- uint32_t v = Value;
- v = v - ((v >> 1) & 0x55555555);
- v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
- return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
- #endif
- }
- };
- template <typename T> struct PopulationCounter<T, 8> {
- static unsigned count(T Value) {
- #if defined(__GNUC__)
- return __builtin_popcountll(Value);
- #else
- uint64_t v = Value;
- v = v - ((v >> 1) & 0x5555555555555555ULL);
- v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
- v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
- return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
- #endif
- }
- };
- } // namespace detail
- /// Count the number of set bits in a value.
- /// Ex. countPopulation(0xF000F000) = 8
- /// Returns 0 if the word is zero.
- template <typename T>
- inline unsigned countPopulation(T Value) {
- static_assert(std::numeric_limits<T>::is_integer &&
- !std::numeric_limits<T>::is_signed,
- "Only unsigned integral types are allowed.");
- return detail::PopulationCounter<T, sizeof(T)>::count(Value);
- }
- /// Compile time Log2.
- /// Valid only for positive powers of two.
- template <size_t kValue> constexpr inline size_t CTLog2() {
- static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue),
- "Value is not a valid power of 2");
- return 1 + CTLog2<kValue / 2>();
- }
- template <> constexpr inline size_t CTLog2<1>() { return 0; }
- /// Return the log base 2 of the specified value.
- inline double Log2(double Value) {
- #if defined(__ANDROID_API__) && __ANDROID_API__ < 18
- return __builtin_log(Value) / __builtin_log(2.0);
- #else
- return log2(Value);
- #endif
- }
- /// Return the floor log base 2 of the specified value, -1 if the value is zero.
- /// (32 bit edition.)
- /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
- inline unsigned Log2_32(uint32_t Value) {
- return 31 - countLeadingZeros(Value);
- }
- /// Return the floor log base 2 of the specified value, -1 if the value is zero.
- /// (64 bit edition.)
- inline unsigned Log2_64(uint64_t Value) {
- return 63 - countLeadingZeros(Value);
- }
- /// Return the ceil log base 2 of the specified value, 32 if the value is zero.
- /// (32 bit edition).
- /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
- inline unsigned Log2_32_Ceil(uint32_t Value) {
- return 32 - countLeadingZeros(Value - 1);
- }
- /// Return the ceil log base 2 of the specified value, 64 if the value is zero.
- /// (64 bit edition.)
- inline unsigned Log2_64_Ceil(uint64_t Value) {
- return 64 - countLeadingZeros(Value - 1);
- }
- /// Return the greatest common divisor of the values using Euclid's algorithm.
- template <typename T>
- inline T greatestCommonDivisor(T A, T B) {
- while (B) {
- T Tmp = B;
- B = A % B;
- A = Tmp;
- }
- return A;
- }
- inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
- return greatestCommonDivisor<uint64_t>(A, B);
- }
- /// This function takes a 64-bit integer and returns the bit equivalent double.
- inline double BitsToDouble(uint64_t Bits) {
- double D;
- static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
- memcpy(&D, &Bits, sizeof(Bits));
- return D;
- }
- /// This function takes a 32-bit integer and returns the bit equivalent float.
- inline float BitsToFloat(uint32_t Bits) {
- float F;
- static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
- memcpy(&F, &Bits, sizeof(Bits));
- return F;
- }
- /// This function takes a double and returns the bit equivalent 64-bit integer.
- /// Note that copying doubles around changes the bits of NaNs on some hosts,
- /// notably x86, so this routine cannot be used if these bits are needed.
- inline uint64_t DoubleToBits(double Double) {
- uint64_t Bits;
- static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
- memcpy(&Bits, &Double, sizeof(Double));
- return Bits;
- }
- /// This function takes a float and returns the bit equivalent 32-bit integer.
- /// Note that copying floats around changes the bits of NaNs on some hosts,
- /// notably x86, so this routine cannot be used if these bits are needed.
- inline uint32_t FloatToBits(float Float) {
- uint32_t Bits;
- static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
- memcpy(&Bits, &Float, sizeof(Float));
- return Bits;
- }
- /// A and B are either alignments or offsets. Return the minimum alignment that
- /// may be assumed after adding the two together.
- constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
- // The largest power of 2 that divides both A and B.
- //
- // Replace "-Value" by "1+~Value" in the following commented code to avoid
- // MSVC warning C4146
- // return (A | B) & -(A | B);
- return (A | B) & (1 + ~(A | B));
- }
- /// Returns the next power of two (in 64-bits) that is strictly greater than A.
- /// Returns zero on overflow.
- inline uint64_t NextPowerOf2(uint64_t A) {
- A |= (A >> 1);
- A |= (A >> 2);
- A |= (A >> 4);
- A |= (A >> 8);
- A |= (A >> 16);
- A |= (A >> 32);
- return A + 1;
- }
- /// Returns the power of two which is less than or equal to the given value.
- /// Essentially, it is a floor operation across the domain of powers of two.
- inline uint64_t PowerOf2Floor(uint64_t A) {
- if (!A) return 0;
- return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
- }
- /// Returns the power of two which is greater than or equal to the given value.
- /// Essentially, it is a ceil operation across the domain of powers of two.
- inline uint64_t PowerOf2Ceil(uint64_t A) {
- if (!A)
- return 0;
- return NextPowerOf2(A - 1);
- }
- /// Returns the next integer (mod 2**64) that is greater than or equal to
- /// \p Value and is a multiple of \p Align. \p Align must be non-zero.
- ///
- /// If non-zero \p Skew is specified, the return value will be a minimal
- /// integer that is greater than or equal to \p Value and equal to
- /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
- /// \p Align, its value is adjusted to '\p Skew mod \p Align'.
- ///
- /// Examples:
- /// \code
- /// alignTo(5, 8) = 8
- /// alignTo(17, 8) = 24
- /// alignTo(~0LL, 8) = 0
- /// alignTo(321, 255) = 510
- ///
- /// alignTo(5, 8, 7) = 7
- /// alignTo(17, 8, 1) = 17
- /// alignTo(~0LL, 8, 3) = 3
- /// alignTo(321, 255, 42) = 552
- /// \endcode
- inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
- assert(Align != 0u && "Align can't be 0.");
- Skew %= Align;
- return (Value + Align - 1 - Skew) / Align * Align + Skew;
- }
- /// Returns the next integer (mod 2**64) that is greater than or equal to
- /// \p Value and is a multiple of \c Align. \c Align must be non-zero.
- template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
- static_assert(Align != 0u, "Align must be non-zero");
- return (Value + Align - 1) / Align * Align;
- }
- /// Returns the integer ceil(Numerator / Denominator).
- inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
- return alignTo(Numerator, Denominator) / Denominator;
- }
- /// Returns the integer nearest(Numerator / Denominator).
- inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) {
- return (Numerator + (Denominator / 2)) / Denominator;
- }
- /// Returns the largest uint64_t less than or equal to \p Value and is
- /// \p Skew mod \p Align. \p Align must be non-zero
- inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
- assert(Align != 0u && "Align can't be 0.");
- Skew %= Align;
- return (Value - Skew) / Align * Align + Skew;
- }
- /// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
- /// Requires 0 < B <= 32.
- template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
- static_assert(B > 0, "Bit width can't be 0.");
- static_assert(B <= 32, "Bit width out of range.");
- return int32_t(X << (32 - B)) >> (32 - B);
- }
- /// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
- /// Requires 0 < B <= 32.
- inline int32_t SignExtend32(uint32_t X, unsigned B) {
- assert(B > 0 && "Bit width can't be 0.");
- assert(B <= 32 && "Bit width out of range.");
- return int32_t(X << (32 - B)) >> (32 - B);
- }
- /// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
- /// Requires 0 < B <= 64.
- template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
- static_assert(B > 0, "Bit width can't be 0.");
- static_assert(B <= 64, "Bit width out of range.");
- return int64_t(x << (64 - B)) >> (64 - B);
- }
- /// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
- /// Requires 0 < B <= 64.
- inline int64_t SignExtend64(uint64_t X, unsigned B) {
- assert(B > 0 && "Bit width can't be 0.");
- assert(B <= 64 && "Bit width out of range.");
- return int64_t(X << (64 - B)) >> (64 - B);
- }
- /// Subtract two unsigned integers, X and Y, of type T and return the absolute
- /// value of the result.
- template <typename T>
- std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) {
- return X > Y ? (X - Y) : (Y - X);
- }
- /// Add two unsigned integers, X and Y, of type T. Clamp the result to the
- /// maximum representable value of T on overflow. ResultOverflowed indicates if
- /// the result is larger than the maximum representable value of type T.
- template <typename T>
- std::enable_if_t<std::is_unsigned<T>::value, T>
- SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
- bool Dummy;
- bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
- // Hacker's Delight, p. 29
- T Z = X + Y;
- Overflowed = (Z < X || Z < Y);
- if (Overflowed)
- return std::numeric_limits<T>::max();
- else
- return Z;
- }
- /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the
- /// maximum representable value of T on overflow. ResultOverflowed indicates if
- /// the result is larger than the maximum representable value of type T.
- template <typename T>
- std::enable_if_t<std::is_unsigned<T>::value, T>
- SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
- bool Dummy;
- bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
- // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
- // because it fails for uint16_t (where multiplication can have undefined
- // behavior due to promotion to int), and requires a division in addition
- // to the multiplication.
- Overflowed = false;
- // Log2(Z) would be either Log2Z or Log2Z + 1.
- // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
- // will necessarily be less than Log2Max as desired.
- int Log2Z = Log2_64(X) + Log2_64(Y);
- const T Max = std::numeric_limits<T>::max();
- int Log2Max = Log2_64(Max);
- if (Log2Z < Log2Max) {
- return X * Y;
- }
- if (Log2Z > Log2Max) {
- Overflowed = true;
- return Max;
- }
- // We're going to use the top bit, and maybe overflow one
- // bit past it. Multiply all but the bottom bit then add
- // that on at the end.
- T Z = (X >> 1) * Y;
- if (Z & ~(Max >> 1)) {
- Overflowed = true;
- return Max;
- }
- Z <<= 1;
- if (X & 1)
- return SaturatingAdd(Z, Y, ResultOverflowed);
- return Z;
- }
- /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
- /// the product. Clamp the result to the maximum representable value of T on
- /// overflow. ResultOverflowed indicates if the result is larger than the
- /// maximum representable value of type T.
- template <typename T>
- std::enable_if_t<std::is_unsigned<T>::value, T>
- SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
- bool Dummy;
- bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
- T Product = SaturatingMultiply(X, Y, &Overflowed);
- if (Overflowed)
- return Product;
- return SaturatingAdd(A, Product, &Overflowed);
- }
- /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
- extern const float huge_valf;
- /// Add two signed integers, computing the two's complement truncated result,
- /// returning true if overflow occured.
- template <typename T>
- std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) {
- #if __has_builtin(__builtin_add_overflow)
- return __builtin_add_overflow(X, Y, &Result);
- #else
- // Perform the unsigned addition.
- using U = std::make_unsigned_t<T>;
- const U UX = static_cast<U>(X);
- const U UY = static_cast<U>(Y);
- const U UResult = UX + UY;
- // Convert to signed.
- Result = static_cast<T>(UResult);
- // Adding two positive numbers should result in a positive number.
- if (X > 0 && Y > 0)
- return Result <= 0;
- // Adding two negatives should result in a negative number.
- if (X < 0 && Y < 0)
- return Result >= 0;
- return false;
- #endif
- }
- /// Subtract two signed integers, computing the two's complement truncated
- /// result, returning true if an overflow ocurred.
- template <typename T>
- std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) {
- #if __has_builtin(__builtin_sub_overflow)
- return __builtin_sub_overflow(X, Y, &Result);
- #else
- // Perform the unsigned addition.
- using U = std::make_unsigned_t<T>;
- const U UX = static_cast<U>(X);
- const U UY = static_cast<U>(Y);
- const U UResult = UX - UY;
- // Convert to signed.
- Result = static_cast<T>(UResult);
- // Subtracting a positive number from a negative results in a negative number.
- if (X <= 0 && Y > 0)
- return Result >= 0;
- // Subtracting a negative number from a positive results in a positive number.
- if (X >= 0 && Y < 0)
- return Result <= 0;
- return false;
- #endif
- }
- /// Multiply two signed integers, computing the two's complement truncated
- /// result, returning true if an overflow ocurred.
- template <typename T>
- std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) {
- // Perform the unsigned multiplication on absolute values.
- using U = std::make_unsigned_t<T>;
- const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X);
- const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y);
- const U UResult = UX * UY;
- // Convert to signed.
- const bool IsNegative = (X < 0) ^ (Y < 0);
- Result = IsNegative ? (0 - UResult) : UResult;
- // If any of the args was 0, result is 0 and no overflow occurs.
- if (UX == 0 || UY == 0)
- return false;
- // UX and UY are in [1, 2^n], where n is the number of digits.
- // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for
- // positive) divided by an argument compares to the other.
- if (IsNegative)
- return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY;
- else
- return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY;
- }
- } // End llvm namespace
- #endif
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|