123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- /// \file
- ///
- /// This file defines a set of templates that efficiently compute a dominator
- /// tree over a generic graph. This is used typically in LLVM for fast
- /// dominance queries on the CFG, but is fully generic w.r.t. the underlying
- /// graph types.
- ///
- /// Unlike ADT/* graph algorithms, generic dominator tree has more requirements
- /// on the graph's NodeRef. The NodeRef should be a pointer and,
- /// NodeRef->getParent() must return the parent node that is also a pointer.
- ///
- /// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_SUPPORT_GENERICDOMTREE_H
- #define LLVM_SUPPORT_GENERICDOMTREE_H
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/GraphTraits.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Support/CFGDiff.h"
- #include "llvm/Support/CFGUpdate.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cassert>
- #include <cstddef>
- #include <iterator>
- #include <memory>
- #include <type_traits>
- #include <utility>
- namespace llvm {
- template <typename NodeT, bool IsPostDom>
- class DominatorTreeBase;
- namespace DomTreeBuilder {
- template <typename DomTreeT>
- struct SemiNCAInfo;
- } // namespace DomTreeBuilder
- /// Base class for the actual dominator tree node.
- template <class NodeT> class DomTreeNodeBase {
- friend class PostDominatorTree;
- friend class DominatorTreeBase<NodeT, false>;
- friend class DominatorTreeBase<NodeT, true>;
- friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>;
- friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>;
- NodeT *TheBB;
- DomTreeNodeBase *IDom;
- unsigned Level;
- SmallVector<DomTreeNodeBase *, 4> Children;
- mutable unsigned DFSNumIn = ~0;
- mutable unsigned DFSNumOut = ~0;
- public:
- DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom)
- : TheBB(BB), IDom(iDom), Level(IDom ? IDom->Level + 1 : 0) {}
- using iterator = typename SmallVector<DomTreeNodeBase *, 4>::iterator;
- using const_iterator =
- typename SmallVector<DomTreeNodeBase *, 4>::const_iterator;
- iterator begin() { return Children.begin(); }
- iterator end() { return Children.end(); }
- const_iterator begin() const { return Children.begin(); }
- const_iterator end() const { return Children.end(); }
- DomTreeNodeBase *const &back() const { return Children.back(); }
- DomTreeNodeBase *&back() { return Children.back(); }
- iterator_range<iterator> children() { return make_range(begin(), end()); }
- iterator_range<const_iterator> children() const {
- return make_range(begin(), end());
- }
- NodeT *getBlock() const { return TheBB; }
- DomTreeNodeBase *getIDom() const { return IDom; }
- unsigned getLevel() const { return Level; }
- std::unique_ptr<DomTreeNodeBase> addChild(
- std::unique_ptr<DomTreeNodeBase> C) {
- Children.push_back(C.get());
- return C;
- }
- bool isLeaf() const { return Children.empty(); }
- size_t getNumChildren() const { return Children.size(); }
- void clearAllChildren() { Children.clear(); }
- bool compare(const DomTreeNodeBase *Other) const {
- if (getNumChildren() != Other->getNumChildren())
- return true;
- if (Level != Other->Level) return true;
- SmallPtrSet<const NodeT *, 4> OtherChildren;
- for (const DomTreeNodeBase *I : *Other) {
- const NodeT *Nd = I->getBlock();
- OtherChildren.insert(Nd);
- }
- for (const DomTreeNodeBase *I : *this) {
- const NodeT *N = I->getBlock();
- if (OtherChildren.count(N) == 0)
- return true;
- }
- return false;
- }
- void setIDom(DomTreeNodeBase *NewIDom) {
- assert(IDom && "No immediate dominator?");
- if (IDom == NewIDom) return;
- auto I = find(IDom->Children, this);
- assert(I != IDom->Children.end() &&
- "Not in immediate dominator children set!");
- // I am no longer your child...
- IDom->Children.erase(I);
- // Switch to new dominator
- IDom = NewIDom;
- IDom->Children.push_back(this);
- UpdateLevel();
- }
- /// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes
- /// in the dominator tree. They are only guaranteed valid if
- /// updateDFSNumbers() has been called.
- unsigned getDFSNumIn() const { return DFSNumIn; }
- unsigned getDFSNumOut() const { return DFSNumOut; }
- private:
- // Return true if this node is dominated by other. Use this only if DFS info
- // is valid.
- bool DominatedBy(const DomTreeNodeBase *other) const {
- return this->DFSNumIn >= other->DFSNumIn &&
- this->DFSNumOut <= other->DFSNumOut;
- }
- void UpdateLevel() {
- assert(IDom);
- if (Level == IDom->Level + 1) return;
- SmallVector<DomTreeNodeBase *, 64> WorkStack = {this};
- while (!WorkStack.empty()) {
- DomTreeNodeBase *Current = WorkStack.pop_back_val();
- Current->Level = Current->IDom->Level + 1;
- for (DomTreeNodeBase *C : *Current) {
- assert(C->IDom);
- if (C->Level != C->IDom->Level + 1) WorkStack.push_back(C);
- }
- }
- }
- };
- template <class NodeT>
- raw_ostream &operator<<(raw_ostream &O, const DomTreeNodeBase<NodeT> *Node) {
- if (Node->getBlock())
- Node->getBlock()->printAsOperand(O, false);
- else
- O << " <<exit node>>";
- O << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "} ["
- << Node->getLevel() << "]\n";
- return O;
- }
- template <class NodeT>
- void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &O,
- unsigned Lev) {
- O.indent(2 * Lev) << "[" << Lev << "] " << N;
- for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
- E = N->end();
- I != E; ++I)
- PrintDomTree<NodeT>(*I, O, Lev + 1);
- }
- namespace DomTreeBuilder {
- // The routines below are provided in a separate header but referenced here.
- template <typename DomTreeT>
- void Calculate(DomTreeT &DT);
- template <typename DomTreeT>
- void CalculateWithUpdates(DomTreeT &DT,
- ArrayRef<typename DomTreeT::UpdateType> Updates);
- template <typename DomTreeT>
- void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
- typename DomTreeT::NodePtr To);
- template <typename DomTreeT>
- void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
- typename DomTreeT::NodePtr To);
- template <typename DomTreeT>
- void ApplyUpdates(DomTreeT &DT,
- GraphDiff<typename DomTreeT::NodePtr,
- DomTreeT::IsPostDominator> &PreViewCFG,
- GraphDiff<typename DomTreeT::NodePtr,
- DomTreeT::IsPostDominator> *PostViewCFG);
- template <typename DomTreeT>
- bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL);
- } // namespace DomTreeBuilder
- /// Core dominator tree base class.
- ///
- /// This class is a generic template over graph nodes. It is instantiated for
- /// various graphs in the LLVM IR or in the code generator.
- template <typename NodeT, bool IsPostDom>
- class DominatorTreeBase {
- public:
- static_assert(std::is_pointer<typename GraphTraits<NodeT *>::NodeRef>::value,
- "Currently DominatorTreeBase supports only pointer nodes");
- using NodeType = NodeT;
- using NodePtr = NodeT *;
- using ParentPtr = decltype(std::declval<NodeT *>()->getParent());
- static_assert(std::is_pointer<ParentPtr>::value,
- "Currently NodeT's parent must be a pointer type");
- using ParentType = std::remove_pointer_t<ParentPtr>;
- static constexpr bool IsPostDominator = IsPostDom;
- using UpdateType = cfg::Update<NodePtr>;
- using UpdateKind = cfg::UpdateKind;
- static constexpr UpdateKind Insert = UpdateKind::Insert;
- static constexpr UpdateKind Delete = UpdateKind::Delete;
- enum class VerificationLevel { Fast, Basic, Full };
- protected:
- // Dominators always have a single root, postdominators can have more.
- SmallVector<NodeT *, IsPostDom ? 4 : 1> Roots;
- using DomTreeNodeMapType =
- DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>;
- DomTreeNodeMapType DomTreeNodes;
- DomTreeNodeBase<NodeT> *RootNode = nullptr;
- ParentPtr Parent = nullptr;
- mutable bool DFSInfoValid = false;
- mutable unsigned int SlowQueries = 0;
- friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase>;
- public:
- DominatorTreeBase() = default;
- DominatorTreeBase(DominatorTreeBase &&Arg)
- : Roots(std::move(Arg.Roots)),
- DomTreeNodes(std::move(Arg.DomTreeNodes)),
- RootNode(Arg.RootNode),
- Parent(Arg.Parent),
- DFSInfoValid(Arg.DFSInfoValid),
- SlowQueries(Arg.SlowQueries) {
- Arg.wipe();
- }
- DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
- Roots = std::move(RHS.Roots);
- DomTreeNodes = std::move(RHS.DomTreeNodes);
- RootNode = RHS.RootNode;
- Parent = RHS.Parent;
- DFSInfoValid = RHS.DFSInfoValid;
- SlowQueries = RHS.SlowQueries;
- RHS.wipe();
- return *this;
- }
- DominatorTreeBase(const DominatorTreeBase &) = delete;
- DominatorTreeBase &operator=(const DominatorTreeBase &) = delete;
- /// Iteration over roots.
- ///
- /// This may include multiple blocks if we are computing post dominators.
- /// For forward dominators, this will always be a single block (the entry
- /// block).
- using root_iterator = typename SmallVectorImpl<NodeT *>::iterator;
- using const_root_iterator = typename SmallVectorImpl<NodeT *>::const_iterator;
- root_iterator root_begin() { return Roots.begin(); }
- const_root_iterator root_begin() const { return Roots.begin(); }
- root_iterator root_end() { return Roots.end(); }
- const_root_iterator root_end() const { return Roots.end(); }
- size_t root_size() const { return Roots.size(); }
- iterator_range<root_iterator> roots() {
- return make_range(root_begin(), root_end());
- }
- iterator_range<const_root_iterator> roots() const {
- return make_range(root_begin(), root_end());
- }
- /// isPostDominator - Returns true if analysis based of postdoms
- ///
- bool isPostDominator() const { return IsPostDominator; }
- /// compare - Return false if the other dominator tree base matches this
- /// dominator tree base. Otherwise return true.
- bool compare(const DominatorTreeBase &Other) const {
- if (Parent != Other.Parent) return true;
- if (Roots.size() != Other.Roots.size())
- return true;
- if (!std::is_permutation(Roots.begin(), Roots.end(), Other.Roots.begin()))
- return true;
- const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
- if (DomTreeNodes.size() != OtherDomTreeNodes.size())
- return true;
- for (const auto &DomTreeNode : DomTreeNodes) {
- NodeT *BB = DomTreeNode.first;
- typename DomTreeNodeMapType::const_iterator OI =
- OtherDomTreeNodes.find(BB);
- if (OI == OtherDomTreeNodes.end())
- return true;
- DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second;
- DomTreeNodeBase<NodeT> &OtherNd = *OI->second;
- if (MyNd.compare(&OtherNd))
- return true;
- }
- return false;
- }
- /// getNode - return the (Post)DominatorTree node for the specified basic
- /// block. This is the same as using operator[] on this class. The result
- /// may (but is not required to) be null for a forward (backwards)
- /// statically unreachable block.
- DomTreeNodeBase<NodeT> *getNode(const NodeT *BB) const {
- auto I = DomTreeNodes.find(BB);
- if (I != DomTreeNodes.end())
- return I->second.get();
- return nullptr;
- }
- /// See getNode.
- DomTreeNodeBase<NodeT> *operator[](const NodeT *BB) const {
- return getNode(BB);
- }
- /// getRootNode - This returns the entry node for the CFG of the function. If
- /// this tree represents the post-dominance relations for a function, however,
- /// this root may be a node with the block == NULL. This is the case when
- /// there are multiple exit nodes from a particular function. Consumers of
- /// post-dominance information must be capable of dealing with this
- /// possibility.
- ///
- DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
- const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
- /// Get all nodes dominated by R, including R itself.
- void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
- Result.clear();
- const DomTreeNodeBase<NodeT> *RN = getNode(R);
- if (!RN)
- return; // If R is unreachable, it will not be present in the DOM tree.
- SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
- WL.push_back(RN);
- while (!WL.empty()) {
- const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
- Result.push_back(N->getBlock());
- WL.append(N->begin(), N->end());
- }
- }
- /// properlyDominates - Returns true iff A dominates B and A != B.
- /// Note that this is not a constant time operation!
- ///
- bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
- const DomTreeNodeBase<NodeT> *B) const {
- if (!A || !B)
- return false;
- if (A == B)
- return false;
- return dominates(A, B);
- }
- bool properlyDominates(const NodeT *A, const NodeT *B) const;
- /// isReachableFromEntry - Return true if A is dominated by the entry
- /// block of the function containing it.
- bool isReachableFromEntry(const NodeT *A) const {
- assert(!this->isPostDominator() &&
- "This is not implemented for post dominators");
- return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
- }
- bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
- /// dominates - Returns true iff A dominates B. Note that this is not a
- /// constant time operation!
- ///
- bool dominates(const DomTreeNodeBase<NodeT> *A,
- const DomTreeNodeBase<NodeT> *B) const {
- // A node trivially dominates itself.
- if (B == A)
- return true;
- // An unreachable node is dominated by anything.
- if (!isReachableFromEntry(B))
- return true;
- // And dominates nothing.
- if (!isReachableFromEntry(A))
- return false;
- if (B->getIDom() == A) return true;
- if (A->getIDom() == B) return false;
- // A can only dominate B if it is higher in the tree.
- if (A->getLevel() >= B->getLevel()) return false;
- // Compare the result of the tree walk and the dfs numbers, if expensive
- // checks are enabled.
- #ifdef EXPENSIVE_CHECKS
- assert((!DFSInfoValid ||
- (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
- "Tree walk disagrees with dfs numbers!");
- #endif
- if (DFSInfoValid)
- return B->DominatedBy(A);
- // If we end up with too many slow queries, just update the
- // DFS numbers on the theory that we are going to keep querying.
- SlowQueries++;
- if (SlowQueries > 32) {
- updateDFSNumbers();
- return B->DominatedBy(A);
- }
- return dominatedBySlowTreeWalk(A, B);
- }
- bool dominates(const NodeT *A, const NodeT *B) const;
- NodeT *getRoot() const {
- assert(this->Roots.size() == 1 && "Should always have entry node!");
- return this->Roots[0];
- }
- /// Find nearest common dominator basic block for basic block A and B. A and B
- /// must have tree nodes.
- NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const {
- assert(A && B && "Pointers are not valid");
- assert(A->getParent() == B->getParent() &&
- "Two blocks are not in same function");
- // If either A or B is a entry block then it is nearest common dominator
- // (for forward-dominators).
- if (!isPostDominator()) {
- NodeT &Entry = A->getParent()->front();
- if (A == &Entry || B == &Entry)
- return &Entry;
- }
- DomTreeNodeBase<NodeT> *NodeA = getNode(A);
- DomTreeNodeBase<NodeT> *NodeB = getNode(B);
- assert(NodeA && "A must be in the tree");
- assert(NodeB && "B must be in the tree");
- // Use level information to go up the tree until the levels match. Then
- // continue going up til we arrive at the same node.
- while (NodeA != NodeB) {
- if (NodeA->getLevel() < NodeB->getLevel()) std::swap(NodeA, NodeB);
- NodeA = NodeA->IDom;
- }
- return NodeA->getBlock();
- }
- const NodeT *findNearestCommonDominator(const NodeT *A,
- const NodeT *B) const {
- // Cast away the const qualifiers here. This is ok since
- // const is re-introduced on the return type.
- return findNearestCommonDominator(const_cast<NodeT *>(A),
- const_cast<NodeT *>(B));
- }
- bool isVirtualRoot(const DomTreeNodeBase<NodeT> *A) const {
- return isPostDominator() && !A->getBlock();
- }
- //===--------------------------------------------------------------------===//
- // API to update (Post)DominatorTree information based on modifications to
- // the CFG...
- /// Inform the dominator tree about a sequence of CFG edge insertions and
- /// deletions and perform a batch update on the tree.
- ///
- /// This function should be used when there were multiple CFG updates after
- /// the last dominator tree update. It takes care of performing the updates
- /// in sync with the CFG and optimizes away the redundant operations that
- /// cancel each other.
- /// The functions expects the sequence of updates to be balanced. Eg.:
- /// - {{Insert, A, B}, {Delete, A, B}, {Insert, A, B}} is fine, because
- /// logically it results in a single insertions.
- /// - {{Insert, A, B}, {Insert, A, B}} is invalid, because it doesn't make
- /// sense to insert the same edge twice.
- ///
- /// What's more, the functions assumes that it's safe to ask every node in the
- /// CFG about its children and inverse children. This implies that deletions
- /// of CFG edges must not delete the CFG nodes before calling this function.
- ///
- /// The applyUpdates function can reorder the updates and remove redundant
- /// ones internally (as long as it is done in a deterministic fashion). The
- /// batch updater is also able to detect sequences of zero and exactly one
- /// update -- it's optimized to do less work in these cases.
- ///
- /// Note that for postdominators it automatically takes care of applying
- /// updates on reverse edges internally (so there's no need to swap the
- /// From and To pointers when constructing DominatorTree::UpdateType).
- /// The type of updates is the same for DomTreeBase<T> and PostDomTreeBase<T>
- /// with the same template parameter T.
- ///
- /// \param Updates An ordered sequence of updates to perform. The current CFG
- /// and the reverse of these updates provides the pre-view of the CFG.
- ///
- void applyUpdates(ArrayRef<UpdateType> Updates) {
- GraphDiff<NodePtr, IsPostDominator> PreViewCFG(
- Updates, /*ReverseApplyUpdates=*/true);
- DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, nullptr);
- }
- /// \param Updates An ordered sequence of updates to perform. The current CFG
- /// and the reverse of these updates provides the pre-view of the CFG.
- /// \param PostViewUpdates An ordered sequence of update to perform in order
- /// to obtain a post-view of the CFG. The DT will be updated assuming the
- /// obtained PostViewCFG is the desired end state.
- void applyUpdates(ArrayRef<UpdateType> Updates,
- ArrayRef<UpdateType> PostViewUpdates) {
- if (Updates.empty()) {
- GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates);
- DomTreeBuilder::ApplyUpdates(*this, PostViewCFG, &PostViewCFG);
- } else {
- // PreViewCFG needs to merge Updates and PostViewCFG. The updates in
- // Updates need to be reversed, and match the direction in PostViewCFG.
- // The PostViewCFG is created with updates reversed (equivalent to changes
- // made to the CFG), so the PreViewCFG needs all the updates reverse
- // applied.
- SmallVector<UpdateType> AllUpdates(Updates.begin(), Updates.end());
- append_range(AllUpdates, PostViewUpdates);
- GraphDiff<NodePtr, IsPostDom> PreViewCFG(AllUpdates,
- /*ReverseApplyUpdates=*/true);
- GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates);
- DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, &PostViewCFG);
- }
- }
- /// Inform the dominator tree about a CFG edge insertion and update the tree.
- ///
- /// This function has to be called just before or just after making the update
- /// on the actual CFG. There cannot be any other updates that the dominator
- /// tree doesn't know about.
- ///
- /// Note that for postdominators it automatically takes care of inserting
- /// a reverse edge internally (so there's no need to swap the parameters).
- ///
- void insertEdge(NodeT *From, NodeT *To) {
- assert(From);
- assert(To);
- assert(From->getParent() == Parent);
- assert(To->getParent() == Parent);
- DomTreeBuilder::InsertEdge(*this, From, To);
- }
- /// Inform the dominator tree about a CFG edge deletion and update the tree.
- ///
- /// This function has to be called just after making the update on the actual
- /// CFG. An internal functions checks if the edge doesn't exist in the CFG in
- /// DEBUG mode. There cannot be any other updates that the
- /// dominator tree doesn't know about.
- ///
- /// Note that for postdominators it automatically takes care of deleting
- /// a reverse edge internally (so there's no need to swap the parameters).
- ///
- void deleteEdge(NodeT *From, NodeT *To) {
- assert(From);
- assert(To);
- assert(From->getParent() == Parent);
- assert(To->getParent() == Parent);
- DomTreeBuilder::DeleteEdge(*this, From, To);
- }
- /// Add a new node to the dominator tree information.
- ///
- /// This creates a new node as a child of DomBB dominator node, linking it
- /// into the children list of the immediate dominator.
- ///
- /// \param BB New node in CFG.
- /// \param DomBB CFG node that is dominator for BB.
- /// \returns New dominator tree node that represents new CFG node.
- ///
- DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
- assert(getNode(BB) == nullptr && "Block already in dominator tree!");
- DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
- assert(IDomNode && "Not immediate dominator specified for block!");
- DFSInfoValid = false;
- return createChild(BB, IDomNode);
- }
- /// Add a new node to the forward dominator tree and make it a new root.
- ///
- /// \param BB New node in CFG.
- /// \returns New dominator tree node that represents new CFG node.
- ///
- DomTreeNodeBase<NodeT> *setNewRoot(NodeT *BB) {
- assert(getNode(BB) == nullptr && "Block already in dominator tree!");
- assert(!this->isPostDominator() &&
- "Cannot change root of post-dominator tree");
- DFSInfoValid = false;
- DomTreeNodeBase<NodeT> *NewNode = createNode(BB);
- if (Roots.empty()) {
- addRoot(BB);
- } else {
- assert(Roots.size() == 1);
- NodeT *OldRoot = Roots.front();
- auto &OldNode = DomTreeNodes[OldRoot];
- OldNode = NewNode->addChild(std::move(DomTreeNodes[OldRoot]));
- OldNode->IDom = NewNode;
- OldNode->UpdateLevel();
- Roots[0] = BB;
- }
- return RootNode = NewNode;
- }
- /// changeImmediateDominator - This method is used to update the dominator
- /// tree information when a node's immediate dominator changes.
- ///
- void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
- DomTreeNodeBase<NodeT> *NewIDom) {
- assert(N && NewIDom && "Cannot change null node pointers!");
- DFSInfoValid = false;
- N->setIDom(NewIDom);
- }
- void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
- changeImmediateDominator(getNode(BB), getNode(NewBB));
- }
- /// eraseNode - Removes a node from the dominator tree. Block must not
- /// dominate any other blocks. Removes node from its immediate dominator's
- /// children list. Deletes dominator node associated with basic block BB.
- void eraseNode(NodeT *BB) {
- DomTreeNodeBase<NodeT> *Node = getNode(BB);
- assert(Node && "Removing node that isn't in dominator tree.");
- assert(Node->isLeaf() && "Node is not a leaf node.");
- DFSInfoValid = false;
- // Remove node from immediate dominator's children list.
- DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
- if (IDom) {
- const auto I = find(IDom->Children, Node);
- assert(I != IDom->Children.end() &&
- "Not in immediate dominator children set!");
- // I am no longer your child...
- IDom->Children.erase(I);
- }
- DomTreeNodes.erase(BB);
- if (!IsPostDom) return;
- // Remember to update PostDominatorTree roots.
- auto RIt = llvm::find(Roots, BB);
- if (RIt != Roots.end()) {
- std::swap(*RIt, Roots.back());
- Roots.pop_back();
- }
- }
- /// splitBlock - BB is split and now it has one successor. Update dominator
- /// tree to reflect this change.
- void splitBlock(NodeT *NewBB) {
- if (IsPostDominator)
- Split<Inverse<NodeT *>>(NewBB);
- else
- Split<NodeT *>(NewBB);
- }
- /// print - Convert to human readable form
- ///
- void print(raw_ostream &O) const {
- O << "=============================--------------------------------\n";
- if (IsPostDominator)
- O << "Inorder PostDominator Tree: ";
- else
- O << "Inorder Dominator Tree: ";
- if (!DFSInfoValid)
- O << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
- O << "\n";
- // The postdom tree can have a null root if there are no returns.
- if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), O, 1);
- O << "Roots: ";
- for (const NodePtr Block : Roots) {
- Block->printAsOperand(O, false);
- O << " ";
- }
- O << "\n";
- }
- public:
- /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
- /// dominator tree in dfs order.
- void updateDFSNumbers() const {
- if (DFSInfoValid) {
- SlowQueries = 0;
- return;
- }
- SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
- typename DomTreeNodeBase<NodeT>::const_iterator>,
- 32> WorkStack;
- const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
- assert((!Parent || ThisRoot) && "Empty constructed DomTree");
- if (!ThisRoot)
- return;
- // Both dominators and postdominators have a single root node. In the case
- // case of PostDominatorTree, this node is a virtual root.
- WorkStack.push_back({ThisRoot, ThisRoot->begin()});
- unsigned DFSNum = 0;
- ThisRoot->DFSNumIn = DFSNum++;
- while (!WorkStack.empty()) {
- const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
- const auto ChildIt = WorkStack.back().second;
- // If we visited all of the children of this node, "recurse" back up the
- // stack setting the DFOutNum.
- if (ChildIt == Node->end()) {
- Node->DFSNumOut = DFSNum++;
- WorkStack.pop_back();
- } else {
- // Otherwise, recursively visit this child.
- const DomTreeNodeBase<NodeT> *Child = *ChildIt;
- ++WorkStack.back().second;
- WorkStack.push_back({Child, Child->begin()});
- Child->DFSNumIn = DFSNum++;
- }
- }
- SlowQueries = 0;
- DFSInfoValid = true;
- }
- /// recalculate - compute a dominator tree for the given function
- void recalculate(ParentType &Func) {
- Parent = &Func;
- DomTreeBuilder::Calculate(*this);
- }
- void recalculate(ParentType &Func, ArrayRef<UpdateType> Updates) {
- Parent = &Func;
- DomTreeBuilder::CalculateWithUpdates(*this, Updates);
- }
- /// verify - checks if the tree is correct. There are 3 level of verification:
- /// - Full -- verifies if the tree is correct by making sure all the
- /// properties (including the parent and the sibling property)
- /// hold.
- /// Takes O(N^3) time.
- ///
- /// - Basic -- checks if the tree is correct, but compares it to a freshly
- /// constructed tree instead of checking the sibling property.
- /// Takes O(N^2) time.
- ///
- /// - Fast -- checks basic tree structure and compares it with a freshly
- /// constructed tree.
- /// Takes O(N^2) time worst case, but is faster in practise (same
- /// as tree construction).
- bool verify(VerificationLevel VL = VerificationLevel::Full) const {
- return DomTreeBuilder::Verify(*this, VL);
- }
- void reset() {
- DomTreeNodes.clear();
- Roots.clear();
- RootNode = nullptr;
- Parent = nullptr;
- DFSInfoValid = false;
- SlowQueries = 0;
- }
- protected:
- void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
- DomTreeNodeBase<NodeT> *createChild(NodeT *BB, DomTreeNodeBase<NodeT> *IDom) {
- return (DomTreeNodes[BB] = IDom->addChild(
- std::make_unique<DomTreeNodeBase<NodeT>>(BB, IDom)))
- .get();
- }
- DomTreeNodeBase<NodeT> *createNode(NodeT *BB) {
- return (DomTreeNodes[BB] =
- std::make_unique<DomTreeNodeBase<NodeT>>(BB, nullptr))
- .get();
- }
- // NewBB is split and now it has one successor. Update dominator tree to
- // reflect this change.
- template <class N>
- void Split(typename GraphTraits<N>::NodeRef NewBB) {
- using GraphT = GraphTraits<N>;
- using NodeRef = typename GraphT::NodeRef;
- assert(std::distance(GraphT::child_begin(NewBB),
- GraphT::child_end(NewBB)) == 1 &&
- "NewBB should have a single successor!");
- NodeRef NewBBSucc = *GraphT::child_begin(NewBB);
- SmallVector<NodeRef, 4> PredBlocks(children<Inverse<N>>(NewBB));
- assert(!PredBlocks.empty() && "No predblocks?");
- bool NewBBDominatesNewBBSucc = true;
- for (auto Pred : children<Inverse<N>>(NewBBSucc)) {
- if (Pred != NewBB && !dominates(NewBBSucc, Pred) &&
- isReachableFromEntry(Pred)) {
- NewBBDominatesNewBBSucc = false;
- break;
- }
- }
- // Find NewBB's immediate dominator and create new dominator tree node for
- // NewBB.
- NodeT *NewBBIDom = nullptr;
- unsigned i = 0;
- for (i = 0; i < PredBlocks.size(); ++i)
- if (isReachableFromEntry(PredBlocks[i])) {
- NewBBIDom = PredBlocks[i];
- break;
- }
- // It's possible that none of the predecessors of NewBB are reachable;
- // in that case, NewBB itself is unreachable, so nothing needs to be
- // changed.
- if (!NewBBIDom) return;
- for (i = i + 1; i < PredBlocks.size(); ++i) {
- if (isReachableFromEntry(PredBlocks[i]))
- NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
- }
- // Create the new dominator tree node... and set the idom of NewBB.
- DomTreeNodeBase<NodeT> *NewBBNode = addNewBlock(NewBB, NewBBIDom);
- // If NewBB strictly dominates other blocks, then it is now the immediate
- // dominator of NewBBSucc. Update the dominator tree as appropriate.
- if (NewBBDominatesNewBBSucc) {
- DomTreeNodeBase<NodeT> *NewBBSuccNode = getNode(NewBBSucc);
- changeImmediateDominator(NewBBSuccNode, NewBBNode);
- }
- }
- private:
- bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
- const DomTreeNodeBase<NodeT> *B) const {
- assert(A != B);
- assert(isReachableFromEntry(B));
- assert(isReachableFromEntry(A));
- const unsigned ALevel = A->getLevel();
- const DomTreeNodeBase<NodeT> *IDom;
- // Don't walk nodes above A's subtree. When we reach A's level, we must
- // either find A or be in some other subtree not dominated by A.
- while ((IDom = B->getIDom()) != nullptr && IDom->getLevel() >= ALevel)
- B = IDom; // Walk up the tree
- return B == A;
- }
- /// Wipe this tree's state without releasing any resources.
- ///
- /// This is essentially a post-move helper only. It leaves the object in an
- /// assignable and destroyable state, but otherwise invalid.
- void wipe() {
- DomTreeNodes.clear();
- RootNode = nullptr;
- Parent = nullptr;
- }
- };
- template <typename T>
- using DomTreeBase = DominatorTreeBase<T, false>;
- template <typename T>
- using PostDomTreeBase = DominatorTreeBase<T, true>;
- // These two functions are declared out of line as a workaround for building
- // with old (< r147295) versions of clang because of pr11642.
- template <typename NodeT, bool IsPostDom>
- bool DominatorTreeBase<NodeT, IsPostDom>::dominates(const NodeT *A,
- const NodeT *B) const {
- if (A == B)
- return true;
- // Cast away the const qualifiers here. This is ok since
- // this function doesn't actually return the values returned
- // from getNode.
- return dominates(getNode(const_cast<NodeT *>(A)),
- getNode(const_cast<NodeT *>(B)));
- }
- template <typename NodeT, bool IsPostDom>
- bool DominatorTreeBase<NodeT, IsPostDom>::properlyDominates(
- const NodeT *A, const NodeT *B) const {
- if (A == B)
- return false;
- // Cast away the const qualifiers here. This is ok since
- // this function doesn't actually return the values returned
- // from getNode.
- return dominates(getNode(const_cast<NodeT *>(A)),
- getNode(const_cast<NodeT *>(B)));
- }
- } // end namespace llvm
- #endif // LLVM_SUPPORT_GENERICDOMTREE_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|