123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===-- Automaton.h - Support for driving TableGen-produced DFAs ----------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements class that drive and introspect deterministic finite-
- // state automata (DFAs) as generated by TableGen's -gen-automata backend.
- //
- // For a description of how to define an automaton, see
- // include/llvm/TableGen/Automaton.td.
- //
- // One important detail is that these deterministic automata are created from
- // (potentially) nondeterministic definitions. Therefore a unique sequence of
- // input symbols will produce one path through the DFA but multiple paths
- // through the original NFA. An automaton by default only returns "accepted" or
- // "not accepted", but frequently we want to analyze what NFA path was taken.
- // Finding a path through the NFA states that results in a DFA state can help
- // answer *what* the solution to a problem was, not just that there exists a
- // solution.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_SUPPORT_AUTOMATON_H
- #define LLVM_SUPPORT_AUTOMATON_H
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Support/Allocator.h"
- #include <deque>
- #include <map>
- #include <memory>
- #include <unordered_map>
- #include <vector>
- namespace llvm {
- using NfaPath = SmallVector<uint64_t, 4>;
- /// Forward define the pair type used by the automata transition info tables.
- ///
- /// Experimental results with large tables have shown a significant (multiple
- /// orders of magnitude) parsing speedup by using a custom struct here with a
- /// trivial constructor rather than std::pair<uint64_t, uint64_t>.
- struct NfaStatePair {
- uint64_t FromDfaState, ToDfaState;
- bool operator<(const NfaStatePair &Other) const {
- return std::make_tuple(FromDfaState, ToDfaState) <
- std::make_tuple(Other.FromDfaState, Other.ToDfaState);
- }
- };
- namespace internal {
- /// The internal class that maintains all possible paths through an NFA based
- /// on a path through the DFA.
- class NfaTranscriber {
- private:
- /// Cached transition table. This is a table of NfaStatePairs that contains
- /// zero-terminated sequences pointed to by DFA transitions.
- ArrayRef<NfaStatePair> TransitionInfo;
- /// A simple linked-list of traversed states that can have a shared tail. The
- /// traversed path is stored in reverse order with the latest state as the
- /// head.
- struct PathSegment {
- uint64_t State;
- PathSegment *Tail;
- };
- /// We allocate segment objects frequently. Allocate them upfront and dispose
- /// at the end of a traversal rather than hammering the system allocator.
- SpecificBumpPtrAllocator<PathSegment> Allocator;
- /// Heads of each tracked path. These are not ordered.
- std::deque<PathSegment *> Heads;
- /// The returned paths. This is populated during getPaths.
- SmallVector<NfaPath, 4> Paths;
- /// Create a new segment and return it.
- PathSegment *makePathSegment(uint64_t State, PathSegment *Tail) {
- PathSegment *P = Allocator.Allocate();
- *P = {State, Tail};
- return P;
- }
- /// Pairs defines a sequence of possible NFA transitions for a single DFA
- /// transition.
- void transition(ArrayRef<NfaStatePair> Pairs) {
- // Iterate over all existing heads. We will mutate the Heads deque during
- // iteration.
- unsigned NumHeads = Heads.size();
- for (unsigned I = 0; I < NumHeads; ++I) {
- PathSegment *Head = Heads[I];
- // The sequence of pairs is sorted. Select the set of pairs that
- // transition from the current head state.
- auto PI = lower_bound(Pairs, NfaStatePair{Head->State, 0ULL});
- auto PE = upper_bound(Pairs, NfaStatePair{Head->State, INT64_MAX});
- // For every transition from the current head state, add a new path
- // segment.
- for (; PI != PE; ++PI)
- if (PI->FromDfaState == Head->State)
- Heads.push_back(makePathSegment(PI->ToDfaState, Head));
- }
- // Now we've iterated over all the initial heads and added new ones,
- // dispose of the original heads.
- Heads.erase(Heads.begin(), std::next(Heads.begin(), NumHeads));
- }
- public:
- NfaTranscriber(ArrayRef<NfaStatePair> TransitionInfo)
- : TransitionInfo(TransitionInfo) {
- reset();
- }
- ArrayRef<NfaStatePair> getTransitionInfo() const {
- return TransitionInfo;
- }
- void reset() {
- Paths.clear();
- Heads.clear();
- Allocator.DestroyAll();
- // The initial NFA state is 0.
- Heads.push_back(makePathSegment(0ULL, nullptr));
- }
- void transition(unsigned TransitionInfoIdx) {
- unsigned EndIdx = TransitionInfoIdx;
- while (TransitionInfo[EndIdx].ToDfaState != 0)
- ++EndIdx;
- ArrayRef<NfaStatePair> Pairs(&TransitionInfo[TransitionInfoIdx],
- EndIdx - TransitionInfoIdx);
- transition(Pairs);
- }
- ArrayRef<NfaPath> getPaths() {
- Paths.clear();
- for (auto *Head : Heads) {
- NfaPath P;
- while (Head->State != 0) {
- P.push_back(Head->State);
- Head = Head->Tail;
- }
- std::reverse(P.begin(), P.end());
- Paths.push_back(std::move(P));
- }
- return Paths;
- }
- };
- } // namespace internal
- /// A deterministic finite-state automaton. The automaton is defined in
- /// TableGen; this object drives an automaton defined by tblgen-emitted tables.
- ///
- /// An automaton accepts a sequence of input tokens ("actions"). This class is
- /// templated on the type of these actions.
- template <typename ActionT> class Automaton {
- /// Map from {State, Action} to {NewState, TransitionInfoIdx}.
- /// TransitionInfoIdx is used by the DfaTranscriber to analyze the transition.
- /// FIXME: This uses a std::map because ActionT can be a pair type including
- /// an enum. In particular DenseMapInfo<ActionT> must be defined to use
- /// DenseMap here.
- /// This is a shared_ptr to allow very quick copy-construction of Automata; this
- /// state is immutable after construction so this is safe.
- using MapTy = std::map<std::pair<uint64_t, ActionT>, std::pair<uint64_t, unsigned>>;
- std::shared_ptr<MapTy> M;
- /// An optional transcription object. This uses much more state than simply
- /// traversing the DFA for acceptance, so is heap allocated.
- std::shared_ptr<internal::NfaTranscriber> Transcriber;
- /// The initial DFA state is 1.
- uint64_t State = 1;
- /// True if we should transcribe and false if not (even if Transcriber is defined).
- bool Transcribe;
- public:
- /// Create an automaton.
- /// \param Transitions The Transitions table as created by TableGen. Note that
- /// because the action type differs per automaton, the
- /// table type is templated as ArrayRef<InfoT>.
- /// \param TranscriptionTable The TransitionInfo table as created by TableGen.
- ///
- /// Providing the TranscriptionTable argument as non-empty will enable the
- /// use of transcription, which analyzes the possible paths in the original
- /// NFA taken by the DFA. NOTE: This is substantially more work than simply
- /// driving the DFA, so unless you require the getPaths() method leave this
- /// empty.
- template <typename InfoT>
- Automaton(ArrayRef<InfoT> Transitions,
- ArrayRef<NfaStatePair> TranscriptionTable = {}) {
- if (!TranscriptionTable.empty())
- Transcriber =
- std::make_shared<internal::NfaTranscriber>(TranscriptionTable);
- Transcribe = Transcriber != nullptr;
- M = std::make_shared<MapTy>();
- for (const auto &I : Transitions)
- // Greedily read and cache the transition table.
- M->emplace(std::make_pair(I.FromDfaState, I.Action),
- std::make_pair(I.ToDfaState, I.InfoIdx));
- }
- Automaton(const Automaton &Other)
- : M(Other.M), State(Other.State), Transcribe(Other.Transcribe) {
- // Transcriber is not thread-safe, so create a new instance on copy.
- if (Other.Transcriber)
- Transcriber = std::make_shared<internal::NfaTranscriber>(
- Other.Transcriber->getTransitionInfo());
- }
- /// Reset the automaton to its initial state.
- void reset() {
- State = 1;
- if (Transcriber)
- Transcriber->reset();
- }
- /// Enable or disable transcription. Transcription is only available if
- /// TranscriptionTable was provided to the constructor.
- void enableTranscription(bool Enable = true) {
- assert(Transcriber &&
- "Transcription is only available if TranscriptionTable was provided "
- "to the Automaton constructor");
- Transcribe = Enable;
- }
- /// Transition the automaton based on input symbol A. Return true if the
- /// automaton transitioned to a valid state, false if the automaton
- /// transitioned to an invalid state.
- ///
- /// If this function returns false, all methods are undefined until reset() is
- /// called.
- bool add(const ActionT &A) {
- auto I = M->find({State, A});
- if (I == M->end())
- return false;
- if (Transcriber && Transcribe)
- Transcriber->transition(I->second.second);
- State = I->second.first;
- return true;
- }
- /// Return true if the automaton can be transitioned based on input symbol A.
- bool canAdd(const ActionT &A) {
- auto I = M->find({State, A});
- return I != M->end();
- }
- /// Obtain a set of possible paths through the input nondeterministic
- /// automaton that could be obtained from the sequence of input actions
- /// presented to this deterministic automaton.
- ArrayRef<NfaPath> getNfaPaths() {
- assert(Transcriber && Transcribe &&
- "Can only obtain NFA paths if transcribing!");
- return Transcriber->getPaths();
- }
- };
- } // namespace llvm
- #endif // LLVM_SUPPORT_AUTOMATON_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|