123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- llvm/MC/MCInstrAnalysis.h - InstrDesc target hooks -------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the MCInstrAnalysis class which the MCTargetDescs can
- // derive from to give additional information to MC.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_MC_MCINSTRANALYSIS_H
- #define LLVM_MC_MCINSTRANALYSIS_H
- #include "llvm/MC/MCInst.h"
- #include "llvm/MC/MCInstrDesc.h"
- #include "llvm/MC/MCInstrInfo.h"
- #include <cstdint>
- namespace llvm {
- class MCRegisterInfo;
- class Triple;
- class MCInstrAnalysis {
- protected:
- friend class Target;
- const MCInstrInfo *Info;
- public:
- MCInstrAnalysis(const MCInstrInfo *Info) : Info(Info) {}
- virtual ~MCInstrAnalysis() = default;
- virtual bool isBranch(const MCInst &Inst) const {
- return Info->get(Inst.getOpcode()).isBranch();
- }
- virtual bool isConditionalBranch(const MCInst &Inst) const {
- return Info->get(Inst.getOpcode()).isConditionalBranch();
- }
- virtual bool isUnconditionalBranch(const MCInst &Inst) const {
- return Info->get(Inst.getOpcode()).isUnconditionalBranch();
- }
- virtual bool isIndirectBranch(const MCInst &Inst) const {
- return Info->get(Inst.getOpcode()).isIndirectBranch();
- }
- virtual bool isCall(const MCInst &Inst) const {
- return Info->get(Inst.getOpcode()).isCall();
- }
- virtual bool isReturn(const MCInst &Inst) const {
- return Info->get(Inst.getOpcode()).isReturn();
- }
- virtual bool isTerminator(const MCInst &Inst) const {
- return Info->get(Inst.getOpcode()).isTerminator();
- }
- /// Returns true if at least one of the register writes performed by
- /// \param Inst implicitly clears the upper portion of all super-registers.
- ///
- /// Example: on X86-64, a write to EAX implicitly clears the upper half of
- /// RAX. Also (still on x86) an XMM write perfomed by an AVX 128-bit
- /// instruction implicitly clears the upper portion of the correspondent
- /// YMM register.
- ///
- /// This method also updates an APInt which is used as mask of register
- /// writes. There is one bit for every explicit/implicit write performed by
- /// the instruction. If a write implicitly clears its super-registers, then
- /// the corresponding bit is set (vic. the corresponding bit is cleared).
- ///
- /// The first bits in the APint are related to explicit writes. The remaining
- /// bits are related to implicit writes. The sequence of writes follows the
- /// machine operand sequence. For implicit writes, the sequence is defined by
- /// the MCInstrDesc.
- ///
- /// The assumption is that the bit-width of the APInt is correctly set by
- /// the caller. The default implementation conservatively assumes that none of
- /// the writes clears the upper portion of a super-register.
- virtual bool clearsSuperRegisters(const MCRegisterInfo &MRI,
- const MCInst &Inst,
- APInt &Writes) const;
- /// Returns true if MI is a dependency breaking zero-idiom for the given
- /// subtarget.
- ///
- /// Mask is used to identify input operands that have their dependency
- /// broken. Each bit of the mask is associated with a specific input operand.
- /// Bits associated with explicit input operands are laid out first in the
- /// mask; implicit operands come after explicit operands.
- ///
- /// Dependencies are broken only for operands that have their corresponding bit
- /// set. Operands that have their bit cleared, or that don't have a
- /// corresponding bit in the mask don't have their dependency broken. Note
- /// that Mask may not be big enough to describe all operands. The assumption
- /// for operands that don't have a correspondent bit in the mask is that those
- /// are still data dependent.
- ///
- /// The only exception to the rule is for when Mask has all zeroes.
- /// A zero mask means: dependencies are broken for all explicit register
- /// operands.
- virtual bool isZeroIdiom(const MCInst &MI, APInt &Mask,
- unsigned CPUID) const {
- return false;
- }
- /// Returns true if MI is a dependency breaking instruction for the
- /// subtarget associated with CPUID .
- ///
- /// The value computed by a dependency breaking instruction is not dependent
- /// on the inputs. An example of dependency breaking instruction on X86 is
- /// `XOR %eax, %eax`.
- ///
- /// If MI is a dependency breaking instruction for subtarget CPUID, then Mask
- /// can be inspected to identify independent operands.
- ///
- /// Essentially, each bit of the mask corresponds to an input operand.
- /// Explicit operands are laid out first in the mask; implicit operands follow
- /// explicit operands. Bits are set for operands that are independent.
- ///
- /// Note that the number of bits in Mask may not be equivalent to the sum of
- /// explicit and implicit operands in MI. Operands that don't have a
- /// corresponding bit in Mask are assumed "not independente".
- ///
- /// The only exception is for when Mask is all zeroes. That means: explicit
- /// input operands of MI are independent.
- virtual bool isDependencyBreaking(const MCInst &MI, APInt &Mask,
- unsigned CPUID) const {
- return isZeroIdiom(MI, Mask, CPUID);
- }
- /// Returns true if MI is a candidate for move elimination.
- ///
- /// Different subtargets may apply different constraints to optimizable
- /// register moves. For example, on most X86 subtargets, a candidate for move
- /// elimination cannot specify the same register for both source and
- /// destination.
- virtual bool isOptimizableRegisterMove(const MCInst &MI,
- unsigned CPUID) const {
- return false;
- }
- /// Given a branch instruction try to get the address the branch
- /// targets. Return true on success, and the address in Target.
- virtual bool
- evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
- uint64_t &Target) const;
- /// Given an instruction tries to get the address of a memory operand. Returns
- /// the address on success.
- virtual Optional<uint64_t>
- evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI,
- uint64_t Addr, uint64_t Size) const;
- /// Given an instruction with a memory operand that could require relocation,
- /// returns the offset within the instruction of that relocation.
- virtual Optional<uint64_t>
- getMemoryOperandRelocationOffset(const MCInst &Inst, uint64_t Size) const;
- /// Returns (PLT virtual address, GOT virtual address) pairs for PLT entries.
- virtual std::vector<std::pair<uint64_t, uint64_t>>
- findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
- uint64_t GotPltSectionVA, const Triple &TargetTriple) const {
- return {};
- }
- };
- } // end namespace llvm
- #endif // LLVM_MC_MCINSTRANALYSIS_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|