12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // The ScalarEvolution class is an LLVM pass which can be used to analyze and
- // categorize scalar expressions in loops. It specializes in recognizing
- // general induction variables, representing them with the abstract and opaque
- // SCEV class. Given this analysis, trip counts of loops and other important
- // properties can be obtained.
- //
- // This analysis is primarily useful for induction variable substitution and
- // strength reduction.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
- #define LLVM_ANALYSIS_SCALAREVOLUTION_H
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseMapInfo.h"
- #include "llvm/ADT/FoldingSet.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/PointerIntPair.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/IR/ValueMap.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Allocator.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Compiler.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <memory>
- #include <utility>
- namespace llvm {
- class AssumptionCache;
- class BasicBlock;
- class Constant;
- class ConstantInt;
- class DataLayout;
- class DominatorTree;
- class GEPOperator;
- class Instruction;
- class LLVMContext;
- class Loop;
- class LoopInfo;
- class raw_ostream;
- class ScalarEvolution;
- class SCEVAddRecExpr;
- class SCEVUnknown;
- class StructType;
- class TargetLibraryInfo;
- class Type;
- class Value;
- enum SCEVTypes : unsigned short;
- /// This class represents an analyzed expression in the program. These are
- /// opaque objects that the client is not allowed to do much with directly.
- ///
- class SCEV : public FoldingSetNode {
- friend struct FoldingSetTrait<SCEV>;
- /// A reference to an Interned FoldingSetNodeID for this node. The
- /// ScalarEvolution's BumpPtrAllocator holds the data.
- FoldingSetNodeIDRef FastID;
- // The SCEV baseclass this node corresponds to
- const SCEVTypes SCEVType;
- protected:
- // Estimated complexity of this node's expression tree size.
- const unsigned short ExpressionSize;
- /// This field is initialized to zero and may be used in subclasses to store
- /// miscellaneous information.
- unsigned short SubclassData = 0;
- public:
- /// NoWrapFlags are bitfield indices into SubclassData.
- ///
- /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
- /// no-signed-wrap <NSW> properties, which are derived from the IR
- /// operator. NSW is a misnomer that we use to mean no signed overflow or
- /// underflow.
- ///
- /// AddRec expressions may have a no-self-wraparound <NW> property if, in
- /// the integer domain, abs(step) * max-iteration(loop) <=
- /// unsigned-max(bitwidth). This means that the recurrence will never reach
- /// its start value if the step is non-zero. Computing the same value on
- /// each iteration is not considered wrapping, and recurrences with step = 0
- /// are trivially <NW>. <NW> is independent of the sign of step and the
- /// value the add recurrence starts with.
- ///
- /// Note that NUW and NSW are also valid properties of a recurrence, and
- /// either implies NW. For convenience, NW will be set for a recurrence
- /// whenever either NUW or NSW are set.
- ///
- /// We require that the flag on a SCEV apply to the entire scope in which
- /// that SCEV is defined. A SCEV's scope is set of locations dominated by
- /// a defining location, which is in turn described by the following rules:
- /// * A SCEVUnknown is at the point of definition of the Value.
- /// * A SCEVConstant is defined at all points.
- /// * A SCEVAddRec is defined starting with the header of the associated
- /// loop.
- /// * All other SCEVs are defined at the earlest point all operands are
- /// defined.
- ///
- /// The above rules describe a maximally hoisted form (without regards to
- /// potential control dependence). A SCEV is defined anywhere a
- /// corresponding instruction could be defined in said maximally hoisted
- /// form. Note that SCEVUDivExpr (currently the only expression type which
- /// can trap) can be defined per these rules in regions where it would trap
- /// at runtime. A SCEV being defined does not require the existence of any
- /// instruction within the defined scope.
- enum NoWrapFlags {
- FlagAnyWrap = 0, // No guarantee.
- FlagNW = (1 << 0), // No self-wrap.
- FlagNUW = (1 << 1), // No unsigned wrap.
- FlagNSW = (1 << 2), // No signed wrap.
- NoWrapMask = (1 << 3) - 1
- };
- explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
- unsigned short ExpressionSize)
- : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {}
- SCEV(const SCEV &) = delete;
- SCEV &operator=(const SCEV &) = delete;
- SCEVTypes getSCEVType() const { return SCEVType; }
- /// Return the LLVM type of this SCEV expression.
- Type *getType() const;
- /// Return true if the expression is a constant zero.
- bool isZero() const;
- /// Return true if the expression is a constant one.
- bool isOne() const;
- /// Return true if the expression is a constant all-ones value.
- bool isAllOnesValue() const;
- /// Return true if the specified scev is negated, but not a constant.
- bool isNonConstantNegative() const;
- // Returns estimated size of the mathematical expression represented by this
- // SCEV. The rules of its calculation are following:
- // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1;
- // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula:
- // (1 + Size(Op1) + ... + Size(OpN)).
- // This value gives us an estimation of time we need to traverse through this
- // SCEV and all its operands recursively. We may use it to avoid performing
- // heavy transformations on SCEVs of excessive size for sake of saving the
- // compilation time.
- unsigned short getExpressionSize() const {
- return ExpressionSize;
- }
- /// Print out the internal representation of this scalar to the specified
- /// stream. This should really only be used for debugging purposes.
- void print(raw_ostream &OS) const;
- /// This method is used for debugging.
- void dump() const;
- };
- // Specialize FoldingSetTrait for SCEV to avoid needing to compute
- // temporary FoldingSetNodeID values.
- template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
- static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
- static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
- FoldingSetNodeID &TempID) {
- return ID == X.FastID;
- }
- static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
- return X.FastID.ComputeHash();
- }
- };
- inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
- S.print(OS);
- return OS;
- }
- /// An object of this class is returned by queries that could not be answered.
- /// For example, if you ask for the number of iterations of a linked-list
- /// traversal loop, you will get one of these. None of the standard SCEV
- /// operations are valid on this class, it is just a marker.
- struct SCEVCouldNotCompute : public SCEV {
- SCEVCouldNotCompute();
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const SCEV *S);
- };
- /// This class represents an assumption made using SCEV expressions which can
- /// be checked at run-time.
- class SCEVPredicate : public FoldingSetNode {
- friend struct FoldingSetTrait<SCEVPredicate>;
- /// A reference to an Interned FoldingSetNodeID for this node. The
- /// ScalarEvolution's BumpPtrAllocator holds the data.
- FoldingSetNodeIDRef FastID;
- public:
- enum SCEVPredicateKind { P_Union, P_Equal, P_Wrap };
- protected:
- SCEVPredicateKind Kind;
- ~SCEVPredicate() = default;
- SCEVPredicate(const SCEVPredicate &) = default;
- SCEVPredicate &operator=(const SCEVPredicate &) = default;
- public:
- SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
- SCEVPredicateKind getKind() const { return Kind; }
- /// Returns the estimated complexity of this predicate. This is roughly
- /// measured in the number of run-time checks required.
- virtual unsigned getComplexity() const { return 1; }
- /// Returns true if the predicate is always true. This means that no
- /// assumptions were made and nothing needs to be checked at run-time.
- virtual bool isAlwaysTrue() const = 0;
- /// Returns true if this predicate implies \p N.
- virtual bool implies(const SCEVPredicate *N) const = 0;
- /// Prints a textual representation of this predicate with an indentation of
- /// \p Depth.
- virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
- /// Returns the SCEV to which this predicate applies, or nullptr if this is
- /// a SCEVUnionPredicate.
- virtual const SCEV *getExpr() const = 0;
- };
- inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
- P.print(OS);
- return OS;
- }
- // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
- // temporary FoldingSetNodeID values.
- template <>
- struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> {
- static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
- ID = X.FastID;
- }
- static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
- unsigned IDHash, FoldingSetNodeID &TempID) {
- return ID == X.FastID;
- }
- static unsigned ComputeHash(const SCEVPredicate &X,
- FoldingSetNodeID &TempID) {
- return X.FastID.ComputeHash();
- }
- };
- /// This class represents an assumption that two SCEV expressions are equal,
- /// and this can be checked at run-time.
- class SCEVEqualPredicate final : public SCEVPredicate {
- /// We assume that LHS == RHS.
- const SCEV *LHS;
- const SCEV *RHS;
- public:
- SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEV *LHS,
- const SCEV *RHS);
- /// Implementation of the SCEVPredicate interface
- bool implies(const SCEVPredicate *N) const override;
- void print(raw_ostream &OS, unsigned Depth = 0) const override;
- bool isAlwaysTrue() const override;
- const SCEV *getExpr() const override;
- /// Returns the left hand side of the equality.
- const SCEV *getLHS() const { return LHS; }
- /// Returns the right hand side of the equality.
- const SCEV *getRHS() const { return RHS; }
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const SCEVPredicate *P) {
- return P->getKind() == P_Equal;
- }
- };
- /// This class represents an assumption made on an AddRec expression. Given an
- /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
- /// flags (defined below) in the first X iterations of the loop, where X is a
- /// SCEV expression returned by getPredicatedBackedgeTakenCount).
- ///
- /// Note that this does not imply that X is equal to the backedge taken
- /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
- /// predicated backedge taken count of X, we only guarantee that {0,+,1} has
- /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
- /// have more than X iterations.
- class SCEVWrapPredicate final : public SCEVPredicate {
- public:
- /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
- /// for FlagNUSW. The increment is considered to be signed, and a + b
- /// (where b is the increment) is considered to wrap if:
- /// zext(a + b) != zext(a) + sext(b)
- ///
- /// If Signed is a function that takes an n-bit tuple and maps to the
- /// integer domain as the tuples value interpreted as twos complement,
- /// and Unsigned a function that takes an n-bit tuple and maps to the
- /// integer domain as as the base two value of input tuple, then a + b
- /// has IncrementNUSW iff:
- ///
- /// 0 <= Unsigned(a) + Signed(b) < 2^n
- ///
- /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
- ///
- /// Note that the IncrementNUSW flag is not commutative: if base + inc
- /// has IncrementNUSW, then inc + base doesn't neccessarily have this
- /// property. The reason for this is that this is used for sign/zero
- /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
- /// assumed. A {base,+,inc} expression is already non-commutative with
- /// regards to base and inc, since it is interpreted as:
- /// (((base + inc) + inc) + inc) ...
- enum IncrementWrapFlags {
- IncrementAnyWrap = 0, // No guarantee.
- IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
- IncrementNSSW = (1 << 1), // No signed with signed increment wrap
- // (equivalent with SCEV::NSW)
- IncrementNoWrapMask = (1 << 2) - 1
- };
- /// Convenient IncrementWrapFlags manipulation methods.
- LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
- clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
- SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
- assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
- assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
- "Invalid flags value!");
- return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
- }
- LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
- maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
- assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
- assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
- return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
- }
- LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
- setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
- SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
- assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
- assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
- "Invalid flags value!");
- return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
- }
- /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
- /// SCEVAddRecExpr.
- LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
- getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
- private:
- const SCEVAddRecExpr *AR;
- IncrementWrapFlags Flags;
- public:
- explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
- const SCEVAddRecExpr *AR,
- IncrementWrapFlags Flags);
- /// Returns the set assumed no overflow flags.
- IncrementWrapFlags getFlags() const { return Flags; }
- /// Implementation of the SCEVPredicate interface
- const SCEV *getExpr() const override;
- bool implies(const SCEVPredicate *N) const override;
- void print(raw_ostream &OS, unsigned Depth = 0) const override;
- bool isAlwaysTrue() const override;
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const SCEVPredicate *P) {
- return P->getKind() == P_Wrap;
- }
- };
- /// This class represents a composition of other SCEV predicates, and is the
- /// class that most clients will interact with. This is equivalent to a
- /// logical "AND" of all the predicates in the union.
- ///
- /// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
- /// ScalarEvolution::Preds folding set. This is why the \c add function is sound.
- class SCEVUnionPredicate final : public SCEVPredicate {
- private:
- using PredicateMap =
- DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>;
- /// Vector with references to all predicates in this union.
- SmallVector<const SCEVPredicate *, 16> Preds;
- /// Maps SCEVs to predicates for quick look-ups.
- PredicateMap SCEVToPreds;
- public:
- SCEVUnionPredicate();
- const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
- return Preds;
- }
- /// Adds a predicate to this union.
- void add(const SCEVPredicate *N);
- /// Returns a reference to a vector containing all predicates which apply to
- /// \p Expr.
- ArrayRef<const SCEVPredicate *> getPredicatesForExpr(const SCEV *Expr);
- /// Implementation of the SCEVPredicate interface
- bool isAlwaysTrue() const override;
- bool implies(const SCEVPredicate *N) const override;
- void print(raw_ostream &OS, unsigned Depth) const override;
- const SCEV *getExpr() const override;
- /// We estimate the complexity of a union predicate as the size number of
- /// predicates in the union.
- unsigned getComplexity() const override { return Preds.size(); }
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const SCEVPredicate *P) {
- return P->getKind() == P_Union;
- }
- };
- /// The main scalar evolution driver. Because client code (intentionally)
- /// can't do much with the SCEV objects directly, they must ask this class
- /// for services.
- class ScalarEvolution {
- friend class ScalarEvolutionsTest;
- public:
- /// An enum describing the relationship between a SCEV and a loop.
- enum LoopDisposition {
- LoopVariant, ///< The SCEV is loop-variant (unknown).
- LoopInvariant, ///< The SCEV is loop-invariant.
- LoopComputable ///< The SCEV varies predictably with the loop.
- };
- /// An enum describing the relationship between a SCEV and a basic block.
- enum BlockDisposition {
- DoesNotDominateBlock, ///< The SCEV does not dominate the block.
- DominatesBlock, ///< The SCEV dominates the block.
- ProperlyDominatesBlock ///< The SCEV properly dominates the block.
- };
- /// Convenient NoWrapFlags manipulation that hides enum casts and is
- /// visible in the ScalarEvolution name space.
- LLVM_NODISCARD static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags,
- int Mask) {
- return (SCEV::NoWrapFlags)(Flags & Mask);
- }
- LLVM_NODISCARD static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
- SCEV::NoWrapFlags OnFlags) {
- return (SCEV::NoWrapFlags)(Flags | OnFlags);
- }
- LLVM_NODISCARD static SCEV::NoWrapFlags
- clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
- return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
- }
- LLVM_NODISCARD static bool hasFlags(SCEV::NoWrapFlags Flags,
- SCEV::NoWrapFlags TestFlags) {
- return TestFlags == maskFlags(Flags, TestFlags);
- };
- ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
- DominatorTree &DT, LoopInfo &LI);
- ScalarEvolution(ScalarEvolution &&Arg);
- ~ScalarEvolution();
- LLVMContext &getContext() const { return F.getContext(); }
- /// Test if values of the given type are analyzable within the SCEV
- /// framework. This primarily includes integer types, and it can optionally
- /// include pointer types if the ScalarEvolution class has access to
- /// target-specific information.
- bool isSCEVable(Type *Ty) const;
- /// Return the size in bits of the specified type, for which isSCEVable must
- /// return true.
- uint64_t getTypeSizeInBits(Type *Ty) const;
- /// Return a type with the same bitwidth as the given type and which
- /// represents how SCEV will treat the given type, for which isSCEVable must
- /// return true. For pointer types, this is the pointer-sized integer type.
- Type *getEffectiveSCEVType(Type *Ty) const;
- // Returns a wider type among {Ty1, Ty2}.
- Type *getWiderType(Type *Ty1, Type *Ty2) const;
- /// Return true if there exists a point in the program at which both
- /// A and B could be operands to the same instruction.
- /// SCEV expressions are generally assumed to correspond to instructions
- /// which could exists in IR. In general, this requires that there exists
- /// a use point in the program where all operands dominate the use.
- ///
- /// Example:
- /// loop {
- /// if
- /// loop { v1 = load @global1; }
- /// else
- /// loop { v2 = load @global2; }
- /// }
- /// No SCEV with operand V1, and v2 can exist in this program.
- bool instructionCouldExistWitthOperands(const SCEV *A, const SCEV *B);
- /// Return true if the SCEV is a scAddRecExpr or it contains
- /// scAddRecExpr. The result will be cached in HasRecMap.
- bool containsAddRecurrence(const SCEV *S);
- /// Is operation \p BinOp between \p LHS and \p RHS provably does not have
- /// a signed/unsigned overflow (\p Signed)?
- bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
- const SCEV *LHS, const SCEV *RHS);
- /// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into
- /// SCEV no-wrap flags, and deduce flag[s] that aren't known yet.
- /// Does not mutate the original instruction.
- std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
- getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO);
- /// Notify this ScalarEvolution that \p User directly uses SCEVs in \p Ops.
- void registerUser(const SCEV *User, ArrayRef<const SCEV *> Ops);
- /// Return true if the SCEV expression contains an undef value.
- bool containsUndefs(const SCEV *S) const;
- /// Return a SCEV expression for the full generality of the specified
- /// expression.
- const SCEV *getSCEV(Value *V);
- const SCEV *getConstant(ConstantInt *V);
- const SCEV *getConstant(const APInt &Val);
- const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
- const SCEV *getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth = 0);
- const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty);
- const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
- const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
- const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
- const SCEV *getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty);
- const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
- const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
- SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
- unsigned Depth = 0);
- const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
- SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
- unsigned Depth = 0) {
- SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
- return getAddExpr(Ops, Flags, Depth);
- }
- const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
- SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
- unsigned Depth = 0) {
- SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
- return getAddExpr(Ops, Flags, Depth);
- }
- const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
- SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
- unsigned Depth = 0);
- const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
- SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
- unsigned Depth = 0) {
- SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
- return getMulExpr(Ops, Flags, Depth);
- }
- const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
- SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
- unsigned Depth = 0) {
- SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
- return getMulExpr(Ops, Flags, Depth);
- }
- const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
- const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
- const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
- const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L,
- SCEV::NoWrapFlags Flags);
- const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
- const Loop *L, SCEV::NoWrapFlags Flags);
- const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
- const Loop *L, SCEV::NoWrapFlags Flags) {
- SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
- return getAddRecExpr(NewOp, L, Flags);
- }
- /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
- /// Predicates. If successful return these <AddRecExpr, Predicates>;
- /// The function is intended to be called from PSCEV (the caller will decide
- /// whether to actually add the predicates and carry out the rewrites).
- Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
- createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
- /// Returns an expression for a GEP
- ///
- /// \p GEP The GEP. The indices contained in the GEP itself are ignored,
- /// instead we use IndexExprs.
- /// \p IndexExprs The expressions for the indices.
- const SCEV *getGEPExpr(GEPOperator *GEP,
- const SmallVectorImpl<const SCEV *> &IndexExprs);
- const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW);
- const SCEV *getMinMaxExpr(SCEVTypes Kind,
- SmallVectorImpl<const SCEV *> &Operands);
- const SCEV *getSequentialMinMaxExpr(SCEVTypes Kind,
- SmallVectorImpl<const SCEV *> &Operands);
- const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
- const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
- const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
- const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
- const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
- const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands);
- const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS,
- bool Sequential = false);
- const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands,
- bool Sequential = false);
- const SCEV *getUnknown(Value *V);
- const SCEV *getCouldNotCompute();
- /// Return a SCEV for the constant 0 of a specific type.
- const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
- /// Return a SCEV for the constant 1 of a specific type.
- const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
- /// Return a SCEV for the constant -1 of a specific type.
- const SCEV *getMinusOne(Type *Ty) {
- return getConstant(Ty, -1, /*isSigned=*/true);
- }
- /// Return an expression for sizeof ScalableTy that is type IntTy, where
- /// ScalableTy is a scalable vector type.
- const SCEV *getSizeOfScalableVectorExpr(Type *IntTy,
- ScalableVectorType *ScalableTy);
- /// Return an expression for the alloc size of AllocTy that is type IntTy
- const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
- /// Return an expression for the store size of StoreTy that is type IntTy
- const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy);
- /// Return an expression for offsetof on the given field with type IntTy
- const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
- /// Return the SCEV object corresponding to -V.
- const SCEV *getNegativeSCEV(const SCEV *V,
- SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
- /// Return the SCEV object corresponding to ~V.
- const SCEV *getNotSCEV(const SCEV *V);
- /// Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
- ///
- /// If the LHS and RHS are pointers which don't share a common base
- /// (according to getPointerBase()), this returns a SCEVCouldNotCompute.
- /// To compute the difference between two unrelated pointers, you can
- /// explicitly convert the arguments using getPtrToIntExpr(), for pointer
- /// types that support it.
- const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
- SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
- unsigned Depth = 0);
- /// Compute ceil(N / D). N and D are treated as unsigned values.
- ///
- /// Since SCEV doesn't have native ceiling division, this generates a
- /// SCEV expression of the following form:
- ///
- /// umin(N, 1) + floor((N - umin(N, 1)) / D)
- ///
- /// A denominator of zero or poison is handled the same way as getUDivExpr().
- const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D);
- /// Return a SCEV corresponding to a conversion of the input value to the
- /// specified type. If the type must be extended, it is zero extended.
- const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
- unsigned Depth = 0);
- /// Return a SCEV corresponding to a conversion of the input value to the
- /// specified type. If the type must be extended, it is sign extended.
- const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty,
- unsigned Depth = 0);
- /// Return a SCEV corresponding to a conversion of the input value to the
- /// specified type. If the type must be extended, it is zero extended. The
- /// conversion must not be narrowing.
- const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
- /// Return a SCEV corresponding to a conversion of the input value to the
- /// specified type. If the type must be extended, it is sign extended. The
- /// conversion must not be narrowing.
- const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
- /// Return a SCEV corresponding to a conversion of the input value to the
- /// specified type. If the type must be extended, it is extended with
- /// unspecified bits. The conversion must not be narrowing.
- const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
- /// Return a SCEV corresponding to a conversion of the input value to the
- /// specified type. The conversion must not be widening.
- const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
- /// Promote the operands to the wider of the types using zero-extension, and
- /// then perform a umax operation with them.
- const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
- /// Promote the operands to the wider of the types using zero-extension, and
- /// then perform a umin operation with them.
- const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS,
- bool Sequential = false);
- /// Promote the operands to the wider of the types using zero-extension, and
- /// then perform a umin operation with them. N-ary function.
- const SCEV *getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
- bool Sequential = false);
- /// Transitively follow the chain of pointer-type operands until reaching a
- /// SCEV that does not have a single pointer operand. This returns a
- /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
- /// cases do exist.
- const SCEV *getPointerBase(const SCEV *V);
- /// Compute an expression equivalent to S - getPointerBase(S).
- const SCEV *removePointerBase(const SCEV *S);
- /// Return a SCEV expression for the specified value at the specified scope
- /// in the program. The L value specifies a loop nest to evaluate the
- /// expression at, where null is the top-level or a specified loop is
- /// immediately inside of the loop.
- ///
- /// This method can be used to compute the exit value for a variable defined
- /// in a loop by querying what the value will hold in the parent loop.
- ///
- /// In the case that a relevant loop exit value cannot be computed, the
- /// original value V is returned.
- const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
- /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
- const SCEV *getSCEVAtScope(Value *V, const Loop *L);
- /// Test whether entry to the loop is protected by a conditional between LHS
- /// and RHS. This is used to help avoid max expressions in loop trip
- /// counts, and to eliminate casts.
- bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS);
- /// Test whether entry to the basic block is protected by a conditional
- /// between LHS and RHS.
- bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
- ICmpInst::Predicate Pred, const SCEV *LHS,
- const SCEV *RHS);
- /// Test whether the backedge of the loop is protected by a conditional
- /// between LHS and RHS. This is used to eliminate casts.
- bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS);
- /// Convert from an "exit count" (i.e. "backedge taken count") to a "trip
- /// count". A "trip count" is the number of times the header of the loop
- /// will execute if an exit is taken after the specified number of backedges
- /// have been taken. (e.g. TripCount = ExitCount + 1). Note that the
- /// expression can overflow if ExitCount = UINT_MAX. \p Extend controls
- /// how potential overflow is handled. If true, a wider result type is
- /// returned. ex: EC = 255 (i8), TC = 256 (i9). If false, result unsigned
- /// wraps with 2s-complement semantics. ex: EC = 255 (i8), TC = 0 (i8)
- const SCEV *getTripCountFromExitCount(const SCEV *ExitCount,
- bool Extend = true);
- /// Returns the exact trip count of the loop if we can compute it, and
- /// the result is a small constant. '0' is used to represent an unknown
- /// or non-constant trip count. Note that a trip count is simply one more
- /// than the backedge taken count for the loop.
- unsigned getSmallConstantTripCount(const Loop *L);
- /// Return the exact trip count for this loop if we exit through ExitingBlock.
- /// '0' is used to represent an unknown or non-constant trip count. Note
- /// that a trip count is simply one more than the backedge taken count for
- /// the same exit.
- /// This "trip count" assumes that control exits via ExitingBlock. More
- /// precisely, it is the number of times that control will reach ExitingBlock
- /// before taking the branch. For loops with multiple exits, it may not be
- /// the number times that the loop header executes if the loop exits
- /// prematurely via another branch.
- unsigned getSmallConstantTripCount(const Loop *L,
- const BasicBlock *ExitingBlock);
- /// Returns the upper bound of the loop trip count as a normal unsigned
- /// value.
- /// Returns 0 if the trip count is unknown or not constant.
- unsigned getSmallConstantMaxTripCount(const Loop *L);
- /// Returns the upper bound of the loop trip count infered from array size.
- /// Can not access bytes starting outside the statically allocated size
- /// without being immediate UB.
- /// Returns SCEVCouldNotCompute if the trip count could not inferred
- /// from array accesses.
- const SCEV *getConstantMaxTripCountFromArray(const Loop *L);
- /// Returns the largest constant divisor of the trip count as a normal
- /// unsigned value, if possible. This means that the actual trip count is
- /// always a multiple of the returned value. Returns 1 if the trip count is
- /// unknown or not guaranteed to be the multiple of a constant., Will also
- /// return 1 if the trip count is very large (>= 2^32).
- /// Note that the argument is an exit count for loop L, NOT a trip count.
- unsigned getSmallConstantTripMultiple(const Loop *L,
- const SCEV *ExitCount);
- /// Returns the largest constant divisor of the trip count of the
- /// loop. Will return 1 if no trip count could be computed, or if a
- /// divisor could not be found.
- unsigned getSmallConstantTripMultiple(const Loop *L);
- /// Returns the largest constant divisor of the trip count of this loop as a
- /// normal unsigned value, if possible. This means that the actual trip
- /// count is always a multiple of the returned value (don't forget the trip
- /// count could very well be zero as well!). As explained in the comments
- /// for getSmallConstantTripCount, this assumes that control exits the loop
- /// via ExitingBlock.
- unsigned getSmallConstantTripMultiple(const Loop *L,
- const BasicBlock *ExitingBlock);
- /// The terms "backedge taken count" and "exit count" are used
- /// interchangeably to refer to the number of times the backedge of a loop
- /// has executed before the loop is exited.
- enum ExitCountKind {
- /// An expression exactly describing the number of times the backedge has
- /// executed when a loop is exited.
- Exact,
- /// A constant which provides an upper bound on the exact trip count.
- ConstantMaximum,
- /// An expression which provides an upper bound on the exact trip count.
- SymbolicMaximum,
- };
- /// Return the number of times the backedge executes before the given exit
- /// would be taken; if not exactly computable, return SCEVCouldNotCompute.
- /// For a single exit loop, this value is equivelent to the result of
- /// getBackedgeTakenCount. The loop is guaranteed to exit (via *some* exit)
- /// before the backedge is executed (ExitCount + 1) times. Note that there
- /// is no guarantee about *which* exit is taken on the exiting iteration.
- const SCEV *getExitCount(const Loop *L, const BasicBlock *ExitingBlock,
- ExitCountKind Kind = Exact);
- /// If the specified loop has a predictable backedge-taken count, return it,
- /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is
- /// the number of times the loop header will be branched to from within the
- /// loop, assuming there are no abnormal exists like exception throws. This is
- /// one less than the trip count of the loop, since it doesn't count the first
- /// iteration, when the header is branched to from outside the loop.
- ///
- /// Note that it is not valid to call this method on a loop without a
- /// loop-invariant backedge-taken count (see
- /// hasLoopInvariantBackedgeTakenCount).
- const SCEV *getBackedgeTakenCount(const Loop *L, ExitCountKind Kind = Exact);
- /// Similar to getBackedgeTakenCount, except it will add a set of
- /// SCEV predicates to Predicates that are required to be true in order for
- /// the answer to be correct. Predicates can be checked with run-time
- /// checks and can be used to perform loop versioning.
- const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
- SCEVUnionPredicate &Predicates);
- /// When successful, this returns a SCEVConstant that is greater than or equal
- /// to (i.e. a "conservative over-approximation") of the value returend by
- /// getBackedgeTakenCount. If such a value cannot be computed, it returns the
- /// SCEVCouldNotCompute object.
- const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) {
- return getBackedgeTakenCount(L, ConstantMaximum);
- }
- /// When successful, this returns a SCEV that is greater than or equal
- /// to (i.e. a "conservative over-approximation") of the value returend by
- /// getBackedgeTakenCount. If such a value cannot be computed, it returns the
- /// SCEVCouldNotCompute object.
- const SCEV *getSymbolicMaxBackedgeTakenCount(const Loop *L) {
- return getBackedgeTakenCount(L, SymbolicMaximum);
- }
- /// Return true if the backedge taken count is either the value returned by
- /// getConstantMaxBackedgeTakenCount or zero.
- bool isBackedgeTakenCountMaxOrZero(const Loop *L);
- /// Return true if the specified loop has an analyzable loop-invariant
- /// backedge-taken count.
- bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
- // This method should be called by the client when it made any change that
- // would invalidate SCEV's answers, and the client wants to remove all loop
- // information held internally by ScalarEvolution. This is intended to be used
- // when the alternative to forget a loop is too expensive (i.e. large loop
- // bodies).
- void forgetAllLoops();
- /// This method should be called by the client when it has changed a loop in
- /// a way that may effect ScalarEvolution's ability to compute a trip count,
- /// or if the loop is deleted. This call is potentially expensive for large
- /// loop bodies.
- void forgetLoop(const Loop *L);
- // This method invokes forgetLoop for the outermost loop of the given loop
- // \p L, making ScalarEvolution forget about all this subtree. This needs to
- // be done whenever we make a transform that may affect the parameters of the
- // outer loop, such as exit counts for branches.
- void forgetTopmostLoop(const Loop *L);
- /// This method should be called by the client when it has changed a value
- /// in a way that may effect its value, or which may disconnect it from a
- /// def-use chain linking it to a loop.
- void forgetValue(Value *V);
- /// Called when the client has changed the disposition of values in
- /// this loop.
- ///
- /// We don't have a way to invalidate per-loop dispositions. Clear and
- /// recompute is simpler.
- void forgetLoopDispositions(const Loop *L);
- /// Determine the minimum number of zero bits that S is guaranteed to end in
- /// (at every loop iteration). It is, at the same time, the minimum number
- /// of times S is divisible by 2. For example, given {4,+,8} it returns 2.
- /// If S is guaranteed to be 0, it returns the bitwidth of S.
- uint32_t GetMinTrailingZeros(const SCEV *S);
- /// Determine the unsigned range for a particular SCEV.
- /// NOTE: This returns a copy of the reference returned by getRangeRef.
- ConstantRange getUnsignedRange(const SCEV *S) {
- return getRangeRef(S, HINT_RANGE_UNSIGNED);
- }
- /// Determine the min of the unsigned range for a particular SCEV.
- APInt getUnsignedRangeMin(const SCEV *S) {
- return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin();
- }
- /// Determine the max of the unsigned range for a particular SCEV.
- APInt getUnsignedRangeMax(const SCEV *S) {
- return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax();
- }
- /// Determine the signed range for a particular SCEV.
- /// NOTE: This returns a copy of the reference returned by getRangeRef.
- ConstantRange getSignedRange(const SCEV *S) {
- return getRangeRef(S, HINT_RANGE_SIGNED);
- }
- /// Determine the min of the signed range for a particular SCEV.
- APInt getSignedRangeMin(const SCEV *S) {
- return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin();
- }
- /// Determine the max of the signed range for a particular SCEV.
- APInt getSignedRangeMax(const SCEV *S) {
- return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax();
- }
- /// Test if the given expression is known to be negative.
- bool isKnownNegative(const SCEV *S);
- /// Test if the given expression is known to be positive.
- bool isKnownPositive(const SCEV *S);
- /// Test if the given expression is known to be non-negative.
- bool isKnownNonNegative(const SCEV *S);
- /// Test if the given expression is known to be non-positive.
- bool isKnownNonPositive(const SCEV *S);
- /// Test if the given expression is known to be non-zero.
- bool isKnownNonZero(const SCEV *S);
- /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
- /// \p S by substitution of all AddRec sub-expression related to loop \p L
- /// with initial value of that SCEV. The second is obtained from \p S by
- /// substitution of all AddRec sub-expressions related to loop \p L with post
- /// increment of this AddRec in the loop \p L. In both cases all other AddRec
- /// sub-expressions (not related to \p L) remain the same.
- /// If the \p S contains non-invariant unknown SCEV the function returns
- /// CouldNotCompute SCEV in both values of std::pair.
- /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
- /// the function returns pair:
- /// first = {0, +, 1}<L2>
- /// second = {1, +, 1}<L1> + {0, +, 1}<L2>
- /// We can see that for the first AddRec sub-expression it was replaced with
- /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
- /// increment value) for the second one. In both cases AddRec expression
- /// related to L2 remains the same.
- std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L,
- const SCEV *S);
- /// We'd like to check the predicate on every iteration of the most dominated
- /// loop between loops used in LHS and RHS.
- /// To do this we use the following list of steps:
- /// 1. Collect set S all loops on which either LHS or RHS depend.
- /// 2. If S is non-empty
- /// a. Let PD be the element of S which is dominated by all other elements.
- /// b. Let E(LHS) be value of LHS on entry of PD.
- /// To get E(LHS), we should just take LHS and replace all AddRecs that are
- /// attached to PD on with their entry values.
- /// Define E(RHS) in the same way.
- /// c. Let B(LHS) be value of L on backedge of PD.
- /// To get B(LHS), we should just take LHS and replace all AddRecs that are
- /// attached to PD on with their backedge values.
- /// Define B(RHS) in the same way.
- /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
- /// so we can assert on that.
- /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
- /// isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
- bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS,
- const SCEV *RHS);
- /// Test if the given expression is known to satisfy the condition described
- /// by Pred, LHS, and RHS.
- bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
- const SCEV *RHS);
- /// Check whether the condition described by Pred, LHS, and RHS is true or
- /// false. If we know it, return the evaluation of this condition. If neither
- /// is proved, return None.
- Optional<bool> evaluatePredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
- const SCEV *RHS);
- /// Test if the given expression is known to satisfy the condition described
- /// by Pred, LHS, and RHS in the given Context.
- bool isKnownPredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
- const SCEV *RHS, const Instruction *CtxI);
- /// Check whether the condition described by Pred, LHS, and RHS is true or
- /// false in the given \p Context. If we know it, return the evaluation of
- /// this condition. If neither is proved, return None.
- Optional<bool> evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
- const SCEV *RHS, const Instruction *CtxI);
- /// Test if the condition described by Pred, LHS, RHS is known to be true on
- /// every iteration of the loop of the recurrency LHS.
- bool isKnownOnEveryIteration(ICmpInst::Predicate Pred,
- const SCEVAddRecExpr *LHS, const SCEV *RHS);
- /// A predicate is said to be monotonically increasing if may go from being
- /// false to being true as the loop iterates, but never the other way
- /// around. A predicate is said to be monotonically decreasing if may go
- /// from being true to being false as the loop iterates, but never the other
- /// way around.
- enum MonotonicPredicateType {
- MonotonicallyIncreasing,
- MonotonicallyDecreasing
- };
- /// If, for all loop invariant X, the predicate "LHS `Pred` X" is
- /// monotonically increasing or decreasing, returns
- /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing)
- /// respectively. If we could not prove either of these facts, returns None.
- Optional<MonotonicPredicateType>
- getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
- ICmpInst::Predicate Pred);
- struct LoopInvariantPredicate {
- ICmpInst::Predicate Pred;
- const SCEV *LHS;
- const SCEV *RHS;
- LoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
- const SCEV *RHS)
- : Pred(Pred), LHS(LHS), RHS(RHS) {}
- };
- /// If the result of the predicate LHS `Pred` RHS is loop invariant with
- /// respect to L, return a LoopInvariantPredicate with LHS and RHS being
- /// invariants, available at L's entry. Otherwise, return None.
- Optional<LoopInvariantPredicate>
- getLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
- const SCEV *RHS, const Loop *L);
- /// If the result of the predicate LHS `Pred` RHS is loop invariant with
- /// respect to L at given Context during at least first MaxIter iterations,
- /// return a LoopInvariantPredicate with LHS and RHS being invariants,
- /// available at L's entry. Otherwise, return None. The predicate should be
- /// the loop's exit condition.
- Optional<LoopInvariantPredicate>
- getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred,
- const SCEV *LHS,
- const SCEV *RHS, const Loop *L,
- const Instruction *CtxI,
- const SCEV *MaxIter);
- /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
- /// iff any changes were made. If the operands are provably equal or
- /// unequal, LHS and RHS are set to the same value and Pred is set to either
- /// ICMP_EQ or ICMP_NE. ControllingFiniteLoop is set if this comparison
- /// controls the exit of a loop known to have a finite number of iterations.
- bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS,
- const SCEV *&RHS, unsigned Depth = 0,
- bool ControllingFiniteLoop = false);
- /// Return the "disposition" of the given SCEV with respect to the given
- /// loop.
- LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
- /// Return true if the value of the given SCEV is unchanging in the
- /// specified loop.
- bool isLoopInvariant(const SCEV *S, const Loop *L);
- /// Determine if the SCEV can be evaluated at loop's entry. It is true if it
- /// doesn't depend on a SCEVUnknown of an instruction which is dominated by
- /// the header of loop L.
- bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);
- /// Return true if the given SCEV changes value in a known way in the
- /// specified loop. This property being true implies that the value is
- /// variant in the loop AND that we can emit an expression to compute the
- /// value of the expression at any particular loop iteration.
- bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
- /// Return the "disposition" of the given SCEV with respect to the given
- /// block.
- BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
- /// Return true if elements that makes up the given SCEV dominate the
- /// specified basic block.
- bool dominates(const SCEV *S, const BasicBlock *BB);
- /// Return true if elements that makes up the given SCEV properly dominate
- /// the specified basic block.
- bool properlyDominates(const SCEV *S, const BasicBlock *BB);
- /// Test whether the given SCEV has Op as a direct or indirect operand.
- bool hasOperand(const SCEV *S, const SCEV *Op) const;
- /// Return the size of an element read or written by Inst.
- const SCEV *getElementSize(Instruction *Inst);
- void print(raw_ostream &OS) const;
- void verify() const;
- bool invalidate(Function &F, const PreservedAnalyses &PA,
- FunctionAnalysisManager::Invalidator &Inv);
- /// Return the DataLayout associated with the module this SCEV instance is
- /// operating on.
- const DataLayout &getDataLayout() const {
- return F.getParent()->getDataLayout();
- }
- const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS);
- const SCEVPredicate *
- getWrapPredicate(const SCEVAddRecExpr *AR,
- SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
- /// Re-writes the SCEV according to the Predicates in \p A.
- const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
- SCEVUnionPredicate &A);
- /// Tries to convert the \p S expression to an AddRec expression,
- /// adding additional predicates to \p Preds as required.
- const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates(
- const SCEV *S, const Loop *L,
- SmallPtrSetImpl<const SCEVPredicate *> &Preds);
- /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
- /// constant, and None if it isn't.
- ///
- /// This is intended to be a cheaper version of getMinusSCEV. We can be
- /// frugal here since we just bail out of actually constructing and
- /// canonicalizing an expression in the cases where the result isn't going
- /// to be a constant.
- Optional<APInt> computeConstantDifference(const SCEV *LHS, const SCEV *RHS);
- /// Update no-wrap flags of an AddRec. This may drop the cached info about
- /// this AddRec (such as range info) in case if new flags may potentially
- /// sharpen it.
- void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags);
- /// Try to apply information from loop guards for \p L to \p Expr.
- const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L);
- /// Return true if the loop has no abnormal exits. That is, if the loop
- /// is not infinite, it must exit through an explicit edge in the CFG.
- /// (As opposed to either a) throwing out of the function or b) entering a
- /// well defined infinite loop in some callee.)
- bool loopHasNoAbnormalExits(const Loop *L) {
- return getLoopProperties(L).HasNoAbnormalExits;
- }
- /// Return true if this loop is finite by assumption. That is,
- /// to be infinite, it must also be undefined.
- bool loopIsFiniteByAssumption(const Loop *L);
- private:
- /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
- /// Value is deleted.
- class SCEVCallbackVH final : public CallbackVH {
- ScalarEvolution *SE;
- void deleted() override;
- void allUsesReplacedWith(Value *New) override;
- public:
- SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
- };
- friend class SCEVCallbackVH;
- friend class SCEVExpander;
- friend class SCEVUnknown;
- /// The function we are analyzing.
- Function &F;
- /// Does the module have any calls to the llvm.experimental.guard intrinsic
- /// at all? If this is false, we avoid doing work that will only help if
- /// thare are guards present in the IR.
- bool HasGuards;
- /// The target library information for the target we are targeting.
- TargetLibraryInfo &TLI;
- /// The tracker for \@llvm.assume intrinsics in this function.
- AssumptionCache &AC;
- /// The dominator tree.
- DominatorTree &DT;
- /// The loop information for the function we are currently analyzing.
- LoopInfo &LI;
- /// This SCEV is used to represent unknown trip counts and things.
- std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
- /// The type for HasRecMap.
- using HasRecMapType = DenseMap<const SCEV *, bool>;
- /// This is a cache to record whether a SCEV contains any scAddRecExpr.
- HasRecMapType HasRecMap;
- /// The type for ExprValueMap.
- using ValueOffsetPair = std::pair<Value *, ConstantInt *>;
- using ValueOffsetPairSetVector = SmallSetVector<ValueOffsetPair, 4>;
- using ExprValueMapType = DenseMap<const SCEV *, ValueOffsetPairSetVector>;
- /// ExprValueMap -- This map records the original values from which
- /// the SCEV expr is generated from.
- ///
- /// We want to represent the mapping as SCEV -> ValueOffsetPair instead
- /// of SCEV -> Value:
- /// Suppose we know S1 expands to V1, and
- /// S1 = S2 + C_a
- /// S3 = S2 + C_b
- /// where C_a and C_b are different SCEVConstants. Then we'd like to
- /// expand S3 as V1 - C_a + C_b instead of expanding S2 literally.
- /// It is helpful when S2 is a complex SCEV expr.
- ///
- /// In order to do that, we represent ExprValueMap as a mapping from
- /// SCEV to ValueOffsetPair. We will save both S1->{V1, 0} and
- /// S2->{V1, C_a} into the map when we create SCEV for V1. When S3
- /// is expanded, it will first expand S2 to V1 - C_a because of
- /// S2->{V1, C_a} in the map, then expand S3 to V1 - C_a + C_b.
- ///
- /// Note: S->{V, Offset} in the ExprValueMap means S can be expanded
- /// to V - Offset.
- ExprValueMapType ExprValueMap;
- /// The type for ValueExprMap.
- using ValueExprMapType =
- DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>;
- /// This is a cache of the values we have analyzed so far.
- ValueExprMapType ValueExprMap;
- /// Mark predicate values currently being processed by isImpliedCond.
- SmallPtrSet<const Value *, 6> PendingLoopPredicates;
- /// Mark SCEVUnknown Phis currently being processed by getRangeRef.
- SmallPtrSet<const PHINode *, 6> PendingPhiRanges;
- // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge.
- SmallPtrSet<const PHINode *, 6> PendingMerges;
- /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
- /// conditions dominating the backedge of a loop.
- bool WalkingBEDominatingConds = false;
- /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
- /// predicate by splitting it into a set of independent predicates.
- bool ProvingSplitPredicate = false;
- /// Memoized values for the GetMinTrailingZeros
- DenseMap<const SCEV *, uint32_t> MinTrailingZerosCache;
- /// Return the Value set from which the SCEV expr is generated.
- ValueOffsetPairSetVector *getSCEVValues(const SCEV *S);
- /// Private helper method for the GetMinTrailingZeros method
- uint32_t GetMinTrailingZerosImpl(const SCEV *S);
- /// Information about the number of loop iterations for which a loop exit's
- /// branch condition evaluates to the not-taken path. This is a temporary
- /// pair of exact and max expressions that are eventually summarized in
- /// ExitNotTakenInfo and BackedgeTakenInfo.
- struct ExitLimit {
- const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
- const SCEV *MaxNotTaken; // The exit is not taken at most this many times
- // Not taken either exactly MaxNotTaken or zero times
- bool MaxOrZero = false;
- /// A set of predicate guards for this ExitLimit. The result is only valid
- /// if all of the predicates in \c Predicates evaluate to 'true' at
- /// run-time.
- SmallPtrSet<const SCEVPredicate *, 4> Predicates;
- void addPredicate(const SCEVPredicate *P) {
- assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!");
- Predicates.insert(P);
- }
- /// Construct either an exact exit limit from a constant, or an unknown
- /// one from a SCEVCouldNotCompute. No other types of SCEVs are allowed
- /// as arguments and asserts enforce that internally.
- /*implicit*/ ExitLimit(const SCEV *E);
- ExitLimit(
- const SCEV *E, const SCEV *M, bool MaxOrZero,
- ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList);
- ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero,
- const SmallPtrSetImpl<const SCEVPredicate *> &PredSet);
- ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero);
- /// Test whether this ExitLimit contains any computed information, or
- /// whether it's all SCEVCouldNotCompute values.
- bool hasAnyInfo() const {
- return !isa<SCEVCouldNotCompute>(ExactNotTaken) ||
- !isa<SCEVCouldNotCompute>(MaxNotTaken);
- }
- /// Test whether this ExitLimit contains all information.
- bool hasFullInfo() const {
- return !isa<SCEVCouldNotCompute>(ExactNotTaken);
- }
- };
- /// Information about the number of times a particular loop exit may be
- /// reached before exiting the loop.
- struct ExitNotTakenInfo {
- PoisoningVH<BasicBlock> ExitingBlock;
- const SCEV *ExactNotTaken;
- const SCEV *MaxNotTaken;
- std::unique_ptr<SCEVUnionPredicate> Predicate;
- explicit ExitNotTakenInfo(PoisoningVH<BasicBlock> ExitingBlock,
- const SCEV *ExactNotTaken,
- const SCEV *MaxNotTaken,
- std::unique_ptr<SCEVUnionPredicate> Predicate)
- : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
- MaxNotTaken(ExactNotTaken), Predicate(std::move(Predicate)) {}
- bool hasAlwaysTruePredicate() const {
- return !Predicate || Predicate->isAlwaysTrue();
- }
- };
- /// Information about the backedge-taken count of a loop. This currently
- /// includes an exact count and a maximum count.
- ///
- class BackedgeTakenInfo {
- friend class ScalarEvolution;
- /// A list of computable exits and their not-taken counts. Loops almost
- /// never have more than one computable exit.
- SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
- /// Expression indicating the least constant maximum backedge-taken count of
- /// the loop that is known, or a SCEVCouldNotCompute. This expression is
- /// only valid if the redicates associated with all loop exits are true.
- const SCEV *ConstantMax;
- /// Indicating if \c ExitNotTaken has an element for every exiting block in
- /// the loop.
- bool IsComplete;
- /// Expression indicating the least maximum backedge-taken count of the loop
- /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query.
- const SCEV *SymbolicMax = nullptr;
- /// True iff the backedge is taken either exactly Max or zero times.
- bool MaxOrZero = false;
- bool isComplete() const { return IsComplete; }
- const SCEV *getConstantMax() const { return ConstantMax; }
- public:
- BackedgeTakenInfo() : ConstantMax(nullptr), IsComplete(false) {}
- BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
- BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
- using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
- /// Initialize BackedgeTakenInfo from a list of exact exit counts.
- BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, bool IsComplete,
- const SCEV *ConstantMax, bool MaxOrZero);
- /// Test whether this BackedgeTakenInfo contains any computed information,
- /// or whether it's all SCEVCouldNotCompute values.
- bool hasAnyInfo() const {
- return !ExitNotTaken.empty() ||
- !isa<SCEVCouldNotCompute>(getConstantMax());
- }
- /// Test whether this BackedgeTakenInfo contains complete information.
- bool hasFullInfo() const { return isComplete(); }
- /// Return an expression indicating the exact *backedge-taken*
- /// count of the loop if it is known or SCEVCouldNotCompute
- /// otherwise. If execution makes it to the backedge on every
- /// iteration (i.e. there are no abnormal exists like exception
- /// throws and thread exits) then this is the number of times the
- /// loop header will execute minus one.
- ///
- /// If the SCEV predicate associated with the answer can be different
- /// from AlwaysTrue, we must add a (non null) Predicates argument.
- /// The SCEV predicate associated with the answer will be added to
- /// Predicates. A run-time check needs to be emitted for the SCEV
- /// predicate in order for the answer to be valid.
- ///
- /// Note that we should always know if we need to pass a predicate
- /// argument or not from the way the ExitCounts vector was computed.
- /// If we allowed SCEV predicates to be generated when populating this
- /// vector, this information can contain them and therefore a
- /// SCEVPredicate argument should be added to getExact.
- const SCEV *getExact(const Loop *L, ScalarEvolution *SE,
- SCEVUnionPredicate *Predicates = nullptr) const;
- /// Return the number of times this loop exit may fall through to the back
- /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
- /// this block before this number of iterations, but may exit via another
- /// block.
- const SCEV *getExact(const BasicBlock *ExitingBlock,
- ScalarEvolution *SE) const;
- /// Get the constant max backedge taken count for the loop.
- const SCEV *getConstantMax(ScalarEvolution *SE) const;
- /// Get the constant max backedge taken count for the particular loop exit.
- const SCEV *getConstantMax(const BasicBlock *ExitingBlock,
- ScalarEvolution *SE) const;
- /// Get the symbolic max backedge taken count for the loop.
- const SCEV *getSymbolicMax(const Loop *L, ScalarEvolution *SE);
- /// Return true if the number of times this backedge is taken is either the
- /// value returned by getConstantMax or zero.
- bool isConstantMaxOrZero(ScalarEvolution *SE) const;
- };
- /// Cache the backedge-taken count of the loops for this function as they
- /// are computed.
- DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
- /// Cache the predicated backedge-taken count of the loops for this
- /// function as they are computed.
- DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
- /// Loops whose backedge taken counts directly use this non-constant SCEV.
- DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>>
- BECountUsers;
- /// This map contains entries for all of the PHI instructions that we
- /// attempt to compute constant evolutions for. This allows us to avoid
- /// potentially expensive recomputation of these properties. An instruction
- /// maps to null if we are unable to compute its exit value.
- DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
- /// This map contains entries for all the expressions that we attempt to
- /// compute getSCEVAtScope information for, which can be expensive in
- /// extreme cases.
- DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
- ValuesAtScopes;
- /// Reverse map for invalidation purposes: Stores of which SCEV and which
- /// loop this is the value-at-scope of.
- DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
- ValuesAtScopesUsers;
- /// Memoized computeLoopDisposition results.
- DenseMap<const SCEV *,
- SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
- LoopDispositions;
- struct LoopProperties {
- /// Set to true if the loop contains no instruction that can abnormally exit
- /// the loop (i.e. via throwing an exception, by terminating the thread
- /// cleanly or by infinite looping in a called function). Strictly
- /// speaking, the last one is not leaving the loop, but is identical to
- /// leaving the loop for reasoning about undefined behavior.
- bool HasNoAbnormalExits;
- /// Set to true if the loop contains no instruction that can have side
- /// effects (i.e. via throwing an exception, volatile or atomic access).
- bool HasNoSideEffects;
- };
- /// Cache for \c getLoopProperties.
- DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
- /// Return a \c LoopProperties instance for \p L, creating one if necessary.
- LoopProperties getLoopProperties(const Loop *L);
- bool loopHasNoSideEffects(const Loop *L) {
- return getLoopProperties(L).HasNoSideEffects;
- }
- /// Compute a LoopDisposition value.
- LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
- /// Memoized computeBlockDisposition results.
- DenseMap<
- const SCEV *,
- SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
- BlockDispositions;
- /// Compute a BlockDisposition value.
- BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
- /// Stores all SCEV that use a given SCEV as its direct operand.
- DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers;
- /// Memoized results from getRange
- DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
- /// Memoized results from getRange
- DenseMap<const SCEV *, ConstantRange> SignedRanges;
- /// Used to parameterize getRange
- enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
- /// Set the memoized range for the given SCEV.
- const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
- ConstantRange CR) {
- DenseMap<const SCEV *, ConstantRange> &Cache =
- Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
- auto Pair = Cache.try_emplace(S, std::move(CR));
- if (!Pair.second)
- Pair.first->second = std::move(CR);
- return Pair.first->second;
- }
- /// Determine the range for a particular SCEV.
- /// NOTE: This returns a reference to an entry in a cache. It must be
- /// copied if its needed for longer.
- const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint);
- /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Step}.
- /// Helper for \c getRange.
- ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Step,
- const SCEV *MaxBECount, unsigned BitWidth);
- /// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p
- /// Start,+,\p Step}<nw>.
- ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec,
- const SCEV *MaxBECount,
- unsigned BitWidth,
- RangeSignHint SignHint);
- /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
- /// Step} by "factoring out" a ternary expression from the add recurrence.
- /// Helper called by \c getRange.
- ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Step,
- const SCEV *MaxBECount, unsigned BitWidth);
- /// If the unknown expression U corresponds to a simple recurrence, return
- /// a constant range which represents the entire recurrence. Note that
- /// *add* recurrences with loop invariant steps aren't represented by
- /// SCEVUnknowns and thus don't use this mechanism.
- ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U);
- /// We know that there is no SCEV for the specified value. Analyze the
- /// expression.
- const SCEV *createSCEV(Value *V);
- /// Provide the special handling we need to analyze PHI SCEVs.
- const SCEV *createNodeForPHI(PHINode *PN);
- /// Helper function called from createNodeForPHI.
- const SCEV *createAddRecFromPHI(PHINode *PN);
- /// A helper function for createAddRecFromPHI to handle simple cases.
- const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
- Value *StartValueV);
- /// Helper function called from createNodeForPHI.
- const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
- /// Provide special handling for a select-like instruction (currently this
- /// is either a select instruction or a phi node). \p I is the instruction
- /// being processed, and it is assumed equivalent to "Cond ? TrueVal :
- /// FalseVal".
- const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond,
- Value *TrueVal, Value *FalseVal);
- /// Provide the special handling we need to analyze GEP SCEVs.
- const SCEV *createNodeForGEP(GEPOperator *GEP);
- /// Implementation code for getSCEVAtScope; called at most once for each
- /// SCEV+Loop pair.
- const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
- /// Return the BackedgeTakenInfo for the given loop, lazily computing new
- /// values if the loop hasn't been analyzed yet. The returned result is
- /// guaranteed not to be predicated.
- BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
- /// Similar to getBackedgeTakenInfo, but will add predicates as required
- /// with the purpose of returning complete information.
- const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
- /// Compute the number of times the specified loop will iterate.
- /// If AllowPredicates is set, we will create new SCEV predicates as
- /// necessary in order to return an exact answer.
- BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
- bool AllowPredicates = false);
- /// Compute the number of times the backedge of the specified loop will
- /// execute if it exits via the specified block. If AllowPredicates is set,
- /// this call will try to use a minimal set of SCEV predicates in order to
- /// return an exact answer.
- ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
- bool AllowPredicates = false);
- /// Compute the number of times the backedge of the specified loop will
- /// execute if its exit condition were a conditional branch of ExitCond.
- ///
- /// \p ControlsExit is true if ExitCond directly controls the exit
- /// branch. In this case, we can assume that the loop exits only if the
- /// condition is true and can infer that failing to meet the condition prior
- /// to integer wraparound results in undefined behavior.
- ///
- /// If \p AllowPredicates is set, this call will try to use a minimal set of
- /// SCEV predicates in order to return an exact answer.
- ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
- bool ExitIfTrue, bool ControlsExit,
- bool AllowPredicates = false);
- /// Return a symbolic upper bound for the backedge taken count of the loop.
- /// This is more general than getConstantMaxBackedgeTakenCount as it returns
- /// an arbitrary expression as opposed to only constants.
- const SCEV *computeSymbolicMaxBackedgeTakenCount(const Loop *L);
- // Helper functions for computeExitLimitFromCond to avoid exponential time
- // complexity.
- class ExitLimitCache {
- // It may look like we need key on the whole (L, ExitIfTrue, ControlsExit,
- // AllowPredicates) tuple, but recursive calls to
- // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only
- // vary the in \c ExitCond and \c ControlsExit parameters. We remember the
- // initial values of the other values to assert our assumption.
- SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
- const Loop *L;
- bool ExitIfTrue;
- bool AllowPredicates;
- public:
- ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates)
- : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
- Optional<ExitLimit> find(const Loop *L, Value *ExitCond, bool ExitIfTrue,
- bool ControlsExit, bool AllowPredicates);
- void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue,
- bool ControlsExit, bool AllowPredicates, const ExitLimit &EL);
- };
- using ExitLimitCacheTy = ExitLimitCache;
- ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
- const Loop *L, Value *ExitCond,
- bool ExitIfTrue,
- bool ControlsExit,
- bool AllowPredicates);
- ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L,
- Value *ExitCond, bool ExitIfTrue,
- bool ControlsExit,
- bool AllowPredicates);
- Optional<ScalarEvolution::ExitLimit>
- computeExitLimitFromCondFromBinOp(ExitLimitCacheTy &Cache, const Loop *L,
- Value *ExitCond, bool ExitIfTrue,
- bool ControlsExit, bool AllowPredicates);
- /// Compute the number of times the backedge of the specified loop will
- /// execute if its exit condition were a conditional branch of the ICmpInst
- /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try
- /// to use a minimal set of SCEV predicates in order to return an exact
- /// answer.
- ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
- bool ExitIfTrue,
- bool IsSubExpr,
- bool AllowPredicates = false);
- /// Variant of previous which takes the components representing an ICmp
- /// as opposed to the ICmpInst itself. Note that the prior version can
- /// return more precise results in some cases and is preferred when caller
- /// has a materialized ICmp.
- ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS,
- bool IsSubExpr,
- bool AllowPredicates = false);
- /// Compute the number of times the backedge of the specified loop will
- /// execute if its exit condition were a switch with a single exiting case
- /// to ExitingBB.
- ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
- SwitchInst *Switch,
- BasicBlock *ExitingBB,
- bool IsSubExpr);
- /// Compute the exit limit of a loop that is controlled by a
- /// "(IV >> 1) != 0" type comparison. We cannot compute the exact trip
- /// count in these cases (since SCEV has no way of expressing them), but we
- /// can still sometimes compute an upper bound.
- ///
- /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
- /// RHS`.
- ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
- ICmpInst::Predicate Pred);
- /// If the loop is known to execute a constant number of times (the
- /// condition evolves only from constants), try to evaluate a few iterations
- /// of the loop until we get the exit condition gets a value of ExitWhen
- /// (true or false). If we cannot evaluate the exit count of the loop,
- /// return CouldNotCompute.
- const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
- bool ExitWhen);
- /// Return the number of times an exit condition comparing the specified
- /// value to zero will execute. If not computable, return CouldNotCompute.
- /// If AllowPredicates is set, this call will try to use a minimal set of
- /// SCEV predicates in order to return an exact answer.
- ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
- bool AllowPredicates = false);
- /// Return the number of times an exit condition checking the specified
- /// value for nonzero will execute. If not computable, return
- /// CouldNotCompute.
- ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
- /// Return the number of times an exit condition containing the specified
- /// less-than comparison will execute. If not computable, return
- /// CouldNotCompute.
- ///
- /// \p isSigned specifies whether the less-than is signed.
- ///
- /// \p ControlsExit is true when the LHS < RHS condition directly controls
- /// the branch (loops exits only if condition is true). In this case, we can
- /// use NoWrapFlags to skip overflow checks.
- ///
- /// If \p AllowPredicates is set, this call will try to use a minimal set of
- /// SCEV predicates in order to return an exact answer.
- ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
- bool isSigned, bool ControlsExit,
- bool AllowPredicates = false);
- ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
- bool isSigned, bool IsSubExpr,
- bool AllowPredicates = false);
- /// Return a predecessor of BB (which may not be an immediate predecessor)
- /// which has exactly one successor from which BB is reachable, or null if
- /// no such block is found.
- std::pair<const BasicBlock *, const BasicBlock *>
- getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const;
- /// Test whether the condition described by Pred, LHS, and RHS is true
- /// whenever the given FoundCondValue value evaluates to true in given
- /// Context. If Context is nullptr, then the found predicate is true
- /// everywhere. LHS and FoundLHS may have different type width.
- bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
- const Value *FoundCondValue, bool Inverse,
- const Instruction *Context = nullptr);
- /// Test whether the condition described by Pred, LHS, and RHS is true
- /// whenever the given FoundCondValue value evaluates to true in given
- /// Context. If Context is nullptr, then the found predicate is true
- /// everywhere. LHS and FoundLHS must have same type width.
- bool isImpliedCondBalancedTypes(ICmpInst::Predicate Pred, const SCEV *LHS,
- const SCEV *RHS,
- ICmpInst::Predicate FoundPred,
- const SCEV *FoundLHS, const SCEV *FoundRHS,
- const Instruction *CtxI);
- /// Test whether the condition described by Pred, LHS, and RHS is true
- /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
- /// true in given Context. If Context is nullptr, then the found predicate is
- /// true everywhere.
- bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
- ICmpInst::Predicate FoundPred, const SCEV *FoundLHS,
- const SCEV *FoundRHS,
- const Instruction *Context = nullptr);
- /// Test whether the condition described by Pred, LHS, and RHS is true
- /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
- /// true in given Context. If Context is nullptr, then the found predicate is
- /// true everywhere.
- bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS,
- const SCEV *RHS, const SCEV *FoundLHS,
- const SCEV *FoundRHS,
- const Instruction *Context = nullptr);
- /// Test whether the condition described by Pred, LHS, and RHS is true
- /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
- /// true. Here LHS is an operation that includes FoundLHS as one of its
- /// arguments.
- bool isImpliedViaOperations(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS,
- const SCEV *FoundLHS, const SCEV *FoundRHS,
- unsigned Depth = 0);
- /// Test whether the condition described by Pred, LHS, and RHS is true.
- /// Use only simple non-recursive types of checks, such as range analysis etc.
- bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS);
- /// Test whether the condition described by Pred, LHS, and RHS is true
- /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
- /// true.
- bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS,
- const SCEV *RHS, const SCEV *FoundLHS,
- const SCEV *FoundRHS);
- /// Test whether the condition described by Pred, LHS, and RHS is true
- /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
- /// true. Utility function used by isImpliedCondOperands. Tries to get
- /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
- bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS,
- const SCEV *RHS, const SCEV *FoundLHS,
- const SCEV *FoundRHS);
- /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
- /// by a call to @llvm.experimental.guard in \p BB.
- bool isImpliedViaGuard(const BasicBlock *BB, ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS);
- /// Test whether the condition described by Pred, LHS, and RHS is true
- /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
- /// true.
- ///
- /// This routine tries to rule out certain kinds of integer overflow, and
- /// then tries to reason about arithmetic properties of the predicates.
- bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS,
- const SCEV *FoundLHS,
- const SCEV *FoundRHS);
- /// Test whether the condition described by Pred, LHS, and RHS is true
- /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
- /// true.
- ///
- /// This routine tries to weaken the known condition basing on fact that
- /// FoundLHS is an AddRec.
- bool isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS,
- const SCEV *FoundLHS,
- const SCEV *FoundRHS,
- const Instruction *CtxI);
- /// Test whether the condition described by Pred, LHS, and RHS is true
- /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
- /// true.
- ///
- /// This routine tries to figure out predicate for Phis which are SCEVUnknown
- /// if it is true for every possible incoming value from their respective
- /// basic blocks.
- bool isImpliedViaMerge(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS,
- const SCEV *FoundLHS, const SCEV *FoundRHS,
- unsigned Depth);
- /// Test whether the condition described by Pred, LHS, and RHS is true
- /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
- /// true.
- ///
- /// This routine tries to reason about shifts.
- bool isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, const SCEV *LHS,
- const SCEV *RHS, const SCEV *FoundLHS,
- const SCEV *FoundRHS);
- /// If we know that the specified Phi is in the header of its containing
- /// loop, we know the loop executes a constant number of times, and the PHI
- /// node is just a recurrence involving constants, fold it.
- Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
- const Loop *L);
- /// Test if the given expression is known to satisfy the condition described
- /// by Pred and the known constant ranges of LHS and RHS.
- bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS);
- /// Try to prove the condition described by "LHS Pred RHS" by ruling out
- /// integer overflow.
- ///
- /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
- /// positive.
- bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS,
- const SCEV *RHS);
- /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
- /// prove them individually.
- bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
- const SCEV *RHS);
- /// Try to match the Expr as "(L + R)<Flags>".
- bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
- SCEV::NoWrapFlags &Flags);
- /// Forget predicated/non-predicated backedge taken counts for the given loop.
- void forgetBackedgeTakenCounts(const Loop *L, bool Predicated);
- /// Drop memoized information for all \p SCEVs.
- void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs);
- /// Helper for forgetMemoizedResults.
- void forgetMemoizedResultsImpl(const SCEV *S);
- /// Return an existing SCEV for V if there is one, otherwise return nullptr.
- const SCEV *getExistingSCEV(Value *V);
- /// Erase Value from ValueExprMap and ExprValueMap.
- void eraseValueFromMap(Value *V);
- /// Insert V to S mapping into ValueExprMap and ExprValueMap.
- void insertValueToMap(Value *V, const SCEV *S);
- /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
- /// pointer.
- bool checkValidity(const SCEV *S) const;
- /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
- /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}. This is
- /// equivalent to proving no signed (resp. unsigned) wrap in
- /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
- /// (resp. `SCEVZeroExtendExpr`).
- template <typename ExtendOpTy>
- bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
- const Loop *L);
- /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
- SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
- /// Try to prove NSW on \p AR by proving facts about conditions known on
- /// entry and backedge.
- SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR);
- /// Try to prove NUW on \p AR by proving facts about conditions known on
- /// entry and backedge.
- SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR);
- Optional<MonotonicPredicateType>
- getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
- ICmpInst::Predicate Pred);
- /// Return SCEV no-wrap flags that can be proven based on reasoning about
- /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
- /// would trigger undefined behavior on overflow.
- SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
- /// Return a scope which provides an upper bound on the defining scope of
- /// 'S'. Specifically, return the first instruction in said bounding scope.
- /// Return nullptr if the scope is trivial (function entry).
- /// (See scope definition rules associated with flag discussion above)
- const Instruction *getNonTrivialDefiningScopeBound(const SCEV *S);
- /// Return a scope which provides an upper bound on the defining scope for
- /// a SCEV with the operands in Ops. The outparam Precise is set if the
- /// bound found is a precise bound (i.e. must be the defining scope.)
- const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
- bool &Precise);
- /// Wrapper around the above for cases which don't care if the bound
- /// is precise.
- const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops);
- /// Given two instructions in the same function, return true if we can
- /// prove B must execute given A executes.
- bool isGuaranteedToTransferExecutionTo(const Instruction *A,
- const Instruction *B);
- /// Return true if the SCEV corresponding to \p I is never poison. Proving
- /// this is more complex than proving that just \p I is never poison, since
- /// SCEV commons expressions across control flow, and you can have cases
- /// like:
- ///
- /// idx0 = a + b;
- /// ptr[idx0] = 100;
- /// if (<condition>) {
- /// idx1 = a +nsw b;
- /// ptr[idx1] = 200;
- /// }
- ///
- /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
- /// hence not sign-overflow) only if "<condition>" is true. Since both
- /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
- /// it is not okay to annotate (+ a b) with <nsw> in the above example.
- bool isSCEVExprNeverPoison(const Instruction *I);
- /// This is like \c isSCEVExprNeverPoison but it specifically works for
- /// instructions that will get mapped to SCEV add recurrences. Return true
- /// if \p I will never generate poison under the assumption that \p I is an
- /// add recurrence on the loop \p L.
- bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
- /// Similar to createAddRecFromPHI, but with the additional flexibility of
- /// suggesting runtime overflow checks in case casts are encountered.
- /// If successful, the analysis records that for this loop, \p SymbolicPHI,
- /// which is the UnknownSCEV currently representing the PHI, can be rewritten
- /// into an AddRec, assuming some predicates; The function then returns the
- /// AddRec and the predicates as a pair, and caches this pair in
- /// PredicatedSCEVRewrites.
- /// If the analysis is not successful, a mapping from the \p SymbolicPHI to
- /// itself (with no predicates) is recorded, and a nullptr with an empty
- /// predicates vector is returned as a pair.
- Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
- createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
- /// Compute the maximum backedge count based on the range of values
- /// permitted by Start, End, and Stride. This is for loops of the form
- /// {Start, +, Stride} LT End.
- ///
- /// Preconditions:
- /// * the induction variable is known to be positive.
- /// * the induction variable is assumed not to overflow (i.e. either it
- /// actually doesn't, or we'd have to immediately execute UB)
- /// We *don't* assert these preconditions so please be careful.
- const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride,
- const SCEV *End, unsigned BitWidth,
- bool IsSigned);
- /// Verify if an linear IV with positive stride can overflow when in a
- /// less-than comparison, knowing the invariant term of the comparison,
- /// the stride.
- bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
- /// Verify if an linear IV with negative stride can overflow when in a
- /// greater-than comparison, knowing the invariant term of the comparison,
- /// the stride.
- bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
- /// Get add expr already created or create a new one.
- const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
- SCEV::NoWrapFlags Flags);
- /// Get mul expr already created or create a new one.
- const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
- SCEV::NoWrapFlags Flags);
- // Get addrec expr already created or create a new one.
- const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
- const Loop *L, SCEV::NoWrapFlags Flags);
- /// Return x if \p Val is f(x) where f is a 1-1 function.
- const SCEV *stripInjectiveFunctions(const SCEV *Val) const;
- /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed.
- /// A loop is considered "used" by an expression if it contains
- /// an add rec on said loop.
- void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
- /// Try to match the pattern generated by getURemExpr(A, B). If successful,
- /// Assign A and B to LHS and RHS, respectively.
- bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS);
- /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in
- /// `UniqueSCEVs`. Return if found, else nullptr.
- SCEV *findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops);
- FoldingSet<SCEV> UniqueSCEVs;
- FoldingSet<SCEVPredicate> UniquePreds;
- BumpPtrAllocator SCEVAllocator;
- /// This maps loops to a list of addrecs that directly use said loop.
- DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers;
- /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
- /// they can be rewritten into under certain predicates.
- DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
- std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
- PredicatedSCEVRewrites;
- /// The head of a linked list of all SCEVUnknown values that have been
- /// allocated. This is used by releaseMemory to locate them all and call
- /// their destructors.
- SCEVUnknown *FirstUnknown = nullptr;
- };
- /// Analysis pass that exposes the \c ScalarEvolution for a function.
- class ScalarEvolutionAnalysis
- : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
- friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
- static AnalysisKey Key;
- public:
- using Result = ScalarEvolution;
- ScalarEvolution run(Function &F, FunctionAnalysisManager &AM);
- };
- /// Verifier pass for the \c ScalarEvolutionAnalysis results.
- class ScalarEvolutionVerifierPass
- : public PassInfoMixin<ScalarEvolutionVerifierPass> {
- public:
- PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
- };
- /// Printer pass for the \c ScalarEvolutionAnalysis results.
- class ScalarEvolutionPrinterPass
- : public PassInfoMixin<ScalarEvolutionPrinterPass> {
- raw_ostream &OS;
- public:
- explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
- PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
- };
- class ScalarEvolutionWrapperPass : public FunctionPass {
- std::unique_ptr<ScalarEvolution> SE;
- public:
- static char ID;
- ScalarEvolutionWrapperPass();
- ScalarEvolution &getSE() { return *SE; }
- const ScalarEvolution &getSE() const { return *SE; }
- bool runOnFunction(Function &F) override;
- void releaseMemory() override;
- void getAnalysisUsage(AnalysisUsage &AU) const override;
- void print(raw_ostream &OS, const Module * = nullptr) const override;
- void verifyAnalysis() const override;
- };
- /// An interface layer with SCEV used to manage how we see SCEV expressions
- /// for values in the context of existing predicates. We can add new
- /// predicates, but we cannot remove them.
- ///
- /// This layer has multiple purposes:
- /// - provides a simple interface for SCEV versioning.
- /// - guarantees that the order of transformations applied on a SCEV
- /// expression for a single Value is consistent across two different
- /// getSCEV calls. This means that, for example, once we've obtained
- /// an AddRec expression for a certain value through expression
- /// rewriting, we will continue to get an AddRec expression for that
- /// Value.
- /// - lowers the number of expression rewrites.
- class PredicatedScalarEvolution {
- public:
- PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
- const SCEVUnionPredicate &getUnionPredicate() const;
- /// Returns the SCEV expression of V, in the context of the current SCEV
- /// predicate. The order of transformations applied on the expression of V
- /// returned by ScalarEvolution is guaranteed to be preserved, even when
- /// adding new predicates.
- const SCEV *getSCEV(Value *V);
- /// Get the (predicated) backedge count for the analyzed loop.
- const SCEV *getBackedgeTakenCount();
- /// Adds a new predicate.
- void addPredicate(const SCEVPredicate &Pred);
- /// Attempts to produce an AddRecExpr for V by adding additional SCEV
- /// predicates. If we can't transform the expression into an AddRecExpr we
- /// return nullptr and not add additional SCEV predicates to the current
- /// context.
- const SCEVAddRecExpr *getAsAddRec(Value *V);
- /// Proves that V doesn't overflow by adding SCEV predicate.
- void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
- /// Returns true if we've proved that V doesn't wrap by means of a SCEV
- /// predicate.
- bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
- /// Returns the ScalarEvolution analysis used.
- ScalarEvolution *getSE() const { return &SE; }
- /// We need to explicitly define the copy constructor because of FlagsMap.
- PredicatedScalarEvolution(const PredicatedScalarEvolution &);
- /// Print the SCEV mappings done by the Predicated Scalar Evolution.
- /// The printed text is indented by \p Depth.
- void print(raw_ostream &OS, unsigned Depth) const;
- /// Check if \p AR1 and \p AR2 are equal, while taking into account
- /// Equal predicates in Preds.
- bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1,
- const SCEVAddRecExpr *AR2) const;
- private:
- /// Increments the version number of the predicate. This needs to be called
- /// every time the SCEV predicate changes.
- void updateGeneration();
- /// Holds a SCEV and the version number of the SCEV predicate used to
- /// perform the rewrite of the expression.
- using RewriteEntry = std::pair<unsigned, const SCEV *>;
- /// Maps a SCEV to the rewrite result of that SCEV at a certain version
- /// number. If this number doesn't match the current Generation, we will
- /// need to do a rewrite. To preserve the transformation order of previous
- /// rewrites, we will rewrite the previous result instead of the original
- /// SCEV.
- DenseMap<const SCEV *, RewriteEntry> RewriteMap;
- /// Records what NoWrap flags we've added to a Value *.
- ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
- /// The ScalarEvolution analysis.
- ScalarEvolution &SE;
- /// The analyzed Loop.
- const Loop &L;
- /// The SCEVPredicate that forms our context. We will rewrite all
- /// expressions assuming that this predicate true.
- SCEVUnionPredicate Preds;
- /// Marks the version of the SCEV predicate used. When rewriting a SCEV
- /// expression we mark it with the version of the predicate. We use this to
- /// figure out if the predicate has changed from the last rewrite of the
- /// SCEV. If so, we need to perform a new rewrite.
- unsigned Generation = 0;
- /// The backedge taken count.
- const SCEV *BackedgeCount = nullptr;
- };
- } // end namespace llvm
- #endif // LLVM_ANALYSIS_SCALAREVOLUTION_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|