123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // DependenceAnalysis is an LLVM pass that analyses dependences between memory
- // accesses. Currently, it is an implementation of the approach described in
- //
- // Practical Dependence Testing
- // Goff, Kennedy, Tseng
- // PLDI 1991
- //
- // There's a single entry point that analyzes the dependence between a pair
- // of memory references in a function, returning either NULL, for no dependence,
- // or a more-or-less detailed description of the dependence between them.
- //
- // This pass exists to support the DependenceGraph pass. There are two separate
- // passes because there's a useful separation of concerns. A dependence exists
- // if two conditions are met:
- //
- // 1) Two instructions reference the same memory location, and
- // 2) There is a flow of control leading from one instruction to the other.
- //
- // DependenceAnalysis attacks the first condition; DependenceGraph will attack
- // the second (it's not yet ready).
- //
- // Please note that this is work in progress and the interface is subject to
- // change.
- //
- // Plausible changes:
- // Return a set of more precise dependences instead of just one dependence
- // summarizing all.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
- #define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
- #include "llvm/ADT/SmallBitVector.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/Pass.h"
- namespace llvm {
- class AAResults;
- template <typename T> class ArrayRef;
- class Loop;
- class LoopInfo;
- class ScalarEvolution;
- class SCEV;
- class SCEVConstant;
- class raw_ostream;
- /// Dependence - This class represents a dependence between two memory
- /// memory references in a function. It contains minimal information and
- /// is used in the very common situation where the compiler is unable to
- /// determine anything beyond the existence of a dependence; that is, it
- /// represents a confused dependence (see also FullDependence). In most
- /// cases (for output, flow, and anti dependences), the dependence implies
- /// an ordering, where the source must precede the destination; in contrast,
- /// input dependences are unordered.
- ///
- /// When a dependence graph is built, each Dependence will be a member of
- /// the set of predecessor edges for its destination instruction and a set
- /// if successor edges for its source instruction. These sets are represented
- /// as singly-linked lists, with the "next" fields stored in the dependence
- /// itelf.
- class Dependence {
- protected:
- Dependence(Dependence &&) = default;
- Dependence &operator=(Dependence &&) = default;
- public:
- Dependence(Instruction *Source, Instruction *Destination)
- : Src(Source), Dst(Destination) {}
- virtual ~Dependence() = default;
- /// Dependence::DVEntry - Each level in the distance/direction vector
- /// has a direction (or perhaps a union of several directions), and
- /// perhaps a distance.
- struct DVEntry {
- enum { NONE = 0,
- LT = 1,
- EQ = 2,
- LE = 3,
- GT = 4,
- NE = 5,
- GE = 6,
- ALL = 7 };
- unsigned char Direction : 3; // Init to ALL, then refine.
- bool Scalar : 1; // Init to true.
- bool PeelFirst : 1; // Peeling the first iteration will break dependence.
- bool PeelLast : 1; // Peeling the last iteration will break the dependence.
- bool Splitable : 1; // Splitting the loop will break dependence.
- const SCEV *Distance = nullptr; // NULL implies no distance available.
- DVEntry()
- : Direction(ALL), Scalar(true), PeelFirst(false), PeelLast(false),
- Splitable(false) {}
- };
- /// getSrc - Returns the source instruction for this dependence.
- ///
- Instruction *getSrc() const { return Src; }
- /// getDst - Returns the destination instruction for this dependence.
- ///
- Instruction *getDst() const { return Dst; }
- /// isInput - Returns true if this is an input dependence.
- ///
- bool isInput() const;
- /// isOutput - Returns true if this is an output dependence.
- ///
- bool isOutput() const;
- /// isFlow - Returns true if this is a flow (aka true) dependence.
- ///
- bool isFlow() const;
- /// isAnti - Returns true if this is an anti dependence.
- ///
- bool isAnti() const;
- /// isOrdered - Returns true if dependence is Output, Flow, or Anti
- ///
- bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
- /// isUnordered - Returns true if dependence is Input
- ///
- bool isUnordered() const { return isInput(); }
- /// isLoopIndependent - Returns true if this is a loop-independent
- /// dependence.
- virtual bool isLoopIndependent() const { return true; }
- /// isConfused - Returns true if this dependence is confused
- /// (the compiler understands nothing and makes worst-case
- /// assumptions).
- virtual bool isConfused() const { return true; }
- /// isConsistent - Returns true if this dependence is consistent
- /// (occurs every time the source and destination are executed).
- virtual bool isConsistent() const { return false; }
- /// getLevels - Returns the number of common loops surrounding the
- /// source and destination of the dependence.
- virtual unsigned getLevels() const { return 0; }
- /// getDirection - Returns the direction associated with a particular
- /// level.
- virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
- /// getDistance - Returns the distance (or NULL) associated with a
- /// particular level.
- virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
- /// isPeelFirst - Returns true if peeling the first iteration from
- /// this loop will break this dependence.
- virtual bool isPeelFirst(unsigned Level) const { return false; }
- /// isPeelLast - Returns true if peeling the last iteration from
- /// this loop will break this dependence.
- virtual bool isPeelLast(unsigned Level) const { return false; }
- /// isSplitable - Returns true if splitting this loop will break
- /// the dependence.
- virtual bool isSplitable(unsigned Level) const { return false; }
- /// isScalar - Returns true if a particular level is scalar; that is,
- /// if no subscript in the source or destination mention the induction
- /// variable associated with the loop at this level.
- virtual bool isScalar(unsigned Level) const;
- /// getNextPredecessor - Returns the value of the NextPredecessor
- /// field.
- const Dependence *getNextPredecessor() const { return NextPredecessor; }
- /// getNextSuccessor - Returns the value of the NextSuccessor
- /// field.
- const Dependence *getNextSuccessor() const { return NextSuccessor; }
- /// setNextPredecessor - Sets the value of the NextPredecessor
- /// field.
- void setNextPredecessor(const Dependence *pred) { NextPredecessor = pred; }
- /// setNextSuccessor - Sets the value of the NextSuccessor
- /// field.
- void setNextSuccessor(const Dependence *succ) { NextSuccessor = succ; }
- /// dump - For debugging purposes, dumps a dependence to OS.
- ///
- void dump(raw_ostream &OS) const;
- private:
- Instruction *Src, *Dst;
- const Dependence *NextPredecessor = nullptr, *NextSuccessor = nullptr;
- friend class DependenceInfo;
- };
- /// FullDependence - This class represents a dependence between two memory
- /// references in a function. It contains detailed information about the
- /// dependence (direction vectors, etc.) and is used when the compiler is
- /// able to accurately analyze the interaction of the references; that is,
- /// it is not a confused dependence (see Dependence). In most cases
- /// (for output, flow, and anti dependences), the dependence implies an
- /// ordering, where the source must precede the destination; in contrast,
- /// input dependences are unordered.
- class FullDependence final : public Dependence {
- public:
- FullDependence(Instruction *Src, Instruction *Dst, bool LoopIndependent,
- unsigned Levels);
- /// isLoopIndependent - Returns true if this is a loop-independent
- /// dependence.
- bool isLoopIndependent() const override { return LoopIndependent; }
- /// isConfused - Returns true if this dependence is confused
- /// (the compiler understands nothing and makes worst-case
- /// assumptions).
- bool isConfused() const override { return false; }
- /// isConsistent - Returns true if this dependence is consistent
- /// (occurs every time the source and destination are executed).
- bool isConsistent() const override { return Consistent; }
- /// getLevels - Returns the number of common loops surrounding the
- /// source and destination of the dependence.
- unsigned getLevels() const override { return Levels; }
- /// getDirection - Returns the direction associated with a particular
- /// level.
- unsigned getDirection(unsigned Level) const override;
- /// getDistance - Returns the distance (or NULL) associated with a
- /// particular level.
- const SCEV *getDistance(unsigned Level) const override;
- /// isPeelFirst - Returns true if peeling the first iteration from
- /// this loop will break this dependence.
- bool isPeelFirst(unsigned Level) const override;
- /// isPeelLast - Returns true if peeling the last iteration from
- /// this loop will break this dependence.
- bool isPeelLast(unsigned Level) const override;
- /// isSplitable - Returns true if splitting the loop will break
- /// the dependence.
- bool isSplitable(unsigned Level) const override;
- /// isScalar - Returns true if a particular level is scalar; that is,
- /// if no subscript in the source or destination mention the induction
- /// variable associated with the loop at this level.
- bool isScalar(unsigned Level) const override;
- private:
- unsigned short Levels;
- bool LoopIndependent;
- bool Consistent; // Init to true, then refine.
- std::unique_ptr<DVEntry[]> DV;
- friend class DependenceInfo;
- };
- /// DependenceInfo - This class is the main dependence-analysis driver.
- ///
- class DependenceInfo {
- public:
- DependenceInfo(Function *F, AAResults *AA, ScalarEvolution *SE,
- LoopInfo *LI)
- : AA(AA), SE(SE), LI(LI), F(F) {}
- /// Handle transitive invalidation when the cached analysis results go away.
- bool invalidate(Function &F, const PreservedAnalyses &PA,
- FunctionAnalysisManager::Invalidator &Inv);
- /// depends - Tests for a dependence between the Src and Dst instructions.
- /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
- /// FullDependence) with as much information as can be gleaned.
- /// The flag PossiblyLoopIndependent should be set by the caller
- /// if it appears that control flow can reach from Src to Dst
- /// without traversing a loop back edge.
- std::unique_ptr<Dependence> depends(Instruction *Src,
- Instruction *Dst,
- bool PossiblyLoopIndependent);
- /// getSplitIteration - Give a dependence that's splittable at some
- /// particular level, return the iteration that should be used to split
- /// the loop.
- ///
- /// Generally, the dependence analyzer will be used to build
- /// a dependence graph for a function (basically a map from instructions
- /// to dependences). Looking for cycles in the graph shows us loops
- /// that cannot be trivially vectorized/parallelized.
- ///
- /// We can try to improve the situation by examining all the dependences
- /// that make up the cycle, looking for ones we can break.
- /// Sometimes, peeling the first or last iteration of a loop will break
- /// dependences, and there are flags for those possibilities.
- /// Sometimes, splitting a loop at some other iteration will do the trick,
- /// and we've got a flag for that case. Rather than waste the space to
- /// record the exact iteration (since we rarely know), we provide
- /// a method that calculates the iteration. It's a drag that it must work
- /// from scratch, but wonderful in that it's possible.
- ///
- /// Here's an example:
- ///
- /// for (i = 0; i < 10; i++)
- /// A[i] = ...
- /// ... = A[11 - i]
- ///
- /// There's a loop-carried flow dependence from the store to the load,
- /// found by the weak-crossing SIV test. The dependence will have a flag,
- /// indicating that the dependence can be broken by splitting the loop.
- /// Calling getSplitIteration will return 5.
- /// Splitting the loop breaks the dependence, like so:
- ///
- /// for (i = 0; i <= 5; i++)
- /// A[i] = ...
- /// ... = A[11 - i]
- /// for (i = 6; i < 10; i++)
- /// A[i] = ...
- /// ... = A[11 - i]
- ///
- /// breaks the dependence and allows us to vectorize/parallelize
- /// both loops.
- const SCEV *getSplitIteration(const Dependence &Dep, unsigned Level);
- Function *getFunction() const { return F; }
- private:
- AAResults *AA;
- ScalarEvolution *SE;
- LoopInfo *LI;
- Function *F;
- /// Subscript - This private struct represents a pair of subscripts from
- /// a pair of potentially multi-dimensional array references. We use a
- /// vector of them to guide subscript partitioning.
- struct Subscript {
- const SCEV *Src;
- const SCEV *Dst;
- enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
- SmallBitVector Loops;
- SmallBitVector GroupLoops;
- SmallBitVector Group;
- };
- struct CoefficientInfo {
- const SCEV *Coeff;
- const SCEV *PosPart;
- const SCEV *NegPart;
- const SCEV *Iterations;
- };
- struct BoundInfo {
- const SCEV *Iterations;
- const SCEV *Upper[8];
- const SCEV *Lower[8];
- unsigned char Direction;
- unsigned char DirSet;
- };
- /// Constraint - This private class represents a constraint, as defined
- /// in the paper
- ///
- /// Practical Dependence Testing
- /// Goff, Kennedy, Tseng
- /// PLDI 1991
- ///
- /// There are 5 kinds of constraint, in a hierarchy.
- /// 1) Any - indicates no constraint, any dependence is possible.
- /// 2) Line - A line ax + by = c, where a, b, and c are parameters,
- /// representing the dependence equation.
- /// 3) Distance - The value d of the dependence distance;
- /// 4) Point - A point <x, y> representing the dependence from
- /// iteration x to iteration y.
- /// 5) Empty - No dependence is possible.
- class Constraint {
- private:
- enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
- ScalarEvolution *SE;
- const SCEV *A;
- const SCEV *B;
- const SCEV *C;
- const Loop *AssociatedLoop;
- public:
- /// isEmpty - Return true if the constraint is of kind Empty.
- bool isEmpty() const { return Kind == Empty; }
- /// isPoint - Return true if the constraint is of kind Point.
- bool isPoint() const { return Kind == Point; }
- /// isDistance - Return true if the constraint is of kind Distance.
- bool isDistance() const { return Kind == Distance; }
- /// isLine - Return true if the constraint is of kind Line.
- /// Since Distance's can also be represented as Lines, we also return
- /// true if the constraint is of kind Distance.
- bool isLine() const { return Kind == Line || Kind == Distance; }
- /// isAny - Return true if the constraint is of kind Any;
- bool isAny() const { return Kind == Any; }
- /// getX - If constraint is a point <X, Y>, returns X.
- /// Otherwise assert.
- const SCEV *getX() const;
- /// getY - If constraint is a point <X, Y>, returns Y.
- /// Otherwise assert.
- const SCEV *getY() const;
- /// getA - If constraint is a line AX + BY = C, returns A.
- /// Otherwise assert.
- const SCEV *getA() const;
- /// getB - If constraint is a line AX + BY = C, returns B.
- /// Otherwise assert.
- const SCEV *getB() const;
- /// getC - If constraint is a line AX + BY = C, returns C.
- /// Otherwise assert.
- const SCEV *getC() const;
- /// getD - If constraint is a distance, returns D.
- /// Otherwise assert.
- const SCEV *getD() const;
- /// getAssociatedLoop - Returns the loop associated with this constraint.
- const Loop *getAssociatedLoop() const;
- /// setPoint - Change a constraint to Point.
- void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);
- /// setLine - Change a constraint to Line.
- void setLine(const SCEV *A, const SCEV *B,
- const SCEV *C, const Loop *CurrentLoop);
- /// setDistance - Change a constraint to Distance.
- void setDistance(const SCEV *D, const Loop *CurrentLoop);
- /// setEmpty - Change a constraint to Empty.
- void setEmpty();
- /// setAny - Change a constraint to Any.
- void setAny(ScalarEvolution *SE);
- /// dump - For debugging purposes. Dumps the constraint
- /// out to OS.
- void dump(raw_ostream &OS) const;
- };
- /// establishNestingLevels - Examines the loop nesting of the Src and Dst
- /// instructions and establishes their shared loops. Sets the variables
- /// CommonLevels, SrcLevels, and MaxLevels.
- /// The source and destination instructions needn't be contained in the same
- /// loop. The routine establishNestingLevels finds the level of most deeply
- /// nested loop that contains them both, CommonLevels. An instruction that's
- /// not contained in a loop is at level = 0. MaxLevels is equal to the level
- /// of the source plus the level of the destination, minus CommonLevels.
- /// This lets us allocate vectors MaxLevels in length, with room for every
- /// distinct loop referenced in both the source and destination subscripts.
- /// The variable SrcLevels is the nesting depth of the source instruction.
- /// It's used to help calculate distinct loops referenced by the destination.
- /// Here's the map from loops to levels:
- /// 0 - unused
- /// 1 - outermost common loop
- /// ... - other common loops
- /// CommonLevels - innermost common loop
- /// ... - loops containing Src but not Dst
- /// SrcLevels - innermost loop containing Src but not Dst
- /// ... - loops containing Dst but not Src
- /// MaxLevels - innermost loop containing Dst but not Src
- /// Consider the follow code fragment:
- /// for (a = ...) {
- /// for (b = ...) {
- /// for (c = ...) {
- /// for (d = ...) {
- /// A[] = ...;
- /// }
- /// }
- /// for (e = ...) {
- /// for (f = ...) {
- /// for (g = ...) {
- /// ... = A[];
- /// }
- /// }
- /// }
- /// }
- /// }
- /// If we're looking at the possibility of a dependence between the store
- /// to A (the Src) and the load from A (the Dst), we'll note that they
- /// have 2 loops in common, so CommonLevels will equal 2 and the direction
- /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
- /// A map from loop names to level indices would look like
- /// a - 1
- /// b - 2 = CommonLevels
- /// c - 3
- /// d - 4 = SrcLevels
- /// e - 5
- /// f - 6
- /// g - 7 = MaxLevels
- void establishNestingLevels(const Instruction *Src,
- const Instruction *Dst);
- unsigned CommonLevels, SrcLevels, MaxLevels;
- /// mapSrcLoop - Given one of the loops containing the source, return
- /// its level index in our numbering scheme.
- unsigned mapSrcLoop(const Loop *SrcLoop) const;
- /// mapDstLoop - Given one of the loops containing the destination,
- /// return its level index in our numbering scheme.
- unsigned mapDstLoop(const Loop *DstLoop) const;
- /// isLoopInvariant - Returns true if Expression is loop invariant
- /// in LoopNest.
- bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
- /// Makes sure all subscript pairs share the same integer type by
- /// sign-extending as necessary.
- /// Sign-extending a subscript is safe because getelementptr assumes the
- /// array subscripts are signed.
- void unifySubscriptType(ArrayRef<Subscript *> Pairs);
- /// removeMatchingExtensions - Examines a subscript pair.
- /// If the source and destination are identically sign (or zero)
- /// extended, it strips off the extension in an effort to
- /// simplify the actual analysis.
- void removeMatchingExtensions(Subscript *Pair);
- /// collectCommonLoops - Finds the set of loops from the LoopNest that
- /// have a level <= CommonLevels and are referred to by the SCEV Expression.
- void collectCommonLoops(const SCEV *Expression,
- const Loop *LoopNest,
- SmallBitVector &Loops) const;
- /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
- /// linear. Collect the set of loops mentioned by Src.
- bool checkSrcSubscript(const SCEV *Src,
- const Loop *LoopNest,
- SmallBitVector &Loops);
- /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
- /// linear. Collect the set of loops mentioned by Dst.
- bool checkDstSubscript(const SCEV *Dst,
- const Loop *LoopNest,
- SmallBitVector &Loops);
- /// isKnownPredicate - Compare X and Y using the predicate Pred.
- /// Basically a wrapper for SCEV::isKnownPredicate,
- /// but tries harder, especially in the presence of sign and zero
- /// extensions and symbolics.
- bool isKnownPredicate(ICmpInst::Predicate Pred,
- const SCEV *X,
- const SCEV *Y) const;
- /// isKnownLessThan - Compare to see if S is less than Size
- /// Another wrapper for isKnownNegative(S - max(Size, 1)) with some extra
- /// checking if S is an AddRec and we can prove lessthan using the loop
- /// bounds.
- bool isKnownLessThan(const SCEV *S, const SCEV *Size) const;
- /// isKnownNonNegative - Compare to see if S is known not to be negative
- /// Uses the fact that S comes from Ptr, which may be an inbound GEP,
- /// Proving there is no wrapping going on.
- bool isKnownNonNegative(const SCEV *S, const Value *Ptr) const;
- /// collectUpperBound - All subscripts are the same type (on my machine,
- /// an i64). The loop bound may be a smaller type. collectUpperBound
- /// find the bound, if available, and zero extends it to the Type T.
- /// (I zero extend since the bound should always be >= 0.)
- /// If no upper bound is available, return NULL.
- const SCEV *collectUpperBound(const Loop *l, Type *T) const;
- /// collectConstantUpperBound - Calls collectUpperBound(), then
- /// attempts to cast it to SCEVConstant. If the cast fails,
- /// returns NULL.
- const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
- /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
- /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
- /// Collects the associated loops in a set.
- Subscript::ClassificationKind classifyPair(const SCEV *Src,
- const Loop *SrcLoopNest,
- const SCEV *Dst,
- const Loop *DstLoopNest,
- SmallBitVector &Loops);
- /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
- /// Returns true if any possible dependence is disproved.
- /// If there might be a dependence, returns false.
- /// If the dependence isn't proven to exist,
- /// marks the Result as inconsistent.
- bool testZIV(const SCEV *Src,
- const SCEV *Dst,
- FullDependence &Result) const;
- /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
- /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
- /// i and j are induction variables, c1 and c2 are loop invariant,
- /// and a1 and a2 are constant.
- /// Returns true if any possible dependence is disproved.
- /// If there might be a dependence, returns false.
- /// Sets appropriate direction vector entry and, when possible,
- /// the distance vector entry.
- /// If the dependence isn't proven to exist,
- /// marks the Result as inconsistent.
- bool testSIV(const SCEV *Src,
- const SCEV *Dst,
- unsigned &Level,
- FullDependence &Result,
- Constraint &NewConstraint,
- const SCEV *&SplitIter) const;
- /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
- /// Things of the form [c1 + a1*i] and [c2 + a2*j]
- /// where i and j are induction variables, c1 and c2 are loop invariant,
- /// and a1 and a2 are constant.
- /// With minor algebra, this test can also be used for things like
- /// [c1 + a1*i + a2*j][c2].
- /// Returns true if any possible dependence is disproved.
- /// If there might be a dependence, returns false.
- /// Marks the Result as inconsistent.
- bool testRDIV(const SCEV *Src,
- const SCEV *Dst,
- FullDependence &Result) const;
- /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
- /// Returns true if dependence disproved.
- /// Can sometimes refine direction vectors.
- bool testMIV(const SCEV *Src,
- const SCEV *Dst,
- const SmallBitVector &Loops,
- FullDependence &Result) const;
- /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
- /// for dependence.
- /// Things of the form [c1 + a*i] and [c2 + a*i],
- /// where i is an induction variable, c1 and c2 are loop invariant,
- /// and a is a constant
- /// Returns true if any possible dependence is disproved.
- /// If there might be a dependence, returns false.
- /// Sets appropriate direction and distance.
- bool strongSIVtest(const SCEV *Coeff,
- const SCEV *SrcConst,
- const SCEV *DstConst,
- const Loop *CurrentLoop,
- unsigned Level,
- FullDependence &Result,
- Constraint &NewConstraint) const;
- /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
- /// (Src and Dst) for dependence.
- /// Things of the form [c1 + a*i] and [c2 - a*i],
- /// where i is an induction variable, c1 and c2 are loop invariant,
- /// and a is a constant.
- /// Returns true if any possible dependence is disproved.
- /// If there might be a dependence, returns false.
- /// Sets appropriate direction entry.
- /// Set consistent to false.
- /// Marks the dependence as splitable.
- bool weakCrossingSIVtest(const SCEV *SrcCoeff,
- const SCEV *SrcConst,
- const SCEV *DstConst,
- const Loop *CurrentLoop,
- unsigned Level,
- FullDependence &Result,
- Constraint &NewConstraint,
- const SCEV *&SplitIter) const;
- /// ExactSIVtest - Tests the SIV subscript pair
- /// (Src and Dst) for dependence.
- /// Things of the form [c1 + a1*i] and [c2 + a2*i],
- /// where i is an induction variable, c1 and c2 are loop invariant,
- /// and a1 and a2 are constant.
- /// Returns true if any possible dependence is disproved.
- /// If there might be a dependence, returns false.
- /// Sets appropriate direction entry.
- /// Set consistent to false.
- bool exactSIVtest(const SCEV *SrcCoeff,
- const SCEV *DstCoeff,
- const SCEV *SrcConst,
- const SCEV *DstConst,
- const Loop *CurrentLoop,
- unsigned Level,
- FullDependence &Result,
- Constraint &NewConstraint) const;
- /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
- /// (Src and Dst) for dependence.
- /// Things of the form [c1] and [c2 + a*i],
- /// where i is an induction variable, c1 and c2 are loop invariant,
- /// and a is a constant. See also weakZeroDstSIVtest.
- /// Returns true if any possible dependence is disproved.
- /// If there might be a dependence, returns false.
- /// Sets appropriate direction entry.
- /// Set consistent to false.
- /// If loop peeling will break the dependence, mark appropriately.
- bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
- const SCEV *SrcConst,
- const SCEV *DstConst,
- const Loop *CurrentLoop,
- unsigned Level,
- FullDependence &Result,
- Constraint &NewConstraint) const;
- /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
- /// (Src and Dst) for dependence.
- /// Things of the form [c1 + a*i] and [c2],
- /// where i is an induction variable, c1 and c2 are loop invariant,
- /// and a is a constant. See also weakZeroSrcSIVtest.
- /// Returns true if any possible dependence is disproved.
- /// If there might be a dependence, returns false.
- /// Sets appropriate direction entry.
- /// Set consistent to false.
- /// If loop peeling will break the dependence, mark appropriately.
- bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
- const SCEV *SrcConst,
- const SCEV *DstConst,
- const Loop *CurrentLoop,
- unsigned Level,
- FullDependence &Result,
- Constraint &NewConstraint) const;
- /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
- /// Things of the form [c1 + a*i] and [c2 + b*j],
- /// where i and j are induction variable, c1 and c2 are loop invariant,
- /// and a and b are constants.
- /// Returns true if any possible dependence is disproved.
- /// Marks the result as inconsistent.
- /// Works in some cases that symbolicRDIVtest doesn't,
- /// and vice versa.
- bool exactRDIVtest(const SCEV *SrcCoeff,
- const SCEV *DstCoeff,
- const SCEV *SrcConst,
- const SCEV *DstConst,
- const Loop *SrcLoop,
- const Loop *DstLoop,
- FullDependence &Result) const;
- /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
- /// Things of the form [c1 + a*i] and [c2 + b*j],
- /// where i and j are induction variable, c1 and c2 are loop invariant,
- /// and a and b are constants.
- /// Returns true if any possible dependence is disproved.
- /// Marks the result as inconsistent.
- /// Works in some cases that exactRDIVtest doesn't,
- /// and vice versa. Can also be used as a backup for
- /// ordinary SIV tests.
- bool symbolicRDIVtest(const SCEV *SrcCoeff,
- const SCEV *DstCoeff,
- const SCEV *SrcConst,
- const SCEV *DstConst,
- const Loop *SrcLoop,
- const Loop *DstLoop) const;
- /// gcdMIVtest - Tests an MIV subscript pair for dependence.
- /// Returns true if any possible dependence is disproved.
- /// Marks the result as inconsistent.
- /// Can sometimes disprove the equal direction for 1 or more loops.
- // Can handle some symbolics that even the SIV tests don't get,
- /// so we use it as a backup for everything.
- bool gcdMIVtest(const SCEV *Src,
- const SCEV *Dst,
- FullDependence &Result) const;
- /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
- /// Returns true if any possible dependence is disproved.
- /// Marks the result as inconsistent.
- /// Computes directions.
- bool banerjeeMIVtest(const SCEV *Src,
- const SCEV *Dst,
- const SmallBitVector &Loops,
- FullDependence &Result) const;
- /// collectCoefficientInfo - Walks through the subscript,
- /// collecting each coefficient, the associated loop bounds,
- /// and recording its positive and negative parts for later use.
- CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
- bool SrcFlag,
- const SCEV *&Constant) const;
- /// getPositivePart - X^+ = max(X, 0).
- ///
- const SCEV *getPositivePart(const SCEV *X) const;
- /// getNegativePart - X^- = min(X, 0).
- ///
- const SCEV *getNegativePart(const SCEV *X) const;
- /// getLowerBound - Looks through all the bounds info and
- /// computes the lower bound given the current direction settings
- /// at each level.
- const SCEV *getLowerBound(BoundInfo *Bound) const;
- /// getUpperBound - Looks through all the bounds info and
- /// computes the upper bound given the current direction settings
- /// at each level.
- const SCEV *getUpperBound(BoundInfo *Bound) const;
- /// exploreDirections - Hierarchically expands the direction vector
- /// search space, combining the directions of discovered dependences
- /// in the DirSet field of Bound. Returns the number of distinct
- /// dependences discovered. If the dependence is disproved,
- /// it will return 0.
- unsigned exploreDirections(unsigned Level,
- CoefficientInfo *A,
- CoefficientInfo *B,
- BoundInfo *Bound,
- const SmallBitVector &Loops,
- unsigned &DepthExpanded,
- const SCEV *Delta) const;
- /// testBounds - Returns true iff the current bounds are plausible.
- bool testBounds(unsigned char DirKind,
- unsigned Level,
- BoundInfo *Bound,
- const SCEV *Delta) const;
- /// findBoundsALL - Computes the upper and lower bounds for level K
- /// using the * direction. Records them in Bound.
- void findBoundsALL(CoefficientInfo *A,
- CoefficientInfo *B,
- BoundInfo *Bound,
- unsigned K) const;
- /// findBoundsLT - Computes the upper and lower bounds for level K
- /// using the < direction. Records them in Bound.
- void findBoundsLT(CoefficientInfo *A,
- CoefficientInfo *B,
- BoundInfo *Bound,
- unsigned K) const;
- /// findBoundsGT - Computes the upper and lower bounds for level K
- /// using the > direction. Records them in Bound.
- void findBoundsGT(CoefficientInfo *A,
- CoefficientInfo *B,
- BoundInfo *Bound,
- unsigned K) const;
- /// findBoundsEQ - Computes the upper and lower bounds for level K
- /// using the = direction. Records them in Bound.
- void findBoundsEQ(CoefficientInfo *A,
- CoefficientInfo *B,
- BoundInfo *Bound,
- unsigned K) const;
- /// intersectConstraints - Updates X with the intersection
- /// of the Constraints X and Y. Returns true if X has changed.
- bool intersectConstraints(Constraint *X,
- const Constraint *Y);
- /// propagate - Review the constraints, looking for opportunities
- /// to simplify a subscript pair (Src and Dst).
- /// Return true if some simplification occurs.
- /// If the simplification isn't exact (that is, if it is conservative
- /// in terms of dependence), set consistent to false.
- bool propagate(const SCEV *&Src,
- const SCEV *&Dst,
- SmallBitVector &Loops,
- SmallVectorImpl<Constraint> &Constraints,
- bool &Consistent);
- /// propagateDistance - Attempt to propagate a distance
- /// constraint into a subscript pair (Src and Dst).
- /// Return true if some simplification occurs.
- /// If the simplification isn't exact (that is, if it is conservative
- /// in terms of dependence), set consistent to false.
- bool propagateDistance(const SCEV *&Src,
- const SCEV *&Dst,
- Constraint &CurConstraint,
- bool &Consistent);
- /// propagatePoint - Attempt to propagate a point
- /// constraint into a subscript pair (Src and Dst).
- /// Return true if some simplification occurs.
- bool propagatePoint(const SCEV *&Src,
- const SCEV *&Dst,
- Constraint &CurConstraint);
- /// propagateLine - Attempt to propagate a line
- /// constraint into a subscript pair (Src and Dst).
- /// Return true if some simplification occurs.
- /// If the simplification isn't exact (that is, if it is conservative
- /// in terms of dependence), set consistent to false.
- bool propagateLine(const SCEV *&Src,
- const SCEV *&Dst,
- Constraint &CurConstraint,
- bool &Consistent);
- /// findCoefficient - Given a linear SCEV,
- /// return the coefficient corresponding to specified loop.
- /// If there isn't one, return the SCEV constant 0.
- /// For example, given a*i + b*j + c*k, returning the coefficient
- /// corresponding to the j loop would yield b.
- const SCEV *findCoefficient(const SCEV *Expr,
- const Loop *TargetLoop) const;
- /// zeroCoefficient - Given a linear SCEV,
- /// return the SCEV given by zeroing out the coefficient
- /// corresponding to the specified loop.
- /// For example, given a*i + b*j + c*k, zeroing the coefficient
- /// corresponding to the j loop would yield a*i + c*k.
- const SCEV *zeroCoefficient(const SCEV *Expr,
- const Loop *TargetLoop) const;
- /// addToCoefficient - Given a linear SCEV Expr,
- /// return the SCEV given by adding some Value to the
- /// coefficient corresponding to the specified TargetLoop.
- /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
- /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
- const SCEV *addToCoefficient(const SCEV *Expr,
- const Loop *TargetLoop,
- const SCEV *Value) const;
- /// updateDirection - Update direction vector entry
- /// based on the current constraint.
- void updateDirection(Dependence::DVEntry &Level,
- const Constraint &CurConstraint) const;
- /// Given a linear access function, tries to recover subscripts
- /// for each dimension of the array element access.
- bool tryDelinearize(Instruction *Src, Instruction *Dst,
- SmallVectorImpl<Subscript> &Pair);
- /// Tries to delinearize access function for a fixed size multi-dimensional
- /// array, by deriving subscripts from GEP instructions. Returns true upon
- /// success and false otherwise.
- bool tryDelinearizeFixedSize(Instruction *Src, Instruction *Dst,
- const SCEV *SrcAccessFn,
- const SCEV *DstAccessFn,
- SmallVectorImpl<const SCEV *> &SrcSubscripts,
- SmallVectorImpl<const SCEV *> &DstSubscripts);
- /// Tries to delinearize access function for a multi-dimensional array with
- /// symbolic runtime sizes.
- /// Returns true upon success and false otherwise.
- bool tryDelinearizeParametricSize(
- Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
- const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
- SmallVectorImpl<const SCEV *> &DstSubscripts);
- /// checkSubscript - Helper function for checkSrcSubscript and
- /// checkDstSubscript to avoid duplicate code
- bool checkSubscript(const SCEV *Expr, const Loop *LoopNest,
- SmallBitVector &Loops, bool IsSrc);
- }; // class DependenceInfo
- /// AnalysisPass to compute dependence information in a function
- class DependenceAnalysis : public AnalysisInfoMixin<DependenceAnalysis> {
- public:
- typedef DependenceInfo Result;
- Result run(Function &F, FunctionAnalysisManager &FAM);
- private:
- static AnalysisKey Key;
- friend struct AnalysisInfoMixin<DependenceAnalysis>;
- }; // class DependenceAnalysis
- /// Printer pass to dump DA results.
- struct DependenceAnalysisPrinterPass
- : public PassInfoMixin<DependenceAnalysisPrinterPass> {
- DependenceAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {}
- PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
- private:
- raw_ostream &OS;
- }; // class DependenceAnalysisPrinterPass
- /// Legacy pass manager pass to access dependence information
- class DependenceAnalysisWrapperPass : public FunctionPass {
- public:
- static char ID; // Class identification, replacement for typeinfo
- DependenceAnalysisWrapperPass();
- bool runOnFunction(Function &F) override;
- void releaseMemory() override;
- void getAnalysisUsage(AnalysisUsage &) const override;
- void print(raw_ostream &, const Module * = nullptr) const override;
- DependenceInfo &getDI() const;
- private:
- std::unique_ptr<DependenceInfo> info;
- }; // class DependenceAnalysisWrapperPass
- /// createDependenceAnalysisPass - This creates an instance of the
- /// DependenceAnalysis wrapper pass.
- FunctionPass *createDependenceAnalysisWrapperPass();
- } // namespace llvm
- #endif
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|