123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- BranchProbabilityInfo.h - Branch Probability Analysis ----*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass is used to evaluate branch probabilties.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
- #define LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseMapInfo.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/BranchProbability.h"
- #include "llvm/Support/Casting.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <memory>
- #include <utility>
- namespace llvm {
- class Function;
- class Loop;
- class LoopInfo;
- class raw_ostream;
- class DominatorTree;
- class PostDominatorTree;
- class TargetLibraryInfo;
- class Value;
- /// Analysis providing branch probability information.
- ///
- /// This is a function analysis which provides information on the relative
- /// probabilities of each "edge" in the function's CFG where such an edge is
- /// defined by a pair (PredBlock and an index in the successors). The
- /// probability of an edge from one block is always relative to the
- /// probabilities of other edges from the block. The probabilites of all edges
- /// from a block sum to exactly one (100%).
- /// We use a pair (PredBlock and an index in the successors) to uniquely
- /// identify an edge, since we can have multiple edges from Src to Dst.
- /// As an example, we can have a switch which jumps to Dst with value 0 and
- /// value 10.
- ///
- /// Process of computing branch probabilities can be logically viewed as three
- /// step process:
- ///
- /// First, if there is a profile information associated with the branch then
- /// it is trivially translated to branch probabilities. There is one exception
- /// from this rule though. Probabilities for edges leading to "unreachable"
- /// blocks (blocks with the estimated weight not greater than
- /// UNREACHABLE_WEIGHT) are evaluated according to static estimation and
- /// override profile information. If no branch probabilities were calculated
- /// on this step then take the next one.
- ///
- /// Second, estimate absolute execution weights for each block based on
- /// statically known information. Roots of such information are "cold",
- /// "unreachable", "noreturn" and "unwind" blocks. Those blocks get their
- /// weights set to BlockExecWeight::COLD, BlockExecWeight::UNREACHABLE,
- /// BlockExecWeight::NORETURN and BlockExecWeight::UNWIND respectively. Then the
- /// weights are propagated to the other blocks up the domination line. In
- /// addition, if all successors have estimated weights set then maximum of these
- /// weights assigned to the block itself (while this is not ideal heuristic in
- /// theory it's simple and works reasonably well in most cases) and the process
- /// repeats. Once the process of weights propagation converges branch
- /// probabilities are set for all such branches that have at least one successor
- /// with the weight set. Default execution weight (BlockExecWeight::DEFAULT) is
- /// used for any successors which doesn't have its weight set. For loop back
- /// branches we use their weights scaled by loop trip count equal to
- /// 'LBH_TAKEN_WEIGHT/LBH_NOTTAKEN_WEIGHT'.
- ///
- /// Here is a simple example demonstrating how the described algorithm works.
- ///
- /// BB1
- /// / \
- /// v v
- /// BB2 BB3
- /// / \
- /// v v
- /// ColdBB UnreachBB
- ///
- /// Initially, ColdBB is associated with COLD_WEIGHT and UnreachBB with
- /// UNREACHABLE_WEIGHT. COLD_WEIGHT is set to BB2 as maximum between its
- /// successors. BB1 and BB3 has no explicit estimated weights and assumed to
- /// have DEFAULT_WEIGHT. Based on assigned weights branches will have the
- /// following probabilities:
- /// P(BB1->BB2) = COLD_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) =
- /// 0xffff / (0xffff + 0xfffff) = 0.0588(5.9%)
- /// P(BB1->BB3) = DEFAULT_WEIGHT_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) =
- /// 0xfffff / (0xffff + 0xfffff) = 0.941(94.1%)
- /// P(BB2->ColdBB) = COLD_WEIGHT/(COLD_WEIGHT + UNREACHABLE_WEIGHT) = 1(100%)
- /// P(BB2->UnreachBB) =
- /// UNREACHABLE_WEIGHT/(COLD_WEIGHT+UNREACHABLE_WEIGHT) = 0(0%)
- ///
- /// If no branch probabilities were calculated on this step then take the next
- /// one.
- ///
- /// Third, apply different kinds of local heuristics for each individual
- /// branch until first match. For example probability of a pointer to be null is
- /// estimated as PH_TAKEN_WEIGHT/(PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT). If
- /// no local heuristic has been matched then branch is left with no explicit
- /// probability set and assumed to have default probability.
- class BranchProbabilityInfo {
- public:
- BranchProbabilityInfo() = default;
- BranchProbabilityInfo(const Function &F, const LoopInfo &LI,
- const TargetLibraryInfo *TLI = nullptr,
- DominatorTree *DT = nullptr,
- PostDominatorTree *PDT = nullptr) {
- calculate(F, LI, TLI, DT, PDT);
- }
- BranchProbabilityInfo(BranchProbabilityInfo &&Arg)
- : Probs(std::move(Arg.Probs)), LastF(Arg.LastF),
- EstimatedBlockWeight(std::move(Arg.EstimatedBlockWeight)) {}
- BranchProbabilityInfo(const BranchProbabilityInfo &) = delete;
- BranchProbabilityInfo &operator=(const BranchProbabilityInfo &) = delete;
- BranchProbabilityInfo &operator=(BranchProbabilityInfo &&RHS) {
- releaseMemory();
- Probs = std::move(RHS.Probs);
- EstimatedBlockWeight = std::move(RHS.EstimatedBlockWeight);
- return *this;
- }
- bool invalidate(Function &, const PreservedAnalyses &PA,
- FunctionAnalysisManager::Invalidator &);
- void releaseMemory();
- void print(raw_ostream &OS) const;
- /// Get an edge's probability, relative to other out-edges of the Src.
- ///
- /// This routine provides access to the fractional probability between zero
- /// (0%) and one (100%) of this edge executing, relative to other edges
- /// leaving the 'Src' block. The returned probability is never zero, and can
- /// only be one if the source block has only one successor.
- BranchProbability getEdgeProbability(const BasicBlock *Src,
- unsigned IndexInSuccessors) const;
- /// Get the probability of going from Src to Dst.
- ///
- /// It returns the sum of all probabilities for edges from Src to Dst.
- BranchProbability getEdgeProbability(const BasicBlock *Src,
- const BasicBlock *Dst) const;
- BranchProbability getEdgeProbability(const BasicBlock *Src,
- const_succ_iterator Dst) const;
- /// Test if an edge is hot relative to other out-edges of the Src.
- ///
- /// Check whether this edge out of the source block is 'hot'. We define hot
- /// as having a relative probability >= 80%.
- bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const;
- /// Print an edge's probability.
- ///
- /// Retrieves an edge's probability similarly to \see getEdgeProbability, but
- /// then prints that probability to the provided stream. That stream is then
- /// returned.
- raw_ostream &printEdgeProbability(raw_ostream &OS, const BasicBlock *Src,
- const BasicBlock *Dst) const;
- public:
- /// Set the raw probabilities for all edges from the given block.
- ///
- /// This allows a pass to explicitly set edge probabilities for a block. It
- /// can be used when updating the CFG to update the branch probability
- /// information.
- void setEdgeProbability(const BasicBlock *Src,
- const SmallVectorImpl<BranchProbability> &Probs);
- /// Copy outgoing edge probabilities from \p Src to \p Dst.
- ///
- /// This allows to keep probabilities unset for the destination if they were
- /// unset for source.
- void copyEdgeProbabilities(BasicBlock *Src, BasicBlock *Dst);
- static BranchProbability getBranchProbStackProtector(bool IsLikely) {
- static const BranchProbability LikelyProb((1u << 20) - 1, 1u << 20);
- return IsLikely ? LikelyProb : LikelyProb.getCompl();
- }
- void calculate(const Function &F, const LoopInfo &LI,
- const TargetLibraryInfo *TLI, DominatorTree *DT,
- PostDominatorTree *PDT);
- /// Forget analysis results for the given basic block.
- void eraseBlock(const BasicBlock *BB);
- // Data structure to track SCCs for handling irreducible loops.
- class SccInfo {
- // Enum of types to classify basic blocks in SCC. Basic block belonging to
- // SCC is 'Inner' until it is either 'Header' or 'Exiting'. Note that a
- // basic block can be 'Header' and 'Exiting' at the same time.
- enum SccBlockType {
- Inner = 0x0,
- Header = 0x1,
- Exiting = 0x2,
- };
- // Map of basic blocks to SCC IDs they belong to. If basic block doesn't
- // belong to any SCC it is not in the map.
- using SccMap = DenseMap<const BasicBlock *, int>;
- // Each basic block in SCC is attributed with one or several types from
- // SccBlockType. Map value has uint32_t type (instead of SccBlockType)
- // since basic block may be for example "Header" and "Exiting" at the same
- // time and we need to be able to keep more than one value from
- // SccBlockType.
- using SccBlockTypeMap = DenseMap<const BasicBlock *, uint32_t>;
- // Vector containing classification of basic blocks for all SCCs where i'th
- // vector element corresponds to SCC with ID equal to i.
- using SccBlockTypeMaps = std::vector<SccBlockTypeMap>;
- SccMap SccNums;
- SccBlockTypeMaps SccBlocks;
- public:
- explicit SccInfo(const Function &F);
- /// If \p BB belongs to some SCC then ID of that SCC is returned, otherwise
- /// -1 is returned. If \p BB belongs to more than one SCC at the same time
- /// result is undefined.
- int getSCCNum(const BasicBlock *BB) const;
- /// Returns true if \p BB is a 'header' block in SCC with \p SccNum ID,
- /// false otherwise.
- bool isSCCHeader(const BasicBlock *BB, int SccNum) const {
- return getSccBlockType(BB, SccNum) & Header;
- }
- /// Returns true if \p BB is an 'exiting' block in SCC with \p SccNum ID,
- /// false otherwise.
- bool isSCCExitingBlock(const BasicBlock *BB, int SccNum) const {
- return getSccBlockType(BB, SccNum) & Exiting;
- }
- /// Fills in \p Enters vector with all such blocks that don't belong to
- /// SCC with \p SccNum ID but there is an edge to a block belonging to the
- /// SCC.
- void getSccEnterBlocks(int SccNum,
- SmallVectorImpl<BasicBlock *> &Enters) const;
- /// Fills in \p Exits vector with all such blocks that don't belong to
- /// SCC with \p SccNum ID but there is an edge from a block belonging to the
- /// SCC.
- void getSccExitBlocks(int SccNum,
- SmallVectorImpl<BasicBlock *> &Exits) const;
- private:
- /// Returns \p BB's type according to classification given by SccBlockType
- /// enum. Please note that \p BB must belong to SSC with \p SccNum ID.
- uint32_t getSccBlockType(const BasicBlock *BB, int SccNum) const;
- /// Calculates \p BB's type and stores it in internal data structures for
- /// future use. Please note that \p BB must belong to SSC with \p SccNum ID.
- void calculateSccBlockType(const BasicBlock *BB, int SccNum);
- };
- private:
- // We need to store CallbackVH's in order to correctly handle basic block
- // removal.
- class BasicBlockCallbackVH final : public CallbackVH {
- BranchProbabilityInfo *BPI;
- void deleted() override {
- assert(BPI != nullptr);
- BPI->eraseBlock(cast<BasicBlock>(getValPtr()));
- }
- public:
- BasicBlockCallbackVH(const Value *V, BranchProbabilityInfo *BPI = nullptr)
- : CallbackVH(const_cast<Value *>(V)), BPI(BPI) {}
- };
- /// Pair of Loop and SCC ID number. Used to unify handling of normal and
- /// SCC based loop representations.
- using LoopData = std::pair<Loop *, int>;
- /// Helper class to keep basic block along with its loop data information.
- class LoopBlock {
- public:
- explicit LoopBlock(const BasicBlock *BB, const LoopInfo &LI,
- const SccInfo &SccI);
- const BasicBlock *getBlock() const { return BB; }
- BasicBlock *getBlock() { return const_cast<BasicBlock *>(BB); }
- LoopData getLoopData() const { return LD; }
- Loop *getLoop() const { return LD.first; }
- int getSccNum() const { return LD.second; }
- bool belongsToLoop() const { return getLoop() || getSccNum() != -1; }
- bool belongsToSameLoop(const LoopBlock &LB) const {
- return (LB.getLoop() && getLoop() == LB.getLoop()) ||
- (LB.getSccNum() != -1 && getSccNum() == LB.getSccNum());
- }
- private:
- const BasicBlock *const BB = nullptr;
- LoopData LD = {nullptr, -1};
- };
- // Pair of LoopBlocks representing an edge from first to second block.
- using LoopEdge = std::pair<const LoopBlock &, const LoopBlock &>;
- DenseSet<BasicBlockCallbackVH, DenseMapInfo<Value*>> Handles;
- // Since we allow duplicate edges from one basic block to another, we use
- // a pair (PredBlock and an index in the successors) to specify an edge.
- using Edge = std::pair<const BasicBlock *, unsigned>;
- DenseMap<Edge, BranchProbability> Probs;
- /// Track the last function we run over for printing.
- const Function *LastF = nullptr;
- const LoopInfo *LI = nullptr;
- /// Keeps information about all SCCs in a function.
- std::unique_ptr<const SccInfo> SccI;
- /// Keeps mapping of a basic block to its estimated weight.
- SmallDenseMap<const BasicBlock *, uint32_t> EstimatedBlockWeight;
- /// Keeps mapping of a loop to estimated weight to enter the loop.
- SmallDenseMap<LoopData, uint32_t> EstimatedLoopWeight;
- /// Helper to construct LoopBlock for \p BB.
- LoopBlock getLoopBlock(const BasicBlock *BB) const {
- return LoopBlock(BB, *LI, *SccI.get());
- }
- /// Returns true if destination block belongs to some loop and source block is
- /// either doesn't belong to any loop or belongs to a loop which is not inner
- /// relative to the destination block.
- bool isLoopEnteringEdge(const LoopEdge &Edge) const;
- /// Returns true if source block belongs to some loop and destination block is
- /// either doesn't belong to any loop or belongs to a loop which is not inner
- /// relative to the source block.
- bool isLoopExitingEdge(const LoopEdge &Edge) const;
- /// Returns true if \p Edge is either enters to or exits from some loop, false
- /// in all other cases.
- bool isLoopEnteringExitingEdge(const LoopEdge &Edge) const;
- /// Returns true if source and destination blocks belongs to the same loop and
- /// destination block is loop header.
- bool isLoopBackEdge(const LoopEdge &Edge) const;
- // Fills in \p Enters vector with all "enter" blocks to a loop \LB belongs to.
- void getLoopEnterBlocks(const LoopBlock &LB,
- SmallVectorImpl<BasicBlock *> &Enters) const;
- // Fills in \p Exits vector with all "exit" blocks from a loop \LB belongs to.
- void getLoopExitBlocks(const LoopBlock &LB,
- SmallVectorImpl<BasicBlock *> &Exits) const;
- /// Returns estimated weight for \p BB. None if \p BB has no estimated weight.
- Optional<uint32_t> getEstimatedBlockWeight(const BasicBlock *BB) const;
- /// Returns estimated weight to enter \p L. In other words it is weight of
- /// loop's header block not scaled by trip count. Returns None if \p L has no
- /// no estimated weight.
- Optional<uint32_t> getEstimatedLoopWeight(const LoopData &L) const;
- /// Return estimated weight for \p Edge. Returns None if estimated weight is
- /// unknown.
- Optional<uint32_t> getEstimatedEdgeWeight(const LoopEdge &Edge) const;
- /// Iterates over all edges leading from \p SrcBB to \p Successors and
- /// returns maximum of all estimated weights. If at least one edge has unknown
- /// estimated weight None is returned.
- template <class IterT>
- Optional<uint32_t>
- getMaxEstimatedEdgeWeight(const LoopBlock &SrcBB,
- iterator_range<IterT> Successors) const;
- /// If \p LoopBB has no estimated weight then set it to \p BBWeight and
- /// return true. Otherwise \p BB's weight remains unchanged and false is
- /// returned. In addition all blocks/loops that might need their weight to be
- /// re-estimated are put into BlockWorkList/LoopWorkList.
- bool updateEstimatedBlockWeight(LoopBlock &LoopBB, uint32_t BBWeight,
- SmallVectorImpl<BasicBlock *> &BlockWorkList,
- SmallVectorImpl<LoopBlock> &LoopWorkList);
- /// Starting from \p LoopBB (including \p LoopBB itself) propagate \p BBWeight
- /// up the domination tree.
- void propagateEstimatedBlockWeight(const LoopBlock &LoopBB, DominatorTree *DT,
- PostDominatorTree *PDT, uint32_t BBWeight,
- SmallVectorImpl<BasicBlock *> &WorkList,
- SmallVectorImpl<LoopBlock> &LoopWorkList);
- /// Returns block's weight encoded in the IR.
- Optional<uint32_t> getInitialEstimatedBlockWeight(const BasicBlock *BB);
- // Computes estimated weights for all blocks in \p F.
- void computeEestimateBlockWeight(const Function &F, DominatorTree *DT,
- PostDominatorTree *PDT);
- /// Based on computed weights by \p computeEstimatedBlockWeight set
- /// probabilities on branches.
- bool calcEstimatedHeuristics(const BasicBlock *BB);
- bool calcMetadataWeights(const BasicBlock *BB);
- bool calcPointerHeuristics(const BasicBlock *BB);
- bool calcZeroHeuristics(const BasicBlock *BB, const TargetLibraryInfo *TLI);
- bool calcFloatingPointHeuristics(const BasicBlock *BB);
- };
- /// Analysis pass which computes \c BranchProbabilityInfo.
- class BranchProbabilityAnalysis
- : public AnalysisInfoMixin<BranchProbabilityAnalysis> {
- friend AnalysisInfoMixin<BranchProbabilityAnalysis>;
- static AnalysisKey Key;
- public:
- /// Provide the result type for this analysis pass.
- using Result = BranchProbabilityInfo;
- /// Run the analysis pass over a function and produce BPI.
- BranchProbabilityInfo run(Function &F, FunctionAnalysisManager &AM);
- };
- /// Printer pass for the \c BranchProbabilityAnalysis results.
- class BranchProbabilityPrinterPass
- : public PassInfoMixin<BranchProbabilityPrinterPass> {
- raw_ostream &OS;
- public:
- explicit BranchProbabilityPrinterPass(raw_ostream &OS) : OS(OS) {}
- PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
- };
- /// Legacy analysis pass which computes \c BranchProbabilityInfo.
- class BranchProbabilityInfoWrapperPass : public FunctionPass {
- BranchProbabilityInfo BPI;
- public:
- static char ID;
- BranchProbabilityInfoWrapperPass();
- BranchProbabilityInfo &getBPI() { return BPI; }
- const BranchProbabilityInfo &getBPI() const { return BPI; }
- void getAnalysisUsage(AnalysisUsage &AU) const override;
- bool runOnFunction(Function &F) override;
- void releaseMemory() override;
- void print(raw_ostream &OS, const Module *M = nullptr) const override;
- };
- } // end namespace llvm
- #endif // LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|