123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Shared implementation of BlockFrequency for IR and Machine Instructions.
- // See the documentation below for BlockFrequencyInfoImpl for details.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
- #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/GraphTraits.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/SparseBitVector.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Support/BlockFrequency.h"
- #include "llvm/Support/BranchProbability.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/DOTGraphTraits.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/Format.h"
- #include "llvm/Support/ScaledNumber.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cassert>
- #include <cstddef>
- #include <cstdint>
- #include <deque>
- #include <iterator>
- #include <limits>
- #include <list>
- #include <queue>
- #include <string>
- #include <unordered_set>
- #include <utility>
- #include <vector>
- #define DEBUG_TYPE "block-freq"
- namespace llvm {
- extern llvm::cl::opt<bool> CheckBFIUnknownBlockQueries;
- extern llvm::cl::opt<bool> UseIterativeBFIInference;
- extern llvm::cl::opt<unsigned> IterativeBFIMaxIterationsPerBlock;
- extern llvm::cl::opt<double> IterativeBFIPrecision;
- class BranchProbabilityInfo;
- class Function;
- class Loop;
- class LoopInfo;
- class MachineBasicBlock;
- class MachineBranchProbabilityInfo;
- class MachineFunction;
- class MachineLoop;
- class MachineLoopInfo;
- namespace bfi_detail {
- struct IrreducibleGraph;
- // This is part of a workaround for a GCC 4.7 crash on lambdas.
- template <class BT> struct BlockEdgesAdder;
- /// Mass of a block.
- ///
- /// This class implements a sort of fixed-point fraction always between 0.0 and
- /// 1.0. getMass() == std::numeric_limits<uint64_t>::max() indicates a value of
- /// 1.0.
- ///
- /// Masses can be added and subtracted. Simple saturation arithmetic is used,
- /// so arithmetic operations never overflow or underflow.
- ///
- /// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses
- /// an inexpensive floating-point algorithm that's off-by-one (almost, but not
- /// quite, maximum precision).
- ///
- /// Masses can be scaled by \a BranchProbability at maximum precision.
- class BlockMass {
- uint64_t Mass = 0;
- public:
- BlockMass() = default;
- explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
- static BlockMass getEmpty() { return BlockMass(); }
- static BlockMass getFull() {
- return BlockMass(std::numeric_limits<uint64_t>::max());
- }
- uint64_t getMass() const { return Mass; }
- bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); }
- bool isEmpty() const { return !Mass; }
- bool operator!() const { return isEmpty(); }
- /// Add another mass.
- ///
- /// Adds another mass, saturating at \a isFull() rather than overflowing.
- BlockMass &operator+=(BlockMass X) {
- uint64_t Sum = Mass + X.Mass;
- Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum;
- return *this;
- }
- /// Subtract another mass.
- ///
- /// Subtracts another mass, saturating at \a isEmpty() rather than
- /// undeflowing.
- BlockMass &operator-=(BlockMass X) {
- uint64_t Diff = Mass - X.Mass;
- Mass = Diff > Mass ? 0 : Diff;
- return *this;
- }
- BlockMass &operator*=(BranchProbability P) {
- Mass = P.scale(Mass);
- return *this;
- }
- bool operator==(BlockMass X) const { return Mass == X.Mass; }
- bool operator!=(BlockMass X) const { return Mass != X.Mass; }
- bool operator<=(BlockMass X) const { return Mass <= X.Mass; }
- bool operator>=(BlockMass X) const { return Mass >= X.Mass; }
- bool operator<(BlockMass X) const { return Mass < X.Mass; }
- bool operator>(BlockMass X) const { return Mass > X.Mass; }
- /// Convert to scaled number.
- ///
- /// Convert to \a ScaledNumber. \a isFull() gives 1.0, while \a isEmpty()
- /// gives slightly above 0.0.
- ScaledNumber<uint64_t> toScaled() const;
- void dump() const;
- raw_ostream &print(raw_ostream &OS) const;
- };
- inline BlockMass operator+(BlockMass L, BlockMass R) {
- return BlockMass(L) += R;
- }
- inline BlockMass operator-(BlockMass L, BlockMass R) {
- return BlockMass(L) -= R;
- }
- inline BlockMass operator*(BlockMass L, BranchProbability R) {
- return BlockMass(L) *= R;
- }
- inline BlockMass operator*(BranchProbability L, BlockMass R) {
- return BlockMass(R) *= L;
- }
- inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) {
- return X.print(OS);
- }
- } // end namespace bfi_detail
- /// Base class for BlockFrequencyInfoImpl
- ///
- /// BlockFrequencyInfoImplBase has supporting data structures and some
- /// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on
- /// the block type (or that call such algorithms) are skipped here.
- ///
- /// Nevertheless, the majority of the overall algorithm documentation lives with
- /// BlockFrequencyInfoImpl. See there for details.
- class BlockFrequencyInfoImplBase {
- public:
- using Scaled64 = ScaledNumber<uint64_t>;
- using BlockMass = bfi_detail::BlockMass;
- /// Representative of a block.
- ///
- /// This is a simple wrapper around an index into the reverse-post-order
- /// traversal of the blocks.
- ///
- /// Unlike a block pointer, its order has meaning (location in the
- /// topological sort) and it's class is the same regardless of block type.
- struct BlockNode {
- using IndexType = uint32_t;
- IndexType Index;
- BlockNode() : Index(std::numeric_limits<uint32_t>::max()) {}
- BlockNode(IndexType Index) : Index(Index) {}
- bool operator==(const BlockNode &X) const { return Index == X.Index; }
- bool operator!=(const BlockNode &X) const { return Index != X.Index; }
- bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
- bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
- bool operator<(const BlockNode &X) const { return Index < X.Index; }
- bool operator>(const BlockNode &X) const { return Index > X.Index; }
- bool isValid() const { return Index <= getMaxIndex(); }
- static size_t getMaxIndex() {
- return std::numeric_limits<uint32_t>::max() - 1;
- }
- };
- /// Stats about a block itself.
- struct FrequencyData {
- Scaled64 Scaled;
- uint64_t Integer;
- };
- /// Data about a loop.
- ///
- /// Contains the data necessary to represent a loop as a pseudo-node once it's
- /// packaged.
- struct LoopData {
- using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>;
- using NodeList = SmallVector<BlockNode, 4>;
- using HeaderMassList = SmallVector<BlockMass, 1>;
- LoopData *Parent; ///< The parent loop.
- bool IsPackaged = false; ///< Whether this has been packaged.
- uint32_t NumHeaders = 1; ///< Number of headers.
- ExitMap Exits; ///< Successor edges (and weights).
- NodeList Nodes; ///< Header and the members of the loop.
- HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
- BlockMass Mass;
- Scaled64 Scale;
- LoopData(LoopData *Parent, const BlockNode &Header)
- : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {}
- template <class It1, class It2>
- LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
- It2 LastOther)
- : Parent(Parent), Nodes(FirstHeader, LastHeader) {
- NumHeaders = Nodes.size();
- Nodes.insert(Nodes.end(), FirstOther, LastOther);
- BackedgeMass.resize(NumHeaders);
- }
- bool isHeader(const BlockNode &Node) const {
- if (isIrreducible())
- return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
- Node);
- return Node == Nodes[0];
- }
- BlockNode getHeader() const { return Nodes[0]; }
- bool isIrreducible() const { return NumHeaders > 1; }
- HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) {
- assert(isHeader(B) && "this is only valid on loop header blocks");
- if (isIrreducible())
- return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
- Nodes.begin();
- return 0;
- }
- NodeList::const_iterator members_begin() const {
- return Nodes.begin() + NumHeaders;
- }
- NodeList::const_iterator members_end() const { return Nodes.end(); }
- iterator_range<NodeList::const_iterator> members() const {
- return make_range(members_begin(), members_end());
- }
- };
- /// Index of loop information.
- struct WorkingData {
- BlockNode Node; ///< This node.
- LoopData *Loop = nullptr; ///< The loop this block is inside.
- BlockMass Mass; ///< Mass distribution from the entry block.
- WorkingData(const BlockNode &Node) : Node(Node) {}
- bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
- bool isDoubleLoopHeader() const {
- return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
- Loop->Parent->isHeader(Node);
- }
- LoopData *getContainingLoop() const {
- if (!isLoopHeader())
- return Loop;
- if (!isDoubleLoopHeader())
- return Loop->Parent;
- return Loop->Parent->Parent;
- }
- /// Resolve a node to its representative.
- ///
- /// Get the node currently representing Node, which could be a containing
- /// loop.
- ///
- /// This function should only be called when distributing mass. As long as
- /// there are no irreducible edges to Node, then it will have complexity
- /// O(1) in this context.
- ///
- /// In general, the complexity is O(L), where L is the number of loop
- /// headers Node has been packaged into. Since this method is called in
- /// the context of distributing mass, L will be the number of loop headers
- /// an early exit edge jumps out of.
- BlockNode getResolvedNode() const {
- auto L = getPackagedLoop();
- return L ? L->getHeader() : Node;
- }
- LoopData *getPackagedLoop() const {
- if (!Loop || !Loop->IsPackaged)
- return nullptr;
- auto L = Loop;
- while (L->Parent && L->Parent->IsPackaged)
- L = L->Parent;
- return L;
- }
- /// Get the appropriate mass for a node.
- ///
- /// Get appropriate mass for Node. If Node is a loop-header (whose loop
- /// has been packaged), returns the mass of its pseudo-node. If it's a
- /// node inside a packaged loop, it returns the loop's mass.
- BlockMass &getMass() {
- if (!isAPackage())
- return Mass;
- if (!isADoublePackage())
- return Loop->Mass;
- return Loop->Parent->Mass;
- }
- /// Has ContainingLoop been packaged up?
- bool isPackaged() const { return getResolvedNode() != Node; }
- /// Has Loop been packaged up?
- bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
- /// Has Loop been packaged up twice?
- bool isADoublePackage() const {
- return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
- }
- };
- /// Unscaled probability weight.
- ///
- /// Probability weight for an edge in the graph (including the
- /// successor/target node).
- ///
- /// All edges in the original function are 32-bit. However, exit edges from
- /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
- /// space in general.
- ///
- /// In addition to the raw weight amount, Weight stores the type of the edge
- /// in the current context (i.e., the context of the loop being processed).
- /// Is this a local edge within the loop, an exit from the loop, or a
- /// backedge to the loop header?
- struct Weight {
- enum DistType { Local, Exit, Backedge };
- DistType Type = Local;
- BlockNode TargetNode;
- uint64_t Amount = 0;
- Weight() = default;
- Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
- : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
- };
- /// Distribution of unscaled probability weight.
- ///
- /// Distribution of unscaled probability weight to a set of successors.
- ///
- /// This class collates the successor edge weights for later processing.
- ///
- /// \a DidOverflow indicates whether \a Total did overflow while adding to
- /// the distribution. It should never overflow twice.
- struct Distribution {
- using WeightList = SmallVector<Weight, 4>;
- WeightList Weights; ///< Individual successor weights.
- uint64_t Total = 0; ///< Sum of all weights.
- bool DidOverflow = false; ///< Whether \a Total did overflow.
- Distribution() = default;
- void addLocal(const BlockNode &Node, uint64_t Amount) {
- add(Node, Amount, Weight::Local);
- }
- void addExit(const BlockNode &Node, uint64_t Amount) {
- add(Node, Amount, Weight::Exit);
- }
- void addBackedge(const BlockNode &Node, uint64_t Amount) {
- add(Node, Amount, Weight::Backedge);
- }
- /// Normalize the distribution.
- ///
- /// Combines multiple edges to the same \a Weight::TargetNode and scales
- /// down so that \a Total fits into 32-bits.
- ///
- /// This is linear in the size of \a Weights. For the vast majority of
- /// cases, adjacent edge weights are combined by sorting WeightList and
- /// combining adjacent weights. However, for very large edge lists an
- /// auxiliary hash table is used.
- void normalize();
- private:
- void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
- };
- /// Data about each block. This is used downstream.
- std::vector<FrequencyData> Freqs;
- /// Whether each block is an irreducible loop header.
- /// This is used downstream.
- SparseBitVector<> IsIrrLoopHeader;
- /// Loop data: see initializeLoops().
- std::vector<WorkingData> Working;
- /// Indexed information about loops.
- std::list<LoopData> Loops;
- /// Virtual destructor.
- ///
- /// Need a virtual destructor to mask the compiler warning about
- /// getBlockName().
- virtual ~BlockFrequencyInfoImplBase() = default;
- /// Add all edges out of a packaged loop to the distribution.
- ///
- /// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each
- /// successor edge.
- ///
- /// \return \c true unless there's an irreducible backedge.
- bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
- Distribution &Dist);
- /// Add an edge to the distribution.
- ///
- /// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the
- /// edge is local/exit/backedge is in the context of LoopHead. Otherwise,
- /// every edge should be a local edge (since all the loops are packaged up).
- ///
- /// \return \c true unless aborted due to an irreducible backedge.
- bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
- const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
- /// Analyze irreducible SCCs.
- ///
- /// Separate irreducible SCCs from \c G, which is an explicit graph of \c
- /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
- /// Insert them into \a Loops before \c Insert.
- ///
- /// \return the \c LoopData nodes representing the irreducible SCCs.
- iterator_range<std::list<LoopData>::iterator>
- analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
- std::list<LoopData>::iterator Insert);
- /// Update a loop after packaging irreducible SCCs inside of it.
- ///
- /// Update \c OuterLoop. Before finding irreducible control flow, it was
- /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
- /// LoopData::BackedgeMass need to be reset. Also, nodes that were packaged
- /// up need to be removed from \a OuterLoop::Nodes.
- void updateLoopWithIrreducible(LoopData &OuterLoop);
- /// Distribute mass according to a distribution.
- ///
- /// Distributes the mass in Source according to Dist. If LoopHead.isValid(),
- /// backedges and exits are stored in its entry in Loops.
- ///
- /// Mass is distributed in parallel from two copies of the source mass.
- void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
- Distribution &Dist);
- /// Compute the loop scale for a loop.
- void computeLoopScale(LoopData &Loop);
- /// Adjust the mass of all headers in an irreducible loop.
- ///
- /// Initially, irreducible loops are assumed to distribute their mass
- /// equally among its headers. This can lead to wrong frequency estimates
- /// since some headers may be executed more frequently than others.
- ///
- /// This adjusts header mass distribution so it matches the weights of
- /// the backedges going into each of the loop headers.
- void adjustLoopHeaderMass(LoopData &Loop);
- void distributeIrrLoopHeaderMass(Distribution &Dist);
- /// Package up a loop.
- void packageLoop(LoopData &Loop);
- /// Unwrap loops.
- void unwrapLoops();
- /// Finalize frequency metrics.
- ///
- /// Calculates final frequencies and cleans up no-longer-needed data
- /// structures.
- void finalizeMetrics();
- /// Clear all memory.
- void clear();
- virtual std::string getBlockName(const BlockNode &Node) const;
- std::string getLoopName(const LoopData &Loop) const;
- virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
- void dump() const { print(dbgs()); }
- Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
- BlockFrequency getBlockFreq(const BlockNode &Node) const;
- Optional<uint64_t> getBlockProfileCount(const Function &F,
- const BlockNode &Node,
- bool AllowSynthetic = false) const;
- Optional<uint64_t> getProfileCountFromFreq(const Function &F,
- uint64_t Freq,
- bool AllowSynthetic = false) const;
- bool isIrrLoopHeader(const BlockNode &Node);
- void setBlockFreq(const BlockNode &Node, uint64_t Freq);
- raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
- raw_ostream &printBlockFreq(raw_ostream &OS,
- const BlockFrequency &Freq) const;
- uint64_t getEntryFreq() const {
- assert(!Freqs.empty());
- return Freqs[0].Integer;
- }
- };
- namespace bfi_detail {
- template <class BlockT> struct TypeMap {};
- template <> struct TypeMap<BasicBlock> {
- using BlockT = BasicBlock;
- using BlockKeyT = AssertingVH<const BasicBlock>;
- using FunctionT = Function;
- using BranchProbabilityInfoT = BranchProbabilityInfo;
- using LoopT = Loop;
- using LoopInfoT = LoopInfo;
- };
- template <> struct TypeMap<MachineBasicBlock> {
- using BlockT = MachineBasicBlock;
- using BlockKeyT = const MachineBasicBlock *;
- using FunctionT = MachineFunction;
- using BranchProbabilityInfoT = MachineBranchProbabilityInfo;
- using LoopT = MachineLoop;
- using LoopInfoT = MachineLoopInfo;
- };
- template <class BlockT, class BFIImplT>
- class BFICallbackVH;
- /// Get the name of a MachineBasicBlock.
- ///
- /// Get the name of a MachineBasicBlock. It's templated so that including from
- /// CodeGen is unnecessary (that would be a layering issue).
- ///
- /// This is used mainly for debug output. The name is similar to
- /// MachineBasicBlock::getFullName(), but skips the name of the function.
- template <class BlockT> std::string getBlockName(const BlockT *BB) {
- assert(BB && "Unexpected nullptr");
- auto MachineName = "BB" + Twine(BB->getNumber());
- if (BB->getBasicBlock())
- return (MachineName + "[" + BB->getName() + "]").str();
- return MachineName.str();
- }
- /// Get the name of a BasicBlock.
- template <> inline std::string getBlockName(const BasicBlock *BB) {
- assert(BB && "Unexpected nullptr");
- return BB->getName().str();
- }
- /// Graph of irreducible control flow.
- ///
- /// This graph is used for determining the SCCs in a loop (or top-level
- /// function) that has irreducible control flow.
- ///
- /// During the block frequency algorithm, the local graphs are defined in a
- /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
- /// graphs for most edges, but getting others from \a LoopData::ExitMap. The
- /// latter only has successor information.
- ///
- /// \a IrreducibleGraph makes this graph explicit. It's in a form that can use
- /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
- /// and it explicitly lists predecessors and successors. The initialization
- /// that relies on \c MachineBasicBlock is defined in the header.
- struct IrreducibleGraph {
- using BFIBase = BlockFrequencyInfoImplBase;
- BFIBase &BFI;
- using BlockNode = BFIBase::BlockNode;
- struct IrrNode {
- BlockNode Node;
- unsigned NumIn = 0;
- std::deque<const IrrNode *> Edges;
- IrrNode(const BlockNode &Node) : Node(Node) {}
- using iterator = std::deque<const IrrNode *>::const_iterator;
- iterator pred_begin() const { return Edges.begin(); }
- iterator succ_begin() const { return Edges.begin() + NumIn; }
- iterator pred_end() const { return succ_begin(); }
- iterator succ_end() const { return Edges.end(); }
- };
- BlockNode Start;
- const IrrNode *StartIrr = nullptr;
- std::vector<IrrNode> Nodes;
- SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
- /// Construct an explicit graph containing irreducible control flow.
- ///
- /// Construct an explicit graph of the control flow in \c OuterLoop (or the
- /// top-level function, if \c OuterLoop is \c nullptr). Uses \c
- /// addBlockEdges to add block successors that have not been packaged into
- /// loops.
- ///
- /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
- /// user of this.
- template <class BlockEdgesAdder>
- IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
- BlockEdgesAdder addBlockEdges) : BFI(BFI) {
- initialize(OuterLoop, addBlockEdges);
- }
- template <class BlockEdgesAdder>
- void initialize(const BFIBase::LoopData *OuterLoop,
- BlockEdgesAdder addBlockEdges);
- void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
- void addNodesInFunction();
- void addNode(const BlockNode &Node) {
- Nodes.emplace_back(Node);
- BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
- }
- void indexNodes();
- template <class BlockEdgesAdder>
- void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
- BlockEdgesAdder addBlockEdges);
- void addEdge(IrrNode &Irr, const BlockNode &Succ,
- const BFIBase::LoopData *OuterLoop);
- };
- template <class BlockEdgesAdder>
- void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
- BlockEdgesAdder addBlockEdges) {
- if (OuterLoop) {
- addNodesInLoop(*OuterLoop);
- for (auto N : OuterLoop->Nodes)
- addEdges(N, OuterLoop, addBlockEdges);
- } else {
- addNodesInFunction();
- for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
- addEdges(Index, OuterLoop, addBlockEdges);
- }
- StartIrr = Lookup[Start.Index];
- }
- template <class BlockEdgesAdder>
- void IrreducibleGraph::addEdges(const BlockNode &Node,
- const BFIBase::LoopData *OuterLoop,
- BlockEdgesAdder addBlockEdges) {
- auto L = Lookup.find(Node.Index);
- if (L == Lookup.end())
- return;
- IrrNode &Irr = *L->second;
- const auto &Working = BFI.Working[Node.Index];
- if (Working.isAPackage())
- for (const auto &I : Working.Loop->Exits)
- addEdge(Irr, I.first, OuterLoop);
- else
- addBlockEdges(*this, Irr, OuterLoop);
- }
- } // end namespace bfi_detail
- /// Shared implementation for block frequency analysis.
- ///
- /// This is a shared implementation of BlockFrequencyInfo and
- /// MachineBlockFrequencyInfo, and calculates the relative frequencies of
- /// blocks.
- ///
- /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
- /// which is called the header. A given loop, L, can have sub-loops, which are
- /// loops within the subgraph of L that exclude its header. (A "trivial" SCC
- /// consists of a single block that does not have a self-edge.)
- ///
- /// In addition to loops, this algorithm has limited support for irreducible
- /// SCCs, which are SCCs with multiple entry blocks. Irreducible SCCs are
- /// discovered on the fly, and modelled as loops with multiple headers.
- ///
- /// The headers of irreducible sub-SCCs consist of its entry blocks and all
- /// nodes that are targets of a backedge within it (excluding backedges within
- /// true sub-loops). Block frequency calculations act as if a block is
- /// inserted that intercepts all the edges to the headers. All backedges and
- /// entries point to this block. Its successors are the headers, which split
- /// the frequency evenly.
- ///
- /// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
- /// separates mass distribution from loop scaling, and dithers to eliminate
- /// probability mass loss.
- ///
- /// The implementation is split between BlockFrequencyInfoImpl, which knows the
- /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
- /// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a
- /// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in
- /// reverse-post order. This gives two advantages: it's easy to compare the
- /// relative ordering of two nodes, and maps keyed on BlockT can be represented
- /// by vectors.
- ///
- /// This algorithm is O(V+E), unless there is irreducible control flow, in
- /// which case it's O(V*E) in the worst case.
- ///
- /// These are the main stages:
- ///
- /// 0. Reverse post-order traversal (\a initializeRPOT()).
- ///
- /// Run a single post-order traversal and save it (in reverse) in RPOT.
- /// All other stages make use of this ordering. Save a lookup from BlockT
- /// to BlockNode (the index into RPOT) in Nodes.
- ///
- /// 1. Loop initialization (\a initializeLoops()).
- ///
- /// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
- /// the algorithm. In particular, store the immediate members of each loop
- /// in reverse post-order.
- ///
- /// 2. Calculate mass and scale in loops (\a computeMassInLoops()).
- ///
- /// For each loop (bottom-up), distribute mass through the DAG resulting
- /// from ignoring backedges and treating sub-loops as a single pseudo-node.
- /// Track the backedge mass distributed to the loop header, and use it to
- /// calculate the loop scale (number of loop iterations). Immediate
- /// members that represent sub-loops will already have been visited and
- /// packaged into a pseudo-node.
- ///
- /// Distributing mass in a loop is a reverse-post-order traversal through
- /// the loop. Start by assigning full mass to the Loop header. For each
- /// node in the loop:
- ///
- /// - Fetch and categorize the weight distribution for its successors.
- /// If this is a packaged-subloop, the weight distribution is stored
- /// in \a LoopData::Exits. Otherwise, fetch it from
- /// BranchProbabilityInfo.
- ///
- /// - Each successor is categorized as \a Weight::Local, a local edge
- /// within the current loop, \a Weight::Backedge, a backedge to the
- /// loop header, or \a Weight::Exit, any successor outside the loop.
- /// The weight, the successor, and its category are stored in \a
- /// Distribution. There can be multiple edges to each successor.
- ///
- /// - If there's a backedge to a non-header, there's an irreducible SCC.
- /// The usual flow is temporarily aborted. \a
- /// computeIrreducibleMass() finds the irreducible SCCs within the
- /// loop, packages them up, and restarts the flow.
- ///
- /// - Normalize the distribution: scale weights down so that their sum
- /// is 32-bits, and coalesce multiple edges to the same node.
- ///
- /// - Distribute the mass accordingly, dithering to minimize mass loss,
- /// as described in \a distributeMass().
- ///
- /// In the case of irreducible loops, instead of a single loop header,
- /// there will be several. The computation of backedge masses is similar
- /// but instead of having a single backedge mass, there will be one
- /// backedge per loop header. In these cases, each backedge will carry
- /// a mass proportional to the edge weights along the corresponding
- /// path.
- ///
- /// At the end of propagation, the full mass assigned to the loop will be
- /// distributed among the loop headers proportionally according to the
- /// mass flowing through their backedges.
- ///
- /// Finally, calculate the loop scale from the accumulated backedge mass.
- ///
- /// 3. Distribute mass in the function (\a computeMassInFunction()).
- ///
- /// Finally, distribute mass through the DAG resulting from packaging all
- /// loops in the function. This uses the same algorithm as distributing
- /// mass in a loop, except that there are no exit or backedge edges.
- ///
- /// 4. Unpackage loops (\a unwrapLoops()).
- ///
- /// Initialize each block's frequency to a floating point representation of
- /// its mass.
- ///
- /// Visit loops top-down, scaling the frequencies of its immediate members
- /// by the loop's pseudo-node's frequency.
- ///
- /// 5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
- ///
- /// Using the min and max frequencies as a guide, translate floating point
- /// frequencies to an appropriate range in uint64_t.
- ///
- /// It has some known flaws.
- ///
- /// - The model of irreducible control flow is a rough approximation.
- ///
- /// Modelling irreducible control flow exactly involves setting up and
- /// solving a group of infinite geometric series. Such precision is
- /// unlikely to be worthwhile, since most of our algorithms give up on
- /// irreducible control flow anyway.
- ///
- /// Nevertheless, we might find that we need to get closer. Here's a sort
- /// of TODO list for the model with diminishing returns, to be completed as
- /// necessary.
- ///
- /// - The headers for the \a LoopData representing an irreducible SCC
- /// include non-entry blocks. When these extra blocks exist, they
- /// indicate a self-contained irreducible sub-SCC. We could treat them
- /// as sub-loops, rather than arbitrarily shoving the problematic
- /// blocks into the headers of the main irreducible SCC.
- ///
- /// - Entry frequencies are assumed to be evenly split between the
- /// headers of a given irreducible SCC, which is the only option if we
- /// need to compute mass in the SCC before its parent loop. Instead,
- /// we could partially compute mass in the parent loop, and stop when
- /// we get to the SCC. Here, we have the correct ratio of entry
- /// masses, which we can use to adjust their relative frequencies.
- /// Compute mass in the SCC, and then continue propagation in the
- /// parent.
- ///
- /// - We can propagate mass iteratively through the SCC, for some fixed
- /// number of iterations. Each iteration starts by assigning the entry
- /// blocks their backedge mass from the prior iteration. The final
- /// mass for each block (and each exit, and the total backedge mass
- /// used for computing loop scale) is the sum of all iterations.
- /// (Running this until fixed point would "solve" the geometric
- /// series by simulation.)
- template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
- // This is part of a workaround for a GCC 4.7 crash on lambdas.
- friend struct bfi_detail::BlockEdgesAdder<BT>;
- using BlockT = typename bfi_detail::TypeMap<BT>::BlockT;
- using BlockKeyT = typename bfi_detail::TypeMap<BT>::BlockKeyT;
- using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT;
- using BranchProbabilityInfoT =
- typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT;
- using LoopT = typename bfi_detail::TypeMap<BT>::LoopT;
- using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT;
- using Successor = GraphTraits<const BlockT *>;
- using Predecessor = GraphTraits<Inverse<const BlockT *>>;
- using BFICallbackVH =
- bfi_detail::BFICallbackVH<BlockT, BlockFrequencyInfoImpl>;
- const BranchProbabilityInfoT *BPI = nullptr;
- const LoopInfoT *LI = nullptr;
- const FunctionT *F = nullptr;
- // All blocks in reverse postorder.
- std::vector<const BlockT *> RPOT;
- DenseMap<BlockKeyT, std::pair<BlockNode, BFICallbackVH>> Nodes;
- using rpot_iterator = typename std::vector<const BlockT *>::const_iterator;
- rpot_iterator rpot_begin() const { return RPOT.begin(); }
- rpot_iterator rpot_end() const { return RPOT.end(); }
- size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
- BlockNode getNode(const rpot_iterator &I) const {
- return BlockNode(getIndex(I));
- }
- BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB).first; }
- const BlockT *getBlock(const BlockNode &Node) const {
- assert(Node.Index < RPOT.size());
- return RPOT[Node.Index];
- }
- /// Run (and save) a post-order traversal.
- ///
- /// Saves a reverse post-order traversal of all the nodes in \a F.
- void initializeRPOT();
- /// Initialize loop data.
- ///
- /// Build up \a Loops using \a LoopInfo. \a LoopInfo gives us a mapping from
- /// each block to the deepest loop it's in, but we need the inverse. For each
- /// loop, we store in reverse post-order its "immediate" members, defined as
- /// the header, the headers of immediate sub-loops, and all other blocks in
- /// the loop that are not in sub-loops.
- void initializeLoops();
- /// Propagate to a block's successors.
- ///
- /// In the context of distributing mass through \c OuterLoop, divide the mass
- /// currently assigned to \c Node between its successors.
- ///
- /// \return \c true unless there's an irreducible backedge.
- bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
- /// Compute mass in a particular loop.
- ///
- /// Assign mass to \c Loop's header, and then for each block in \c Loop in
- /// reverse post-order, distribute mass to its successors. Only visits nodes
- /// that have not been packaged into sub-loops.
- ///
- /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
- /// \return \c true unless there's an irreducible backedge.
- bool computeMassInLoop(LoopData &Loop);
- /// Try to compute mass in the top-level function.
- ///
- /// Assign mass to the entry block, and then for each block in reverse
- /// post-order, distribute mass to its successors. Skips nodes that have
- /// been packaged into loops.
- ///
- /// \pre \a computeMassInLoops() has been called.
- /// \return \c true unless there's an irreducible backedge.
- bool tryToComputeMassInFunction();
- /// Compute mass in (and package up) irreducible SCCs.
- ///
- /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
- /// of \c Insert), and call \a computeMassInLoop() on each of them.
- ///
- /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
- ///
- /// \pre \a computeMassInLoop() has been called for each subloop of \c
- /// OuterLoop.
- /// \pre \c Insert points at the last loop successfully processed by \a
- /// computeMassInLoop().
- /// \pre \c OuterLoop has irreducible SCCs.
- void computeIrreducibleMass(LoopData *OuterLoop,
- std::list<LoopData>::iterator Insert);
- /// Compute mass in all loops.
- ///
- /// For each loop bottom-up, call \a computeMassInLoop().
- ///
- /// \a computeMassInLoop() aborts (and returns \c false) on loops that
- /// contain a irreducible sub-SCCs. Use \a computeIrreducibleMass() and then
- /// re-enter \a computeMassInLoop().
- ///
- /// \post \a computeMassInLoop() has returned \c true for every loop.
- void computeMassInLoops();
- /// Compute mass in the top-level function.
- ///
- /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
- /// compute mass in the top-level function.
- ///
- /// \post \a tryToComputeMassInFunction() has returned \c true.
- void computeMassInFunction();
- std::string getBlockName(const BlockNode &Node) const override {
- return bfi_detail::getBlockName(getBlock(Node));
- }
- /// The current implementation for computing relative block frequencies does
- /// not handle correctly control-flow graphs containing irreducible loops. To
- /// resolve the problem, we apply a post-processing step, which iteratively
- /// updates block frequencies based on the frequencies of their predesessors.
- /// This corresponds to finding the stationary point of the Markov chain by
- /// an iterative method aka "PageRank computation".
- /// The algorithm takes at most O(|E| * IterativeBFIMaxIterations) steps but
- /// typically converges faster.
- ///
- /// Decide whether we want to apply iterative inference for a given function.
- bool needIterativeInference() const;
- /// Apply an iterative post-processing to infer correct counts for irr loops.
- void applyIterativeInference();
- using ProbMatrixType = std::vector<std::vector<std::pair<size_t, Scaled64>>>;
- /// Run iterative inference for a probability matrix and initial frequencies.
- void iterativeInference(const ProbMatrixType &ProbMatrix,
- std::vector<Scaled64> &Freq) const;
- /// Find all blocks to apply inference on, that is, reachable from the entry
- /// and backward reachable from exists along edges with positive probability.
- void findReachableBlocks(std::vector<const BlockT *> &Blocks) const;
- /// Build a matrix of probabilities with transitions (edges) between the
- /// blocks: ProbMatrix[I] holds pairs (J, P), where Pr[J -> I | J] = P
- void initTransitionProbabilities(
- const std::vector<const BlockT *> &Blocks,
- const DenseMap<const BlockT *, size_t> &BlockIndex,
- ProbMatrixType &ProbMatrix) const;
- #ifndef NDEBUG
- /// Compute the discrepancy between current block frequencies and the
- /// probability matrix.
- Scaled64 discrepancy(const ProbMatrixType &ProbMatrix,
- const std::vector<Scaled64> &Freq) const;
- #endif
- public:
- BlockFrequencyInfoImpl() = default;
- const FunctionT *getFunction() const { return F; }
- void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI,
- const LoopInfoT &LI);
- using BlockFrequencyInfoImplBase::getEntryFreq;
- BlockFrequency getBlockFreq(const BlockT *BB) const {
- return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
- }
- Optional<uint64_t> getBlockProfileCount(const Function &F,
- const BlockT *BB,
- bool AllowSynthetic = false) const {
- return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB),
- AllowSynthetic);
- }
- Optional<uint64_t> getProfileCountFromFreq(const Function &F,
- uint64_t Freq,
- bool AllowSynthetic = false) const {
- return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq,
- AllowSynthetic);
- }
- bool isIrrLoopHeader(const BlockT *BB) {
- return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB));
- }
- void setBlockFreq(const BlockT *BB, uint64_t Freq);
- void forgetBlock(const BlockT *BB) {
- // We don't erase corresponding items from `Freqs`, `RPOT` and other to
- // avoid invalidating indices. Doing so would have saved some memory, but
- // it's not worth it.
- Nodes.erase(BB);
- }
- Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
- return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
- }
- const BranchProbabilityInfoT &getBPI() const { return *BPI; }
- /// Print the frequencies for the current function.
- ///
- /// Prints the frequencies for the blocks in the current function.
- ///
- /// Blocks are printed in the natural iteration order of the function, rather
- /// than reverse post-order. This provides two advantages: writing -analyze
- /// tests is easier (since blocks come out in source order), and even
- /// unreachable blocks are printed.
- ///
- /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
- /// we need to override it here.
- raw_ostream &print(raw_ostream &OS) const override;
- using BlockFrequencyInfoImplBase::dump;
- using BlockFrequencyInfoImplBase::printBlockFreq;
- raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
- return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
- }
- void verifyMatch(BlockFrequencyInfoImpl<BT> &Other) const;
- };
- namespace bfi_detail {
- template <class BFIImplT>
- class BFICallbackVH<BasicBlock, BFIImplT> : public CallbackVH {
- BFIImplT *BFIImpl;
- public:
- BFICallbackVH() = default;
- BFICallbackVH(const BasicBlock *BB, BFIImplT *BFIImpl)
- : CallbackVH(BB), BFIImpl(BFIImpl) {}
- virtual ~BFICallbackVH() = default;
- void deleted() override {
- BFIImpl->forgetBlock(cast<BasicBlock>(getValPtr()));
- }
- };
- /// Dummy implementation since MachineBasicBlocks aren't Values, so ValueHandles
- /// don't apply to them.
- template <class BFIImplT>
- class BFICallbackVH<MachineBasicBlock, BFIImplT> {
- public:
- BFICallbackVH() = default;
- BFICallbackVH(const MachineBasicBlock *, BFIImplT *) {}
- };
- } // end namespace bfi_detail
- template <class BT>
- void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F,
- const BranchProbabilityInfoT &BPI,
- const LoopInfoT &LI) {
- // Save the parameters.
- this->BPI = &BPI;
- this->LI = &LI;
- this->F = &F;
- // Clean up left-over data structures.
- BlockFrequencyInfoImplBase::clear();
- RPOT.clear();
- Nodes.clear();
- // Initialize.
- LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName()
- << "\n================="
- << std::string(F.getName().size(), '=') << "\n");
- initializeRPOT();
- initializeLoops();
- // Visit loops in post-order to find the local mass distribution, and then do
- // the full function.
- computeMassInLoops();
- computeMassInFunction();
- unwrapLoops();
- // Apply a post-processing step improving computed frequencies for functions
- // with irreducible loops.
- if (needIterativeInference())
- applyIterativeInference();
- finalizeMetrics();
- if (CheckBFIUnknownBlockQueries) {
- // To detect BFI queries for unknown blocks, add entries for unreachable
- // blocks, if any. This is to distinguish between known/existing unreachable
- // blocks and unknown blocks.
- for (const BlockT &BB : F)
- if (!Nodes.count(&BB))
- setBlockFreq(&BB, 0);
- }
- }
- template <class BT>
- void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) {
- if (Nodes.count(BB))
- BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq);
- else {
- // If BB is a newly added block after BFI is done, we need to create a new
- // BlockNode for it assigned with a new index. The index can be determined
- // by the size of Freqs.
- BlockNode NewNode(Freqs.size());
- Nodes[BB] = {NewNode, BFICallbackVH(BB, this)};
- Freqs.emplace_back();
- BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq);
- }
- }
- template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
- const BlockT *Entry = &F->front();
- RPOT.reserve(F->size());
- std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
- std::reverse(RPOT.begin(), RPOT.end());
- assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
- "More nodes in function than Block Frequency Info supports");
- LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n");
- for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
- BlockNode Node = getNode(I);
- LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node)
- << "\n");
- Nodes[*I] = {Node, BFICallbackVH(*I, this)};
- }
- Working.reserve(RPOT.size());
- for (size_t Index = 0; Index < RPOT.size(); ++Index)
- Working.emplace_back(Index);
- Freqs.resize(RPOT.size());
- }
- template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
- LLVM_DEBUG(dbgs() << "loop-detection\n");
- if (LI->empty())
- return;
- // Visit loops top down and assign them an index.
- std::deque<std::pair<const LoopT *, LoopData *>> Q;
- for (const LoopT *L : *LI)
- Q.emplace_back(L, nullptr);
- while (!Q.empty()) {
- const LoopT *Loop = Q.front().first;
- LoopData *Parent = Q.front().second;
- Q.pop_front();
- BlockNode Header = getNode(Loop->getHeader());
- assert(Header.isValid());
- Loops.emplace_back(Parent, Header);
- Working[Header.Index].Loop = &Loops.back();
- LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
- for (const LoopT *L : *Loop)
- Q.emplace_back(L, &Loops.back());
- }
- // Visit nodes in reverse post-order and add them to their deepest containing
- // loop.
- for (size_t Index = 0; Index < RPOT.size(); ++Index) {
- // Loop headers have already been mostly mapped.
- if (Working[Index].isLoopHeader()) {
- LoopData *ContainingLoop = Working[Index].getContainingLoop();
- if (ContainingLoop)
- ContainingLoop->Nodes.push_back(Index);
- continue;
- }
- const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
- if (!Loop)
- continue;
- // Add this node to its containing loop's member list.
- BlockNode Header = getNode(Loop->getHeader());
- assert(Header.isValid());
- const auto &HeaderData = Working[Header.Index];
- assert(HeaderData.isLoopHeader());
- Working[Index].Loop = HeaderData.Loop;
- HeaderData.Loop->Nodes.push_back(Index);
- LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header)
- << ": member = " << getBlockName(Index) << "\n");
- }
- }
- template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
- // Visit loops with the deepest first, and the top-level loops last.
- for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
- if (computeMassInLoop(*L))
- continue;
- auto Next = std::next(L);
- computeIrreducibleMass(&*L, L.base());
- L = std::prev(Next);
- if (computeMassInLoop(*L))
- continue;
- llvm_unreachable("unhandled irreducible control flow");
- }
- }
- template <class BT>
- bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
- // Compute mass in loop.
- LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
- if (Loop.isIrreducible()) {
- LLVM_DEBUG(dbgs() << "isIrreducible = true\n");
- Distribution Dist;
- unsigned NumHeadersWithWeight = 0;
- Optional<uint64_t> MinHeaderWeight;
- DenseSet<uint32_t> HeadersWithoutWeight;
- HeadersWithoutWeight.reserve(Loop.NumHeaders);
- for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
- auto &HeaderNode = Loop.Nodes[H];
- const BlockT *Block = getBlock(HeaderNode);
- IsIrrLoopHeader.set(Loop.Nodes[H].Index);
- Optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight();
- if (!HeaderWeight) {
- LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on "
- << getBlockName(HeaderNode) << "\n");
- HeadersWithoutWeight.insert(H);
- continue;
- }
- LLVM_DEBUG(dbgs() << getBlockName(HeaderNode)
- << " has irr loop header weight "
- << HeaderWeight.getValue() << "\n");
- NumHeadersWithWeight++;
- uint64_t HeaderWeightValue = HeaderWeight.getValue();
- if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight)
- MinHeaderWeight = HeaderWeightValue;
- if (HeaderWeightValue) {
- Dist.addLocal(HeaderNode, HeaderWeightValue);
- }
- }
- // As a heuristic, if some headers don't have a weight, give them the
- // minimum weight seen (not to disrupt the existing trends too much by
- // using a weight that's in the general range of the other headers' weights,
- // and the minimum seems to perform better than the average.)
- // FIXME: better update in the passes that drop the header weight.
- // If no headers have a weight, give them even weight (use weight 1).
- if (!MinHeaderWeight)
- MinHeaderWeight = 1;
- for (uint32_t H : HeadersWithoutWeight) {
- auto &HeaderNode = Loop.Nodes[H];
- assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() &&
- "Shouldn't have a weight metadata");
- uint64_t MinWeight = MinHeaderWeight.getValue();
- LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to "
- << getBlockName(HeaderNode) << "\n");
- if (MinWeight)
- Dist.addLocal(HeaderNode, MinWeight);
- }
- distributeIrrLoopHeaderMass(Dist);
- for (const BlockNode &M : Loop.Nodes)
- if (!propagateMassToSuccessors(&Loop, M))
- llvm_unreachable("unhandled irreducible control flow");
- if (NumHeadersWithWeight == 0)
- // No headers have a metadata. Adjust header mass.
- adjustLoopHeaderMass(Loop);
- } else {
- Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
- if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
- llvm_unreachable("irreducible control flow to loop header!?");
- for (const BlockNode &M : Loop.members())
- if (!propagateMassToSuccessors(&Loop, M))
- // Irreducible backedge.
- return false;
- }
- computeLoopScale(Loop);
- packageLoop(Loop);
- return true;
- }
- template <class BT>
- bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
- // Compute mass in function.
- LLVM_DEBUG(dbgs() << "compute-mass-in-function\n");
- assert(!Working.empty() && "no blocks in function");
- assert(!Working[0].isLoopHeader() && "entry block is a loop header");
- Working[0].getMass() = BlockMass::getFull();
- for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
- // Check for nodes that have been packaged.
- BlockNode Node = getNode(I);
- if (Working[Node.Index].isPackaged())
- continue;
- if (!propagateMassToSuccessors(nullptr, Node))
- return false;
- }
- return true;
- }
- template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
- if (tryToComputeMassInFunction())
- return;
- computeIrreducibleMass(nullptr, Loops.begin());
- if (tryToComputeMassInFunction())
- return;
- llvm_unreachable("unhandled irreducible control flow");
- }
- template <class BT>
- bool BlockFrequencyInfoImpl<BT>::needIterativeInference() const {
- if (!UseIterativeBFIInference)
- return false;
- if (!F->getFunction().hasProfileData())
- return false;
- // Apply iterative inference only if the function contains irreducible loops;
- // otherwise, computed block frequencies are reasonably correct.
- for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
- if (L->isIrreducible())
- return true;
- }
- return false;
- }
- template <class BT> void BlockFrequencyInfoImpl<BT>::applyIterativeInference() {
- // Extract blocks for processing: a block is considered for inference iff it
- // can be reached from the entry by edges with a positive probability.
- // Non-processed blocks are assigned with the zero frequency and are ignored
- // in the computation
- std::vector<const BlockT *> ReachableBlocks;
- findReachableBlocks(ReachableBlocks);
- if (ReachableBlocks.empty())
- return;
- // The map is used to to index successors/predecessors of reachable blocks in
- // the ReachableBlocks vector
- DenseMap<const BlockT *, size_t> BlockIndex;
- // Extract initial frequencies for the reachable blocks
- auto Freq = std::vector<Scaled64>(ReachableBlocks.size());
- Scaled64 SumFreq;
- for (size_t I = 0; I < ReachableBlocks.size(); I++) {
- const BlockT *BB = ReachableBlocks[I];
- BlockIndex[BB] = I;
- Freq[I] = getFloatingBlockFreq(BB);
- SumFreq += Freq[I];
- }
- assert(!SumFreq.isZero() && "empty initial block frequencies");
- LLVM_DEBUG(dbgs() << "Applying iterative inference for " << F->getName()
- << " with " << ReachableBlocks.size() << " blocks\n");
- // Normalizing frequencies so they sum up to 1.0
- for (auto &Value : Freq) {
- Value /= SumFreq;
- }
- // Setting up edge probabilities using sparse matrix representation:
- // ProbMatrix[I] holds a vector of pairs (J, P) where Pr[J -> I | J] = P
- ProbMatrixType ProbMatrix;
- initTransitionProbabilities(ReachableBlocks, BlockIndex, ProbMatrix);
- // Run the propagation
- iterativeInference(ProbMatrix, Freq);
- // Assign computed frequency values
- for (const BlockT &BB : *F) {
- auto Node = getNode(&BB);
- if (!Node.isValid())
- continue;
- if (BlockIndex.count(&BB)) {
- Freqs[Node.Index].Scaled = Freq[BlockIndex[&BB]];
- } else {
- Freqs[Node.Index].Scaled = Scaled64::getZero();
- }
- }
- }
- template <class BT>
- void BlockFrequencyInfoImpl<BT>::iterativeInference(
- const ProbMatrixType &ProbMatrix, std::vector<Scaled64> &Freq) const {
- assert(0.0 < IterativeBFIPrecision && IterativeBFIPrecision < 1.0 &&
- "incorrectly specified precision");
- // Convert double precision to Scaled64
- const auto Precision =
- Scaled64::getInverse(static_cast<uint64_t>(1.0 / IterativeBFIPrecision));
- const size_t MaxIterations = IterativeBFIMaxIterationsPerBlock * Freq.size();
- #ifndef NDEBUG
- LLVM_DEBUG(dbgs() << " Initial discrepancy = "
- << discrepancy(ProbMatrix, Freq).toString() << "\n");
- #endif
- // Successors[I] holds unique sucessors of the I-th block
- auto Successors = std::vector<std::vector<size_t>>(Freq.size());
- for (size_t I = 0; I < Freq.size(); I++) {
- for (auto &Jump : ProbMatrix[I]) {
- Successors[Jump.first].push_back(I);
- }
- }
- // To speedup computation, we maintain a set of "active" blocks whose
- // frequencies need to be updated based on the incoming edges.
- // The set is dynamic and changes after every update. Initially all blocks
- // with a positive frequency are active
- auto IsActive = BitVector(Freq.size(), false);
- std::queue<size_t> ActiveSet;
- for (size_t I = 0; I < Freq.size(); I++) {
- if (Freq[I] > 0) {
- ActiveSet.push(I);
- IsActive[I] = true;
- }
- }
- // Iterate over the blocks propagating frequencies
- size_t It = 0;
- while (It++ < MaxIterations && !ActiveSet.empty()) {
- size_t I = ActiveSet.front();
- ActiveSet.pop();
- IsActive[I] = false;
- // Compute a new frequency for the block: NewFreq := Freq \times ProbMatrix.
- // A special care is taken for self-edges that needs to be scaled by
- // (1.0 - SelfProb), where SelfProb is the sum of probabilities on the edges
- Scaled64 NewFreq;
- Scaled64 OneMinusSelfProb = Scaled64::getOne();
- for (auto &Jump : ProbMatrix[I]) {
- if (Jump.first == I) {
- OneMinusSelfProb -= Jump.second;
- } else {
- NewFreq += Freq[Jump.first] * Jump.second;
- }
- }
- if (OneMinusSelfProb != Scaled64::getOne())
- NewFreq /= OneMinusSelfProb;
- // If the block's frequency has changed enough, then
- // make sure the block and its successors are in the active set
- auto Change = Freq[I] >= NewFreq ? Freq[I] - NewFreq : NewFreq - Freq[I];
- if (Change > Precision) {
- ActiveSet.push(I);
- IsActive[I] = true;
- for (size_t Succ : Successors[I]) {
- if (!IsActive[Succ]) {
- ActiveSet.push(Succ);
- IsActive[Succ] = true;
- }
- }
- }
- // Update the frequency for the block
- Freq[I] = NewFreq;
- }
- LLVM_DEBUG(dbgs() << " Completed " << It << " inference iterations"
- << format(" (%0.0f per block)", double(It) / Freq.size())
- << "\n");
- #ifndef NDEBUG
- LLVM_DEBUG(dbgs() << " Final discrepancy = "
- << discrepancy(ProbMatrix, Freq).toString() << "\n");
- #endif
- }
- template <class BT>
- void BlockFrequencyInfoImpl<BT>::findReachableBlocks(
- std::vector<const BlockT *> &Blocks) const {
- // Find all blocks to apply inference on, that is, reachable from the entry
- // along edges with non-zero probablities
- std::queue<const BlockT *> Queue;
- std::unordered_set<const BlockT *> Reachable;
- const BlockT *Entry = &F->front();
- Queue.push(Entry);
- Reachable.insert(Entry);
- while (!Queue.empty()) {
- const BlockT *SrcBB = Queue.front();
- Queue.pop();
- for (const BlockT *DstBB : children<const BlockT *>(SrcBB)) {
- auto EP = BPI->getEdgeProbability(SrcBB, DstBB);
- if (EP.isZero())
- continue;
- if (Reachable.find(DstBB) == Reachable.end()) {
- Queue.push(DstBB);
- Reachable.insert(DstBB);
- }
- }
- }
- // Find all blocks to apply inference on, that is, backward reachable from
- // the entry along (backward) edges with non-zero probablities
- std::unordered_set<const BlockT *> InverseReachable;
- for (const BlockT &BB : *F) {
- // An exit block is a block without any successors
- bool HasSucc = GraphTraits<const BlockT *>::child_begin(&BB) !=
- GraphTraits<const BlockT *>::child_end(&BB);
- if (!HasSucc && Reachable.count(&BB)) {
- Queue.push(&BB);
- InverseReachable.insert(&BB);
- }
- }
- while (!Queue.empty()) {
- const BlockT *SrcBB = Queue.front();
- Queue.pop();
- for (const BlockT *DstBB : children<Inverse<const BlockT *>>(SrcBB)) {
- auto EP = BPI->getEdgeProbability(DstBB, SrcBB);
- if (EP.isZero())
- continue;
- if (InverseReachable.find(DstBB) == InverseReachable.end()) {
- Queue.push(DstBB);
- InverseReachable.insert(DstBB);
- }
- }
- }
- // Collect the result
- Blocks.reserve(F->size());
- for (const BlockT &BB : *F) {
- if (Reachable.count(&BB) && InverseReachable.count(&BB)) {
- Blocks.push_back(&BB);
- }
- }
- }
- template <class BT>
- void BlockFrequencyInfoImpl<BT>::initTransitionProbabilities(
- const std::vector<const BlockT *> &Blocks,
- const DenseMap<const BlockT *, size_t> &BlockIndex,
- ProbMatrixType &ProbMatrix) const {
- const size_t NumBlocks = Blocks.size();
- auto Succs = std::vector<std::vector<std::pair<size_t, Scaled64>>>(NumBlocks);
- auto SumProb = std::vector<Scaled64>(NumBlocks);
- // Find unique successors and corresponding probabilities for every block
- for (size_t Src = 0; Src < NumBlocks; Src++) {
- const BlockT *BB = Blocks[Src];
- std::unordered_set<const BlockT *> UniqueSuccs;
- for (const auto SI : children<const BlockT *>(BB)) {
- // Ignore cold blocks
- if (BlockIndex.find(SI) == BlockIndex.end())
- continue;
- // Ignore parallel edges between BB and SI blocks
- if (UniqueSuccs.find(SI) != UniqueSuccs.end())
- continue;
- UniqueSuccs.insert(SI);
- // Ignore jumps with zero probability
- auto EP = BPI->getEdgeProbability(BB, SI);
- if (EP.isZero())
- continue;
- auto EdgeProb =
- Scaled64::getFraction(EP.getNumerator(), EP.getDenominator());
- size_t Dst = BlockIndex.find(SI)->second;
- Succs[Src].push_back(std::make_pair(Dst, EdgeProb));
- SumProb[Src] += EdgeProb;
- }
- }
- // Add transitions for every jump with positive branch probability
- ProbMatrix = ProbMatrixType(NumBlocks);
- for (size_t Src = 0; Src < NumBlocks; Src++) {
- // Ignore blocks w/o successors
- if (Succs[Src].empty())
- continue;
- assert(!SumProb[Src].isZero() && "Zero sum probability of non-exit block");
- for (auto &Jump : Succs[Src]) {
- size_t Dst = Jump.first;
- Scaled64 Prob = Jump.second;
- ProbMatrix[Dst].push_back(std::make_pair(Src, Prob / SumProb[Src]));
- }
- }
- // Add transitions from sinks to the source
- size_t EntryIdx = BlockIndex.find(&F->front())->second;
- for (size_t Src = 0; Src < NumBlocks; Src++) {
- if (Succs[Src].empty()) {
- ProbMatrix[EntryIdx].push_back(std::make_pair(Src, Scaled64::getOne()));
- }
- }
- }
- #ifndef NDEBUG
- template <class BT>
- BlockFrequencyInfoImplBase::Scaled64 BlockFrequencyInfoImpl<BT>::discrepancy(
- const ProbMatrixType &ProbMatrix, const std::vector<Scaled64> &Freq) const {
- assert(Freq[0] > 0 && "Incorrectly computed frequency of the entry block");
- Scaled64 Discrepancy;
- for (size_t I = 0; I < ProbMatrix.size(); I++) {
- Scaled64 Sum;
- for (const auto &Jump : ProbMatrix[I]) {
- Sum += Freq[Jump.first] * Jump.second;
- }
- Discrepancy += Freq[I] >= Sum ? Freq[I] - Sum : Sum - Freq[I];
- }
- // Normalizing by the frequency of the entry block
- return Discrepancy / Freq[0];
- }
- #endif
- /// \note This should be a lambda, but that crashes GCC 4.7.
- namespace bfi_detail {
- template <class BT> struct BlockEdgesAdder {
- using BlockT = BT;
- using LoopData = BlockFrequencyInfoImplBase::LoopData;
- using Successor = GraphTraits<const BlockT *>;
- const BlockFrequencyInfoImpl<BT> &BFI;
- explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
- : BFI(BFI) {}
- void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
- const LoopData *OuterLoop) {
- const BlockT *BB = BFI.RPOT[Irr.Node.Index];
- for (const auto Succ : children<const BlockT *>(BB))
- G.addEdge(Irr, BFI.getNode(Succ), OuterLoop);
- }
- };
- } // end namespace bfi_detail
- template <class BT>
- void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
- LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
- LLVM_DEBUG(dbgs() << "analyze-irreducible-in-";
- if (OuterLoop) dbgs()
- << "loop: " << getLoopName(*OuterLoop) << "\n";
- else dbgs() << "function\n");
- using namespace bfi_detail;
- // Ideally, addBlockEdges() would be declared here as a lambda, but that
- // crashes GCC 4.7.
- BlockEdgesAdder<BT> addBlockEdges(*this);
- IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
- for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
- computeMassInLoop(L);
- if (!OuterLoop)
- return;
- updateLoopWithIrreducible(*OuterLoop);
- }
- // A helper function that converts a branch probability into weight.
- inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) {
- return Prob.getNumerator();
- }
- template <class BT>
- bool
- BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
- const BlockNode &Node) {
- LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
- // Calculate probability for successors.
- Distribution Dist;
- if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
- assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
- if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
- // Irreducible backedge.
- return false;
- } else {
- const BlockT *BB = getBlock(Node);
- for (auto SI = GraphTraits<const BlockT *>::child_begin(BB),
- SE = GraphTraits<const BlockT *>::child_end(BB);
- SI != SE; ++SI)
- if (!addToDist(
- Dist, OuterLoop, Node, getNode(*SI),
- getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI))))
- // Irreducible backedge.
- return false;
- }
- // Distribute mass to successors, saving exit and backedge data in the
- // loop header.
- distributeMass(Node, OuterLoop, Dist);
- return true;
- }
- template <class BT>
- raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
- if (!F)
- return OS;
- OS << "block-frequency-info: " << F->getName() << "\n";
- for (const BlockT &BB : *F) {
- OS << " - " << bfi_detail::getBlockName(&BB) << ": float = ";
- getFloatingBlockFreq(&BB).print(OS, 5)
- << ", int = " << getBlockFreq(&BB).getFrequency();
- if (Optional<uint64_t> ProfileCount =
- BlockFrequencyInfoImplBase::getBlockProfileCount(
- F->getFunction(), getNode(&BB)))
- OS << ", count = " << ProfileCount.getValue();
- if (Optional<uint64_t> IrrLoopHeaderWeight =
- BB.getIrrLoopHeaderWeight())
- OS << ", irr_loop_header_weight = " << IrrLoopHeaderWeight.getValue();
- OS << "\n";
- }
- // Add an extra newline for readability.
- OS << "\n";
- return OS;
- }
- template <class BT>
- void BlockFrequencyInfoImpl<BT>::verifyMatch(
- BlockFrequencyInfoImpl<BT> &Other) const {
- bool Match = true;
- DenseMap<const BlockT *, BlockNode> ValidNodes;
- DenseMap<const BlockT *, BlockNode> OtherValidNodes;
- for (auto &Entry : Nodes) {
- const BlockT *BB = Entry.first;
- if (BB) {
- ValidNodes[BB] = Entry.second.first;
- }
- }
- for (auto &Entry : Other.Nodes) {
- const BlockT *BB = Entry.first;
- if (BB) {
- OtherValidNodes[BB] = Entry.second.first;
- }
- }
- unsigned NumValidNodes = ValidNodes.size();
- unsigned NumOtherValidNodes = OtherValidNodes.size();
- if (NumValidNodes != NumOtherValidNodes) {
- Match = false;
- dbgs() << "Number of blocks mismatch: " << NumValidNodes << " vs "
- << NumOtherValidNodes << "\n";
- } else {
- for (auto &Entry : ValidNodes) {
- const BlockT *BB = Entry.first;
- BlockNode Node = Entry.second;
- if (OtherValidNodes.count(BB)) {
- BlockNode OtherNode = OtherValidNodes[BB];
- const auto &Freq = Freqs[Node.Index];
- const auto &OtherFreq = Other.Freqs[OtherNode.Index];
- if (Freq.Integer != OtherFreq.Integer) {
- Match = false;
- dbgs() << "Freq mismatch: " << bfi_detail::getBlockName(BB) << " "
- << Freq.Integer << " vs " << OtherFreq.Integer << "\n";
- }
- } else {
- Match = false;
- dbgs() << "Block " << bfi_detail::getBlockName(BB) << " index "
- << Node.Index << " does not exist in Other.\n";
- }
- }
- // If there's a valid node in OtherValidNodes that's not in ValidNodes,
- // either the above num check or the check on OtherValidNodes will fail.
- }
- if (!Match) {
- dbgs() << "This\n";
- print(dbgs());
- dbgs() << "Other\n";
- Other.print(dbgs());
- }
- assert(Match && "BFI mismatch");
- }
- // Graph trait base class for block frequency information graph
- // viewer.
- enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count };
- template <class BlockFrequencyInfoT, class BranchProbabilityInfoT>
- struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits {
- using GTraits = GraphTraits<BlockFrequencyInfoT *>;
- using NodeRef = typename GTraits::NodeRef;
- using EdgeIter = typename GTraits::ChildIteratorType;
- using NodeIter = typename GTraits::nodes_iterator;
- uint64_t MaxFrequency = 0;
- explicit BFIDOTGraphTraitsBase(bool isSimple = false)
- : DefaultDOTGraphTraits(isSimple) {}
- static StringRef getGraphName(const BlockFrequencyInfoT *G) {
- return G->getFunction()->getName();
- }
- std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph,
- unsigned HotPercentThreshold = 0) {
- std::string Result;
- if (!HotPercentThreshold)
- return Result;
- // Compute MaxFrequency on the fly:
- if (!MaxFrequency) {
- for (NodeIter I = GTraits::nodes_begin(Graph),
- E = GTraits::nodes_end(Graph);
- I != E; ++I) {
- NodeRef N = *I;
- MaxFrequency =
- std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency());
- }
- }
- BlockFrequency Freq = Graph->getBlockFreq(Node);
- BlockFrequency HotFreq =
- (BlockFrequency(MaxFrequency) *
- BranchProbability::getBranchProbability(HotPercentThreshold, 100));
- if (Freq < HotFreq)
- return Result;
- raw_string_ostream OS(Result);
- OS << "color=\"red\"";
- OS.flush();
- return Result;
- }
- std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph,
- GVDAGType GType, int layout_order = -1) {
- std::string Result;
- raw_string_ostream OS(Result);
- if (layout_order != -1)
- OS << Node->getName() << "[" << layout_order << "] : ";
- else
- OS << Node->getName() << " : ";
- switch (GType) {
- case GVDT_Fraction:
- Graph->printBlockFreq(OS, Node);
- break;
- case GVDT_Integer:
- OS << Graph->getBlockFreq(Node).getFrequency();
- break;
- case GVDT_Count: {
- auto Count = Graph->getBlockProfileCount(Node);
- if (Count)
- OS << Count.getValue();
- else
- OS << "Unknown";
- break;
- }
- case GVDT_None:
- llvm_unreachable("If we are not supposed to render a graph we should "
- "never reach this point.");
- }
- return Result;
- }
- std::string getEdgeAttributes(NodeRef Node, EdgeIter EI,
- const BlockFrequencyInfoT *BFI,
- const BranchProbabilityInfoT *BPI,
- unsigned HotPercentThreshold = 0) {
- std::string Str;
- if (!BPI)
- return Str;
- BranchProbability BP = BPI->getEdgeProbability(Node, EI);
- uint32_t N = BP.getNumerator();
- uint32_t D = BP.getDenominator();
- double Percent = 100.0 * N / D;
- raw_string_ostream OS(Str);
- OS << format("label=\"%.1f%%\"", Percent);
- if (HotPercentThreshold) {
- BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP;
- BlockFrequency HotFreq = BlockFrequency(MaxFrequency) *
- BranchProbability(HotPercentThreshold, 100);
- if (EFreq >= HotFreq) {
- OS << ",color=\"red\"";
- }
- }
- OS.flush();
- return Str;
- }
- };
- } // end namespace llvm
- #undef DEBUG_TYPE
- #endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|