123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- llvm/ADT/SparseSet.h - Sparse set ------------------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// This file defines the SparseSet class derived from the version described in
- /// Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters
- /// on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993.
- ///
- /// A sparse set holds a small number of objects identified by integer keys from
- /// a moderately sized universe. The sparse set uses more memory than other
- /// containers in order to provide faster operations.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_SPARSESET_H
- #define LLVM_ADT_SPARSESET_H
- #include "llvm/ADT/identity.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Support/AllocatorBase.h"
- #include <cassert>
- #include <cstdint>
- #include <cstdlib>
- #include <limits>
- #include <utility>
- namespace llvm {
- /// SparseSetValTraits - Objects in a SparseSet are identified by keys that can
- /// be uniquely converted to a small integer less than the set's universe. This
- /// class allows the set to hold values that differ from the set's key type as
- /// long as an index can still be derived from the value. SparseSet never
- /// directly compares ValueT, only their indices, so it can map keys to
- /// arbitrary values. SparseSetValTraits computes the index from the value
- /// object. To compute the index from a key, SparseSet uses a separate
- /// KeyFunctorT template argument.
- ///
- /// A simple type declaration, SparseSet<Type>, handles these cases:
- /// - unsigned key, identity index, identity value
- /// - unsigned key, identity index, fat value providing getSparseSetIndex()
- ///
- /// The type declaration SparseSet<Type, UnaryFunction> handles:
- /// - unsigned key, remapped index, identity value (virtual registers)
- /// - pointer key, pointer-derived index, identity value (node+ID)
- /// - pointer key, pointer-derived index, fat value with getSparseSetIndex()
- ///
- /// Only other, unexpected cases require specializing SparseSetValTraits.
- ///
- /// For best results, ValueT should not require a destructor.
- ///
- template<typename ValueT>
- struct SparseSetValTraits {
- static unsigned getValIndex(const ValueT &Val) {
- return Val.getSparseSetIndex();
- }
- };
- /// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The
- /// generic implementation handles ValueT classes which either provide
- /// getSparseSetIndex() or specialize SparseSetValTraits<>.
- ///
- template<typename KeyT, typename ValueT, typename KeyFunctorT>
- struct SparseSetValFunctor {
- unsigned operator()(const ValueT &Val) const {
- return SparseSetValTraits<ValueT>::getValIndex(Val);
- }
- };
- /// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of
- /// identity key/value sets.
- template<typename KeyT, typename KeyFunctorT>
- struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> {
- unsigned operator()(const KeyT &Key) const {
- return KeyFunctorT()(Key);
- }
- };
- /// SparseSet - Fast set implementation for objects that can be identified by
- /// small unsigned keys.
- ///
- /// SparseSet allocates memory proportional to the size of the key universe, so
- /// it is not recommended for building composite data structures. It is useful
- /// for algorithms that require a single set with fast operations.
- ///
- /// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast
- /// clear() and iteration as fast as a vector. The find(), insert(), and
- /// erase() operations are all constant time, and typically faster than a hash
- /// table. The iteration order doesn't depend on numerical key values, it only
- /// depends on the order of insert() and erase() operations. When no elements
- /// have been erased, the iteration order is the insertion order.
- ///
- /// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but
- /// offers constant-time clear() and size() operations as well as fast
- /// iteration independent on the size of the universe.
- ///
- /// SparseSet contains a dense vector holding all the objects and a sparse
- /// array holding indexes into the dense vector. Most of the memory is used by
- /// the sparse array which is the size of the key universe. The SparseT
- /// template parameter provides a space/speed tradeoff for sets holding many
- /// elements.
- ///
- /// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse
- /// array uses 4 x Universe bytes.
- ///
- /// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache
- /// lines, but the sparse array is 4x smaller. N is the number of elements in
- /// the set.
- ///
- /// For sets that may grow to thousands of elements, SparseT should be set to
- /// uint16_t or uint32_t.
- ///
- /// @tparam ValueT The type of objects in the set.
- /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
- /// @tparam SparseT An unsigned integer type. See above.
- ///
- template<typename ValueT,
- typename KeyFunctorT = identity<unsigned>,
- typename SparseT = uint8_t>
- class SparseSet {
- static_assert(std::numeric_limits<SparseT>::is_integer &&
- !std::numeric_limits<SparseT>::is_signed,
- "SparseT must be an unsigned integer type");
- using KeyT = typename KeyFunctorT::argument_type;
- using DenseT = SmallVector<ValueT, 8>;
- using size_type = unsigned;
- DenseT Dense;
- SparseT *Sparse = nullptr;
- unsigned Universe = 0;
- KeyFunctorT KeyIndexOf;
- SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
- public:
- using value_type = ValueT;
- using reference = ValueT &;
- using const_reference = const ValueT &;
- using pointer = ValueT *;
- using const_pointer = const ValueT *;
- SparseSet() = default;
- SparseSet(const SparseSet &) = delete;
- SparseSet &operator=(const SparseSet &) = delete;
- ~SparseSet() { free(Sparse); }
- /// setUniverse - Set the universe size which determines the largest key the
- /// set can hold. The universe must be sized before any elements can be
- /// added.
- ///
- /// @param U Universe size. All object keys must be less than U.
- ///
- void setUniverse(unsigned U) {
- // It's not hard to resize the universe on a non-empty set, but it doesn't
- // seem like a likely use case, so we can add that code when we need it.
- assert(empty() && "Can only resize universe on an empty map");
- // Hysteresis prevents needless reallocations.
- if (U >= Universe/4 && U <= Universe)
- return;
- free(Sparse);
- // The Sparse array doesn't actually need to be initialized, so malloc
- // would be enough here, but that will cause tools like valgrind to
- // complain about branching on uninitialized data.
- Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT)));
- Universe = U;
- }
- // Import trivial vector stuff from DenseT.
- using iterator = typename DenseT::iterator;
- using const_iterator = typename DenseT::const_iterator;
- const_iterator begin() const { return Dense.begin(); }
- const_iterator end() const { return Dense.end(); }
- iterator begin() { return Dense.begin(); }
- iterator end() { return Dense.end(); }
- /// empty - Returns true if the set is empty.
- ///
- /// This is not the same as BitVector::empty().
- ///
- bool empty() const { return Dense.empty(); }
- /// size - Returns the number of elements in the set.
- ///
- /// This is not the same as BitVector::size() which returns the size of the
- /// universe.
- ///
- size_type size() const { return Dense.size(); }
- /// clear - Clears the set. This is a very fast constant time operation.
- ///
- void clear() {
- // Sparse does not need to be cleared, see find().
- Dense.clear();
- }
- /// findIndex - Find an element by its index.
- ///
- /// @param Idx A valid index to find.
- /// @returns An iterator to the element identified by key, or end().
- ///
- iterator findIndex(unsigned Idx) {
- assert(Idx < Universe && "Key out of range");
- const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
- for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) {
- const unsigned FoundIdx = ValIndexOf(Dense[i]);
- assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?");
- if (Idx == FoundIdx)
- return begin() + i;
- // Stride is 0 when SparseT >= unsigned. We don't need to loop.
- if (!Stride)
- break;
- }
- return end();
- }
- /// find - Find an element by its key.
- ///
- /// @param Key A valid key to find.
- /// @returns An iterator to the element identified by key, or end().
- ///
- iterator find(const KeyT &Key) {
- return findIndex(KeyIndexOf(Key));
- }
- const_iterator find(const KeyT &Key) const {
- return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key));
- }
- /// Check if the set contains the given \c Key.
- ///
- /// @param Key A valid key to find.
- bool contains(const KeyT &Key) const { return find(Key) == end() ? 0 : 1; }
- /// count - Returns 1 if this set contains an element identified by Key,
- /// 0 otherwise.
- ///
- size_type count(const KeyT &Key) const { return contains(Key) ? 1 : 0; }
- /// insert - Attempts to insert a new element.
- ///
- /// If Val is successfully inserted, return (I, true), where I is an iterator
- /// pointing to the newly inserted element.
- ///
- /// If the set already contains an element with the same key as Val, return
- /// (I, false), where I is an iterator pointing to the existing element.
- ///
- /// Insertion invalidates all iterators.
- ///
- std::pair<iterator, bool> insert(const ValueT &Val) {
- unsigned Idx = ValIndexOf(Val);
- iterator I = findIndex(Idx);
- if (I != end())
- return std::make_pair(I, false);
- Sparse[Idx] = size();
- Dense.push_back(Val);
- return std::make_pair(end() - 1, true);
- }
- /// array subscript - If an element already exists with this key, return it.
- /// Otherwise, automatically construct a new value from Key, insert it,
- /// and return the newly inserted element.
- ValueT &operator[](const KeyT &Key) {
- return *insert(ValueT(Key)).first;
- }
- ValueT pop_back_val() {
- // Sparse does not need to be cleared, see find().
- return Dense.pop_back_val();
- }
- /// erase - Erases an existing element identified by a valid iterator.
- ///
- /// This invalidates all iterators, but erase() returns an iterator pointing
- /// to the next element. This makes it possible to erase selected elements
- /// while iterating over the set:
- ///
- /// for (SparseSet::iterator I = Set.begin(); I != Set.end();)
- /// if (test(*I))
- /// I = Set.erase(I);
- /// else
- /// ++I;
- ///
- /// Note that end() changes when elements are erased, unlike std::list.
- ///
- iterator erase(iterator I) {
- assert(unsigned(I - begin()) < size() && "Invalid iterator");
- if (I != end() - 1) {
- *I = Dense.back();
- unsigned BackIdx = ValIndexOf(Dense.back());
- assert(BackIdx < Universe && "Invalid key in set. Did object mutate?");
- Sparse[BackIdx] = I - begin();
- }
- // This depends on SmallVector::pop_back() not invalidating iterators.
- // std::vector::pop_back() doesn't give that guarantee.
- Dense.pop_back();
- return I;
- }
- /// erase - Erases an element identified by Key, if it exists.
- ///
- /// @param Key The key identifying the element to erase.
- /// @returns True when an element was erased, false if no element was found.
- ///
- bool erase(const KeyT &Key) {
- iterator I = find(Key);
- if (I == end())
- return false;
- erase(I);
- return true;
- }
- };
- } // end namespace llvm
- #endif // LLVM_ADT_SPARSESET_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|