123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- ADT/SCCIterator.h - Strongly Connected Comp. Iter. -------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- /// \file
- ///
- /// This builds on the llvm/ADT/GraphTraits.h file to find the strongly
- /// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS
- /// algorithm.
- ///
- /// The SCC iterator has the important property that if a node in SCC S1 has an
- /// edge to a node in SCC S2, then it visits S1 *after* S2.
- ///
- /// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE:
- /// This requires some simple wrappers and is not supported yet.)
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_SCCITERATOR_H
- #define LLVM_ADT_SCCITERATOR_H
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/GraphTraits.h"
- #include "llvm/ADT/iterator.h"
- #include <cassert>
- #include <cstddef>
- #include <iterator>
- #include <queue>
- #include <set>
- #include <unordered_map>
- #include <unordered_set>
- #include <vector>
- namespace llvm {
- /// Enumerate the SCCs of a directed graph in reverse topological order
- /// of the SCC DAG.
- ///
- /// This is implemented using Tarjan's DFS algorithm using an internal stack to
- /// build up a vector of nodes in a particular SCC. Note that it is a forward
- /// iterator and thus you cannot backtrack or re-visit nodes.
- template <class GraphT, class GT = GraphTraits<GraphT>>
- class scc_iterator : public iterator_facade_base<
- scc_iterator<GraphT, GT>, std::forward_iterator_tag,
- const std::vector<typename GT::NodeRef>, ptrdiff_t> {
- using NodeRef = typename GT::NodeRef;
- using ChildItTy = typename GT::ChildIteratorType;
- using SccTy = std::vector<NodeRef>;
- using reference = typename scc_iterator::reference;
- /// Element of VisitStack during DFS.
- struct StackElement {
- NodeRef Node; ///< The current node pointer.
- ChildItTy NextChild; ///< The next child, modified inplace during DFS.
- unsigned MinVisited; ///< Minimum uplink value of all children of Node.
- StackElement(NodeRef Node, const ChildItTy &Child, unsigned Min)
- : Node(Node), NextChild(Child), MinVisited(Min) {}
- bool operator==(const StackElement &Other) const {
- return Node == Other.Node &&
- NextChild == Other.NextChild &&
- MinVisited == Other.MinVisited;
- }
- };
- /// The visit counters used to detect when a complete SCC is on the stack.
- /// visitNum is the global counter.
- ///
- /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
- unsigned visitNum;
- DenseMap<NodeRef, unsigned> nodeVisitNumbers;
- /// Stack holding nodes of the SCC.
- std::vector<NodeRef> SCCNodeStack;
- /// The current SCC, retrieved using operator*().
- SccTy CurrentSCC;
- /// DFS stack, Used to maintain the ordering. The top contains the current
- /// node, the next child to visit, and the minimum uplink value of all child
- std::vector<StackElement> VisitStack;
- /// A single "visit" within the non-recursive DFS traversal.
- void DFSVisitOne(NodeRef N);
- /// The stack-based DFS traversal; defined below.
- void DFSVisitChildren();
- /// Compute the next SCC using the DFS traversal.
- void GetNextSCC();
- scc_iterator(NodeRef entryN) : visitNum(0) {
- DFSVisitOne(entryN);
- GetNextSCC();
- }
- /// End is when the DFS stack is empty.
- scc_iterator() = default;
- public:
- static scc_iterator begin(const GraphT &G) {
- return scc_iterator(GT::getEntryNode(G));
- }
- static scc_iterator end(const GraphT &) { return scc_iterator(); }
- /// Direct loop termination test which is more efficient than
- /// comparison with \c end().
- bool isAtEnd() const {
- assert(!CurrentSCC.empty() || VisitStack.empty());
- return CurrentSCC.empty();
- }
- bool operator==(const scc_iterator &x) const {
- return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
- }
- scc_iterator &operator++() {
- GetNextSCC();
- return *this;
- }
- reference operator*() const {
- assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
- return CurrentSCC;
- }
- /// Test if the current SCC has a cycle.
- ///
- /// If the SCC has more than one node, this is trivially true. If not, it may
- /// still contain a cycle if the node has an edge back to itself.
- bool hasCycle() const;
- /// This informs the \c scc_iterator that the specified \c Old node
- /// has been deleted, and \c New is to be used in its place.
- void ReplaceNode(NodeRef Old, NodeRef New) {
- assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
- // Do the assignment in two steps, in case 'New' is not yet in the map, and
- // inserting it causes the map to grow.
- auto tempVal = nodeVisitNumbers[Old];
- nodeVisitNumbers[New] = tempVal;
- nodeVisitNumbers.erase(Old);
- }
- };
- template <class GraphT, class GT>
- void scc_iterator<GraphT, GT>::DFSVisitOne(NodeRef N) {
- ++visitNum;
- nodeVisitNumbers[N] = visitNum;
- SCCNodeStack.push_back(N);
- VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
- #if 0 // Enable if needed when debugging.
- dbgs() << "TarjanSCC: Node " << N <<
- " : visitNum = " << visitNum << "\n";
- #endif
- }
- template <class GraphT, class GT>
- void scc_iterator<GraphT, GT>::DFSVisitChildren() {
- assert(!VisitStack.empty());
- while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) {
- // TOS has at least one more child so continue DFS
- NodeRef childN = *VisitStack.back().NextChild++;
- typename DenseMap<NodeRef, unsigned>::iterator Visited =
- nodeVisitNumbers.find(childN);
- if (Visited == nodeVisitNumbers.end()) {
- // this node has never been seen.
- DFSVisitOne(childN);
- continue;
- }
- unsigned childNum = Visited->second;
- if (VisitStack.back().MinVisited > childNum)
- VisitStack.back().MinVisited = childNum;
- }
- }
- template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() {
- CurrentSCC.clear(); // Prepare to compute the next SCC
- while (!VisitStack.empty()) {
- DFSVisitChildren();
- // Pop the leaf on top of the VisitStack.
- NodeRef visitingN = VisitStack.back().Node;
- unsigned minVisitNum = VisitStack.back().MinVisited;
- assert(VisitStack.back().NextChild == GT::child_end(visitingN));
- VisitStack.pop_back();
- // Propagate MinVisitNum to parent so we can detect the SCC starting node.
- if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
- VisitStack.back().MinVisited = minVisitNum;
- #if 0 // Enable if needed when debugging.
- dbgs() << "TarjanSCC: Popped node " << visitingN <<
- " : minVisitNum = " << minVisitNum << "; Node visit num = " <<
- nodeVisitNumbers[visitingN] << "\n";
- #endif
- if (minVisitNum != nodeVisitNumbers[visitingN])
- continue;
- // A full SCC is on the SCCNodeStack! It includes all nodes below
- // visitingN on the stack. Copy those nodes to CurrentSCC,
- // reset their minVisit values, and return (this suspends
- // the DFS traversal till the next ++).
- do {
- CurrentSCC.push_back(SCCNodeStack.back());
- SCCNodeStack.pop_back();
- nodeVisitNumbers[CurrentSCC.back()] = ~0U;
- } while (CurrentSCC.back() != visitingN);
- return;
- }
- }
- template <class GraphT, class GT>
- bool scc_iterator<GraphT, GT>::hasCycle() const {
- assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
- if (CurrentSCC.size() > 1)
- return true;
- NodeRef N = CurrentSCC.front();
- for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
- ++CI)
- if (*CI == N)
- return true;
- return false;
- }
- /// Construct the begin iterator for a deduced graph type T.
- template <class T> scc_iterator<T> scc_begin(const T &G) {
- return scc_iterator<T>::begin(G);
- }
- /// Construct the end iterator for a deduced graph type T.
- template <class T> scc_iterator<T> scc_end(const T &G) {
- return scc_iterator<T>::end(G);
- }
- /// Sort the nodes of a directed SCC in the decreasing order of the edge
- /// weights. The instantiating GraphT type should have weighted edge type
- /// declared in its graph traits in order to use this iterator.
- ///
- /// This is implemented using Kruskal's minimal spanning tree algorithm followed
- /// by a BFS walk. First a maximum spanning tree (forest) is built based on all
- /// edges within the SCC collection. Then a BFS walk is initiated on tree nodes
- /// that do not have a predecessor. Finally, the BFS order computed is the
- /// traversal order of the nodes of the SCC. Such order ensures that
- /// high-weighted edges are visited first during the tranversal.
- template <class GraphT, class GT = GraphTraits<GraphT>>
- class scc_member_iterator {
- using NodeType = typename GT::NodeType;
- using EdgeType = typename GT::EdgeType;
- using NodesType = std::vector<NodeType *>;
- // Auxilary node information used during the MST calculation.
- struct NodeInfo {
- NodeInfo *Group = this;
- uint32_t Rank = 0;
- bool Visited = true;
- };
- // Find the root group of the node and compress the path from node to the
- // root.
- NodeInfo *find(NodeInfo *Node) {
- if (Node->Group != Node)
- Node->Group = find(Node->Group);
- return Node->Group;
- }
- // Union the source and target node into the same group and return true.
- // Returns false if they are already in the same group.
- bool unionGroups(const EdgeType *Edge) {
- NodeInfo *G1 = find(&NodeInfoMap[Edge->Source]);
- NodeInfo *G2 = find(&NodeInfoMap[Edge->Target]);
- // If the edge forms a cycle, do not add it to MST
- if (G1 == G2)
- return false;
- // Make the smaller rank tree a direct child or the root of high rank tree.
- if (G1->Rank < G1->Rank)
- G1->Group = G2;
- else {
- G2->Group = G1;
- // If the ranks are the same, increment root of one tree by one.
- if (G1->Rank == G2->Rank)
- G2->Rank++;
- }
- return true;
- }
- std::unordered_map<NodeType *, NodeInfo> NodeInfoMap;
- NodesType Nodes;
- public:
- scc_member_iterator(const NodesType &InputNodes);
- NodesType &operator*() { return Nodes; }
- };
- template <class GraphT, class GT>
- scc_member_iterator<GraphT, GT>::scc_member_iterator(
- const NodesType &InputNodes) {
- if (InputNodes.size() <= 1) {
- Nodes = InputNodes;
- return;
- }
- // Initialize auxilary node information.
- NodeInfoMap.clear();
- for (auto *Node : InputNodes) {
- // This is specifically used to construct a `NodeInfo` object in place. An
- // insert operation will involve a copy construction which invalidate the
- // initial value of the `Group` field which should be `this`.
- (void)NodeInfoMap[Node].Group;
- }
- // Sort edges by weights.
- struct EdgeComparer {
- bool operator()(const EdgeType *L, const EdgeType *R) const {
- return L->Weight > R->Weight;
- }
- };
- std::multiset<const EdgeType *, EdgeComparer> SortedEdges;
- for (auto *Node : InputNodes) {
- for (auto &Edge : Node->Edges) {
- if (NodeInfoMap.count(Edge.Target))
- SortedEdges.insert(&Edge);
- }
- }
- // Traverse all the edges and compute the Maximum Weight Spanning Tree
- // using Kruskal's algorithm.
- std::unordered_set<const EdgeType *> MSTEdges;
- for (auto *Edge : SortedEdges) {
- if (unionGroups(Edge))
- MSTEdges.insert(Edge);
- }
- // Do BFS on MST, starting from nodes that have no incoming edge. These nodes
- // are "roots" of the MST forest. This ensures that nodes are visited before
- // their decsendents are, thus ensures hot edges are processed before cold
- // edges, based on how MST is computed.
- for (const auto *Edge : MSTEdges)
- NodeInfoMap[Edge->Target].Visited = false;
- std::queue<NodeType *> Queue;
- for (auto &Node : NodeInfoMap)
- if (Node.second.Visited)
- Queue.push(Node.first);
- while (!Queue.empty()) {
- auto *Node = Queue.front();
- Queue.pop();
- Nodes.push_back(Node);
- for (auto &Edge : Node->Edges) {
- if (MSTEdges.count(&Edge) && !NodeInfoMap[Edge.Target].Visited) {
- NodeInfoMap[Edge.Target].Visited = true;
- Queue.push(Edge.Target);
- }
- }
- }
- assert(InputNodes.size() == Nodes.size() && "missing nodes in MST");
- std::reverse(Nodes.begin(), Nodes.end());
- }
- } // end namespace llvm
- #endif // LLVM_ADT_SCCITERATOR_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|