123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===-- llvm/ADT/CombinationGenerator.h ------------------------*- C++ -*--===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// Combination generator.
- ///
- /// Example: given input {{0, 1}, {2}, {3, 4}} it will produce the following
- /// combinations: {0, 2, 3}, {0, 2, 4}, {1, 2, 3}, {1, 2, 4}.
- ///
- /// It is useful to think of input as vector-of-vectors, where the
- /// outer vector is the variable space, and inner vector is choice space.
- /// The number of choices for each variable can be different.
- ///
- /// As for implementation, it is useful to think of this as a weird number,
- /// where each digit (==variable) may have different base (==number of choices).
- /// Thus modelling of 'produce next combination' is exactly analogous to the
- /// incrementing of an number - increment lowest digit (pick next choice for the
- /// variable), and if it wrapped to the beginning then increment next digit.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_COMBINATIONGENERATOR_H
- #define LLVM_ADT_COMBINATIONGENERATOR_H
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/STLFunctionalExtras.h"
- #include "llvm/ADT/SmallVector.h"
- #include <cassert>
- #include <cstring>
- namespace llvm {
- template <typename choice_type, typename choices_storage_type,
- int variable_smallsize>
- class CombinationGenerator {
- template <typename T> struct WrappingIterator {
- using value_type = T;
- const ArrayRef<value_type> Range;
- typename decltype(Range)::const_iterator Position;
- // Rewind the tape, placing the position to again point at the beginning.
- void rewind() { Position = Range.begin(); }
- // Advance position forward, possibly wrapping to the beginning.
- // Returns whether the wrap happened.
- bool advance() {
- ++Position;
- bool Wrapped = Position == Range.end();
- if (Wrapped)
- rewind();
- return Wrapped;
- }
- // Get the value at which we are currently pointing.
- const value_type &operator*() const { return *Position; }
- WrappingIterator(ArrayRef<value_type> Range_) : Range(Range_) {
- assert(!Range.empty() && "The range must not be empty.");
- rewind();
- }
- };
- const ArrayRef<choices_storage_type> VariablesChoices;
- void performGeneration(
- const function_ref<bool(ArrayRef<choice_type>)> Callback) const {
- SmallVector<WrappingIterator<choice_type>, variable_smallsize>
- VariablesState;
- // 'increment' of the the whole VariablesState is defined identically to the
- // increment of a number: starting from the least significant element,
- // increment it, and if it wrapped, then propagate that carry by also
- // incrementing next (more significant) element.
- auto IncrementState =
- [](MutableArrayRef<WrappingIterator<choice_type>> VariablesState)
- -> bool {
- for (WrappingIterator<choice_type> &Variable :
- llvm::reverse(VariablesState)) {
- bool Wrapped = Variable.advance();
- if (!Wrapped)
- return false; // There you go, next combination is ready.
- // We have carry - increment more significant variable next..
- }
- return true; // MSB variable wrapped, no more unique combinations.
- };
- // Initialize the per-variable state to refer to the possible choices for
- // that variable.
- VariablesState.reserve(VariablesChoices.size());
- for (ArrayRef<choice_type> VC : VariablesChoices)
- VariablesState.emplace_back(VC);
- // Temporary buffer to store each combination before performing Callback.
- SmallVector<choice_type, variable_smallsize> CurrentCombination;
- CurrentCombination.resize(VariablesState.size());
- while (true) {
- // Gather the currently-selected variable choices into a vector.
- for (auto I : llvm::zip(VariablesState, CurrentCombination))
- std::get<1>(I) = *std::get<0>(I);
- // And pass the new combination into callback, as intended.
- if (/*Abort=*/Callback(CurrentCombination))
- return;
- // And tick the state to next combination, which will be unique.
- if (IncrementState(VariablesState))
- return; // All combinations produced.
- }
- };
- public:
- CombinationGenerator(ArrayRef<choices_storage_type> VariablesChoices_)
- : VariablesChoices(VariablesChoices_) {
- #ifndef NDEBUG
- assert(!VariablesChoices.empty() && "There should be some variables.");
- llvm::for_each(VariablesChoices, [](ArrayRef<choice_type> VariableChoices) {
- assert(!VariableChoices.empty() &&
- "There must always be some choice, at least a placeholder one.");
- });
- #endif
- }
- // How many combinations can we produce, max?
- // This is at most how many times the callback will be called.
- size_t numCombinations() const {
- size_t NumVariants = 1;
- for (ArrayRef<choice_type> VariableChoices : VariablesChoices)
- NumVariants *= VariableChoices.size();
- assert(NumVariants >= 1 &&
- "We should always end up producing at least one combination");
- return NumVariants;
- }
- // Actually perform exhaustive combination generation.
- // Each result will be passed into the callback.
- void generate(const function_ref<bool(ArrayRef<choice_type>)> Callback) {
- performGeneration(Callback);
- }
- };
- } // namespace llvm
- #endif
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|