123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// This file implements a class to represent arbitrary precision
- /// integral constant values and operations on them.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_APINT_H
- #define LLVM_ADT_APINT_H
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/MathExtras.h"
- #include <cassert>
- #include <climits>
- #include <cstring>
- #include <utility>
- namespace llvm {
- class FoldingSetNodeID;
- class StringRef;
- class hash_code;
- class raw_ostream;
- template <typename T> class SmallVectorImpl;
- template <typename T> class ArrayRef;
- template <typename T> class Optional;
- template <typename T, typename Enable> struct DenseMapInfo;
- class APInt;
- inline APInt operator-(APInt);
- //===----------------------------------------------------------------------===//
- // APInt Class
- //===----------------------------------------------------------------------===//
- /// Class for arbitrary precision integers.
- ///
- /// APInt is a functional replacement for common case unsigned integer type like
- /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
- /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
- /// than 64-bits of precision. APInt provides a variety of arithmetic operators
- /// and methods to manipulate integer values of any bit-width. It supports both
- /// the typical integer arithmetic and comparison operations as well as bitwise
- /// manipulation.
- ///
- /// The class has several invariants worth noting:
- /// * All bit, byte, and word positions are zero-based.
- /// * Once the bit width is set, it doesn't change except by the Truncate,
- /// SignExtend, or ZeroExtend operations.
- /// * All binary operators must be on APInt instances of the same bit width.
- /// Attempting to use these operators on instances with different bit
- /// widths will yield an assertion.
- /// * The value is stored canonically as an unsigned value. For operations
- /// where it makes a difference, there are both signed and unsigned variants
- /// of the operation. For example, sdiv and udiv. However, because the bit
- /// widths must be the same, operations such as Mul and Add produce the same
- /// results regardless of whether the values are interpreted as signed or
- /// not.
- /// * In general, the class tries to follow the style of computation that LLVM
- /// uses in its IR. This simplifies its use for LLVM.
- /// * APInt supports zero-bit-width values, but operations that require bits
- /// are not defined on it (e.g. you cannot ask for the sign of a zero-bit
- /// integer). This means that operations like zero extension and logical
- /// shifts are defined, but sign extension and ashr is not. Zero bit values
- /// compare and hash equal to themselves, and countLeadingZeros returns 0.
- ///
- class LLVM_NODISCARD APInt {
- public:
- typedef uint64_t WordType;
- /// This enum is used to hold the constants we needed for APInt.
- enum : unsigned {
- /// Byte size of a word.
- APINT_WORD_SIZE = sizeof(WordType),
- /// Bits in a word.
- APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
- };
- enum class Rounding {
- DOWN,
- TOWARD_ZERO,
- UP,
- };
- static constexpr WordType WORDTYPE_MAX = ~WordType(0);
- /// \name Constructors
- /// @{
- /// Create a new APInt of numBits width, initialized as val.
- ///
- /// If isSigned is true then val is treated as if it were a signed value
- /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
- /// will be done. Otherwise, no sign extension occurs (high order bits beyond
- /// the range of val are zero filled).
- ///
- /// \param numBits the bit width of the constructed APInt
- /// \param val the initial value of the APInt
- /// \param isSigned how to treat signedness of val
- APInt(unsigned numBits, uint64_t val, bool isSigned = false)
- : BitWidth(numBits) {
- if (isSingleWord()) {
- U.VAL = val;
- clearUnusedBits();
- } else {
- initSlowCase(val, isSigned);
- }
- }
- /// Construct an APInt of numBits width, initialized as bigVal[].
- ///
- /// Note that bigVal.size() can be smaller or larger than the corresponding
- /// bit width but any extraneous bits will be dropped.
- ///
- /// \param numBits the bit width of the constructed APInt
- /// \param bigVal a sequence of words to form the initial value of the APInt
- APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
- /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
- /// deprecated because this constructor is prone to ambiguity with the
- /// APInt(unsigned, uint64_t, bool) constructor.
- ///
- /// If this overload is ever deleted, care should be taken to prevent calls
- /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
- /// constructor.
- APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
- /// Construct an APInt from a string representation.
- ///
- /// This constructor interprets the string \p str in the given radix. The
- /// interpretation stops when the first character that is not suitable for the
- /// radix is encountered, or the end of the string. Acceptable radix values
- /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
- /// string to require more bits than numBits.
- ///
- /// \param numBits the bit width of the constructed APInt
- /// \param str the string to be interpreted
- /// \param radix the radix to use for the conversion
- APInt(unsigned numBits, StringRef str, uint8_t radix);
- /// Default constructor that creates an APInt with a 1-bit zero value.
- explicit APInt() : BitWidth(1) { U.VAL = 0; }
- /// Copy Constructor.
- APInt(const APInt &that) : BitWidth(that.BitWidth) {
- if (isSingleWord())
- U.VAL = that.U.VAL;
- else
- initSlowCase(that);
- }
- /// Move Constructor.
- APInt(APInt &&that) : BitWidth(that.BitWidth) {
- memcpy(&U, &that.U, sizeof(U));
- that.BitWidth = 0;
- }
- /// Destructor.
- ~APInt() {
- if (needsCleanup())
- delete[] U.pVal;
- }
- /// @}
- /// \name Value Generators
- /// @{
- /// Get the '0' value for the specified bit-width.
- static APInt getZero(unsigned numBits) { return APInt(numBits, 0); }
- /// NOTE: This is soft-deprecated. Please use `getZero()` instead.
- static APInt getNullValue(unsigned numBits) { return getZero(numBits); }
- /// Return an APInt zero bits wide.
- static APInt getZeroWidth() { return getZero(0); }
- /// Gets maximum unsigned value of APInt for specific bit width.
- static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); }
- /// Gets maximum signed value of APInt for a specific bit width.
- static APInt getSignedMaxValue(unsigned numBits) {
- APInt API = getAllOnes(numBits);
- API.clearBit(numBits - 1);
- return API;
- }
- /// Gets minimum unsigned value of APInt for a specific bit width.
- static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
- /// Gets minimum signed value of APInt for a specific bit width.
- static APInt getSignedMinValue(unsigned numBits) {
- APInt API(numBits, 0);
- API.setBit(numBits - 1);
- return API;
- }
- /// Get the SignMask for a specific bit width.
- ///
- /// This is just a wrapper function of getSignedMinValue(), and it helps code
- /// readability when we want to get a SignMask.
- static APInt getSignMask(unsigned BitWidth) {
- return getSignedMinValue(BitWidth);
- }
- /// Return an APInt of a specified width with all bits set.
- static APInt getAllOnes(unsigned numBits) {
- return APInt(numBits, WORDTYPE_MAX, true);
- }
- /// NOTE: This is soft-deprecated. Please use `getAllOnes()` instead.
- static APInt getAllOnesValue(unsigned numBits) { return getAllOnes(numBits); }
- /// Return an APInt with exactly one bit set in the result.
- static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
- APInt Res(numBits, 0);
- Res.setBit(BitNo);
- return Res;
- }
- /// Get a value with a block of bits set.
- ///
- /// Constructs an APInt value that has a contiguous range of bits set. The
- /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
- /// bits will be zero. For example, with parameters(32, 0, 16) you would get
- /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
- /// \p hiBit.
- ///
- /// \param numBits the intended bit width of the result
- /// \param loBit the index of the lowest bit set.
- /// \param hiBit the index of the highest bit set.
- ///
- /// \returns An APInt value with the requested bits set.
- static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
- APInt Res(numBits, 0);
- Res.setBits(loBit, hiBit);
- return Res;
- }
- /// Wrap version of getBitsSet.
- /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
- /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
- /// with parameters (32, 28, 4), you would get 0xF000000F.
- /// If \p hiBit is equal to \p loBit, you would get a result with all bits
- /// set.
- static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
- unsigned hiBit) {
- APInt Res(numBits, 0);
- Res.setBitsWithWrap(loBit, hiBit);
- return Res;
- }
- /// Constructs an APInt value that has a contiguous range of bits set. The
- /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
- /// bits will be zero. For example, with parameters(32, 12) you would get
- /// 0xFFFFF000.
- ///
- /// \param numBits the intended bit width of the result
- /// \param loBit the index of the lowest bit to set.
- ///
- /// \returns An APInt value with the requested bits set.
- static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
- APInt Res(numBits, 0);
- Res.setBitsFrom(loBit);
- return Res;
- }
- /// Constructs an APInt value that has the top hiBitsSet bits set.
- ///
- /// \param numBits the bitwidth of the result
- /// \param hiBitsSet the number of high-order bits set in the result.
- static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
- APInt Res(numBits, 0);
- Res.setHighBits(hiBitsSet);
- return Res;
- }
- /// Constructs an APInt value that has the bottom loBitsSet bits set.
- ///
- /// \param numBits the bitwidth of the result
- /// \param loBitsSet the number of low-order bits set in the result.
- static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
- APInt Res(numBits, 0);
- Res.setLowBits(loBitsSet);
- return Res;
- }
- /// Return a value containing V broadcasted over NewLen bits.
- static APInt getSplat(unsigned NewLen, const APInt &V);
- /// @}
- /// \name Value Tests
- /// @{
- /// Determine if this APInt just has one word to store value.
- ///
- /// \returns true if the number of bits <= 64, false otherwise.
- bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
- /// Determine sign of this APInt.
- ///
- /// This tests the high bit of this APInt to determine if it is set.
- ///
- /// \returns true if this APInt is negative, false otherwise
- bool isNegative() const { return (*this)[BitWidth - 1]; }
- /// Determine if this APInt Value is non-negative (>= 0)
- ///
- /// This tests the high bit of the APInt to determine if it is unset.
- bool isNonNegative() const { return !isNegative(); }
- /// Determine if sign bit of this APInt is set.
- ///
- /// This tests the high bit of this APInt to determine if it is set.
- ///
- /// \returns true if this APInt has its sign bit set, false otherwise.
- bool isSignBitSet() const { return (*this)[BitWidth - 1]; }
- /// Determine if sign bit of this APInt is clear.
- ///
- /// This tests the high bit of this APInt to determine if it is clear.
- ///
- /// \returns true if this APInt has its sign bit clear, false otherwise.
- bool isSignBitClear() const { return !isSignBitSet(); }
- /// Determine if this APInt Value is positive.
- ///
- /// This tests if the value of this APInt is positive (> 0). Note
- /// that 0 is not a positive value.
- ///
- /// \returns true if this APInt is positive.
- bool isStrictlyPositive() const { return isNonNegative() && !isZero(); }
- /// Determine if this APInt Value is non-positive (<= 0).
- ///
- /// \returns true if this APInt is non-positive.
- bool isNonPositive() const { return !isStrictlyPositive(); }
- /// Determine if all bits are set. This is true for zero-width values.
- bool isAllOnes() const {
- if (BitWidth == 0)
- return true;
- if (isSingleWord())
- return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
- return countTrailingOnesSlowCase() == BitWidth;
- }
- /// NOTE: This is soft-deprecated. Please use `isAllOnes()` instead.
- bool isAllOnesValue() const { return isAllOnes(); }
- /// Determine if this value is zero, i.e. all bits are clear.
- bool isZero() const {
- if (isSingleWord())
- return U.VAL == 0;
- return countLeadingZerosSlowCase() == BitWidth;
- }
- /// NOTE: This is soft-deprecated. Please use `isZero()` instead.
- bool isNullValue() const { return isZero(); }
- /// Determine if this is a value of 1.
- ///
- /// This checks to see if the value of this APInt is one.
- bool isOne() const {
- if (isSingleWord())
- return U.VAL == 1;
- return countLeadingZerosSlowCase() == BitWidth - 1;
- }
- /// NOTE: This is soft-deprecated. Please use `isOne()` instead.
- bool isOneValue() const { return isOne(); }
- /// Determine if this is the largest unsigned value.
- ///
- /// This checks to see if the value of this APInt is the maximum unsigned
- /// value for the APInt's bit width.
- bool isMaxValue() const { return isAllOnes(); }
- /// Determine if this is the largest signed value.
- ///
- /// This checks to see if the value of this APInt is the maximum signed
- /// value for the APInt's bit width.
- bool isMaxSignedValue() const {
- if (isSingleWord()) {
- assert(BitWidth && "zero width values not allowed");
- return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
- }
- return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
- }
- /// Determine if this is the smallest unsigned value.
- ///
- /// This checks to see if the value of this APInt is the minimum unsigned
- /// value for the APInt's bit width.
- bool isMinValue() const { return isZero(); }
- /// Determine if this is the smallest signed value.
- ///
- /// This checks to see if the value of this APInt is the minimum signed
- /// value for the APInt's bit width.
- bool isMinSignedValue() const {
- if (isSingleWord()) {
- assert(BitWidth && "zero width values not allowed");
- return U.VAL == (WordType(1) << (BitWidth - 1));
- }
- return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
- }
- /// Check if this APInt has an N-bits unsigned integer value.
- bool isIntN(unsigned N) const { return getActiveBits() <= N; }
- /// Check if this APInt has an N-bits signed integer value.
- bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; }
- /// Check if this APInt's value is a power of two greater than zero.
- ///
- /// \returns true if the argument APInt value is a power of two > 0.
- bool isPowerOf2() const {
- if (isSingleWord()) {
- assert(BitWidth && "zero width values not allowed");
- return isPowerOf2_64(U.VAL);
- }
- return countPopulationSlowCase() == 1;
- }
- /// Check if this APInt's negated value is a power of two greater than zero.
- bool isNegatedPowerOf2() const {
- assert(BitWidth && "zero width values not allowed");
- if (isNonNegative())
- return false;
- // NegatedPowerOf2 - shifted mask in the top bits.
- unsigned LO = countLeadingOnes();
- unsigned TZ = countTrailingZeros();
- return (LO + TZ) == BitWidth;
- }
- /// Check if the APInt's value is returned by getSignMask.
- ///
- /// \returns true if this is the value returned by getSignMask.
- bool isSignMask() const { return isMinSignedValue(); }
- /// Convert APInt to a boolean value.
- ///
- /// This converts the APInt to a boolean value as a test against zero.
- bool getBoolValue() const { return !isZero(); }
- /// If this value is smaller than the specified limit, return it, otherwise
- /// return the limit value. This causes the value to saturate to the limit.
- uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
- return ugt(Limit) ? Limit : getZExtValue();
- }
- /// Check if the APInt consists of a repeated bit pattern.
- ///
- /// e.g. 0x01010101 satisfies isSplat(8).
- /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
- /// width without remainder.
- bool isSplat(unsigned SplatSizeInBits) const;
- /// \returns true if this APInt value is a sequence of \param numBits ones
- /// starting at the least significant bit with the remainder zero.
- bool isMask(unsigned numBits) const {
- assert(numBits != 0 && "numBits must be non-zero");
- assert(numBits <= BitWidth && "numBits out of range");
- if (isSingleWord())
- return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
- unsigned Ones = countTrailingOnesSlowCase();
- return (numBits == Ones) &&
- ((Ones + countLeadingZerosSlowCase()) == BitWidth);
- }
- /// \returns true if this APInt is a non-empty sequence of ones starting at
- /// the least significant bit with the remainder zero.
- /// Ex. isMask(0x0000FFFFU) == true.
- bool isMask() const {
- if (isSingleWord())
- return isMask_64(U.VAL);
- unsigned Ones = countTrailingOnesSlowCase();
- return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
- }
- /// Return true if this APInt value contains a sequence of ones with
- /// the remainder zero.
- bool isShiftedMask() const {
- if (isSingleWord())
- return isShiftedMask_64(U.VAL);
- unsigned Ones = countPopulationSlowCase();
- unsigned LeadZ = countLeadingZerosSlowCase();
- return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
- }
- /// Compute an APInt containing numBits highbits from this APInt.
- ///
- /// Get an APInt with the same BitWidth as this APInt, just zero mask the low
- /// bits and right shift to the least significant bit.
- ///
- /// \returns the high "numBits" bits of this APInt.
- APInt getHiBits(unsigned numBits) const;
- /// Compute an APInt containing numBits lowbits from this APInt.
- ///
- /// Get an APInt with the same BitWidth as this APInt, just zero mask the high
- /// bits.
- ///
- /// \returns the low "numBits" bits of this APInt.
- APInt getLoBits(unsigned numBits) const;
- /// Determine if two APInts have the same value, after zero-extending
- /// one of them (if needed!) to ensure that the bit-widths match.
- static bool isSameValue(const APInt &I1, const APInt &I2) {
- if (I1.getBitWidth() == I2.getBitWidth())
- return I1 == I2;
- if (I1.getBitWidth() > I2.getBitWidth())
- return I1 == I2.zext(I1.getBitWidth());
- return I1.zext(I2.getBitWidth()) == I2;
- }
- /// Overload to compute a hash_code for an APInt value.
- friend hash_code hash_value(const APInt &Arg);
- /// This function returns a pointer to the internal storage of the APInt.
- /// This is useful for writing out the APInt in binary form without any
- /// conversions.
- const uint64_t *getRawData() const {
- if (isSingleWord())
- return &U.VAL;
- return &U.pVal[0];
- }
- /// @}
- /// \name Unary Operators
- /// @{
- /// Postfix increment operator. Increment *this by 1.
- ///
- /// \returns a new APInt value representing the original value of *this.
- APInt operator++(int) {
- APInt API(*this);
- ++(*this);
- return API;
- }
- /// Prefix increment operator.
- ///
- /// \returns *this incremented by one
- APInt &operator++();
- /// Postfix decrement operator. Decrement *this by 1.
- ///
- /// \returns a new APInt value representing the original value of *this.
- APInt operator--(int) {
- APInt API(*this);
- --(*this);
- return API;
- }
- /// Prefix decrement operator.
- ///
- /// \returns *this decremented by one.
- APInt &operator--();
- /// Logical negation operation on this APInt returns true if zero, like normal
- /// integers.
- bool operator!() const { return isZero(); }
- /// @}
- /// \name Assignment Operators
- /// @{
- /// Copy assignment operator.
- ///
- /// \returns *this after assignment of RHS.
- APInt &operator=(const APInt &RHS) {
- // The common case (both source or dest being inline) doesn't require
- // allocation or deallocation.
- if (isSingleWord() && RHS.isSingleWord()) {
- U.VAL = RHS.U.VAL;
- BitWidth = RHS.BitWidth;
- return *this;
- }
- assignSlowCase(RHS);
- return *this;
- }
- /// Move assignment operator.
- APInt &operator=(APInt &&that) {
- #ifdef EXPENSIVE_CHECKS
- // Some std::shuffle implementations still do self-assignment.
- if (this == &that)
- return *this;
- #endif
- assert(this != &that && "Self-move not supported");
- if (!isSingleWord())
- delete[] U.pVal;
- // Use memcpy so that type based alias analysis sees both VAL and pVal
- // as modified.
- memcpy(&U, &that.U, sizeof(U));
- BitWidth = that.BitWidth;
- that.BitWidth = 0;
- return *this;
- }
- /// Assignment operator.
- ///
- /// The RHS value is assigned to *this. If the significant bits in RHS exceed
- /// the bit width, the excess bits are truncated. If the bit width is larger
- /// than 64, the value is zero filled in the unspecified high order bits.
- ///
- /// \returns *this after assignment of RHS value.
- APInt &operator=(uint64_t RHS) {
- if (isSingleWord()) {
- U.VAL = RHS;
- return clearUnusedBits();
- }
- U.pVal[0] = RHS;
- memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
- return *this;
- }
- /// Bitwise AND assignment operator.
- ///
- /// Performs a bitwise AND operation on this APInt and RHS. The result is
- /// assigned to *this.
- ///
- /// \returns *this after ANDing with RHS.
- APInt &operator&=(const APInt &RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- U.VAL &= RHS.U.VAL;
- else
- andAssignSlowCase(RHS);
- return *this;
- }
- /// Bitwise AND assignment operator.
- ///
- /// Performs a bitwise AND operation on this APInt and RHS. RHS is
- /// logically zero-extended or truncated to match the bit-width of
- /// the LHS.
- APInt &operator&=(uint64_t RHS) {
- if (isSingleWord()) {
- U.VAL &= RHS;
- return *this;
- }
- U.pVal[0] &= RHS;
- memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
- return *this;
- }
- /// Bitwise OR assignment operator.
- ///
- /// Performs a bitwise OR operation on this APInt and RHS. The result is
- /// assigned *this;
- ///
- /// \returns *this after ORing with RHS.
- APInt &operator|=(const APInt &RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- U.VAL |= RHS.U.VAL;
- else
- orAssignSlowCase(RHS);
- return *this;
- }
- /// Bitwise OR assignment operator.
- ///
- /// Performs a bitwise OR operation on this APInt and RHS. RHS is
- /// logically zero-extended or truncated to match the bit-width of
- /// the LHS.
- APInt &operator|=(uint64_t RHS) {
- if (isSingleWord()) {
- U.VAL |= RHS;
- return clearUnusedBits();
- }
- U.pVal[0] |= RHS;
- return *this;
- }
- /// Bitwise XOR assignment operator.
- ///
- /// Performs a bitwise XOR operation on this APInt and RHS. The result is
- /// assigned to *this.
- ///
- /// \returns *this after XORing with RHS.
- APInt &operator^=(const APInt &RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- U.VAL ^= RHS.U.VAL;
- else
- xorAssignSlowCase(RHS);
- return *this;
- }
- /// Bitwise XOR assignment operator.
- ///
- /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
- /// logically zero-extended or truncated to match the bit-width of
- /// the LHS.
- APInt &operator^=(uint64_t RHS) {
- if (isSingleWord()) {
- U.VAL ^= RHS;
- return clearUnusedBits();
- }
- U.pVal[0] ^= RHS;
- return *this;
- }
- /// Multiplication assignment operator.
- ///
- /// Multiplies this APInt by RHS and assigns the result to *this.
- ///
- /// \returns *this
- APInt &operator*=(const APInt &RHS);
- APInt &operator*=(uint64_t RHS);
- /// Addition assignment operator.
- ///
- /// Adds RHS to *this and assigns the result to *this.
- ///
- /// \returns *this
- APInt &operator+=(const APInt &RHS);
- APInt &operator+=(uint64_t RHS);
- /// Subtraction assignment operator.
- ///
- /// Subtracts RHS from *this and assigns the result to *this.
- ///
- /// \returns *this
- APInt &operator-=(const APInt &RHS);
- APInt &operator-=(uint64_t RHS);
- /// Left-shift assignment function.
- ///
- /// Shifts *this left by shiftAmt and assigns the result to *this.
- ///
- /// \returns *this after shifting left by ShiftAmt
- APInt &operator<<=(unsigned ShiftAmt) {
- assert(ShiftAmt <= BitWidth && "Invalid shift amount");
- if (isSingleWord()) {
- if (ShiftAmt == BitWidth)
- U.VAL = 0;
- else
- U.VAL <<= ShiftAmt;
- return clearUnusedBits();
- }
- shlSlowCase(ShiftAmt);
- return *this;
- }
- /// Left-shift assignment function.
- ///
- /// Shifts *this left by shiftAmt and assigns the result to *this.
- ///
- /// \returns *this after shifting left by ShiftAmt
- APInt &operator<<=(const APInt &ShiftAmt);
- /// @}
- /// \name Binary Operators
- /// @{
- /// Multiplication operator.
- ///
- /// Multiplies this APInt by RHS and returns the result.
- APInt operator*(const APInt &RHS) const;
- /// Left logical shift operator.
- ///
- /// Shifts this APInt left by \p Bits and returns the result.
- APInt operator<<(unsigned Bits) const { return shl(Bits); }
- /// Left logical shift operator.
- ///
- /// Shifts this APInt left by \p Bits and returns the result.
- APInt operator<<(const APInt &Bits) const { return shl(Bits); }
- /// Arithmetic right-shift function.
- ///
- /// Arithmetic right-shift this APInt by shiftAmt.
- APInt ashr(unsigned ShiftAmt) const {
- APInt R(*this);
- R.ashrInPlace(ShiftAmt);
- return R;
- }
- /// Arithmetic right-shift this APInt by ShiftAmt in place.
- void ashrInPlace(unsigned ShiftAmt) {
- assert(ShiftAmt <= BitWidth && "Invalid shift amount");
- if (isSingleWord()) {
- int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
- if (ShiftAmt == BitWidth)
- U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
- else
- U.VAL = SExtVAL >> ShiftAmt;
- clearUnusedBits();
- return;
- }
- ashrSlowCase(ShiftAmt);
- }
- /// Logical right-shift function.
- ///
- /// Logical right-shift this APInt by shiftAmt.
- APInt lshr(unsigned shiftAmt) const {
- APInt R(*this);
- R.lshrInPlace(shiftAmt);
- return R;
- }
- /// Logical right-shift this APInt by ShiftAmt in place.
- void lshrInPlace(unsigned ShiftAmt) {
- assert(ShiftAmt <= BitWidth && "Invalid shift amount");
- if (isSingleWord()) {
- if (ShiftAmt == BitWidth)
- U.VAL = 0;
- else
- U.VAL >>= ShiftAmt;
- return;
- }
- lshrSlowCase(ShiftAmt);
- }
- /// Left-shift function.
- ///
- /// Left-shift this APInt by shiftAmt.
- APInt shl(unsigned shiftAmt) const {
- APInt R(*this);
- R <<= shiftAmt;
- return R;
- }
- /// Rotate left by rotateAmt.
- APInt rotl(unsigned rotateAmt) const;
- /// Rotate right by rotateAmt.
- APInt rotr(unsigned rotateAmt) const;
- /// Arithmetic right-shift function.
- ///
- /// Arithmetic right-shift this APInt by shiftAmt.
- APInt ashr(const APInt &ShiftAmt) const {
- APInt R(*this);
- R.ashrInPlace(ShiftAmt);
- return R;
- }
- /// Arithmetic right-shift this APInt by shiftAmt in place.
- void ashrInPlace(const APInt &shiftAmt);
- /// Logical right-shift function.
- ///
- /// Logical right-shift this APInt by shiftAmt.
- APInt lshr(const APInt &ShiftAmt) const {
- APInt R(*this);
- R.lshrInPlace(ShiftAmt);
- return R;
- }
- /// Logical right-shift this APInt by ShiftAmt in place.
- void lshrInPlace(const APInt &ShiftAmt);
- /// Left-shift function.
- ///
- /// Left-shift this APInt by shiftAmt.
- APInt shl(const APInt &ShiftAmt) const {
- APInt R(*this);
- R <<= ShiftAmt;
- return R;
- }
- /// Rotate left by rotateAmt.
- APInt rotl(const APInt &rotateAmt) const;
- /// Rotate right by rotateAmt.
- APInt rotr(const APInt &rotateAmt) const;
- /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is
- /// equivalent to:
- /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
- APInt concat(const APInt &NewLSB) const {
- /// If the result will be small, then both the merged values are small.
- unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
- if (NewWidth <= APINT_BITS_PER_WORD)
- return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL);
- return concatSlowCase(NewLSB);
- }
- /// Unsigned division operation.
- ///
- /// Perform an unsigned divide operation on this APInt by RHS. Both this and
- /// RHS are treated as unsigned quantities for purposes of this division.
- ///
- /// \returns a new APInt value containing the division result, rounded towards
- /// zero.
- APInt udiv(const APInt &RHS) const;
- APInt udiv(uint64_t RHS) const;
- /// Signed division function for APInt.
- ///
- /// Signed divide this APInt by APInt RHS.
- ///
- /// The result is rounded towards zero.
- APInt sdiv(const APInt &RHS) const;
- APInt sdiv(int64_t RHS) const;
- /// Unsigned remainder operation.
- ///
- /// Perform an unsigned remainder operation on this APInt with RHS being the
- /// divisor. Both this and RHS are treated as unsigned quantities for purposes
- /// of this operation. Note that this is a true remainder operation and not a
- /// modulo operation because the sign follows the sign of the dividend which
- /// is *this.
- ///
- /// \returns a new APInt value containing the remainder result
- APInt urem(const APInt &RHS) const;
- uint64_t urem(uint64_t RHS) const;
- /// Function for signed remainder operation.
- ///
- /// Signed remainder operation on APInt.
- APInt srem(const APInt &RHS) const;
- int64_t srem(int64_t RHS) const;
- /// Dual division/remainder interface.
- ///
- /// Sometimes it is convenient to divide two APInt values and obtain both the
- /// quotient and remainder. This function does both operations in the same
- /// computation making it a little more efficient. The pair of input arguments
- /// may overlap with the pair of output arguments. It is safe to call
- /// udivrem(X, Y, X, Y), for example.
- static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
- APInt &Remainder);
- static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
- uint64_t &Remainder);
- static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
- APInt &Remainder);
- static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
- int64_t &Remainder);
- // Operations that return overflow indicators.
- APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
- APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
- APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
- APInt usub_ov(const APInt &RHS, bool &Overflow) const;
- APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
- APInt smul_ov(const APInt &RHS, bool &Overflow) const;
- APInt umul_ov(const APInt &RHS, bool &Overflow) const;
- APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
- APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
- // Operations that saturate
- APInt sadd_sat(const APInt &RHS) const;
- APInt uadd_sat(const APInt &RHS) const;
- APInt ssub_sat(const APInt &RHS) const;
- APInt usub_sat(const APInt &RHS) const;
- APInt smul_sat(const APInt &RHS) const;
- APInt umul_sat(const APInt &RHS) const;
- APInt sshl_sat(const APInt &RHS) const;
- APInt ushl_sat(const APInt &RHS) const;
- /// Array-indexing support.
- ///
- /// \returns the bit value at bitPosition
- bool operator[](unsigned bitPosition) const {
- assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
- return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
- }
- /// @}
- /// \name Comparison Operators
- /// @{
- /// Equality operator.
- ///
- /// Compares this APInt with RHS for the validity of the equality
- /// relationship.
- bool operator==(const APInt &RHS) const {
- assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
- if (isSingleWord())
- return U.VAL == RHS.U.VAL;
- return equalSlowCase(RHS);
- }
- /// Equality operator.
- ///
- /// Compares this APInt with a uint64_t for the validity of the equality
- /// relationship.
- ///
- /// \returns true if *this == Val
- bool operator==(uint64_t Val) const {
- return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
- }
- /// Equality comparison.
- ///
- /// Compares this APInt with RHS for the validity of the equality
- /// relationship.
- ///
- /// \returns true if *this == Val
- bool eq(const APInt &RHS) const { return (*this) == RHS; }
- /// Inequality operator.
- ///
- /// Compares this APInt with RHS for the validity of the inequality
- /// relationship.
- ///
- /// \returns true if *this != Val
- bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
- /// Inequality operator.
- ///
- /// Compares this APInt with a uint64_t for the validity of the inequality
- /// relationship.
- ///
- /// \returns true if *this != Val
- bool operator!=(uint64_t Val) const { return !((*this) == Val); }
- /// Inequality comparison
- ///
- /// Compares this APInt with RHS for the validity of the inequality
- /// relationship.
- ///
- /// \returns true if *this != Val
- bool ne(const APInt &RHS) const { return !((*this) == RHS); }
- /// Unsigned less than comparison
- ///
- /// Regards both *this and RHS as unsigned quantities and compares them for
- /// the validity of the less-than relationship.
- ///
- /// \returns true if *this < RHS when both are considered unsigned.
- bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
- /// Unsigned less than comparison
- ///
- /// Regards both *this as an unsigned quantity and compares it with RHS for
- /// the validity of the less-than relationship.
- ///
- /// \returns true if *this < RHS when considered unsigned.
- bool ult(uint64_t RHS) const {
- // Only need to check active bits if not a single word.
- return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
- }
- /// Signed less than comparison
- ///
- /// Regards both *this and RHS as signed quantities and compares them for
- /// validity of the less-than relationship.
- ///
- /// \returns true if *this < RHS when both are considered signed.
- bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
- /// Signed less than comparison
- ///
- /// Regards both *this as a signed quantity and compares it with RHS for
- /// the validity of the less-than relationship.
- ///
- /// \returns true if *this < RHS when considered signed.
- bool slt(int64_t RHS) const {
- return (!isSingleWord() && getSignificantBits() > 64)
- ? isNegative()
- : getSExtValue() < RHS;
- }
- /// Unsigned less or equal comparison
- ///
- /// Regards both *this and RHS as unsigned quantities and compares them for
- /// validity of the less-or-equal relationship.
- ///
- /// \returns true if *this <= RHS when both are considered unsigned.
- bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
- /// Unsigned less or equal comparison
- ///
- /// Regards both *this as an unsigned quantity and compares it with RHS for
- /// the validity of the less-or-equal relationship.
- ///
- /// \returns true if *this <= RHS when considered unsigned.
- bool ule(uint64_t RHS) const { return !ugt(RHS); }
- /// Signed less or equal comparison
- ///
- /// Regards both *this and RHS as signed quantities and compares them for
- /// validity of the less-or-equal relationship.
- ///
- /// \returns true if *this <= RHS when both are considered signed.
- bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
- /// Signed less or equal comparison
- ///
- /// Regards both *this as a signed quantity and compares it with RHS for the
- /// validity of the less-or-equal relationship.
- ///
- /// \returns true if *this <= RHS when considered signed.
- bool sle(uint64_t RHS) const { return !sgt(RHS); }
- /// Unsigned greater than comparison
- ///
- /// Regards both *this and RHS as unsigned quantities and compares them for
- /// the validity of the greater-than relationship.
- ///
- /// \returns true if *this > RHS when both are considered unsigned.
- bool ugt(const APInt &RHS) const { return !ule(RHS); }
- /// Unsigned greater than comparison
- ///
- /// Regards both *this as an unsigned quantity and compares it with RHS for
- /// the validity of the greater-than relationship.
- ///
- /// \returns true if *this > RHS when considered unsigned.
- bool ugt(uint64_t RHS) const {
- // Only need to check active bits if not a single word.
- return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
- }
- /// Signed greater than comparison
- ///
- /// Regards both *this and RHS as signed quantities and compares them for the
- /// validity of the greater-than relationship.
- ///
- /// \returns true if *this > RHS when both are considered signed.
- bool sgt(const APInt &RHS) const { return !sle(RHS); }
- /// Signed greater than comparison
- ///
- /// Regards both *this as a signed quantity and compares it with RHS for
- /// the validity of the greater-than relationship.
- ///
- /// \returns true if *this > RHS when considered signed.
- bool sgt(int64_t RHS) const {
- return (!isSingleWord() && getSignificantBits() > 64)
- ? !isNegative()
- : getSExtValue() > RHS;
- }
- /// Unsigned greater or equal comparison
- ///
- /// Regards both *this and RHS as unsigned quantities and compares them for
- /// validity of the greater-or-equal relationship.
- ///
- /// \returns true if *this >= RHS when both are considered unsigned.
- bool uge(const APInt &RHS) const { return !ult(RHS); }
- /// Unsigned greater or equal comparison
- ///
- /// Regards both *this as an unsigned quantity and compares it with RHS for
- /// the validity of the greater-or-equal relationship.
- ///
- /// \returns true if *this >= RHS when considered unsigned.
- bool uge(uint64_t RHS) const { return !ult(RHS); }
- /// Signed greater or equal comparison
- ///
- /// Regards both *this and RHS as signed quantities and compares them for
- /// validity of the greater-or-equal relationship.
- ///
- /// \returns true if *this >= RHS when both are considered signed.
- bool sge(const APInt &RHS) const { return !slt(RHS); }
- /// Signed greater or equal comparison
- ///
- /// Regards both *this as a signed quantity and compares it with RHS for
- /// the validity of the greater-or-equal relationship.
- ///
- /// \returns true if *this >= RHS when considered signed.
- bool sge(int64_t RHS) const { return !slt(RHS); }
- /// This operation tests if there are any pairs of corresponding bits
- /// between this APInt and RHS that are both set.
- bool intersects(const APInt &RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- return (U.VAL & RHS.U.VAL) != 0;
- return intersectsSlowCase(RHS);
- }
- /// This operation checks that all bits set in this APInt are also set in RHS.
- bool isSubsetOf(const APInt &RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- return (U.VAL & ~RHS.U.VAL) == 0;
- return isSubsetOfSlowCase(RHS);
- }
- /// @}
- /// \name Resizing Operators
- /// @{
- /// Truncate to new width.
- ///
- /// Truncate the APInt to a specified width. It is an error to specify a width
- /// that is greater than or equal to the current width.
- APInt trunc(unsigned width) const;
- /// Truncate to new width with unsigned saturation.
- ///
- /// If the APInt, treated as unsigned integer, can be losslessly truncated to
- /// the new bitwidth, then return truncated APInt. Else, return max value.
- APInt truncUSat(unsigned width) const;
- /// Truncate to new width with signed saturation.
- ///
- /// If this APInt, treated as signed integer, can be losslessly truncated to
- /// the new bitwidth, then return truncated APInt. Else, return either
- /// signed min value if the APInt was negative, or signed max value.
- APInt truncSSat(unsigned width) const;
- /// Sign extend to a new width.
- ///
- /// This operation sign extends the APInt to a new width. If the high order
- /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
- /// It is an error to specify a width that is less than or equal to the
- /// current width.
- APInt sext(unsigned width) const;
- /// Zero extend to a new width.
- ///
- /// This operation zero extends the APInt to a new width. The high order bits
- /// are filled with 0 bits. It is an error to specify a width that is less
- /// than or equal to the current width.
- APInt zext(unsigned width) const;
- /// Sign extend or truncate to width
- ///
- /// Make this APInt have the bit width given by \p width. The value is sign
- /// extended, truncated, or left alone to make it that width.
- APInt sextOrTrunc(unsigned width) const;
- /// Zero extend or truncate to width
- ///
- /// Make this APInt have the bit width given by \p width. The value is zero
- /// extended, truncated, or left alone to make it that width.
- APInt zextOrTrunc(unsigned width) const;
- /// Truncate to width
- ///
- /// Make this APInt have the bit width given by \p width. The value is
- /// truncated or left alone to make it that width.
- APInt truncOrSelf(unsigned width) const;
- /// Sign extend or truncate to width
- ///
- /// Make this APInt have the bit width given by \p width. The value is sign
- /// extended, or left alone to make it that width.
- APInt sextOrSelf(unsigned width) const;
- /// Zero extend or truncate to width
- ///
- /// Make this APInt have the bit width given by \p width. The value is zero
- /// extended, or left alone to make it that width.
- APInt zextOrSelf(unsigned width) const;
- /// @}
- /// \name Bit Manipulation Operators
- /// @{
- /// Set every bit to 1.
- void setAllBits() {
- if (isSingleWord())
- U.VAL = WORDTYPE_MAX;
- else
- // Set all the bits in all the words.
- memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
- // Clear the unused ones
- clearUnusedBits();
- }
- /// Set the given bit to 1 whose position is given as "bitPosition".
- void setBit(unsigned BitPosition) {
- assert(BitPosition < BitWidth && "BitPosition out of range");
- WordType Mask = maskBit(BitPosition);
- if (isSingleWord())
- U.VAL |= Mask;
- else
- U.pVal[whichWord(BitPosition)] |= Mask;
- }
- /// Set the sign bit to 1.
- void setSignBit() { setBit(BitWidth - 1); }
- /// Set a given bit to a given value.
- void setBitVal(unsigned BitPosition, bool BitValue) {
- if (BitValue)
- setBit(BitPosition);
- else
- clearBit(BitPosition);
- }
- /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
- /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
- /// setBits when \p loBit < \p hiBit.
- /// For \p loBit == \p hiBit wrap case, set every bit to 1.
- void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
- assert(hiBit <= BitWidth && "hiBit out of range");
- assert(loBit <= BitWidth && "loBit out of range");
- if (loBit < hiBit) {
- setBits(loBit, hiBit);
- return;
- }
- setLowBits(hiBit);
- setHighBits(BitWidth - loBit);
- }
- /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
- /// This function handles case when \p loBit <= \p hiBit.
- void setBits(unsigned loBit, unsigned hiBit) {
- assert(hiBit <= BitWidth && "hiBit out of range");
- assert(loBit <= BitWidth && "loBit out of range");
- assert(loBit <= hiBit && "loBit greater than hiBit");
- if (loBit == hiBit)
- return;
- if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
- uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
- mask <<= loBit;
- if (isSingleWord())
- U.VAL |= mask;
- else
- U.pVal[0] |= mask;
- } else {
- setBitsSlowCase(loBit, hiBit);
- }
- }
- /// Set the top bits starting from loBit.
- void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); }
- /// Set the bottom loBits bits.
- void setLowBits(unsigned loBits) { return setBits(0, loBits); }
- /// Set the top hiBits bits.
- void setHighBits(unsigned hiBits) {
- return setBits(BitWidth - hiBits, BitWidth);
- }
- /// Set every bit to 0.
- void clearAllBits() {
- if (isSingleWord())
- U.VAL = 0;
- else
- memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
- }
- /// Set a given bit to 0.
- ///
- /// Set the given bit to 0 whose position is given as "bitPosition".
- void clearBit(unsigned BitPosition) {
- assert(BitPosition < BitWidth && "BitPosition out of range");
- WordType Mask = ~maskBit(BitPosition);
- if (isSingleWord())
- U.VAL &= Mask;
- else
- U.pVal[whichWord(BitPosition)] &= Mask;
- }
- /// Set bottom loBits bits to 0.
- void clearLowBits(unsigned loBits) {
- assert(loBits <= BitWidth && "More bits than bitwidth");
- APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
- *this &= Keep;
- }
- /// Set the sign bit to 0.
- void clearSignBit() { clearBit(BitWidth - 1); }
- /// Toggle every bit to its opposite value.
- void flipAllBits() {
- if (isSingleWord()) {
- U.VAL ^= WORDTYPE_MAX;
- clearUnusedBits();
- } else {
- flipAllBitsSlowCase();
- }
- }
- /// Toggles a given bit to its opposite value.
- ///
- /// Toggle a given bit to its opposite value whose position is given
- /// as "bitPosition".
- void flipBit(unsigned bitPosition);
- /// Negate this APInt in place.
- void negate() {
- flipAllBits();
- ++(*this);
- }
- /// Insert the bits from a smaller APInt starting at bitPosition.
- void insertBits(const APInt &SubBits, unsigned bitPosition);
- void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
- /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
- APInt extractBits(unsigned numBits, unsigned bitPosition) const;
- uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
- /// @}
- /// \name Value Characterization Functions
- /// @{
- /// Return the number of bits in the APInt.
- unsigned getBitWidth() const { return BitWidth; }
- /// Get the number of words.
- ///
- /// Here one word's bitwidth equals to that of uint64_t.
- ///
- /// \returns the number of words to hold the integer value of this APInt.
- unsigned getNumWords() const { return getNumWords(BitWidth); }
- /// Get the number of words.
- ///
- /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
- ///
- /// \returns the number of words to hold the integer value with a given bit
- /// width.
- static unsigned getNumWords(unsigned BitWidth) {
- return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
- }
- /// Compute the number of active bits in the value
- ///
- /// This function returns the number of active bits which is defined as the
- /// bit width minus the number of leading zeros. This is used in several
- /// computations to see how "wide" the value is.
- unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
- /// Compute the number of active words in the value of this APInt.
- ///
- /// This is used in conjunction with getActiveData to extract the raw value of
- /// the APInt.
- unsigned getActiveWords() const {
- unsigned numActiveBits = getActiveBits();
- return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
- }
- /// Get the minimum bit size for this signed APInt
- ///
- /// Computes the minimum bit width for this APInt while considering it to be a
- /// signed (and probably negative) value. If the value is not negative, this
- /// function returns the same value as getActiveBits()+1. Otherwise, it
- /// returns the smallest bit width that will retain the negative value. For
- /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
- /// for -1, this function will always return 1.
- unsigned getSignificantBits() const {
- return BitWidth - getNumSignBits() + 1;
- }
- /// NOTE: This is soft-deprecated. Please use `getSignificantBits()` instead.
- unsigned getMinSignedBits() const { return getSignificantBits(); }
- /// Get zero extended value
- ///
- /// This method attempts to return the value of this APInt as a zero extended
- /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
- /// uint64_t. Otherwise an assertion will result.
- uint64_t getZExtValue() const {
- if (isSingleWord())
- return U.VAL;
- assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
- return U.pVal[0];
- }
- /// Get sign extended value
- ///
- /// This method attempts to return the value of this APInt as a sign extended
- /// int64_t. The bit width must be <= 64 or the value must fit within an
- /// int64_t. Otherwise an assertion will result.
- int64_t getSExtValue() const {
- if (isSingleWord())
- return SignExtend64(U.VAL, BitWidth);
- assert(getSignificantBits() <= 64 && "Too many bits for int64_t");
- return int64_t(U.pVal[0]);
- }
- /// Get bits required for string value.
- ///
- /// This method determines how many bits are required to hold the APInt
- /// equivalent of the string given by \p str.
- static unsigned getBitsNeeded(StringRef str, uint8_t radix);
- /// The APInt version of the countLeadingZeros functions in
- /// MathExtras.h.
- ///
- /// It counts the number of zeros from the most significant bit to the first
- /// one bit.
- ///
- /// \returns BitWidth if the value is zero, otherwise returns the number of
- /// zeros from the most significant bit to the first one bits.
- unsigned countLeadingZeros() const {
- if (isSingleWord()) {
- unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
- return llvm::countLeadingZeros(U.VAL) - unusedBits;
- }
- return countLeadingZerosSlowCase();
- }
- /// Count the number of leading one bits.
- ///
- /// This function is an APInt version of the countLeadingOnes
- /// functions in MathExtras.h. It counts the number of ones from the most
- /// significant bit to the first zero bit.
- ///
- /// \returns 0 if the high order bit is not set, otherwise returns the number
- /// of 1 bits from the most significant to the least
- unsigned countLeadingOnes() const {
- if (isSingleWord()) {
- if (LLVM_UNLIKELY(BitWidth == 0))
- return 0;
- return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
- }
- return countLeadingOnesSlowCase();
- }
- /// Computes the number of leading bits of this APInt that are equal to its
- /// sign bit.
- unsigned getNumSignBits() const {
- return isNegative() ? countLeadingOnes() : countLeadingZeros();
- }
- /// Count the number of trailing zero bits.
- ///
- /// This function is an APInt version of the countTrailingZeros
- /// functions in MathExtras.h. It counts the number of zeros from the least
- /// significant bit to the first set bit.
- ///
- /// \returns BitWidth if the value is zero, otherwise returns the number of
- /// zeros from the least significant bit to the first one bit.
- unsigned countTrailingZeros() const {
- if (isSingleWord()) {
- unsigned TrailingZeros = llvm::countTrailingZeros(U.VAL);
- return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros);
- }
- return countTrailingZerosSlowCase();
- }
- /// Count the number of trailing one bits.
- ///
- /// This function is an APInt version of the countTrailingOnes
- /// functions in MathExtras.h. It counts the number of ones from the least
- /// significant bit to the first zero bit.
- ///
- /// \returns BitWidth if the value is all ones, otherwise returns the number
- /// of ones from the least significant bit to the first zero bit.
- unsigned countTrailingOnes() const {
- if (isSingleWord())
- return llvm::countTrailingOnes(U.VAL);
- return countTrailingOnesSlowCase();
- }
- /// Count the number of bits set.
- ///
- /// This function is an APInt version of the countPopulation functions
- /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
- ///
- /// \returns 0 if the value is zero, otherwise returns the number of set bits.
- unsigned countPopulation() const {
- if (isSingleWord())
- return llvm::countPopulation(U.VAL);
- return countPopulationSlowCase();
- }
- /// @}
- /// \name Conversion Functions
- /// @{
- void print(raw_ostream &OS, bool isSigned) const;
- /// Converts an APInt to a string and append it to Str. Str is commonly a
- /// SmallString.
- void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
- bool formatAsCLiteral = false) const;
- /// Considers the APInt to be unsigned and converts it into a string in the
- /// radix given. The radix can be 2, 8, 10 16, or 36.
- void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
- toString(Str, Radix, false, false);
- }
- /// Considers the APInt to be signed and converts it into a string in the
- /// radix given. The radix can be 2, 8, 10, 16, or 36.
- void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
- toString(Str, Radix, true, false);
- }
- /// \returns a byte-swapped representation of this APInt Value.
- APInt byteSwap() const;
- /// \returns the value with the bit representation reversed of this APInt
- /// Value.
- APInt reverseBits() const;
- /// Converts this APInt to a double value.
- double roundToDouble(bool isSigned) const;
- /// Converts this unsigned APInt to a double value.
- double roundToDouble() const { return roundToDouble(false); }
- /// Converts this signed APInt to a double value.
- double signedRoundToDouble() const { return roundToDouble(true); }
- /// Converts APInt bits to a double
- ///
- /// The conversion does not do a translation from integer to double, it just
- /// re-interprets the bits as a double. Note that it is valid to do this on
- /// any bit width. Exactly 64 bits will be translated.
- double bitsToDouble() const { return BitsToDouble(getWord(0)); }
- /// Converts APInt bits to a float
- ///
- /// The conversion does not do a translation from integer to float, it just
- /// re-interprets the bits as a float. Note that it is valid to do this on
- /// any bit width. Exactly 32 bits will be translated.
- float bitsToFloat() const {
- return BitsToFloat(static_cast<uint32_t>(getWord(0)));
- }
- /// Converts a double to APInt bits.
- ///
- /// The conversion does not do a translation from double to integer, it just
- /// re-interprets the bits of the double.
- static APInt doubleToBits(double V) {
- return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
- }
- /// Converts a float to APInt bits.
- ///
- /// The conversion does not do a translation from float to integer, it just
- /// re-interprets the bits of the float.
- static APInt floatToBits(float V) {
- return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
- }
- /// @}
- /// \name Mathematics Operations
- /// @{
- /// \returns the floor log base 2 of this APInt.
- unsigned logBase2() const { return getActiveBits() - 1; }
- /// \returns the ceil log base 2 of this APInt.
- unsigned ceilLogBase2() const {
- APInt temp(*this);
- --temp;
- return temp.getActiveBits();
- }
- /// \returns the nearest log base 2 of this APInt. Ties round up.
- ///
- /// NOTE: When we have a BitWidth of 1, we define:
- ///
- /// log2(0) = UINT32_MAX
- /// log2(1) = 0
- ///
- /// to get around any mathematical concerns resulting from
- /// referencing 2 in a space where 2 does no exist.
- unsigned nearestLogBase2() const;
- /// \returns the log base 2 of this APInt if its an exact power of two, -1
- /// otherwise
- int32_t exactLogBase2() const {
- if (!isPowerOf2())
- return -1;
- return logBase2();
- }
- /// Compute the square root.
- APInt sqrt() const;
- /// Get the absolute value. If *this is < 0 then return -(*this), otherwise
- /// *this. Note that the "most negative" signed number (e.g. -128 for 8 bit
- /// wide APInt) is unchanged due to how negation works.
- APInt abs() const {
- if (isNegative())
- return -(*this);
- return *this;
- }
- /// \returns the multiplicative inverse for a given modulo.
- APInt multiplicativeInverse(const APInt &modulo) const;
- /// @}
- /// \name Building-block Operations for APInt and APFloat
- /// @{
- // These building block operations operate on a representation of arbitrary
- // precision, two's-complement, bignum integer values. They should be
- // sufficient to implement APInt and APFloat bignum requirements. Inputs are
- // generally a pointer to the base of an array of integer parts, representing
- // an unsigned bignum, and a count of how many parts there are.
- /// Sets the least significant part of a bignum to the input value, and zeroes
- /// out higher parts.
- static void tcSet(WordType *, WordType, unsigned);
- /// Assign one bignum to another.
- static void tcAssign(WordType *, const WordType *, unsigned);
- /// Returns true if a bignum is zero, false otherwise.
- static bool tcIsZero(const WordType *, unsigned);
- /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
- static int tcExtractBit(const WordType *, unsigned bit);
- /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
- /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
- /// significant bit of DST. All high bits above srcBITS in DST are
- /// zero-filled.
- static void tcExtract(WordType *, unsigned dstCount, const WordType *,
- unsigned srcBits, unsigned srcLSB);
- /// Set the given bit of a bignum. Zero-based.
- static void tcSetBit(WordType *, unsigned bit);
- /// Clear the given bit of a bignum. Zero-based.
- static void tcClearBit(WordType *, unsigned bit);
- /// Returns the bit number of the least or most significant set bit of a
- /// number. If the input number has no bits set -1U is returned.
- static unsigned tcLSB(const WordType *, unsigned n);
- static unsigned tcMSB(const WordType *parts, unsigned n);
- /// Negate a bignum in-place.
- static void tcNegate(WordType *, unsigned);
- /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
- static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned);
- /// DST += RHS. Returns the carry flag.
- static WordType tcAddPart(WordType *, WordType, unsigned);
- /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
- static WordType tcSubtract(WordType *, const WordType *, WordType carry,
- unsigned);
- /// DST -= RHS. Returns the carry flag.
- static WordType tcSubtractPart(WordType *, WordType, unsigned);
- /// DST += SRC * MULTIPLIER + PART if add is true
- /// DST = SRC * MULTIPLIER + PART if add is false
- ///
- /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
- /// start at the same point, i.e. DST == SRC.
- ///
- /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
- /// Otherwise DST is filled with the least significant DSTPARTS parts of the
- /// result, and if all of the omitted higher parts were zero return zero,
- /// otherwise overflow occurred and return one.
- static int tcMultiplyPart(WordType *dst, const WordType *src,
- WordType multiplier, WordType carry,
- unsigned srcParts, unsigned dstParts, bool add);
- /// DST = LHS * RHS, where DST has the same width as the operands and is
- /// filled with the least significant parts of the result. Returns one if
- /// overflow occurred, otherwise zero. DST must be disjoint from both
- /// operands.
- static int tcMultiply(WordType *, const WordType *, const WordType *,
- unsigned);
- /// DST = LHS * RHS, where DST has width the sum of the widths of the
- /// operands. No overflow occurs. DST must be disjoint from both operands.
- static void tcFullMultiply(WordType *, const WordType *, const WordType *,
- unsigned, unsigned);
- /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
- /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
- /// REMAINDER to the remainder, return zero. i.e.
- ///
- /// OLD_LHS = RHS * LHS + REMAINDER
- ///
- /// SCRATCH is a bignum of the same size as the operands and result for use by
- /// the routine; its contents need not be initialized and are destroyed. LHS,
- /// REMAINDER and SCRATCH must be distinct.
- static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder,
- WordType *scratch, unsigned parts);
- /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
- /// restrictions on Count.
- static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
- /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
- /// restrictions on Count.
- static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
- /// Comparison (unsigned) of two bignums.
- static int tcCompare(const WordType *, const WordType *, unsigned);
- /// Increment a bignum in-place. Return the carry flag.
- static WordType tcIncrement(WordType *dst, unsigned parts) {
- return tcAddPart(dst, 1, parts);
- }
- /// Decrement a bignum in-place. Return the borrow flag.
- static WordType tcDecrement(WordType *dst, unsigned parts) {
- return tcSubtractPart(dst, 1, parts);
- }
- /// Used to insert APInt objects, or objects that contain APInt objects, into
- /// FoldingSets.
- void Profile(FoldingSetNodeID &id) const;
- /// debug method
- void dump() const;
- /// Returns whether this instance allocated memory.
- bool needsCleanup() const { return !isSingleWord(); }
- private:
- /// This union is used to store the integer value. When the
- /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
- union {
- uint64_t VAL; ///< Used to store the <= 64 bits integer value.
- uint64_t *pVal; ///< Used to store the >64 bits integer value.
- } U;
- unsigned BitWidth; ///< The number of bits in this APInt.
- friend struct DenseMapInfo<APInt, void>;
- friend class APSInt;
- /// This constructor is used only internally for speed of construction of
- /// temporaries. It is unsafe since it takes ownership of the pointer, so it
- /// is not public.
- APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; }
- /// Determine which word a bit is in.
- ///
- /// \returns the word position for the specified bit position.
- static unsigned whichWord(unsigned bitPosition) {
- return bitPosition / APINT_BITS_PER_WORD;
- }
- /// Determine which bit in a word the specified bit position is in.
- static unsigned whichBit(unsigned bitPosition) {
- return bitPosition % APINT_BITS_PER_WORD;
- }
- /// Get a single bit mask.
- ///
- /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
- /// This method generates and returns a uint64_t (word) mask for a single
- /// bit at a specific bit position. This is used to mask the bit in the
- /// corresponding word.
- static uint64_t maskBit(unsigned bitPosition) {
- return 1ULL << whichBit(bitPosition);
- }
- /// Clear unused high order bits
- ///
- /// This method is used internally to clear the top "N" bits in the high order
- /// word that are not used by the APInt. This is needed after the most
- /// significant word is assigned a value to ensure that those bits are
- /// zero'd out.
- APInt &clearUnusedBits() {
- // Compute how many bits are used in the final word.
- unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1;
- // Mask out the high bits.
- uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
- if (LLVM_UNLIKELY(BitWidth == 0))
- mask = 0;
- if (isSingleWord())
- U.VAL &= mask;
- else
- U.pVal[getNumWords() - 1] &= mask;
- return *this;
- }
- /// Get the word corresponding to a bit position
- /// \returns the corresponding word for the specified bit position.
- uint64_t getWord(unsigned bitPosition) const {
- return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
- }
- /// Utility method to change the bit width of this APInt to new bit width,
- /// allocating and/or deallocating as necessary. There is no guarantee on the
- /// value of any bits upon return. Caller should populate the bits after.
- void reallocate(unsigned NewBitWidth);
- /// Convert a char array into an APInt
- ///
- /// \param radix 2, 8, 10, 16, or 36
- /// Converts a string into a number. The string must be non-empty
- /// and well-formed as a number of the given base. The bit-width
- /// must be sufficient to hold the result.
- ///
- /// This is used by the constructors that take string arguments.
- ///
- /// StringRef::getAsInteger is superficially similar but (1) does
- /// not assume that the string is well-formed and (2) grows the
- /// result to hold the input.
- void fromString(unsigned numBits, StringRef str, uint8_t radix);
- /// An internal division function for dividing APInts.
- ///
- /// This is used by the toString method to divide by the radix. It simply
- /// provides a more convenient form of divide for internal use since KnuthDiv
- /// has specific constraints on its inputs. If those constraints are not met
- /// then it provides a simpler form of divide.
- static void divide(const WordType *LHS, unsigned lhsWords,
- const WordType *RHS, unsigned rhsWords, WordType *Quotient,
- WordType *Remainder);
- /// out-of-line slow case for inline constructor
- void initSlowCase(uint64_t val, bool isSigned);
- /// shared code between two array constructors
- void initFromArray(ArrayRef<uint64_t> array);
- /// out-of-line slow case for inline copy constructor
- void initSlowCase(const APInt &that);
- /// out-of-line slow case for shl
- void shlSlowCase(unsigned ShiftAmt);
- /// out-of-line slow case for lshr.
- void lshrSlowCase(unsigned ShiftAmt);
- /// out-of-line slow case for ashr.
- void ashrSlowCase(unsigned ShiftAmt);
- /// out-of-line slow case for operator=
- void assignSlowCase(const APInt &RHS);
- /// out-of-line slow case for operator==
- bool equalSlowCase(const APInt &RHS) const LLVM_READONLY;
- /// out-of-line slow case for countLeadingZeros
- unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
- /// out-of-line slow case for countLeadingOnes.
- unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
- /// out-of-line slow case for countTrailingZeros.
- unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
- /// out-of-line slow case for countTrailingOnes
- unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
- /// out-of-line slow case for countPopulation
- unsigned countPopulationSlowCase() const LLVM_READONLY;
- /// out-of-line slow case for intersects.
- bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
- /// out-of-line slow case for isSubsetOf.
- bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
- /// out-of-line slow case for setBits.
- void setBitsSlowCase(unsigned loBit, unsigned hiBit);
- /// out-of-line slow case for flipAllBits.
- void flipAllBitsSlowCase();
- /// out-of-line slow case for concat.
- APInt concatSlowCase(const APInt &NewLSB) const;
- /// out-of-line slow case for operator&=.
- void andAssignSlowCase(const APInt &RHS);
- /// out-of-line slow case for operator|=.
- void orAssignSlowCase(const APInt &RHS);
- /// out-of-line slow case for operator^=.
- void xorAssignSlowCase(const APInt &RHS);
- /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
- /// to, or greater than RHS.
- int compare(const APInt &RHS) const LLVM_READONLY;
- /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
- /// to, or greater than RHS.
- int compareSigned(const APInt &RHS) const LLVM_READONLY;
- /// @}
- };
- inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
- inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
- /// Unary bitwise complement operator.
- ///
- /// \returns an APInt that is the bitwise complement of \p v.
- inline APInt operator~(APInt v) {
- v.flipAllBits();
- return v;
- }
- inline APInt operator&(APInt a, const APInt &b) {
- a &= b;
- return a;
- }
- inline APInt operator&(const APInt &a, APInt &&b) {
- b &= a;
- return std::move(b);
- }
- inline APInt operator&(APInt a, uint64_t RHS) {
- a &= RHS;
- return a;
- }
- inline APInt operator&(uint64_t LHS, APInt b) {
- b &= LHS;
- return b;
- }
- inline APInt operator|(APInt a, const APInt &b) {
- a |= b;
- return a;
- }
- inline APInt operator|(const APInt &a, APInt &&b) {
- b |= a;
- return std::move(b);
- }
- inline APInt operator|(APInt a, uint64_t RHS) {
- a |= RHS;
- return a;
- }
- inline APInt operator|(uint64_t LHS, APInt b) {
- b |= LHS;
- return b;
- }
- inline APInt operator^(APInt a, const APInt &b) {
- a ^= b;
- return a;
- }
- inline APInt operator^(const APInt &a, APInt &&b) {
- b ^= a;
- return std::move(b);
- }
- inline APInt operator^(APInt a, uint64_t RHS) {
- a ^= RHS;
- return a;
- }
- inline APInt operator^(uint64_t LHS, APInt b) {
- b ^= LHS;
- return b;
- }
- inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
- I.print(OS, true);
- return OS;
- }
- inline APInt operator-(APInt v) {
- v.negate();
- return v;
- }
- inline APInt operator+(APInt a, const APInt &b) {
- a += b;
- return a;
- }
- inline APInt operator+(const APInt &a, APInt &&b) {
- b += a;
- return std::move(b);
- }
- inline APInt operator+(APInt a, uint64_t RHS) {
- a += RHS;
- return a;
- }
- inline APInt operator+(uint64_t LHS, APInt b) {
- b += LHS;
- return b;
- }
- inline APInt operator-(APInt a, const APInt &b) {
- a -= b;
- return a;
- }
- inline APInt operator-(const APInt &a, APInt &&b) {
- b.negate();
- b += a;
- return std::move(b);
- }
- inline APInt operator-(APInt a, uint64_t RHS) {
- a -= RHS;
- return a;
- }
- inline APInt operator-(uint64_t LHS, APInt b) {
- b.negate();
- b += LHS;
- return b;
- }
- inline APInt operator*(APInt a, uint64_t RHS) {
- a *= RHS;
- return a;
- }
- inline APInt operator*(uint64_t LHS, APInt b) {
- b *= LHS;
- return b;
- }
- namespace APIntOps {
- /// Determine the smaller of two APInts considered to be signed.
- inline const APInt &smin(const APInt &A, const APInt &B) {
- return A.slt(B) ? A : B;
- }
- /// Determine the larger of two APInts considered to be signed.
- inline const APInt &smax(const APInt &A, const APInt &B) {
- return A.sgt(B) ? A : B;
- }
- /// Determine the smaller of two APInts considered to be unsigned.
- inline const APInt &umin(const APInt &A, const APInt &B) {
- return A.ult(B) ? A : B;
- }
- /// Determine the larger of two APInts considered to be unsigned.
- inline const APInt &umax(const APInt &A, const APInt &B) {
- return A.ugt(B) ? A : B;
- }
- /// Compute GCD of two unsigned APInt values.
- ///
- /// This function returns the greatest common divisor of the two APInt values
- /// using Stein's algorithm.
- ///
- /// \returns the greatest common divisor of A and B.
- APInt GreatestCommonDivisor(APInt A, APInt B);
- /// Converts the given APInt to a double value.
- ///
- /// Treats the APInt as an unsigned value for conversion purposes.
- inline double RoundAPIntToDouble(const APInt &APIVal) {
- return APIVal.roundToDouble();
- }
- /// Converts the given APInt to a double value.
- ///
- /// Treats the APInt as a signed value for conversion purposes.
- inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
- return APIVal.signedRoundToDouble();
- }
- /// Converts the given APInt to a float value.
- inline float RoundAPIntToFloat(const APInt &APIVal) {
- return float(RoundAPIntToDouble(APIVal));
- }
- /// Converts the given APInt to a float value.
- ///
- /// Treats the APInt as a signed value for conversion purposes.
- inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
- return float(APIVal.signedRoundToDouble());
- }
- /// Converts the given double value into a APInt.
- ///
- /// This function convert a double value to an APInt value.
- APInt RoundDoubleToAPInt(double Double, unsigned width);
- /// Converts a float value into a APInt.
- ///
- /// Converts a float value into an APInt value.
- inline APInt RoundFloatToAPInt(float Float, unsigned width) {
- return RoundDoubleToAPInt(double(Float), width);
- }
- /// Return A unsign-divided by B, rounded by the given rounding mode.
- APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
- /// Return A sign-divided by B, rounded by the given rounding mode.
- APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
- /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
- /// (e.g. 32 for i32).
- /// This function finds the smallest number n, such that
- /// (a) n >= 0 and q(n) = 0, or
- /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
- /// integers, belong to two different intervals [Rk, Rk+R),
- /// where R = 2^BW, and k is an integer.
- /// The idea here is to find when q(n) "overflows" 2^BW, while at the
- /// same time "allowing" subtraction. In unsigned modulo arithmetic a
- /// subtraction (treated as addition of negated numbers) would always
- /// count as an overflow, but here we want to allow values to decrease
- /// and increase as long as they are within the same interval.
- /// Specifically, adding of two negative numbers should not cause an
- /// overflow (as long as the magnitude does not exceed the bit width).
- /// On the other hand, given a positive number, adding a negative
- /// number to it can give a negative result, which would cause the
- /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
- /// treated as a special case of an overflow.
- ///
- /// This function returns None if after finding k that minimizes the
- /// positive solution to q(n) = kR, both solutions are contained between
- /// two consecutive integers.
- ///
- /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
- /// in arithmetic modulo 2^BW, and treating the values as signed) by the
- /// virtue of *signed* overflow. This function will *not* find such an n,
- /// however it may find a value of n satisfying the inequalities due to
- /// an *unsigned* overflow (if the values are treated as unsigned).
- /// To find a solution for a signed overflow, treat it as a problem of
- /// finding an unsigned overflow with a range with of BW-1.
- ///
- /// The returned value may have a different bit width from the input
- /// coefficients.
- Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
- unsigned RangeWidth);
- /// Compare two values, and if they are different, return the position of the
- /// most significant bit that is different in the values.
- Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
- const APInt &B);
- /// Splat/Merge neighboring bits to widen/narrow the bitmask represented
- /// by \param A to \param NewBitWidth bits.
- ///
- /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
- /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111
- /// A.getBitwidth() or NewBitWidth must be a whole multiples of the other.
- ///
- /// TODO: Do we need a mode where all bits must be set when merging down?
- APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth);
- } // namespace APIntOps
- // See friend declaration above. This additional declaration is required in
- // order to compile LLVM with IBM xlC compiler.
- hash_code hash_value(const APInt &Arg);
- /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
- /// with the integer held in IntVal.
- void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
- /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
- /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
- void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
- /// Provide DenseMapInfo for APInt.
- template <> struct DenseMapInfo<APInt, void> {
- static inline APInt getEmptyKey() {
- APInt V(nullptr, 0);
- V.U.VAL = 0;
- return V;
- }
- static inline APInt getTombstoneKey() {
- APInt V(nullptr, 0);
- V.U.VAL = 1;
- return V;
- }
- static unsigned getHashValue(const APInt &Key);
- static bool isEqual(const APInt &LHS, const APInt &RHS) {
- return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS;
- }
- };
- } // namespace llvm
- #endif
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|