1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// This file declares a class to represent arbitrary precision floating point
- /// values and provide a variety of arithmetic operations on them.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_APFLOAT_H
- #define LLVM_ADT_APFLOAT_H
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/FloatingPointMode.h"
- #include "llvm/Support/ErrorHandling.h"
- #include <memory>
- #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \
- do { \
- if (usesLayout<IEEEFloat>(getSemantics())) \
- return U.IEEE.METHOD_CALL; \
- if (usesLayout<DoubleAPFloat>(getSemantics())) \
- return U.Double.METHOD_CALL; \
- llvm_unreachable("Unexpected semantics"); \
- } while (false)
- namespace llvm {
- struct fltSemantics;
- class APSInt;
- class StringRef;
- class APFloat;
- class raw_ostream;
- template <typename T> class Expected;
- template <typename T> class SmallVectorImpl;
- /// Enum that represents what fraction of the LSB truncated bits of an fp number
- /// represent.
- ///
- /// This essentially combines the roles of guard and sticky bits.
- enum lostFraction { // Example of truncated bits:
- lfExactlyZero, // 000000
- lfLessThanHalf, // 0xxxxx x's not all zero
- lfExactlyHalf, // 100000
- lfMoreThanHalf // 1xxxxx x's not all zero
- };
- /// A self-contained host- and target-independent arbitrary-precision
- /// floating-point software implementation.
- ///
- /// APFloat uses bignum integer arithmetic as provided by static functions in
- /// the APInt class. The library will work with bignum integers whose parts are
- /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
- ///
- /// Written for clarity rather than speed, in particular with a view to use in
- /// the front-end of a cross compiler so that target arithmetic can be correctly
- /// performed on the host. Performance should nonetheless be reasonable,
- /// particularly for its intended use. It may be useful as a base
- /// implementation for a run-time library during development of a faster
- /// target-specific one.
- ///
- /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
- /// implemented operations. Currently implemented operations are add, subtract,
- /// multiply, divide, fused-multiply-add, conversion-to-float,
- /// conversion-to-integer and conversion-from-integer. New rounding modes
- /// (e.g. away from zero) can be added with three or four lines of code.
- ///
- /// Four formats are built-in: IEEE single precision, double precision,
- /// quadruple precision, and x87 80-bit extended double (when operating with
- /// full extended precision). Adding a new format that obeys IEEE semantics
- /// only requires adding two lines of code: a declaration and definition of the
- /// format.
- ///
- /// All operations return the status of that operation as an exception bit-mask,
- /// so multiple operations can be done consecutively with their results or-ed
- /// together. The returned status can be useful for compiler diagnostics; e.g.,
- /// inexact, underflow and overflow can be easily diagnosed on constant folding,
- /// and compiler optimizers can determine what exceptions would be raised by
- /// folding operations and optimize, or perhaps not optimize, accordingly.
- ///
- /// At present, underflow tininess is detected after rounding; it should be
- /// straight forward to add support for the before-rounding case too.
- ///
- /// The library reads hexadecimal floating point numbers as per C99, and
- /// correctly rounds if necessary according to the specified rounding mode.
- /// Syntax is required to have been validated by the caller. It also converts
- /// floating point numbers to hexadecimal text as per the C99 %a and %A
- /// conversions. The output precision (or alternatively the natural minimal
- /// precision) can be specified; if the requested precision is less than the
- /// natural precision the output is correctly rounded for the specified rounding
- /// mode.
- ///
- /// It also reads decimal floating point numbers and correctly rounds according
- /// to the specified rounding mode.
- ///
- /// Conversion to decimal text is not currently implemented.
- ///
- /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
- /// signed exponent, and the significand as an array of integer parts. After
- /// normalization of a number of precision P the exponent is within the range of
- /// the format, and if the number is not denormal the P-th bit of the
- /// significand is set as an explicit integer bit. For denormals the most
- /// significant bit is shifted right so that the exponent is maintained at the
- /// format's minimum, so that the smallest denormal has just the least
- /// significant bit of the significand set. The sign of zeroes and infinities
- /// is significant; the exponent and significand of such numbers is not stored,
- /// but has a known implicit (deterministic) value: 0 for the significands, 0
- /// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and
- /// significand are deterministic, although not really meaningful, and preserved
- /// in non-conversion operations. The exponent is implicitly all 1 bits.
- ///
- /// APFloat does not provide any exception handling beyond default exception
- /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
- /// by encoding Signaling NaNs with the first bit of its trailing significand as
- /// 0.
- ///
- /// TODO
- /// ====
- ///
- /// Some features that may or may not be worth adding:
- ///
- /// Binary to decimal conversion (hard).
- ///
- /// Optional ability to detect underflow tininess before rounding.
- ///
- /// New formats: x87 in single and double precision mode (IEEE apart from
- /// extended exponent range) (hard).
- ///
- /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
- ///
- // This is the common type definitions shared by APFloat and its internal
- // implementation classes. This struct should not define any non-static data
- // members.
- struct APFloatBase {
- typedef APInt::WordType integerPart;
- static constexpr unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD;
- /// A signed type to represent a floating point numbers unbiased exponent.
- typedef int32_t ExponentType;
- /// \name Floating Point Semantics.
- /// @{
- enum Semantics {
- S_IEEEhalf,
- S_BFloat,
- S_IEEEsingle,
- S_IEEEdouble,
- S_x87DoubleExtended,
- S_IEEEquad,
- S_PPCDoubleDouble
- };
- static const llvm::fltSemantics &EnumToSemantics(Semantics S);
- static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem);
- static const fltSemantics &IEEEhalf() LLVM_READNONE;
- static const fltSemantics &BFloat() LLVM_READNONE;
- static const fltSemantics &IEEEsingle() LLVM_READNONE;
- static const fltSemantics &IEEEdouble() LLVM_READNONE;
- static const fltSemantics &IEEEquad() LLVM_READNONE;
- static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
- static const fltSemantics &x87DoubleExtended() LLVM_READNONE;
- /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
- /// anything real.
- static const fltSemantics &Bogus() LLVM_READNONE;
- /// @}
- /// IEEE-754R 5.11: Floating Point Comparison Relations.
- enum cmpResult {
- cmpLessThan,
- cmpEqual,
- cmpGreaterThan,
- cmpUnordered
- };
- /// IEEE-754R 4.3: Rounding-direction attributes.
- using roundingMode = llvm::RoundingMode;
- static constexpr roundingMode rmNearestTiesToEven =
- RoundingMode::NearestTiesToEven;
- static constexpr roundingMode rmTowardPositive = RoundingMode::TowardPositive;
- static constexpr roundingMode rmTowardNegative = RoundingMode::TowardNegative;
- static constexpr roundingMode rmTowardZero = RoundingMode::TowardZero;
- static constexpr roundingMode rmNearestTiesToAway =
- RoundingMode::NearestTiesToAway;
- /// IEEE-754R 7: Default exception handling.
- ///
- /// opUnderflow or opOverflow are always returned or-ed with opInexact.
- ///
- /// APFloat models this behavior specified by IEEE-754:
- /// "For operations producing results in floating-point format, the default
- /// result of an operation that signals the invalid operation exception
- /// shall be a quiet NaN."
- enum opStatus {
- opOK = 0x00,
- opInvalidOp = 0x01,
- opDivByZero = 0x02,
- opOverflow = 0x04,
- opUnderflow = 0x08,
- opInexact = 0x10
- };
- /// Category of internally-represented number.
- enum fltCategory {
- fcInfinity,
- fcNaN,
- fcNormal,
- fcZero
- };
- /// Convenience enum used to construct an uninitialized APFloat.
- enum uninitializedTag {
- uninitialized
- };
- /// Enumeration of \c ilogb error results.
- enum IlogbErrorKinds {
- IEK_Zero = INT_MIN + 1,
- IEK_NaN = INT_MIN,
- IEK_Inf = INT_MAX
- };
- static unsigned int semanticsPrecision(const fltSemantics &);
- static ExponentType semanticsMinExponent(const fltSemantics &);
- static ExponentType semanticsMaxExponent(const fltSemantics &);
- static unsigned int semanticsSizeInBits(const fltSemantics &);
- /// Returns the size of the floating point number (in bits) in the given
- /// semantics.
- static unsigned getSizeInBits(const fltSemantics &Sem);
- };
- namespace detail {
- class IEEEFloat final : public APFloatBase {
- public:
- /// \name Constructors
- /// @{
- IEEEFloat(const fltSemantics &); // Default construct to +0.0
- IEEEFloat(const fltSemantics &, integerPart);
- IEEEFloat(const fltSemantics &, uninitializedTag);
- IEEEFloat(const fltSemantics &, const APInt &);
- explicit IEEEFloat(double d);
- explicit IEEEFloat(float f);
- IEEEFloat(const IEEEFloat &);
- IEEEFloat(IEEEFloat &&);
- ~IEEEFloat();
- /// @}
- /// Returns whether this instance allocated memory.
- bool needsCleanup() const { return partCount() > 1; }
- /// \name Convenience "constructors"
- /// @{
- /// @}
- /// \name Arithmetic
- /// @{
- opStatus add(const IEEEFloat &, roundingMode);
- opStatus subtract(const IEEEFloat &, roundingMode);
- opStatus multiply(const IEEEFloat &, roundingMode);
- opStatus divide(const IEEEFloat &, roundingMode);
- /// IEEE remainder.
- opStatus remainder(const IEEEFloat &);
- /// C fmod, or llvm frem.
- opStatus mod(const IEEEFloat &);
- opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
- opStatus roundToIntegral(roundingMode);
- /// IEEE-754R 5.3.1: nextUp/nextDown.
- opStatus next(bool nextDown);
- /// @}
- /// \name Sign operations.
- /// @{
- void changeSign();
- /// @}
- /// \name Conversions
- /// @{
- opStatus convert(const fltSemantics &, roundingMode, bool *);
- opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
- roundingMode, bool *) const;
- opStatus convertFromAPInt(const APInt &, bool, roundingMode);
- opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
- bool, roundingMode);
- opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
- bool, roundingMode);
- Expected<opStatus> convertFromString(StringRef, roundingMode);
- APInt bitcastToAPInt() const;
- double convertToDouble() const;
- float convertToFloat() const;
- /// @}
- /// The definition of equality is not straightforward for floating point, so
- /// we won't use operator==. Use one of the following, or write whatever it
- /// is you really mean.
- bool operator==(const IEEEFloat &) const = delete;
- /// IEEE comparison with another floating point number (NaNs compare
- /// unordered, 0==-0).
- cmpResult compare(const IEEEFloat &) const;
- /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
- bool bitwiseIsEqual(const IEEEFloat &) const;
- /// Write out a hexadecimal representation of the floating point value to DST,
- /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
- /// Return the number of characters written, excluding the terminating NUL.
- unsigned int convertToHexString(char *dst, unsigned int hexDigits,
- bool upperCase, roundingMode) const;
- /// \name IEEE-754R 5.7.2 General operations.
- /// @{
- /// IEEE-754R isSignMinus: Returns true if and only if the current value is
- /// negative.
- ///
- /// This applies to zeros and NaNs as well.
- bool isNegative() const { return sign; }
- /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
- ///
- /// This implies that the current value of the float is not zero, subnormal,
- /// infinite, or NaN following the definition of normality from IEEE-754R.
- bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
- /// Returns true if and only if the current value is zero, subnormal, or
- /// normal.
- ///
- /// This means that the value is not infinite or NaN.
- bool isFinite() const { return !isNaN() && !isInfinity(); }
- /// Returns true if and only if the float is plus or minus zero.
- bool isZero() const { return category == fcZero; }
- /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
- /// denormal.
- bool isDenormal() const;
- /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
- bool isInfinity() const { return category == fcInfinity; }
- /// Returns true if and only if the float is a quiet or signaling NaN.
- bool isNaN() const { return category == fcNaN; }
- /// Returns true if and only if the float is a signaling NaN.
- bool isSignaling() const;
- /// @}
- /// \name Simple Queries
- /// @{
- fltCategory getCategory() const { return category; }
- const fltSemantics &getSemantics() const { return *semantics; }
- bool isNonZero() const { return category != fcZero; }
- bool isFiniteNonZero() const { return isFinite() && !isZero(); }
- bool isPosZero() const { return isZero() && !isNegative(); }
- bool isNegZero() const { return isZero() && isNegative(); }
- /// Returns true if and only if the number has the smallest possible non-zero
- /// magnitude in the current semantics.
- bool isSmallest() const;
- /// Returns true if and only if the number has the largest possible finite
- /// magnitude in the current semantics.
- bool isLargest() const;
- /// Returns true if and only if the number is an exact integer.
- bool isInteger() const;
- /// @}
- IEEEFloat &operator=(const IEEEFloat &);
- IEEEFloat &operator=(IEEEFloat &&);
- /// Overload to compute a hash code for an APFloat value.
- ///
- /// Note that the use of hash codes for floating point values is in general
- /// frought with peril. Equality is hard to define for these values. For
- /// example, should negative and positive zero hash to different codes? Are
- /// they equal or not? This hash value implementation specifically
- /// emphasizes producing different codes for different inputs in order to
- /// be used in canonicalization and memoization. As such, equality is
- /// bitwiseIsEqual, and 0 != -0.
- friend hash_code hash_value(const IEEEFloat &Arg);
- /// Converts this value into a decimal string.
- ///
- /// \param FormatPrecision The maximum number of digits of
- /// precision to output. If there are fewer digits available,
- /// zero padding will not be used unless the value is
- /// integral and small enough to be expressed in
- /// FormatPrecision digits. 0 means to use the natural
- /// precision of the number.
- /// \param FormatMaxPadding The maximum number of zeros to
- /// consider inserting before falling back to scientific
- /// notation. 0 means to always use scientific notation.
- ///
- /// \param TruncateZero Indicate whether to remove the trailing zero in
- /// fraction part or not. Also setting this parameter to false forcing
- /// producing of output more similar to default printf behavior.
- /// Specifically the lower e is used as exponent delimiter and exponent
- /// always contains no less than two digits.
- ///
- /// Number Precision MaxPadding Result
- /// ------ --------- ---------- ------
- /// 1.01E+4 5 2 10100
- /// 1.01E+4 4 2 1.01E+4
- /// 1.01E+4 5 1 1.01E+4
- /// 1.01E-2 5 2 0.0101
- /// 1.01E-2 4 2 0.0101
- /// 1.01E-2 4 1 1.01E-2
- void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
- unsigned FormatMaxPadding = 3, bool TruncateZero = true) const;
- /// If this value has an exact multiplicative inverse, store it in inv and
- /// return true.
- bool getExactInverse(APFloat *inv) const;
- /// Returns the exponent of the internal representation of the APFloat.
- ///
- /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
- /// For special APFloat values, this returns special error codes:
- ///
- /// NaN -> \c IEK_NaN
- /// 0 -> \c IEK_Zero
- /// Inf -> \c IEK_Inf
- ///
- friend int ilogb(const IEEEFloat &Arg);
- /// Returns: X * 2^Exp for integral exponents.
- friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);
- friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);
- /// \name Special value setters.
- /// @{
- void makeLargest(bool Neg = false);
- void makeSmallest(bool Neg = false);
- void makeNaN(bool SNaN = false, bool Neg = false,
- const APInt *fill = nullptr);
- void makeInf(bool Neg = false);
- void makeZero(bool Neg = false);
- void makeQuiet();
- /// Returns the smallest (by magnitude) normalized finite number in the given
- /// semantics.
- ///
- /// \param Negative - True iff the number should be negative
- void makeSmallestNormalized(bool Negative = false);
- /// @}
- cmpResult compareAbsoluteValue(const IEEEFloat &) const;
- private:
- /// \name Simple Queries
- /// @{
- integerPart *significandParts();
- const integerPart *significandParts() const;
- unsigned int partCount() const;
- /// @}
- /// \name Significand operations.
- /// @{
- integerPart addSignificand(const IEEEFloat &);
- integerPart subtractSignificand(const IEEEFloat &, integerPart);
- lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
- lostFraction multiplySignificand(const IEEEFloat &, IEEEFloat);
- lostFraction multiplySignificand(const IEEEFloat&);
- lostFraction divideSignificand(const IEEEFloat &);
- void incrementSignificand();
- void initialize(const fltSemantics *);
- void shiftSignificandLeft(unsigned int);
- lostFraction shiftSignificandRight(unsigned int);
- unsigned int significandLSB() const;
- unsigned int significandMSB() const;
- void zeroSignificand();
- /// Return true if the significand excluding the integral bit is all ones.
- bool isSignificandAllOnes() const;
- /// Return true if the significand excluding the integral bit is all zeros.
- bool isSignificandAllZeros() const;
- /// @}
- /// \name Arithmetic on special values.
- /// @{
- opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
- opStatus divideSpecials(const IEEEFloat &);
- opStatus multiplySpecials(const IEEEFloat &);
- opStatus modSpecials(const IEEEFloat &);
- opStatus remainderSpecials(const IEEEFloat&);
- /// @}
- /// \name Miscellany
- /// @{
- bool convertFromStringSpecials(StringRef str);
- opStatus normalize(roundingMode, lostFraction);
- opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
- opStatus handleOverflow(roundingMode);
- bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
- opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
- unsigned int, bool, roundingMode,
- bool *) const;
- opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
- roundingMode);
- Expected<opStatus> convertFromHexadecimalString(StringRef, roundingMode);
- Expected<opStatus> convertFromDecimalString(StringRef, roundingMode);
- char *convertNormalToHexString(char *, unsigned int, bool,
- roundingMode) const;
- opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
- roundingMode);
- ExponentType exponentNaN() const;
- ExponentType exponentInf() const;
- ExponentType exponentZero() const;
- /// @}
- APInt convertHalfAPFloatToAPInt() const;
- APInt convertBFloatAPFloatToAPInt() const;
- APInt convertFloatAPFloatToAPInt() const;
- APInt convertDoubleAPFloatToAPInt() const;
- APInt convertQuadrupleAPFloatToAPInt() const;
- APInt convertF80LongDoubleAPFloatToAPInt() const;
- APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
- void initFromAPInt(const fltSemantics *Sem, const APInt &api);
- void initFromHalfAPInt(const APInt &api);
- void initFromBFloatAPInt(const APInt &api);
- void initFromFloatAPInt(const APInt &api);
- void initFromDoubleAPInt(const APInt &api);
- void initFromQuadrupleAPInt(const APInt &api);
- void initFromF80LongDoubleAPInt(const APInt &api);
- void initFromPPCDoubleDoubleAPInt(const APInt &api);
- void assign(const IEEEFloat &);
- void copySignificand(const IEEEFloat &);
- void freeSignificand();
- /// Note: this must be the first data member.
- /// The semantics that this value obeys.
- const fltSemantics *semantics;
- /// A binary fraction with an explicit integer bit.
- ///
- /// The significand must be at least one bit wider than the target precision.
- union Significand {
- integerPart part;
- integerPart *parts;
- } significand;
- /// The signed unbiased exponent of the value.
- ExponentType exponent;
- /// What kind of floating point number this is.
- ///
- /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
- /// Using the extra bit keeps it from failing under VisualStudio.
- fltCategory category : 3;
- /// Sign bit of the number.
- unsigned int sign : 1;
- };
- hash_code hash_value(const IEEEFloat &Arg);
- int ilogb(const IEEEFloat &Arg);
- IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
- IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);
- // This mode implements more precise float in terms of two APFloats.
- // The interface and layout is designed for arbitrary underlying semantics,
- // though currently only PPCDoubleDouble semantics are supported, whose
- // corresponding underlying semantics are IEEEdouble.
- class DoubleAPFloat final : public APFloatBase {
- // Note: this must be the first data member.
- const fltSemantics *Semantics;
- std::unique_ptr<APFloat[]> Floats;
- opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
- const APFloat &cc, roundingMode RM);
- opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
- DoubleAPFloat &Out, roundingMode RM);
- public:
- DoubleAPFloat(const fltSemantics &S);
- DoubleAPFloat(const fltSemantics &S, uninitializedTag);
- DoubleAPFloat(const fltSemantics &S, integerPart);
- DoubleAPFloat(const fltSemantics &S, const APInt &I);
- DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
- DoubleAPFloat(const DoubleAPFloat &RHS);
- DoubleAPFloat(DoubleAPFloat &&RHS);
- DoubleAPFloat &operator=(const DoubleAPFloat &RHS);
- DoubleAPFloat &operator=(DoubleAPFloat &&RHS) {
- if (this != &RHS) {
- this->~DoubleAPFloat();
- new (this) DoubleAPFloat(std::move(RHS));
- }
- return *this;
- }
- bool needsCleanup() const { return Floats != nullptr; }
- APFloat &getFirst() { return Floats[0]; }
- const APFloat &getFirst() const { return Floats[0]; }
- APFloat &getSecond() { return Floats[1]; }
- const APFloat &getSecond() const { return Floats[1]; }
- opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
- opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
- opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
- opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
- opStatus remainder(const DoubleAPFloat &RHS);
- opStatus mod(const DoubleAPFloat &RHS);
- opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
- const DoubleAPFloat &Addend, roundingMode RM);
- opStatus roundToIntegral(roundingMode RM);
- void changeSign();
- cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;
- fltCategory getCategory() const;
- bool isNegative() const;
- void makeInf(bool Neg);
- void makeZero(bool Neg);
- void makeLargest(bool Neg);
- void makeSmallest(bool Neg);
- void makeSmallestNormalized(bool Neg);
- void makeNaN(bool SNaN, bool Neg, const APInt *fill);
- cmpResult compare(const DoubleAPFloat &RHS) const;
- bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
- APInt bitcastToAPInt() const;
- Expected<opStatus> convertFromString(StringRef, roundingMode);
- opStatus next(bool nextDown);
- opStatus convertToInteger(MutableArrayRef<integerPart> Input,
- unsigned int Width, bool IsSigned, roundingMode RM,
- bool *IsExact) const;
- opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
- opStatus convertFromSignExtendedInteger(const integerPart *Input,
- unsigned int InputSize, bool IsSigned,
- roundingMode RM);
- opStatus convertFromZeroExtendedInteger(const integerPart *Input,
- unsigned int InputSize, bool IsSigned,
- roundingMode RM);
- unsigned int convertToHexString(char *DST, unsigned int HexDigits,
- bool UpperCase, roundingMode RM) const;
- bool isDenormal() const;
- bool isSmallest() const;
- bool isLargest() const;
- bool isInteger() const;
- void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
- unsigned FormatMaxPadding, bool TruncateZero = true) const;
- bool getExactInverse(APFloat *inv) const;
- friend DoubleAPFloat scalbn(const DoubleAPFloat &X, int Exp, roundingMode);
- friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
- friend hash_code hash_value(const DoubleAPFloat &Arg);
- };
- hash_code hash_value(const DoubleAPFloat &Arg);
- } // End detail namespace
- // This is a interface class that is currently forwarding functionalities from
- // detail::IEEEFloat.
- class APFloat : public APFloatBase {
- typedef detail::IEEEFloat IEEEFloat;
- typedef detail::DoubleAPFloat DoubleAPFloat;
- static_assert(std::is_standard_layout<IEEEFloat>::value, "");
- union Storage {
- const fltSemantics *semantics;
- IEEEFloat IEEE;
- DoubleAPFloat Double;
- explicit Storage(IEEEFloat F, const fltSemantics &S);
- explicit Storage(DoubleAPFloat F, const fltSemantics &S)
- : Double(std::move(F)) {
- assert(&S == &PPCDoubleDouble());
- }
- template <typename... ArgTypes>
- Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
- if (usesLayout<IEEEFloat>(Semantics)) {
- new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
- return;
- }
- if (usesLayout<DoubleAPFloat>(Semantics)) {
- new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
- return;
- }
- llvm_unreachable("Unexpected semantics");
- }
- ~Storage() {
- if (usesLayout<IEEEFloat>(*semantics)) {
- IEEE.~IEEEFloat();
- return;
- }
- if (usesLayout<DoubleAPFloat>(*semantics)) {
- Double.~DoubleAPFloat();
- return;
- }
- llvm_unreachable("Unexpected semantics");
- }
- Storage(const Storage &RHS) {
- if (usesLayout<IEEEFloat>(*RHS.semantics)) {
- new (this) IEEEFloat(RHS.IEEE);
- return;
- }
- if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
- new (this) DoubleAPFloat(RHS.Double);
- return;
- }
- llvm_unreachable("Unexpected semantics");
- }
- Storage(Storage &&RHS) {
- if (usesLayout<IEEEFloat>(*RHS.semantics)) {
- new (this) IEEEFloat(std::move(RHS.IEEE));
- return;
- }
- if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
- new (this) DoubleAPFloat(std::move(RHS.Double));
- return;
- }
- llvm_unreachable("Unexpected semantics");
- }
- Storage &operator=(const Storage &RHS) {
- if (usesLayout<IEEEFloat>(*semantics) &&
- usesLayout<IEEEFloat>(*RHS.semantics)) {
- IEEE = RHS.IEEE;
- } else if (usesLayout<DoubleAPFloat>(*semantics) &&
- usesLayout<DoubleAPFloat>(*RHS.semantics)) {
- Double = RHS.Double;
- } else if (this != &RHS) {
- this->~Storage();
- new (this) Storage(RHS);
- }
- return *this;
- }
- Storage &operator=(Storage &&RHS) {
- if (usesLayout<IEEEFloat>(*semantics) &&
- usesLayout<IEEEFloat>(*RHS.semantics)) {
- IEEE = std::move(RHS.IEEE);
- } else if (usesLayout<DoubleAPFloat>(*semantics) &&
- usesLayout<DoubleAPFloat>(*RHS.semantics)) {
- Double = std::move(RHS.Double);
- } else if (this != &RHS) {
- this->~Storage();
- new (this) Storage(std::move(RHS));
- }
- return *this;
- }
- } U;
- template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
- static_assert(std::is_same<T, IEEEFloat>::value ||
- std::is_same<T, DoubleAPFloat>::value, "");
- if (std::is_same<T, DoubleAPFloat>::value) {
- return &Semantics == &PPCDoubleDouble();
- }
- return &Semantics != &PPCDoubleDouble();
- }
- IEEEFloat &getIEEE() {
- if (usesLayout<IEEEFloat>(*U.semantics))
- return U.IEEE;
- if (usesLayout<DoubleAPFloat>(*U.semantics))
- return U.Double.getFirst().U.IEEE;
- llvm_unreachable("Unexpected semantics");
- }
- const IEEEFloat &getIEEE() const {
- if (usesLayout<IEEEFloat>(*U.semantics))
- return U.IEEE;
- if (usesLayout<DoubleAPFloat>(*U.semantics))
- return U.Double.getFirst().U.IEEE;
- llvm_unreachable("Unexpected semantics");
- }
- void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }
- void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }
- void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
- APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
- }
- void makeLargest(bool Neg) {
- APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
- }
- void makeSmallest(bool Neg) {
- APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
- }
- void makeSmallestNormalized(bool Neg) {
- APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
- }
- // FIXME: This is due to clang 3.3 (or older version) always checks for the
- // default constructor in an array aggregate initialization, even if no
- // elements in the array is default initialized.
- APFloat() : U(IEEEdouble()) {
- llvm_unreachable("This is a workaround for old clang.");
- }
- explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
- explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
- : U(std::move(F), S) {}
- cmpResult compareAbsoluteValue(const APFloat &RHS) const {
- assert(&getSemantics() == &RHS.getSemantics() &&
- "Should only compare APFloats with the same semantics");
- if (usesLayout<IEEEFloat>(getSemantics()))
- return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
- if (usesLayout<DoubleAPFloat>(getSemantics()))
- return U.Double.compareAbsoluteValue(RHS.U.Double);
- llvm_unreachable("Unexpected semantics");
- }
- public:
- APFloat(const fltSemantics &Semantics) : U(Semantics) {}
- APFloat(const fltSemantics &Semantics, StringRef S);
- APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
- template <typename T,
- typename = std::enable_if_t<std::is_floating_point<T>::value>>
- APFloat(const fltSemantics &Semantics, T V) = delete;
- // TODO: Remove this constructor. This isn't faster than the first one.
- APFloat(const fltSemantics &Semantics, uninitializedTag)
- : U(Semantics, uninitialized) {}
- APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
- explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
- explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
- APFloat(const APFloat &RHS) = default;
- APFloat(APFloat &&RHS) = default;
- ~APFloat() = default;
- bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }
- /// Factory for Positive and Negative Zero.
- ///
- /// \param Negative True iff the number should be negative.
- static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
- APFloat Val(Sem, uninitialized);
- Val.makeZero(Negative);
- return Val;
- }
- /// Factory for Positive and Negative Infinity.
- ///
- /// \param Negative True iff the number should be negative.
- static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
- APFloat Val(Sem, uninitialized);
- Val.makeInf(Negative);
- return Val;
- }
- /// Factory for NaN values.
- ///
- /// \param Negative - True iff the NaN generated should be negative.
- /// \param payload - The unspecified fill bits for creating the NaN, 0 by
- /// default. The value is truncated as necessary.
- static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
- uint64_t payload = 0) {
- if (payload) {
- APInt intPayload(64, payload);
- return getQNaN(Sem, Negative, &intPayload);
- } else {
- return getQNaN(Sem, Negative, nullptr);
- }
- }
- /// Factory for QNaN values.
- static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
- const APInt *payload = nullptr) {
- APFloat Val(Sem, uninitialized);
- Val.makeNaN(false, Negative, payload);
- return Val;
- }
- /// Factory for SNaN values.
- static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
- const APInt *payload = nullptr) {
- APFloat Val(Sem, uninitialized);
- Val.makeNaN(true, Negative, payload);
- return Val;
- }
- /// Returns the largest finite number in the given semantics.
- ///
- /// \param Negative - True iff the number should be negative
- static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
- APFloat Val(Sem, uninitialized);
- Val.makeLargest(Negative);
- return Val;
- }
- /// Returns the smallest (by magnitude) finite number in the given semantics.
- /// Might be denormalized, which implies a relative loss of precision.
- ///
- /// \param Negative - True iff the number should be negative
- static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
- APFloat Val(Sem, uninitialized);
- Val.makeSmallest(Negative);
- return Val;
- }
- /// Returns the smallest (by magnitude) normalized finite number in the given
- /// semantics.
- ///
- /// \param Negative - True iff the number should be negative
- static APFloat getSmallestNormalized(const fltSemantics &Sem,
- bool Negative = false) {
- APFloat Val(Sem, uninitialized);
- Val.makeSmallestNormalized(Negative);
- return Val;
- }
- /// Returns a float which is bitcasted from an all one value int.
- ///
- /// \param Semantics - type float semantics
- static APFloat getAllOnesValue(const fltSemantics &Semantics);
- /// Used to insert APFloat objects, or objects that contain APFloat objects,
- /// into FoldingSets.
- void Profile(FoldingSetNodeID &NID) const;
- opStatus add(const APFloat &RHS, roundingMode RM) {
- assert(&getSemantics() == &RHS.getSemantics() &&
- "Should only call on two APFloats with the same semantics");
- if (usesLayout<IEEEFloat>(getSemantics()))
- return U.IEEE.add(RHS.U.IEEE, RM);
- if (usesLayout<DoubleAPFloat>(getSemantics()))
- return U.Double.add(RHS.U.Double, RM);
- llvm_unreachable("Unexpected semantics");
- }
- opStatus subtract(const APFloat &RHS, roundingMode RM) {
- assert(&getSemantics() == &RHS.getSemantics() &&
- "Should only call on two APFloats with the same semantics");
- if (usesLayout<IEEEFloat>(getSemantics()))
- return U.IEEE.subtract(RHS.U.IEEE, RM);
- if (usesLayout<DoubleAPFloat>(getSemantics()))
- return U.Double.subtract(RHS.U.Double, RM);
- llvm_unreachable("Unexpected semantics");
- }
- opStatus multiply(const APFloat &RHS, roundingMode RM) {
- assert(&getSemantics() == &RHS.getSemantics() &&
- "Should only call on two APFloats with the same semantics");
- if (usesLayout<IEEEFloat>(getSemantics()))
- return U.IEEE.multiply(RHS.U.IEEE, RM);
- if (usesLayout<DoubleAPFloat>(getSemantics()))
- return U.Double.multiply(RHS.U.Double, RM);
- llvm_unreachable("Unexpected semantics");
- }
- opStatus divide(const APFloat &RHS, roundingMode RM) {
- assert(&getSemantics() == &RHS.getSemantics() &&
- "Should only call on two APFloats with the same semantics");
- if (usesLayout<IEEEFloat>(getSemantics()))
- return U.IEEE.divide(RHS.U.IEEE, RM);
- if (usesLayout<DoubleAPFloat>(getSemantics()))
- return U.Double.divide(RHS.U.Double, RM);
- llvm_unreachable("Unexpected semantics");
- }
- opStatus remainder(const APFloat &RHS) {
- assert(&getSemantics() == &RHS.getSemantics() &&
- "Should only call on two APFloats with the same semantics");
- if (usesLayout<IEEEFloat>(getSemantics()))
- return U.IEEE.remainder(RHS.U.IEEE);
- if (usesLayout<DoubleAPFloat>(getSemantics()))
- return U.Double.remainder(RHS.U.Double);
- llvm_unreachable("Unexpected semantics");
- }
- opStatus mod(const APFloat &RHS) {
- assert(&getSemantics() == &RHS.getSemantics() &&
- "Should only call on two APFloats with the same semantics");
- if (usesLayout<IEEEFloat>(getSemantics()))
- return U.IEEE.mod(RHS.U.IEEE);
- if (usesLayout<DoubleAPFloat>(getSemantics()))
- return U.Double.mod(RHS.U.Double);
- llvm_unreachable("Unexpected semantics");
- }
- opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
- roundingMode RM) {
- assert(&getSemantics() == &Multiplicand.getSemantics() &&
- "Should only call on APFloats with the same semantics");
- assert(&getSemantics() == &Addend.getSemantics() &&
- "Should only call on APFloats with the same semantics");
- if (usesLayout<IEEEFloat>(getSemantics()))
- return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
- if (usesLayout<DoubleAPFloat>(getSemantics()))
- return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
- RM);
- llvm_unreachable("Unexpected semantics");
- }
- opStatus roundToIntegral(roundingMode RM) {
- APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
- }
- // TODO: bool parameters are not readable and a source of bugs.
- // Do something.
- opStatus next(bool nextDown) {
- APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
- }
- /// Negate an APFloat.
- APFloat operator-() const {
- APFloat Result(*this);
- Result.changeSign();
- return Result;
- }
- /// Add two APFloats, rounding ties to the nearest even.
- /// No error checking.
- APFloat operator+(const APFloat &RHS) const {
- APFloat Result(*this);
- (void)Result.add(RHS, rmNearestTiesToEven);
- return Result;
- }
- /// Subtract two APFloats, rounding ties to the nearest even.
- /// No error checking.
- APFloat operator-(const APFloat &RHS) const {
- APFloat Result(*this);
- (void)Result.subtract(RHS, rmNearestTiesToEven);
- return Result;
- }
- /// Multiply two APFloats, rounding ties to the nearest even.
- /// No error checking.
- APFloat operator*(const APFloat &RHS) const {
- APFloat Result(*this);
- (void)Result.multiply(RHS, rmNearestTiesToEven);
- return Result;
- }
- /// Divide the first APFloat by the second, rounding ties to the nearest even.
- /// No error checking.
- APFloat operator/(const APFloat &RHS) const {
- APFloat Result(*this);
- (void)Result.divide(RHS, rmNearestTiesToEven);
- return Result;
- }
- void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
- void clearSign() {
- if (isNegative())
- changeSign();
- }
- void copySign(const APFloat &RHS) {
- if (isNegative() != RHS.isNegative())
- changeSign();
- }
- /// A static helper to produce a copy of an APFloat value with its sign
- /// copied from some other APFloat.
- static APFloat copySign(APFloat Value, const APFloat &Sign) {
- Value.copySign(Sign);
- return Value;
- }
- opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
- bool *losesInfo);
- opStatus convertToInteger(MutableArrayRef<integerPart> Input,
- unsigned int Width, bool IsSigned, roundingMode RM,
- bool *IsExact) const {
- APFLOAT_DISPATCH_ON_SEMANTICS(
- convertToInteger(Input, Width, IsSigned, RM, IsExact));
- }
- opStatus convertToInteger(APSInt &Result, roundingMode RM,
- bool *IsExact) const;
- opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
- roundingMode RM) {
- APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
- }
- opStatus convertFromSignExtendedInteger(const integerPart *Input,
- unsigned int InputSize, bool IsSigned,
- roundingMode RM) {
- APFLOAT_DISPATCH_ON_SEMANTICS(
- convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
- }
- opStatus convertFromZeroExtendedInteger(const integerPart *Input,
- unsigned int InputSize, bool IsSigned,
- roundingMode RM) {
- APFLOAT_DISPATCH_ON_SEMANTICS(
- convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
- }
- Expected<opStatus> convertFromString(StringRef, roundingMode);
- APInt bitcastToAPInt() const {
- APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
- }
- /// Converts this APFloat to host double value.
- ///
- /// \pre The APFloat must be built using semantics, that can be represented by
- /// the host double type without loss of precision. It can be IEEEdouble and
- /// shorter semantics, like IEEEsingle and others.
- double convertToDouble() const;
- /// Converts this APFloat to host float value.
- ///
- /// \pre The APFloat must be built using semantics, that can be represented by
- /// the host float type without loss of precision. It can be IEEEsingle and
- /// shorter semantics, like IEEEhalf.
- float convertToFloat() const;
- bool operator==(const APFloat &RHS) const { return compare(RHS) == cmpEqual; }
- bool operator!=(const APFloat &RHS) const { return compare(RHS) != cmpEqual; }
- bool operator<(const APFloat &RHS) const {
- return compare(RHS) == cmpLessThan;
- }
- bool operator>(const APFloat &RHS) const {
- return compare(RHS) == cmpGreaterThan;
- }
- bool operator<=(const APFloat &RHS) const {
- cmpResult Res = compare(RHS);
- return Res == cmpLessThan || Res == cmpEqual;
- }
- bool operator>=(const APFloat &RHS) const {
- cmpResult Res = compare(RHS);
- return Res == cmpGreaterThan || Res == cmpEqual;
- }
- cmpResult compare(const APFloat &RHS) const {
- assert(&getSemantics() == &RHS.getSemantics() &&
- "Should only compare APFloats with the same semantics");
- if (usesLayout<IEEEFloat>(getSemantics()))
- return U.IEEE.compare(RHS.U.IEEE);
- if (usesLayout<DoubleAPFloat>(getSemantics()))
- return U.Double.compare(RHS.U.Double);
- llvm_unreachable("Unexpected semantics");
- }
- bool bitwiseIsEqual(const APFloat &RHS) const {
- if (&getSemantics() != &RHS.getSemantics())
- return false;
- if (usesLayout<IEEEFloat>(getSemantics()))
- return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
- if (usesLayout<DoubleAPFloat>(getSemantics()))
- return U.Double.bitwiseIsEqual(RHS.U.Double);
- llvm_unreachable("Unexpected semantics");
- }
- /// We don't rely on operator== working on double values, as
- /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
- /// As such, this method can be used to do an exact bit-for-bit comparison of
- /// two floating point values.
- ///
- /// We leave the version with the double argument here because it's just so
- /// convenient to write "2.0" and the like. Without this function we'd
- /// have to duplicate its logic everywhere it's called.
- bool isExactlyValue(double V) const {
- bool ignored;
- APFloat Tmp(V);
- Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
- return bitwiseIsEqual(Tmp);
- }
- unsigned int convertToHexString(char *DST, unsigned int HexDigits,
- bool UpperCase, roundingMode RM) const {
- APFLOAT_DISPATCH_ON_SEMANTICS(
- convertToHexString(DST, HexDigits, UpperCase, RM));
- }
- bool isZero() const { return getCategory() == fcZero; }
- bool isInfinity() const { return getCategory() == fcInfinity; }
- bool isNaN() const { return getCategory() == fcNaN; }
- bool isNegative() const { return getIEEE().isNegative(); }
- bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
- bool isSignaling() const { return getIEEE().isSignaling(); }
- bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
- bool isFinite() const { return !isNaN() && !isInfinity(); }
- fltCategory getCategory() const { return getIEEE().getCategory(); }
- const fltSemantics &getSemantics() const { return *U.semantics; }
- bool isNonZero() const { return !isZero(); }
- bool isFiniteNonZero() const { return isFinite() && !isZero(); }
- bool isPosZero() const { return isZero() && !isNegative(); }
- bool isNegZero() const { return isZero() && isNegative(); }
- bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
- bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
- bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }
- bool isIEEE() const { return usesLayout<IEEEFloat>(getSemantics()); }
- APFloat &operator=(const APFloat &RHS) = default;
- APFloat &operator=(APFloat &&RHS) = default;
- void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
- unsigned FormatMaxPadding = 3, bool TruncateZero = true) const {
- APFLOAT_DISPATCH_ON_SEMANTICS(
- toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero));
- }
- void print(raw_ostream &) const;
- void dump() const;
- bool getExactInverse(APFloat *inv) const {
- APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
- }
- friend hash_code hash_value(const APFloat &Arg);
- friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
- friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
- friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
- friend IEEEFloat;
- friend DoubleAPFloat;
- };
- /// See friend declarations above.
- ///
- /// These additional declarations are required in order to compile LLVM with IBM
- /// xlC compiler.
- hash_code hash_value(const APFloat &Arg);
- inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
- if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
- return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
- if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
- return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
- llvm_unreachable("Unexpected semantics");
- }
- /// Equivalent of C standard library function.
- ///
- /// While the C standard says Exp is an unspecified value for infinity and nan,
- /// this returns INT_MAX for infinities, and INT_MIN for NaNs.
- inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
- if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
- return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
- if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
- return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
- llvm_unreachable("Unexpected semantics");
- }
- /// Returns the absolute value of the argument.
- inline APFloat abs(APFloat X) {
- X.clearSign();
- return X;
- }
- /// Returns the negated value of the argument.
- inline APFloat neg(APFloat X) {
- X.changeSign();
- return X;
- }
- /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
- /// both are not NaN. If either argument is a NaN, returns the other argument.
- LLVM_READONLY
- inline APFloat minnum(const APFloat &A, const APFloat &B) {
- if (A.isNaN())
- return B;
- if (B.isNaN())
- return A;
- return B < A ? B : A;
- }
- /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
- /// both are not NaN. If either argument is a NaN, returns the other argument.
- LLVM_READONLY
- inline APFloat maxnum(const APFloat &A, const APFloat &B) {
- if (A.isNaN())
- return B;
- if (B.isNaN())
- return A;
- return A < B ? B : A;
- }
- /// Implements IEEE 754-2018 minimum semantics. Returns the smaller of 2
- /// arguments, propagating NaNs and treating -0 as less than +0.
- LLVM_READONLY
- inline APFloat minimum(const APFloat &A, const APFloat &B) {
- if (A.isNaN())
- return A;
- if (B.isNaN())
- return B;
- if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
- return A.isNegative() ? A : B;
- return B < A ? B : A;
- }
- /// Implements IEEE 754-2018 maximum semantics. Returns the larger of 2
- /// arguments, propagating NaNs and treating -0 as less than +0.
- LLVM_READONLY
- inline APFloat maximum(const APFloat &A, const APFloat &B) {
- if (A.isNaN())
- return A;
- if (B.isNaN())
- return B;
- if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
- return A.isNegative() ? B : A;
- return A < B ? B : A;
- }
- } // namespace llvm
- #undef APFLOAT_DISPATCH_ON_SEMANTICS
- #endif // LLVM_ADT_APFLOAT_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|