1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789 |
- //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the pass which converts floating point instructions from
- // pseudo registers into register stack instructions. This pass uses live
- // variable information to indicate where the FPn registers are used and their
- // lifetimes.
- //
- // The x87 hardware tracks liveness of the stack registers, so it is necessary
- // to implement exact liveness tracking between basic blocks. The CFG edges are
- // partitioned into bundles where the same FP registers must be live in
- // identical stack positions. Instructions are inserted at the end of each basic
- // block to rearrange the live registers to match the outgoing bundle.
- //
- // This approach avoids splitting critical edges at the potential cost of more
- // live register shuffling instructions when critical edges are present.
- //
- //===----------------------------------------------------------------------===//
- #include "X86.h"
- #include "X86InstrInfo.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/CodeGen/EdgeBundles.h"
- #include "llvm/CodeGen/LivePhysRegs.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/Config/llvm-config.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetMachine.h"
- #include <algorithm>
- #include <bitset>
- using namespace llvm;
- #define DEBUG_TYPE "x86-codegen"
- STATISTIC(NumFXCH, "Number of fxch instructions inserted");
- STATISTIC(NumFP , "Number of floating point instructions");
- namespace {
- const unsigned ScratchFPReg = 7;
- struct FPS : public MachineFunctionPass {
- static char ID;
- FPS() : MachineFunctionPass(ID) {
- // This is really only to keep valgrind quiet.
- // The logic in isLive() is too much for it.
- memset(Stack, 0, sizeof(Stack));
- memset(RegMap, 0, sizeof(RegMap));
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addRequired<EdgeBundles>();
- AU.addPreservedID(MachineLoopInfoID);
- AU.addPreservedID(MachineDominatorsID);
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- bool runOnMachineFunction(MachineFunction &MF) override;
- MachineFunctionProperties getRequiredProperties() const override {
- return MachineFunctionProperties().set(
- MachineFunctionProperties::Property::NoVRegs);
- }
- StringRef getPassName() const override { return "X86 FP Stackifier"; }
- private:
- const TargetInstrInfo *TII = nullptr; // Machine instruction info.
- // Two CFG edges are related if they leave the same block, or enter the same
- // block. The transitive closure of an edge under this relation is a
- // LiveBundle. It represents a set of CFG edges where the live FP stack
- // registers must be allocated identically in the x87 stack.
- //
- // A LiveBundle is usually all the edges leaving a block, or all the edges
- // entering a block, but it can contain more edges if critical edges are
- // present.
- //
- // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
- // but the exact mapping of FP registers to stack slots is fixed later.
- struct LiveBundle {
- // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
- unsigned Mask = 0;
- // Number of pre-assigned live registers in FixStack. This is 0 when the
- // stack order has not yet been fixed.
- unsigned FixCount = 0;
- // Assigned stack order for live-in registers.
- // FixStack[i] == getStackEntry(i) for all i < FixCount.
- unsigned char FixStack[8];
- LiveBundle() = default;
- // Have the live registers been assigned a stack order yet?
- bool isFixed() const { return !Mask || FixCount; }
- };
- // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
- // with no live FP registers.
- SmallVector<LiveBundle, 8> LiveBundles;
- // The edge bundle analysis provides indices into the LiveBundles vector.
- EdgeBundles *Bundles = nullptr;
- // Return a bitmask of FP registers in block's live-in list.
- static unsigned calcLiveInMask(MachineBasicBlock *MBB, bool RemoveFPs) {
- unsigned Mask = 0;
- for (MachineBasicBlock::livein_iterator I = MBB->livein_begin();
- I != MBB->livein_end(); ) {
- MCPhysReg Reg = I->PhysReg;
- static_assert(X86::FP6 - X86::FP0 == 6, "sequential regnums");
- if (Reg >= X86::FP0 && Reg <= X86::FP6) {
- Mask |= 1 << (Reg - X86::FP0);
- if (RemoveFPs) {
- I = MBB->removeLiveIn(I);
- continue;
- }
- }
- ++I;
- }
- return Mask;
- }
- // Partition all the CFG edges into LiveBundles.
- void bundleCFGRecomputeKillFlags(MachineFunction &MF);
- MachineBasicBlock *MBB = nullptr; // Current basic block
- // The hardware keeps track of how many FP registers are live, so we have
- // to model that exactly. Usually, each live register corresponds to an
- // FP<n> register, but when dealing with calls, returns, and inline
- // assembly, it is sometimes necessary to have live scratch registers.
- unsigned Stack[8]; // FP<n> Registers in each stack slot...
- unsigned StackTop = 0; // The current top of the FP stack.
- enum {
- NumFPRegs = 8 // Including scratch pseudo-registers.
- };
- // For each live FP<n> register, point to its Stack[] entry.
- // The first entries correspond to FP0-FP6, the rest are scratch registers
- // used when we need slightly different live registers than what the
- // register allocator thinks.
- unsigned RegMap[NumFPRegs];
- // Set up our stack model to match the incoming registers to MBB.
- void setupBlockStack();
- // Shuffle live registers to match the expectations of successor blocks.
- void finishBlockStack();
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void dumpStack() const {
- dbgs() << "Stack contents:";
- for (unsigned i = 0; i != StackTop; ++i) {
- dbgs() << " FP" << Stack[i];
- assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
- }
- }
- #endif
- /// getSlot - Return the stack slot number a particular register number is
- /// in.
- unsigned getSlot(unsigned RegNo) const {
- assert(RegNo < NumFPRegs && "Regno out of range!");
- return RegMap[RegNo];
- }
- /// isLive - Is RegNo currently live in the stack?
- bool isLive(unsigned RegNo) const {
- unsigned Slot = getSlot(RegNo);
- return Slot < StackTop && Stack[Slot] == RegNo;
- }
- /// getStackEntry - Return the X86::FP<n> register in register ST(i).
- unsigned getStackEntry(unsigned STi) const {
- if (STi >= StackTop)
- report_fatal_error("Access past stack top!");
- return Stack[StackTop-1-STi];
- }
- /// getSTReg - Return the X86::ST(i) register which contains the specified
- /// FP<RegNo> register.
- unsigned getSTReg(unsigned RegNo) const {
- return StackTop - 1 - getSlot(RegNo) + X86::ST0;
- }
- // pushReg - Push the specified FP<n> register onto the stack.
- void pushReg(unsigned Reg) {
- assert(Reg < NumFPRegs && "Register number out of range!");
- if (StackTop >= 8)
- report_fatal_error("Stack overflow!");
- Stack[StackTop] = Reg;
- RegMap[Reg] = StackTop++;
- }
- // popReg - Pop a register from the stack.
- void popReg() {
- if (StackTop == 0)
- report_fatal_error("Cannot pop empty stack!");
- RegMap[Stack[--StackTop]] = ~0; // Update state
- }
- bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
- void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
- DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
- if (isAtTop(RegNo)) return;
- unsigned STReg = getSTReg(RegNo);
- unsigned RegOnTop = getStackEntry(0);
- // Swap the slots the regs are in.
- std::swap(RegMap[RegNo], RegMap[RegOnTop]);
- // Swap stack slot contents.
- if (RegMap[RegOnTop] >= StackTop)
- report_fatal_error("Access past stack top!");
- std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
- // Emit an fxch to update the runtime processors version of the state.
- BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
- ++NumFXCH;
- }
- void duplicateToTop(unsigned RegNo, unsigned AsReg,
- MachineBasicBlock::iterator I) {
- DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
- unsigned STReg = getSTReg(RegNo);
- pushReg(AsReg); // New register on top of stack
- BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
- }
- /// popStackAfter - Pop the current value off of the top of the FP stack
- /// after the specified instruction.
- void popStackAfter(MachineBasicBlock::iterator &I);
- /// freeStackSlotAfter - Free the specified register from the register
- /// stack, so that it is no longer in a register. If the register is
- /// currently at the top of the stack, we just pop the current instruction,
- /// otherwise we store the current top-of-stack into the specified slot,
- /// then pop the top of stack.
- void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
- /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
- /// instruction.
- MachineBasicBlock::iterator
- freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
- /// Adjust the live registers to be the set in Mask.
- void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
- /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
- /// st(0), FP reg FixStack[1] is st(1) etc.
- void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
- MachineBasicBlock::iterator I);
- bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
- void handleCall(MachineBasicBlock::iterator &I);
- void handleReturn(MachineBasicBlock::iterator &I);
- void handleZeroArgFP(MachineBasicBlock::iterator &I);
- void handleOneArgFP(MachineBasicBlock::iterator &I);
- void handleOneArgFPRW(MachineBasicBlock::iterator &I);
- void handleTwoArgFP(MachineBasicBlock::iterator &I);
- void handleCompareFP(MachineBasicBlock::iterator &I);
- void handleCondMovFP(MachineBasicBlock::iterator &I);
- void handleSpecialFP(MachineBasicBlock::iterator &I);
- // Check if a COPY instruction is using FP registers.
- static bool isFPCopy(MachineInstr &MI) {
- Register DstReg = MI.getOperand(0).getReg();
- Register SrcReg = MI.getOperand(1).getReg();
- return X86::RFP80RegClass.contains(DstReg) ||
- X86::RFP80RegClass.contains(SrcReg);
- }
- void setKillFlags(MachineBasicBlock &MBB) const;
- };
- }
- char FPS::ID = 0;
- INITIALIZE_PASS_BEGIN(FPS, DEBUG_TYPE, "X86 FP Stackifier",
- false, false)
- INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
- INITIALIZE_PASS_END(FPS, DEBUG_TYPE, "X86 FP Stackifier",
- false, false)
- FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
- /// getFPReg - Return the X86::FPx register number for the specified operand.
- /// For example, this returns 3 for X86::FP3.
- static unsigned getFPReg(const MachineOperand &MO) {
- assert(MO.isReg() && "Expected an FP register!");
- Register Reg = MO.getReg();
- assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
- return Reg - X86::FP0;
- }
- /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
- /// register references into FP stack references.
- ///
- bool FPS::runOnMachineFunction(MachineFunction &MF) {
- // We only need to run this pass if there are any FP registers used in this
- // function. If it is all integer, there is nothing for us to do!
- bool FPIsUsed = false;
- static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!");
- const MachineRegisterInfo &MRI = MF.getRegInfo();
- for (unsigned i = 0; i <= 6; ++i)
- if (!MRI.reg_nodbg_empty(X86::FP0 + i)) {
- FPIsUsed = true;
- break;
- }
- // Early exit.
- if (!FPIsUsed) return false;
- Bundles = &getAnalysis<EdgeBundles>();
- TII = MF.getSubtarget().getInstrInfo();
- // Prepare cross-MBB liveness.
- bundleCFGRecomputeKillFlags(MF);
- StackTop = 0;
- // Process the function in depth first order so that we process at least one
- // of the predecessors for every reachable block in the function.
- df_iterator_default_set<MachineBasicBlock*> Processed;
- MachineBasicBlock *Entry = &MF.front();
- LiveBundle &Bundle =
- LiveBundles[Bundles->getBundle(Entry->getNumber(), false)];
- // In regcall convention, some FP registers may not be passed through
- // the stack, so they will need to be assigned to the stack first
- if ((Entry->getParent()->getFunction().getCallingConv() ==
- CallingConv::X86_RegCall) && (Bundle.Mask && !Bundle.FixCount)) {
- // In the register calling convention, up to one FP argument could be
- // saved in the first FP register.
- // If bundle.mask is non-zero and Bundle.FixCount is zero, it means
- // that the FP registers contain arguments.
- // The actual value is passed in FP0.
- // Here we fix the stack and mark FP0 as pre-assigned register.
- assert((Bundle.Mask & 0xFE) == 0 &&
- "Only FP0 could be passed as an argument");
- Bundle.FixCount = 1;
- Bundle.FixStack[0] = 0;
- }
- bool Changed = false;
- for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
- Changed |= processBasicBlock(MF, *BB);
- // Process any unreachable blocks in arbitrary order now.
- if (MF.size() != Processed.size())
- for (MachineBasicBlock &BB : MF)
- if (Processed.insert(&BB).second)
- Changed |= processBasicBlock(MF, BB);
- LiveBundles.clear();
- return Changed;
- }
- /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
- /// live-out sets for the FP registers. Consistent means that the set of
- /// registers live-out from a block is identical to the live-in set of all
- /// successors. This is not enforced by the normal live-in lists since
- /// registers may be implicitly defined, or not used by all successors.
- void FPS::bundleCFGRecomputeKillFlags(MachineFunction &MF) {
- assert(LiveBundles.empty() && "Stale data in LiveBundles");
- LiveBundles.resize(Bundles->getNumBundles());
- // Gather the actual live-in masks for all MBBs.
- for (MachineBasicBlock &MBB : MF) {
- setKillFlags(MBB);
- const unsigned Mask = calcLiveInMask(&MBB, false);
- if (!Mask)
- continue;
- // Update MBB ingoing bundle mask.
- LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask;
- }
- }
- /// processBasicBlock - Loop over all of the instructions in the basic block,
- /// transforming FP instructions into their stack form.
- ///
- bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
- bool Changed = false;
- MBB = &BB;
- setupBlockStack();
- for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
- MachineInstr &MI = *I;
- uint64_t Flags = MI.getDesc().TSFlags;
- unsigned FPInstClass = Flags & X86II::FPTypeMask;
- if (MI.isInlineAsm())
- FPInstClass = X86II::SpecialFP;
- if (MI.isCopy() && isFPCopy(MI))
- FPInstClass = X86II::SpecialFP;
- if (MI.isImplicitDef() &&
- X86::RFP80RegClass.contains(MI.getOperand(0).getReg()))
- FPInstClass = X86II::SpecialFP;
- if (MI.isCall())
- FPInstClass = X86II::SpecialFP;
- if (FPInstClass == X86II::NotFP)
- continue; // Efficiently ignore non-fp insts!
- MachineInstr *PrevMI = nullptr;
- if (I != BB.begin())
- PrevMI = &*std::prev(I);
- ++NumFP; // Keep track of # of pseudo instrs
- LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI);
- // Get dead variables list now because the MI pointer may be deleted as part
- // of processing!
- SmallVector<unsigned, 8> DeadRegs;
- for (const MachineOperand &MO : MI.operands())
- if (MO.isReg() && MO.isDead())
- DeadRegs.push_back(MO.getReg());
- switch (FPInstClass) {
- case X86II::ZeroArgFP: handleZeroArgFP(I); break;
- case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
- case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
- case X86II::TwoArgFP: handleTwoArgFP(I); break;
- case X86II::CompareFP: handleCompareFP(I); break;
- case X86II::CondMovFP: handleCondMovFP(I); break;
- case X86II::SpecialFP: handleSpecialFP(I); break;
- default: llvm_unreachable("Unknown FP Type!");
- }
- // Check to see if any of the values defined by this instruction are dead
- // after definition. If so, pop them.
- for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
- unsigned Reg = DeadRegs[i];
- // Check if Reg is live on the stack. An inline-asm register operand that
- // is in the clobber list and marked dead might not be live on the stack.
- static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
- if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
- LLVM_DEBUG(dbgs() << "Register FP#" << Reg - X86::FP0 << " is dead!\n");
- freeStackSlotAfter(I, Reg-X86::FP0);
- }
- }
- // Print out all of the instructions expanded to if -debug
- LLVM_DEBUG({
- MachineBasicBlock::iterator PrevI = PrevMI;
- if (I == PrevI) {
- dbgs() << "Just deleted pseudo instruction\n";
- } else {
- MachineBasicBlock::iterator Start = I;
- // Rewind to first instruction newly inserted.
- while (Start != BB.begin() && std::prev(Start) != PrevI)
- --Start;
- dbgs() << "Inserted instructions:\n\t";
- Start->print(dbgs());
- while (++Start != std::next(I)) {
- }
- }
- dumpStack();
- });
- (void)PrevMI;
- Changed = true;
- }
- finishBlockStack();
- return Changed;
- }
- /// setupBlockStack - Use the live bundles to set up our model of the stack
- /// to match predecessors' live out stack.
- void FPS::setupBlockStack() {
- LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB)
- << " derived from " << MBB->getName() << ".\n");
- StackTop = 0;
- // Get the live-in bundle for MBB.
- const LiveBundle &Bundle =
- LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
- if (!Bundle.Mask) {
- LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n");
- return;
- }
- // Depth-first iteration should ensure that we always have an assigned stack.
- assert(Bundle.isFixed() && "Reached block before any predecessors");
- // Push the fixed live-in registers.
- for (unsigned i = Bundle.FixCount; i > 0; --i) {
- LLVM_DEBUG(dbgs() << "Live-in st(" << (i - 1) << "): %fp"
- << unsigned(Bundle.FixStack[i - 1]) << '\n');
- pushReg(Bundle.FixStack[i-1]);
- }
- // Kill off unwanted live-ins. This can happen with a critical edge.
- // FIXME: We could keep these live registers around as zombies. They may need
- // to be revived at the end of a short block. It might save a few instrs.
- unsigned Mask = calcLiveInMask(MBB, /*RemoveFPs=*/true);
- adjustLiveRegs(Mask, MBB->begin());
- LLVM_DEBUG(MBB->dump());
- }
- /// finishBlockStack - Revive live-outs that are implicitly defined out of
- /// MBB. Shuffle live registers to match the expected fixed stack of any
- /// predecessors, and ensure that all predecessors are expecting the same
- /// stack.
- void FPS::finishBlockStack() {
- // The RET handling below takes care of return blocks for us.
- if (MBB->succ_empty())
- return;
- LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB)
- << " derived from " << MBB->getName() << ".\n");
- // Get MBB's live-out bundle.
- unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
- LiveBundle &Bundle = LiveBundles[BundleIdx];
- // We may need to kill and define some registers to match successors.
- // FIXME: This can probably be combined with the shuffle below.
- MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
- adjustLiveRegs(Bundle.Mask, Term);
- if (!Bundle.Mask) {
- LLVM_DEBUG(dbgs() << "No live-outs.\n");
- return;
- }
- // Has the stack order been fixed yet?
- LLVM_DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
- if (Bundle.isFixed()) {
- LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n");
- shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
- } else {
- // Not fixed yet, we get to choose.
- LLVM_DEBUG(dbgs() << "Fixing stack order now.\n");
- Bundle.FixCount = StackTop;
- for (unsigned i = 0; i < StackTop; ++i)
- Bundle.FixStack[i] = getStackEntry(i);
- }
- }
- //===----------------------------------------------------------------------===//
- // Efficient Lookup Table Support
- //===----------------------------------------------------------------------===//
- namespace {
- struct TableEntry {
- uint16_t from;
- uint16_t to;
- bool operator<(const TableEntry &TE) const { return from < TE.from; }
- friend bool operator<(const TableEntry &TE, unsigned V) {
- return TE.from < V;
- }
- friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
- const TableEntry &TE) {
- return V < TE.from;
- }
- };
- }
- static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) {
- const TableEntry *I = llvm::lower_bound(Table, Opcode);
- if (I != Table.end() && I->from == Opcode)
- return I->to;
- return -1;
- }
- #ifdef NDEBUG
- #define ASSERT_SORTED(TABLE)
- #else
- #define ASSERT_SORTED(TABLE) \
- { \
- static std::atomic<bool> TABLE##Checked(false); \
- if (!TABLE##Checked.load(std::memory_order_relaxed)) { \
- assert(is_sorted(TABLE) && \
- "All lookup tables must be sorted for efficient access!"); \
- TABLE##Checked.store(true, std::memory_order_relaxed); \
- } \
- }
- #endif
- //===----------------------------------------------------------------------===//
- // Register File -> Register Stack Mapping Methods
- //===----------------------------------------------------------------------===//
- // OpcodeTable - Sorted map of register instructions to their stack version.
- // The first element is an register file pseudo instruction, the second is the
- // concrete X86 instruction which uses the register stack.
- //
- static const TableEntry OpcodeTable[] = {
- { X86::ABS_Fp32 , X86::ABS_F },
- { X86::ABS_Fp64 , X86::ABS_F },
- { X86::ABS_Fp80 , X86::ABS_F },
- { X86::ADD_Fp32m , X86::ADD_F32m },
- { X86::ADD_Fp64m , X86::ADD_F64m },
- { X86::ADD_Fp64m32 , X86::ADD_F32m },
- { X86::ADD_Fp80m32 , X86::ADD_F32m },
- { X86::ADD_Fp80m64 , X86::ADD_F64m },
- { X86::ADD_FpI16m32 , X86::ADD_FI16m },
- { X86::ADD_FpI16m64 , X86::ADD_FI16m },
- { X86::ADD_FpI16m80 , X86::ADD_FI16m },
- { X86::ADD_FpI32m32 , X86::ADD_FI32m },
- { X86::ADD_FpI32m64 , X86::ADD_FI32m },
- { X86::ADD_FpI32m80 , X86::ADD_FI32m },
- { X86::CHS_Fp32 , X86::CHS_F },
- { X86::CHS_Fp64 , X86::CHS_F },
- { X86::CHS_Fp80 , X86::CHS_F },
- { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
- { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
- { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
- { X86::CMOVB_Fp32 , X86::CMOVB_F },
- { X86::CMOVB_Fp64 , X86::CMOVB_F },
- { X86::CMOVB_Fp80 , X86::CMOVB_F },
- { X86::CMOVE_Fp32 , X86::CMOVE_F },
- { X86::CMOVE_Fp64 , X86::CMOVE_F },
- { X86::CMOVE_Fp80 , X86::CMOVE_F },
- { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
- { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
- { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
- { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
- { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
- { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
- { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
- { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
- { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
- { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
- { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
- { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
- { X86::CMOVP_Fp32 , X86::CMOVP_F },
- { X86::CMOVP_Fp64 , X86::CMOVP_F },
- { X86::CMOVP_Fp80 , X86::CMOVP_F },
- { X86::COM_FpIr32 , X86::COM_FIr },
- { X86::COM_FpIr64 , X86::COM_FIr },
- { X86::COM_FpIr80 , X86::COM_FIr },
- { X86::COM_Fpr32 , X86::COM_FST0r },
- { X86::COM_Fpr64 , X86::COM_FST0r },
- { X86::COM_Fpr80 , X86::COM_FST0r },
- { X86::DIVR_Fp32m , X86::DIVR_F32m },
- { X86::DIVR_Fp64m , X86::DIVR_F64m },
- { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
- { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
- { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
- { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
- { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
- { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
- { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
- { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
- { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
- { X86::DIV_Fp32m , X86::DIV_F32m },
- { X86::DIV_Fp64m , X86::DIV_F64m },
- { X86::DIV_Fp64m32 , X86::DIV_F32m },
- { X86::DIV_Fp80m32 , X86::DIV_F32m },
- { X86::DIV_Fp80m64 , X86::DIV_F64m },
- { X86::DIV_FpI16m32 , X86::DIV_FI16m },
- { X86::DIV_FpI16m64 , X86::DIV_FI16m },
- { X86::DIV_FpI16m80 , X86::DIV_FI16m },
- { X86::DIV_FpI32m32 , X86::DIV_FI32m },
- { X86::DIV_FpI32m64 , X86::DIV_FI32m },
- { X86::DIV_FpI32m80 , X86::DIV_FI32m },
- { X86::ILD_Fp16m32 , X86::ILD_F16m },
- { X86::ILD_Fp16m64 , X86::ILD_F16m },
- { X86::ILD_Fp16m80 , X86::ILD_F16m },
- { X86::ILD_Fp32m32 , X86::ILD_F32m },
- { X86::ILD_Fp32m64 , X86::ILD_F32m },
- { X86::ILD_Fp32m80 , X86::ILD_F32m },
- { X86::ILD_Fp64m32 , X86::ILD_F64m },
- { X86::ILD_Fp64m64 , X86::ILD_F64m },
- { X86::ILD_Fp64m80 , X86::ILD_F64m },
- { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
- { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
- { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
- { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
- { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
- { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
- { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
- { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
- { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
- { X86::IST_Fp16m32 , X86::IST_F16m },
- { X86::IST_Fp16m64 , X86::IST_F16m },
- { X86::IST_Fp16m80 , X86::IST_F16m },
- { X86::IST_Fp32m32 , X86::IST_F32m },
- { X86::IST_Fp32m64 , X86::IST_F32m },
- { X86::IST_Fp32m80 , X86::IST_F32m },
- { X86::IST_Fp64m32 , X86::IST_FP64m },
- { X86::IST_Fp64m64 , X86::IST_FP64m },
- { X86::IST_Fp64m80 , X86::IST_FP64m },
- { X86::LD_Fp032 , X86::LD_F0 },
- { X86::LD_Fp064 , X86::LD_F0 },
- { X86::LD_Fp080 , X86::LD_F0 },
- { X86::LD_Fp132 , X86::LD_F1 },
- { X86::LD_Fp164 , X86::LD_F1 },
- { X86::LD_Fp180 , X86::LD_F1 },
- { X86::LD_Fp32m , X86::LD_F32m },
- { X86::LD_Fp32m64 , X86::LD_F32m },
- { X86::LD_Fp32m80 , X86::LD_F32m },
- { X86::LD_Fp64m , X86::LD_F64m },
- { X86::LD_Fp64m80 , X86::LD_F64m },
- { X86::LD_Fp80m , X86::LD_F80m },
- { X86::MUL_Fp32m , X86::MUL_F32m },
- { X86::MUL_Fp64m , X86::MUL_F64m },
- { X86::MUL_Fp64m32 , X86::MUL_F32m },
- { X86::MUL_Fp80m32 , X86::MUL_F32m },
- { X86::MUL_Fp80m64 , X86::MUL_F64m },
- { X86::MUL_FpI16m32 , X86::MUL_FI16m },
- { X86::MUL_FpI16m64 , X86::MUL_FI16m },
- { X86::MUL_FpI16m80 , X86::MUL_FI16m },
- { X86::MUL_FpI32m32 , X86::MUL_FI32m },
- { X86::MUL_FpI32m64 , X86::MUL_FI32m },
- { X86::MUL_FpI32m80 , X86::MUL_FI32m },
- { X86::SQRT_Fp32 , X86::SQRT_F },
- { X86::SQRT_Fp64 , X86::SQRT_F },
- { X86::SQRT_Fp80 , X86::SQRT_F },
- { X86::ST_Fp32m , X86::ST_F32m },
- { X86::ST_Fp64m , X86::ST_F64m },
- { X86::ST_Fp64m32 , X86::ST_F32m },
- { X86::ST_Fp80m32 , X86::ST_F32m },
- { X86::ST_Fp80m64 , X86::ST_F64m },
- { X86::ST_FpP80m , X86::ST_FP80m },
- { X86::SUBR_Fp32m , X86::SUBR_F32m },
- { X86::SUBR_Fp64m , X86::SUBR_F64m },
- { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
- { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
- { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
- { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
- { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
- { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
- { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
- { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
- { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
- { X86::SUB_Fp32m , X86::SUB_F32m },
- { X86::SUB_Fp64m , X86::SUB_F64m },
- { X86::SUB_Fp64m32 , X86::SUB_F32m },
- { X86::SUB_Fp80m32 , X86::SUB_F32m },
- { X86::SUB_Fp80m64 , X86::SUB_F64m },
- { X86::SUB_FpI16m32 , X86::SUB_FI16m },
- { X86::SUB_FpI16m64 , X86::SUB_FI16m },
- { X86::SUB_FpI16m80 , X86::SUB_FI16m },
- { X86::SUB_FpI32m32 , X86::SUB_FI32m },
- { X86::SUB_FpI32m64 , X86::SUB_FI32m },
- { X86::SUB_FpI32m80 , X86::SUB_FI32m },
- { X86::TST_Fp32 , X86::TST_F },
- { X86::TST_Fp64 , X86::TST_F },
- { X86::TST_Fp80 , X86::TST_F },
- { X86::UCOM_FpIr32 , X86::UCOM_FIr },
- { X86::UCOM_FpIr64 , X86::UCOM_FIr },
- { X86::UCOM_FpIr80 , X86::UCOM_FIr },
- { X86::UCOM_Fpr32 , X86::UCOM_Fr },
- { X86::UCOM_Fpr64 , X86::UCOM_Fr },
- { X86::UCOM_Fpr80 , X86::UCOM_Fr },
- { X86::XAM_Fp32 , X86::XAM_F },
- { X86::XAM_Fp64 , X86::XAM_F },
- { X86::XAM_Fp80 , X86::XAM_F },
- };
- static unsigned getConcreteOpcode(unsigned Opcode) {
- ASSERT_SORTED(OpcodeTable);
- int Opc = Lookup(OpcodeTable, Opcode);
- assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
- return Opc;
- }
- //===----------------------------------------------------------------------===//
- // Helper Methods
- //===----------------------------------------------------------------------===//
- // PopTable - Sorted map of instructions to their popping version. The first
- // element is an instruction, the second is the version which pops.
- //
- static const TableEntry PopTable[] = {
- { X86::ADD_FrST0 , X86::ADD_FPrST0 },
- { X86::COMP_FST0r, X86::FCOMPP },
- { X86::COM_FIr , X86::COM_FIPr },
- { X86::COM_FST0r , X86::COMP_FST0r },
- { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
- { X86::DIV_FrST0 , X86::DIV_FPrST0 },
- { X86::IST_F16m , X86::IST_FP16m },
- { X86::IST_F32m , X86::IST_FP32m },
- { X86::MUL_FrST0 , X86::MUL_FPrST0 },
- { X86::ST_F32m , X86::ST_FP32m },
- { X86::ST_F64m , X86::ST_FP64m },
- { X86::ST_Frr , X86::ST_FPrr },
- { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
- { X86::SUB_FrST0 , X86::SUB_FPrST0 },
- { X86::UCOM_FIr , X86::UCOM_FIPr },
- { X86::UCOM_FPr , X86::UCOM_FPPr },
- { X86::UCOM_Fr , X86::UCOM_FPr },
- };
- static bool doesInstructionSetFPSW(MachineInstr &MI) {
- if (const MachineOperand *MO = MI.findRegisterDefOperand(X86::FPSW))
- if (!MO->isDead())
- return true;
- return false;
- }
- static MachineBasicBlock::iterator
- getNextFPInstruction(MachineBasicBlock::iterator I) {
- MachineBasicBlock &MBB = *I->getParent();
- while (++I != MBB.end()) {
- MachineInstr &MI = *I;
- if (X86::isX87Instruction(MI))
- return I;
- }
- return MBB.end();
- }
- /// popStackAfter - Pop the current value off of the top of the FP stack after
- /// the specified instruction. This attempts to be sneaky and combine the pop
- /// into the instruction itself if possible. The iterator is left pointing to
- /// the last instruction, be it a new pop instruction inserted, or the old
- /// instruction if it was modified in place.
- ///
- void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
- MachineInstr &MI = *I;
- const DebugLoc &dl = MI.getDebugLoc();
- ASSERT_SORTED(PopTable);
- popReg();
- // Check to see if there is a popping version of this instruction...
- int Opcode = Lookup(PopTable, I->getOpcode());
- if (Opcode != -1) {
- I->setDesc(TII->get(Opcode));
- if (Opcode == X86::FCOMPP || Opcode == X86::UCOM_FPPr)
- I->removeOperand(0);
- MI.dropDebugNumber();
- } else { // Insert an explicit pop
- // If this instruction sets FPSW, which is read in following instruction,
- // insert pop after that reader.
- if (doesInstructionSetFPSW(MI)) {
- MachineBasicBlock &MBB = *MI.getParent();
- MachineBasicBlock::iterator Next = getNextFPInstruction(I);
- if (Next != MBB.end() && Next->readsRegister(X86::FPSW))
- I = Next;
- }
- I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
- }
- }
- /// freeStackSlotAfter - Free the specified register from the register stack, so
- /// that it is no longer in a register. If the register is currently at the top
- /// of the stack, we just pop the current instruction, otherwise we store the
- /// current top-of-stack into the specified slot, then pop the top of stack.
- void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
- if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
- popStackAfter(I);
- return;
- }
- // Otherwise, store the top of stack into the dead slot, killing the operand
- // without having to add in an explicit xchg then pop.
- //
- I = freeStackSlotBefore(++I, FPRegNo);
- }
- /// freeStackSlotBefore - Free the specified register without trying any
- /// folding.
- MachineBasicBlock::iterator
- FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
- unsigned STReg = getSTReg(FPRegNo);
- unsigned OldSlot = getSlot(FPRegNo);
- unsigned TopReg = Stack[StackTop-1];
- Stack[OldSlot] = TopReg;
- RegMap[TopReg] = OldSlot;
- RegMap[FPRegNo] = ~0;
- Stack[--StackTop] = ~0;
- return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr))
- .addReg(STReg)
- .getInstr();
- }
- /// adjustLiveRegs - Kill and revive registers such that exactly the FP
- /// registers with a bit in Mask are live.
- void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
- unsigned Defs = Mask;
- unsigned Kills = 0;
- for (unsigned i = 0; i < StackTop; ++i) {
- unsigned RegNo = Stack[i];
- if (!(Defs & (1 << RegNo)))
- // This register is live, but we don't want it.
- Kills |= (1 << RegNo);
- else
- // We don't need to imp-def this live register.
- Defs &= ~(1 << RegNo);
- }
- assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
- // Produce implicit-defs for free by using killed registers.
- while (Kills && Defs) {
- unsigned KReg = countTrailingZeros(Kills);
- unsigned DReg = countTrailingZeros(Defs);
- LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg << " as imp %fp" << DReg
- << "\n");
- std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
- std::swap(RegMap[KReg], RegMap[DReg]);
- Kills &= ~(1 << KReg);
- Defs &= ~(1 << DReg);
- }
- // Kill registers by popping.
- if (Kills && I != MBB->begin()) {
- MachineBasicBlock::iterator I2 = std::prev(I);
- while (StackTop) {
- unsigned KReg = getStackEntry(0);
- if (!(Kills & (1 << KReg)))
- break;
- LLVM_DEBUG(dbgs() << "Popping %fp" << KReg << "\n");
- popStackAfter(I2);
- Kills &= ~(1 << KReg);
- }
- }
- // Manually kill the rest.
- while (Kills) {
- unsigned KReg = countTrailingZeros(Kills);
- LLVM_DEBUG(dbgs() << "Killing %fp" << KReg << "\n");
- freeStackSlotBefore(I, KReg);
- Kills &= ~(1 << KReg);
- }
- // Load zeros for all the imp-defs.
- while(Defs) {
- unsigned DReg = countTrailingZeros(Defs);
- LLVM_DEBUG(dbgs() << "Defining %fp" << DReg << " as 0\n");
- BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
- pushReg(DReg);
- Defs &= ~(1 << DReg);
- }
- // Now we should have the correct registers live.
- LLVM_DEBUG(dumpStack());
- assert(StackTop == (unsigned)llvm::popcount(Mask) && "Live count mismatch");
- }
- /// shuffleStackTop - emit fxch instructions before I to shuffle the top
- /// FixCount entries into the order given by FixStack.
- /// FIXME: Is there a better algorithm than insertion sort?
- void FPS::shuffleStackTop(const unsigned char *FixStack,
- unsigned FixCount,
- MachineBasicBlock::iterator I) {
- // Move items into place, starting from the desired stack bottom.
- while (FixCount--) {
- // Old register at position FixCount.
- unsigned OldReg = getStackEntry(FixCount);
- // Desired register at position FixCount.
- unsigned Reg = FixStack[FixCount];
- if (Reg == OldReg)
- continue;
- // (Reg st0) (OldReg st0) = (Reg OldReg st0)
- moveToTop(Reg, I);
- if (FixCount > 0)
- moveToTop(OldReg, I);
- }
- LLVM_DEBUG(dumpStack());
- }
- //===----------------------------------------------------------------------===//
- // Instruction transformation implementation
- //===----------------------------------------------------------------------===//
- void FPS::handleCall(MachineBasicBlock::iterator &I) {
- MachineInstr &MI = *I;
- unsigned STReturns = 0;
- bool ClobbersFPStack = false;
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
- MachineOperand &Op = MI.getOperand(i);
- // Check if this call clobbers the FP stack.
- // is sufficient.
- if (Op.isRegMask()) {
- bool ClobbersFP0 = Op.clobbersPhysReg(X86::FP0);
- #ifndef NDEBUG
- static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
- for (unsigned i = 1; i != 8; ++i)
- assert(Op.clobbersPhysReg(X86::FP0 + i) == ClobbersFP0 &&
- "Inconsistent FP register clobber");
- #endif
- if (ClobbersFP0)
- ClobbersFPStack = true;
- }
- if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
- continue;
- assert(Op.isImplicit() && "Expected implicit def/use");
- if (Op.isDef())
- STReturns |= 1 << getFPReg(Op);
- // Remove the operand so that later passes don't see it.
- MI.removeOperand(i);
- --i;
- --e;
- }
- // Most calls should have a regmask that clobbers the FP registers. If it
- // isn't present then the register allocator didn't spill the FP registers
- // so they are still on the stack.
- assert((ClobbersFPStack || STReturns == 0) &&
- "ST returns without FP stack clobber");
- if (!ClobbersFPStack)
- return;
- unsigned N = countTrailingOnes(STReturns);
- // FP registers used for function return must be consecutive starting at
- // FP0
- assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
- // Reset the FP Stack - It is required because of possible leftovers from
- // passed arguments. The caller should assume that the FP stack is
- // returned empty (unless the callee returns values on FP stack).
- while (StackTop > 0)
- popReg();
- for (unsigned I = 0; I < N; ++I)
- pushReg(N - I - 1);
- // If this call has been modified, drop all variable values defined by it.
- // We can't track them once they've been stackified.
- if (STReturns)
- I->dropDebugNumber();
- }
- /// If RET has an FP register use operand, pass the first one in ST(0) and
- /// the second one in ST(1).
- void FPS::handleReturn(MachineBasicBlock::iterator &I) {
- MachineInstr &MI = *I;
- // Find the register operands.
- unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
- unsigned LiveMask = 0;
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
- MachineOperand &Op = MI.getOperand(i);
- if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
- continue;
- // FP Register uses must be kills unless there are two uses of the same
- // register, in which case only one will be a kill.
- assert(Op.isUse() &&
- (Op.isKill() || // Marked kill.
- getFPReg(Op) == FirstFPRegOp || // Second instance.
- MI.killsRegister(Op.getReg())) && // Later use is marked kill.
- "Ret only defs operands, and values aren't live beyond it");
- if (FirstFPRegOp == ~0U)
- FirstFPRegOp = getFPReg(Op);
- else {
- assert(SecondFPRegOp == ~0U && "More than two fp operands!");
- SecondFPRegOp = getFPReg(Op);
- }
- LiveMask |= (1 << getFPReg(Op));
- // Remove the operand so that later passes don't see it.
- MI.removeOperand(i);
- --i;
- --e;
- }
- // We may have been carrying spurious live-ins, so make sure only the
- // returned registers are left live.
- adjustLiveRegs(LiveMask, MI);
- if (!LiveMask) return; // Quick check to see if any are possible.
- // There are only four possibilities here:
- // 1) we are returning a single FP value. In this case, it has to be in
- // ST(0) already, so just declare success by removing the value from the
- // FP Stack.
- if (SecondFPRegOp == ~0U) {
- // Assert that the top of stack contains the right FP register.
- assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
- "Top of stack not the right register for RET!");
- // Ok, everything is good, mark the value as not being on the stack
- // anymore so that our assertion about the stack being empty at end of
- // block doesn't fire.
- StackTop = 0;
- return;
- }
- // Otherwise, we are returning two values:
- // 2) If returning the same value for both, we only have one thing in the FP
- // stack. Consider: RET FP1, FP1
- if (StackTop == 1) {
- assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
- "Stack misconfiguration for RET!");
- // Duplicate the TOS so that we return it twice. Just pick some other FPx
- // register to hold it.
- unsigned NewReg = ScratchFPReg;
- duplicateToTop(FirstFPRegOp, NewReg, MI);
- FirstFPRegOp = NewReg;
- }
- /// Okay we know we have two different FPx operands now:
- assert(StackTop == 2 && "Must have two values live!");
- /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
- /// in ST(1). In this case, emit an fxch.
- if (getStackEntry(0) == SecondFPRegOp) {
- assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
- moveToTop(FirstFPRegOp, MI);
- }
- /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
- /// ST(1). Just remove both from our understanding of the stack and return.
- assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
- assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
- StackTop = 0;
- }
- /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
- ///
- void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
- MachineInstr &MI = *I;
- unsigned DestReg = getFPReg(MI.getOperand(0));
- // Change from the pseudo instruction to the concrete instruction.
- MI.removeOperand(0); // Remove the explicit ST(0) operand
- MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
- MI.addOperand(
- MachineOperand::CreateReg(X86::ST0, /*isDef*/ true, /*isImp*/ true));
- // Result gets pushed on the stack.
- pushReg(DestReg);
- MI.dropDebugNumber();
- }
- /// handleOneArgFP - fst <mem>, ST(0)
- ///
- void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
- MachineInstr &MI = *I;
- unsigned NumOps = MI.getDesc().getNumOperands();
- assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
- "Can only handle fst* & ftst instructions!");
- // Is this the last use of the source register?
- unsigned Reg = getFPReg(MI.getOperand(NumOps - 1));
- bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
- // FISTP64m is strange because there isn't a non-popping versions.
- // If we have one _and_ we don't want to pop the operand, duplicate the value
- // on the stack instead of moving it. This ensure that popping the value is
- // always ok.
- // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
- //
- if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 ||
- MI.getOpcode() == X86::ISTT_Fp16m32 ||
- MI.getOpcode() == X86::ISTT_Fp32m32 ||
- MI.getOpcode() == X86::ISTT_Fp64m32 ||
- MI.getOpcode() == X86::IST_Fp64m64 ||
- MI.getOpcode() == X86::ISTT_Fp16m64 ||
- MI.getOpcode() == X86::ISTT_Fp32m64 ||
- MI.getOpcode() == X86::ISTT_Fp64m64 ||
- MI.getOpcode() == X86::IST_Fp64m80 ||
- MI.getOpcode() == X86::ISTT_Fp16m80 ||
- MI.getOpcode() == X86::ISTT_Fp32m80 ||
- MI.getOpcode() == X86::ISTT_Fp64m80 ||
- MI.getOpcode() == X86::ST_FpP80m)) {
- duplicateToTop(Reg, ScratchFPReg, I);
- } else {
- moveToTop(Reg, I); // Move to the top of the stack...
- }
- // Convert from the pseudo instruction to the concrete instruction.
- MI.removeOperand(NumOps - 1); // Remove explicit ST(0) operand
- MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
- MI.addOperand(
- MachineOperand::CreateReg(X86::ST0, /*isDef*/ false, /*isImp*/ true));
- if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m ||
- MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m ||
- MI.getOpcode() == X86::ST_FP80m) {
- if (StackTop == 0)
- report_fatal_error("Stack empty??");
- --StackTop;
- } else if (KillsSrc) { // Last use of operand?
- popStackAfter(I);
- }
- MI.dropDebugNumber();
- }
- /// handleOneArgFPRW: Handle instructions that read from the top of stack and
- /// replace the value with a newly computed value. These instructions may have
- /// non-fp operands after their FP operands.
- ///
- /// Examples:
- /// R1 = fchs R2
- /// R1 = fadd R2, [mem]
- ///
- void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
- MachineInstr &MI = *I;
- #ifndef NDEBUG
- unsigned NumOps = MI.getDesc().getNumOperands();
- assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
- #endif
- // Is this the last use of the source register?
- unsigned Reg = getFPReg(MI.getOperand(1));
- bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
- if (KillsSrc) {
- // If this is the last use of the source register, just make sure it's on
- // the top of the stack.
- moveToTop(Reg, I);
- if (StackTop == 0)
- report_fatal_error("Stack cannot be empty!");
- --StackTop;
- pushReg(getFPReg(MI.getOperand(0)));
- } else {
- // If this is not the last use of the source register, _copy_ it to the top
- // of the stack.
- duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I);
- }
- // Change from the pseudo instruction to the concrete instruction.
- MI.removeOperand(1); // Drop the source operand.
- MI.removeOperand(0); // Drop the destination operand.
- MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
- MI.dropDebugNumber();
- }
- //===----------------------------------------------------------------------===//
- // Define tables of various ways to map pseudo instructions
- //
- // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
- static const TableEntry ForwardST0Table[] = {
- { X86::ADD_Fp32 , X86::ADD_FST0r },
- { X86::ADD_Fp64 , X86::ADD_FST0r },
- { X86::ADD_Fp80 , X86::ADD_FST0r },
- { X86::DIV_Fp32 , X86::DIV_FST0r },
- { X86::DIV_Fp64 , X86::DIV_FST0r },
- { X86::DIV_Fp80 , X86::DIV_FST0r },
- { X86::MUL_Fp32 , X86::MUL_FST0r },
- { X86::MUL_Fp64 , X86::MUL_FST0r },
- { X86::MUL_Fp80 , X86::MUL_FST0r },
- { X86::SUB_Fp32 , X86::SUB_FST0r },
- { X86::SUB_Fp64 , X86::SUB_FST0r },
- { X86::SUB_Fp80 , X86::SUB_FST0r },
- };
- // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
- static const TableEntry ReverseST0Table[] = {
- { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
- { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
- { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
- { X86::DIV_Fp32 , X86::DIVR_FST0r },
- { X86::DIV_Fp64 , X86::DIVR_FST0r },
- { X86::DIV_Fp80 , X86::DIVR_FST0r },
- { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
- { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
- { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
- { X86::SUB_Fp32 , X86::SUBR_FST0r },
- { X86::SUB_Fp64 , X86::SUBR_FST0r },
- { X86::SUB_Fp80 , X86::SUBR_FST0r },
- };
- // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
- static const TableEntry ForwardSTiTable[] = {
- { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
- { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
- { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
- { X86::DIV_Fp32 , X86::DIVR_FrST0 },
- { X86::DIV_Fp64 , X86::DIVR_FrST0 },
- { X86::DIV_Fp80 , X86::DIVR_FrST0 },
- { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
- { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
- { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
- { X86::SUB_Fp32 , X86::SUBR_FrST0 },
- { X86::SUB_Fp64 , X86::SUBR_FrST0 },
- { X86::SUB_Fp80 , X86::SUBR_FrST0 },
- };
- // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
- static const TableEntry ReverseSTiTable[] = {
- { X86::ADD_Fp32 , X86::ADD_FrST0 },
- { X86::ADD_Fp64 , X86::ADD_FrST0 },
- { X86::ADD_Fp80 , X86::ADD_FrST0 },
- { X86::DIV_Fp32 , X86::DIV_FrST0 },
- { X86::DIV_Fp64 , X86::DIV_FrST0 },
- { X86::DIV_Fp80 , X86::DIV_FrST0 },
- { X86::MUL_Fp32 , X86::MUL_FrST0 },
- { X86::MUL_Fp64 , X86::MUL_FrST0 },
- { X86::MUL_Fp80 , X86::MUL_FrST0 },
- { X86::SUB_Fp32 , X86::SUB_FrST0 },
- { X86::SUB_Fp64 , X86::SUB_FrST0 },
- { X86::SUB_Fp80 , X86::SUB_FrST0 },
- };
- /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
- /// instructions which need to be simplified and possibly transformed.
- ///
- /// Result: ST(0) = fsub ST(0), ST(i)
- /// ST(i) = fsub ST(0), ST(i)
- /// ST(0) = fsubr ST(0), ST(i)
- /// ST(i) = fsubr ST(0), ST(i)
- ///
- void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
- ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
- ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
- MachineInstr &MI = *I;
- unsigned NumOperands = MI.getDesc().getNumOperands();
- assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
- unsigned Dest = getFPReg(MI.getOperand(0));
- unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
- unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
- bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
- bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
- const DebugLoc &dl = MI.getDebugLoc();
- unsigned TOS = getStackEntry(0);
- // One of our operands must be on the top of the stack. If neither is yet, we
- // need to move one.
- if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
- // We can choose to move either operand to the top of the stack. If one of
- // the operands is killed by this instruction, we want that one so that we
- // can update right on top of the old version.
- if (KillsOp0) {
- moveToTop(Op0, I); // Move dead operand to TOS.
- TOS = Op0;
- } else if (KillsOp1) {
- moveToTop(Op1, I);
- TOS = Op1;
- } else {
- // All of the operands are live after this instruction executes, so we
- // cannot update on top of any operand. Because of this, we must
- // duplicate one of the stack elements to the top. It doesn't matter
- // which one we pick.
- //
- duplicateToTop(Op0, Dest, I);
- Op0 = TOS = Dest;
- KillsOp0 = true;
- }
- } else if (!KillsOp0 && !KillsOp1) {
- // If we DO have one of our operands at the top of the stack, but we don't
- // have a dead operand, we must duplicate one of the operands to a new slot
- // on the stack.
- duplicateToTop(Op0, Dest, I);
- Op0 = TOS = Dest;
- KillsOp0 = true;
- }
- // Now we know that one of our operands is on the top of the stack, and at
- // least one of our operands is killed by this instruction.
- assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
- "Stack conditions not set up right!");
- // We decide which form to use based on what is on the top of the stack, and
- // which operand is killed by this instruction.
- ArrayRef<TableEntry> InstTable;
- bool isForward = TOS == Op0;
- bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
- if (updateST0) {
- if (isForward)
- InstTable = ForwardST0Table;
- else
- InstTable = ReverseST0Table;
- } else {
- if (isForward)
- InstTable = ForwardSTiTable;
- else
- InstTable = ReverseSTiTable;
- }
- int Opcode = Lookup(InstTable, MI.getOpcode());
- assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
- // NotTOS - The register which is not on the top of stack...
- unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
- // Replace the old instruction with a new instruction
- MBB->remove(&*I++);
- I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
- if (!MI.mayRaiseFPException())
- I->setFlag(MachineInstr::MIFlag::NoFPExcept);
- // If both operands are killed, pop one off of the stack in addition to
- // overwriting the other one.
- if (KillsOp0 && KillsOp1 && Op0 != Op1) {
- assert(!updateST0 && "Should have updated other operand!");
- popStackAfter(I); // Pop the top of stack
- }
- // Update stack information so that we know the destination register is now on
- // the stack.
- unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
- assert(UpdatedSlot < StackTop && Dest < 7);
- Stack[UpdatedSlot] = Dest;
- RegMap[Dest] = UpdatedSlot;
- MBB->getParent()->deleteMachineInstr(&MI); // Remove the old instruction
- }
- /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
- /// register arguments and no explicit destinations.
- ///
- void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
- MachineInstr &MI = *I;
- unsigned NumOperands = MI.getDesc().getNumOperands();
- assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
- unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
- unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
- bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
- bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
- // Make sure the first operand is on the top of stack, the other one can be
- // anywhere.
- moveToTop(Op0, I);
- // Change from the pseudo instruction to the concrete instruction.
- MI.getOperand(0).setReg(getSTReg(Op1));
- MI.removeOperand(1);
- MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
- MI.dropDebugNumber();
- // If any of the operands are killed by this instruction, free them.
- if (KillsOp0) freeStackSlotAfter(I, Op0);
- if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
- }
- /// handleCondMovFP - Handle two address conditional move instructions. These
- /// instructions move a st(i) register to st(0) iff a condition is true. These
- /// instructions require that the first operand is at the top of the stack, but
- /// otherwise don't modify the stack at all.
- void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
- MachineInstr &MI = *I;
- unsigned Op0 = getFPReg(MI.getOperand(0));
- unsigned Op1 = getFPReg(MI.getOperand(2));
- bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
- // The first operand *must* be on the top of the stack.
- moveToTop(Op0, I);
- // Change the second operand to the stack register that the operand is in.
- // Change from the pseudo instruction to the concrete instruction.
- MI.removeOperand(0);
- MI.removeOperand(1);
- MI.getOperand(0).setReg(getSTReg(Op1));
- MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
- MI.dropDebugNumber();
- // If we kill the second operand, make sure to pop it from the stack.
- if (Op0 != Op1 && KillsOp1) {
- // Get this value off of the register stack.
- freeStackSlotAfter(I, Op1);
- }
- }
- /// handleSpecialFP - Handle special instructions which behave unlike other
- /// floating point instructions. This is primarily intended for use by pseudo
- /// instructions.
- ///
- void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
- MachineInstr &MI = *Inst;
- if (MI.isCall()) {
- handleCall(Inst);
- return;
- }
- if (MI.isReturn()) {
- handleReturn(Inst);
- return;
- }
- switch (MI.getOpcode()) {
- default: llvm_unreachable("Unknown SpecialFP instruction!");
- case TargetOpcode::COPY: {
- // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
- const MachineOperand &MO1 = MI.getOperand(1);
- const MachineOperand &MO0 = MI.getOperand(0);
- bool KillsSrc = MI.killsRegister(MO1.getReg());
- // FP <- FP copy.
- unsigned DstFP = getFPReg(MO0);
- unsigned SrcFP = getFPReg(MO1);
- assert(isLive(SrcFP) && "Cannot copy dead register");
- if (KillsSrc) {
- // If the input operand is killed, we can just change the owner of the
- // incoming stack slot into the result.
- unsigned Slot = getSlot(SrcFP);
- Stack[Slot] = DstFP;
- RegMap[DstFP] = Slot;
- } else {
- // For COPY we just duplicate the specified value to a new stack slot.
- // This could be made better, but would require substantial changes.
- duplicateToTop(SrcFP, DstFP, Inst);
- }
- break;
- }
- case TargetOpcode::IMPLICIT_DEF: {
- // All FP registers must be explicitly defined, so load a 0 instead.
- unsigned Reg = MI.getOperand(0).getReg() - X86::FP0;
- LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
- BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0));
- pushReg(Reg);
- break;
- }
- case TargetOpcode::INLINEASM:
- case TargetOpcode::INLINEASM_BR: {
- // The inline asm MachineInstr currently only *uses* FP registers for the
- // 'f' constraint. These should be turned into the current ST(x) register
- // in the machine instr.
- //
- // There are special rules for x87 inline assembly. The compiler must know
- // exactly how many registers are popped and pushed implicitly by the asm.
- // Otherwise it is not possible to restore the stack state after the inline
- // asm.
- //
- // There are 3 kinds of input operands:
- //
- // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
- // popped input operand must be in a fixed stack slot, and it is either
- // tied to an output operand, or in the clobber list. The MI has ST use
- // and def operands for these inputs.
- //
- // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
- // preserved by the inline asm. The fixed stack slots must be STn-STm
- // following the popped inputs. A fixed input operand cannot be tied to
- // an output or appear in the clobber list. The MI has ST use operands
- // and no defs for these inputs.
- //
- // 3. Preserved inputs. These inputs use the "f" constraint which is
- // represented as an FP register. The inline asm won't change these
- // stack slots.
- //
- // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
- // registers do not count as output operands. The inline asm changes the
- // stack as if it popped all the popped inputs and then pushed all the
- // output operands.
- // Scan the assembly for ST registers used, defined and clobbered. We can
- // only tell clobbers from defs by looking at the asm descriptor.
- unsigned STUses = 0, STDefs = 0, STClobbers = 0;
- unsigned NumOps = 0;
- SmallSet<unsigned, 1> FRegIdx;
- unsigned RCID;
- for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands();
- i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) {
- unsigned Flags = MI.getOperand(i).getImm();
- NumOps = InlineAsm::getNumOperandRegisters(Flags);
- if (NumOps != 1)
- continue;
- const MachineOperand &MO = MI.getOperand(i + 1);
- if (!MO.isReg())
- continue;
- unsigned STReg = MO.getReg() - X86::FP0;
- if (STReg >= 8)
- continue;
- // If the flag has a register class constraint, this must be an operand
- // with constraint "f". Record its index and continue.
- if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
- FRegIdx.insert(i + 1);
- continue;
- }
- switch (InlineAsm::getKind(Flags)) {
- case InlineAsm::Kind_RegUse:
- STUses |= (1u << STReg);
- break;
- case InlineAsm::Kind_RegDef:
- case InlineAsm::Kind_RegDefEarlyClobber:
- STDefs |= (1u << STReg);
- break;
- case InlineAsm::Kind_Clobber:
- STClobbers |= (1u << STReg);
- break;
- default:
- break;
- }
- }
- if (STUses && !isMask_32(STUses))
- MI.emitError("fixed input regs must be last on the x87 stack");
- unsigned NumSTUses = countTrailingOnes(STUses);
- // Defs must be contiguous from the stack top. ST0-STn.
- if (STDefs && !isMask_32(STDefs)) {
- MI.emitError("output regs must be last on the x87 stack");
- STDefs = NextPowerOf2(STDefs) - 1;
- }
- unsigned NumSTDefs = countTrailingOnes(STDefs);
- // So must the clobbered stack slots. ST0-STm, m >= n.
- if (STClobbers && !isMask_32(STDefs | STClobbers))
- MI.emitError("clobbers must be last on the x87 stack");
- // Popped inputs are the ones that are also clobbered or defined.
- unsigned STPopped = STUses & (STDefs | STClobbers);
- if (STPopped && !isMask_32(STPopped))
- MI.emitError("implicitly popped regs must be last on the x87 stack");
- unsigned NumSTPopped = countTrailingOnes(STPopped);
- LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
- << NumSTPopped << ", and defines " << NumSTDefs
- << " regs.\n");
- #ifndef NDEBUG
- // If any input operand uses constraint "f", all output register
- // constraints must be early-clobber defs.
- for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I)
- if (FRegIdx.count(I)) {
- assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 &&
- "Operands with constraint \"f\" cannot overlap with defs");
- }
- #endif
- // Collect all FP registers (register operands with constraints "t", "u",
- // and "f") to kill afer the instruction.
- unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
- for (const MachineOperand &Op : MI.operands()) {
- if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
- continue;
- unsigned FPReg = getFPReg(Op);
- // If we kill this operand, make sure to pop it from the stack after the
- // asm. We just remember it for now, and pop them all off at the end in
- // a batch.
- if (Op.isUse() && Op.isKill())
- FPKills |= 1U << FPReg;
- }
- // Do not include registers that are implicitly popped by defs/clobbers.
- FPKills &= ~(STDefs | STClobbers);
- // Now we can rearrange the live registers to match what was requested.
- unsigned char STUsesArray[8];
- for (unsigned I = 0; I < NumSTUses; ++I)
- STUsesArray[I] = I;
- shuffleStackTop(STUsesArray, NumSTUses, Inst);
- LLVM_DEBUG({
- dbgs() << "Before asm: ";
- dumpStack();
- });
- // With the stack layout fixed, rewrite the FP registers.
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
- MachineOperand &Op = MI.getOperand(i);
- if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
- continue;
- unsigned FPReg = getFPReg(Op);
- if (FRegIdx.count(i))
- // Operand with constraint "f".
- Op.setReg(getSTReg(FPReg));
- else
- // Operand with a single register class constraint ("t" or "u").
- Op.setReg(X86::ST0 + FPReg);
- }
- // Simulate the inline asm popping its inputs and pushing its outputs.
- StackTop -= NumSTPopped;
- for (unsigned i = 0; i < NumSTDefs; ++i)
- pushReg(NumSTDefs - i - 1);
- // If this asm kills any FP registers (is the last use of them) we must
- // explicitly emit pop instructions for them. Do this now after the asm has
- // executed so that the ST(x) numbers are not off (which would happen if we
- // did this inline with operand rewriting).
- //
- // Note: this might be a non-optimal pop sequence. We might be able to do
- // better by trying to pop in stack order or something.
- while (FPKills) {
- unsigned FPReg = countTrailingZeros(FPKills);
- if (isLive(FPReg))
- freeStackSlotAfter(Inst, FPReg);
- FPKills &= ~(1U << FPReg);
- }
- // Don't delete the inline asm!
- return;
- }
- }
- Inst = MBB->erase(Inst); // Remove the pseudo instruction
- // We want to leave I pointing to the previous instruction, but what if we
- // just erased the first instruction?
- if (Inst == MBB->begin()) {
- LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n");
- Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
- } else
- --Inst;
- }
- void FPS::setKillFlags(MachineBasicBlock &MBB) const {
- const TargetRegisterInfo &TRI =
- *MBB.getParent()->getSubtarget().getRegisterInfo();
- LivePhysRegs LPR(TRI);
- LPR.addLiveOuts(MBB);
- for (MachineInstr &MI : llvm::reverse(MBB)) {
- if (MI.isDebugInstr())
- continue;
- std::bitset<8> Defs;
- SmallVector<MachineOperand *, 2> Uses;
- for (auto &MO : MI.operands()) {
- if (!MO.isReg())
- continue;
- unsigned Reg = MO.getReg() - X86::FP0;
- if (Reg >= 8)
- continue;
- if (MO.isDef()) {
- Defs.set(Reg);
- if (!LPR.contains(MO.getReg()))
- MO.setIsDead();
- } else
- Uses.push_back(&MO);
- }
- for (auto *MO : Uses)
- if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
- MO->setIsKill();
- LPR.stepBackward(MI);
- }
- }
|