123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475 |
- //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- /// \file
- /// This file defines the pass that looks through the machine instructions
- /// late in the compilation, and finds byte or word instructions that
- /// can be profitably replaced with 32 bit instructions that give equivalent
- /// results for the bits of the results that are used. There are two possible
- /// reasons to do this.
- ///
- /// One reason is to avoid false-dependences on the upper portions
- /// of the registers. Only instructions that have a destination register
- /// which is not in any of the source registers can be affected by this.
- /// Any instruction where one of the source registers is also the destination
- /// register is unaffected, because it has a true dependence on the source
- /// register already. So, this consideration primarily affects load
- /// instructions and register-to-register moves. It would
- /// seem like cmov(s) would also be affected, but because of the way cmov is
- /// really implemented by most machines as reading both the destination and
- /// and source registers, and then "merging" the two based on a condition,
- /// it really already should be considered as having a true dependence on the
- /// destination register as well.
- ///
- /// The other reason to do this is for potential code size savings. Word
- /// operations need an extra override byte compared to their 32 bit
- /// versions. So this can convert many word operations to their larger
- /// size, saving a byte in encoding. This could introduce partial register
- /// dependences where none existed however. As an example take:
- /// orw ax, $0x1000
- /// addw ax, $3
- /// now if this were to get transformed into
- /// orw ax, $1000
- /// addl eax, $3
- /// because the addl encodes shorter than the addw, this would introduce
- /// a use of a register that was only partially written earlier. On older
- /// Intel processors this can be quite a performance penalty, so this should
- /// probably only be done when it can be proven that a new partial dependence
- /// wouldn't be created, or when your know a newer processor is being
- /// targeted, or when optimizing for minimum code size.
- ///
- //===----------------------------------------------------------------------===//
- #include "X86.h"
- #include "X86InstrInfo.h"
- #include "X86Subtarget.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/ProfileSummaryInfo.h"
- #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
- #include "llvm/CodeGen/LivePhysRegs.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineLoopInfo.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/MachineSizeOpts.h"
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
- #define FIXUPBW_NAME "x86-fixup-bw-insts"
- #define DEBUG_TYPE FIXUPBW_NAME
- // Option to allow this optimization pass to have fine-grained control.
- static cl::opt<bool>
- FixupBWInsts("fixup-byte-word-insts",
- cl::desc("Change byte and word instructions to larger sizes"),
- cl::init(true), cl::Hidden);
- namespace {
- class FixupBWInstPass : public MachineFunctionPass {
- /// Loop over all of the instructions in the basic block replacing applicable
- /// byte or word instructions with better alternatives.
- void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
- /// This sets the \p SuperDestReg to the 32 bit super reg of the original
- /// destination register of the MachineInstr passed in. It returns true if
- /// that super register is dead just prior to \p OrigMI, and false if not.
- bool getSuperRegDestIfDead(MachineInstr *OrigMI,
- Register &SuperDestReg) const;
- /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
- /// register if it is safe to do so. Return the replacement instruction if
- /// OK, otherwise return nullptr.
- MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;
- /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
- /// safe to do so. Return the replacement instruction if OK, otherwise return
- /// nullptr.
- MachineInstr *tryReplaceCopy(MachineInstr *MI) const;
- /// Change the MachineInstr \p MI into the equivalent extend to 32 bit
- /// register if it is safe to do so. Return the replacement instruction if
- /// OK, otherwise return nullptr.
- MachineInstr *tryReplaceExtend(unsigned New32BitOpcode,
- MachineInstr *MI) const;
- // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
- // possible. Return the replacement instruction if OK, return nullptr
- // otherwise.
- MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const;
- public:
- static char ID;
- StringRef getPassName() const override { return FIXUPBW_DESC; }
- FixupBWInstPass() : MachineFunctionPass(ID) { }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
- // guide some heuristics.
- AU.addRequired<ProfileSummaryInfoWrapperPass>();
- AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- /// Loop over all of the basic blocks, replacing byte and word instructions by
- /// equivalent 32 bit instructions where performance or code size can be
- /// improved.
- bool runOnMachineFunction(MachineFunction &MF) override;
- MachineFunctionProperties getRequiredProperties() const override {
- return MachineFunctionProperties().set(
- MachineFunctionProperties::Property::NoVRegs);
- }
- private:
- MachineFunction *MF = nullptr;
- /// Machine instruction info used throughout the class.
- const X86InstrInfo *TII = nullptr;
- const TargetRegisterInfo *TRI = nullptr;
- /// Local member for function's OptForSize attribute.
- bool OptForSize = false;
- /// Machine loop info used for guiding some heruistics.
- MachineLoopInfo *MLI = nullptr;
- /// Register Liveness information after the current instruction.
- LivePhysRegs LiveRegs;
- ProfileSummaryInfo *PSI;
- MachineBlockFrequencyInfo *MBFI;
- };
- char FixupBWInstPass::ID = 0;
- }
- INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)
- FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
- bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
- if (!FixupBWInsts || skipFunction(MF.getFunction()))
- return false;
- this->MF = &MF;
- TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
- TRI = MF.getRegInfo().getTargetRegisterInfo();
- MLI = &getAnalysis<MachineLoopInfo>();
- PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
- MBFI = (PSI && PSI->hasProfileSummary()) ?
- &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
- nullptr;
- LiveRegs.init(TII->getRegisterInfo());
- LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
- // Process all basic blocks.
- for (auto &MBB : MF)
- processBasicBlock(MF, MBB);
- LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";);
- return true;
- }
- /// Check if after \p OrigMI the only portion of super register
- /// of the destination register of \p OrigMI that is alive is that
- /// destination register.
- ///
- /// If so, return that super register in \p SuperDestReg.
- bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI,
- Register &SuperDestReg) const {
- const X86RegisterInfo *TRI = &TII->getRegisterInfo();
- Register OrigDestReg = OrigMI->getOperand(0).getReg();
- SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
- const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);
- // Make sure that the sub-register that this instruction has as its
- // destination is the lowest order sub-register of the super-register.
- // If it isn't, then the register isn't really dead even if the
- // super-register is considered dead.
- if (SubRegIdx == X86::sub_8bit_hi)
- return false;
- // If neither the destination-super register nor any applicable subregisters
- // are live after this instruction, then the super register is safe to use.
- if (!LiveRegs.contains(SuperDestReg)) {
- // If the original destination register was not the low 8-bit subregister
- // then the super register check is sufficient.
- if (SubRegIdx != X86::sub_8bit)
- return true;
- // If the original destination register was the low 8-bit subregister and
- // we also need to check the 16-bit subregister and the high 8-bit
- // subregister.
- if (!LiveRegs.contains(getX86SubSuperRegister(OrigDestReg, 16)) &&
- !LiveRegs.contains(getX86SubSuperRegister(SuperDestReg, 8,
- /*High=*/true)))
- return true;
- // Otherwise, we have a little more checking to do.
- }
- // If we get here, the super-register destination (or some part of it) is
- // marked as live after the original instruction.
- //
- // The X86 backend does not have subregister liveness tracking enabled,
- // so liveness information might be overly conservative. Specifically, the
- // super register might be marked as live because it is implicitly defined
- // by the instruction we are examining.
- //
- // However, for some specific instructions (this pass only cares about MOVs)
- // we can produce more precise results by analysing that MOV's operands.
- //
- // Indeed, if super-register is not live before the mov it means that it
- // was originally <read-undef> and so we are free to modify these
- // undef upper bits. That may happen in case where the use is in another MBB
- // and the vreg/physreg corresponding to the move has higher width than
- // necessary (e.g. due to register coalescing with a "truncate" copy).
- // So, we would like to handle patterns like this:
- //
- // %bb.2: derived from LLVM BB %if.then
- // Live Ins: %rdi
- // Predecessors according to CFG: %bb.0
- // %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
- // ; No implicit %eax
- // Successors according to CFG: %bb.3(?%)
- //
- // %bb.3: derived from LLVM BB %if.end
- // Live Ins: %eax Only %ax is actually live
- // Predecessors according to CFG: %bb.2 %bb.1
- // %ax = KILL %ax, implicit killed %eax
- // RET 0, %ax
- unsigned Opc = OrigMI->getOpcode(); (void)Opc;
- // These are the opcodes currently known to work with the code below, if
- // something // else will be added we need to ensure that new opcode has the
- // same properties.
- if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr &&
- Opc != X86::MOV16rr)
- return false;
- bool IsDefined = false;
- for (auto &MO: OrigMI->implicit_operands()) {
- if (!MO.isReg())
- continue;
- assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!");
- if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg()))
- IsDefined = true;
- // If MO is a use of any part of the destination register but is not equal
- // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
- // For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
- // %eax, or %rax will prevent us from using the %eax register.
- if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) &&
- TRI->regsOverlap(SuperDestReg, MO.getReg()))
- return false;
- }
- // Reg is not Imp-def'ed -> it's live both before/after the instruction.
- if (!IsDefined)
- return false;
- // Otherwise, the Reg is not live before the MI and the MOV can't
- // make it really live, so it's in fact dead even after the MI.
- return true;
- }
- MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
- MachineInstr *MI) const {
- Register NewDestReg;
- // We are going to try to rewrite this load to a larger zero-extending
- // load. This is safe if all portions of the 32 bit super-register
- // of the original destination register, except for the original destination
- // register are dead. getSuperRegDestIfDead checks that.
- if (!getSuperRegDestIfDead(MI, NewDestReg))
- return nullptr;
- // Safe to change the instruction.
- MachineInstrBuilder MIB =
- BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
- unsigned NumArgs = MI->getNumOperands();
- for (unsigned i = 1; i < NumArgs; ++i)
- MIB.add(MI->getOperand(i));
- MIB.setMemRefs(MI->memoperands());
- // If it was debug tracked, record a substitution.
- if (unsigned OldInstrNum = MI->peekDebugInstrNum()) {
- unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(),
- MI->getOperand(0).getReg());
- unsigned NewInstrNum = MIB->getDebugInstrNum(*MF);
- MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg);
- }
- return MIB;
- }
- MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
- assert(MI->getNumExplicitOperands() == 2);
- auto &OldDest = MI->getOperand(0);
- auto &OldSrc = MI->getOperand(1);
- Register NewDestReg;
- if (!getSuperRegDestIfDead(MI, NewDestReg))
- return nullptr;
- Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);
- // This is only correct if we access the same subregister index: otherwise,
- // we could try to replace "movb %ah, %al" with "movl %eax, %eax".
- const X86RegisterInfo *TRI = &TII->getRegisterInfo();
- if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
- TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
- return nullptr;
- // Safe to change the instruction.
- // Don't set src flags, as we don't know if we're also killing the superreg.
- // However, the superregister might not be defined; make it explicit that
- // we don't care about the higher bits by reading it as Undef, and adding
- // an imp-use on the original subregister.
- MachineInstrBuilder MIB =
- BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg)
- .addReg(NewSrcReg, RegState::Undef)
- .addReg(OldSrc.getReg(), RegState::Implicit);
- // Drop imp-defs/uses that would be redundant with the new def/use.
- for (auto &Op : MI->implicit_operands())
- if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
- MIB.add(Op);
- return MIB;
- }
- MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode,
- MachineInstr *MI) const {
- Register NewDestReg;
- if (!getSuperRegDestIfDead(MI, NewDestReg))
- return nullptr;
- // Don't interfere with formation of CBW instructions which should be a
- // shorter encoding than even the MOVSX32rr8. It's also immune to partial
- // merge issues on Intel CPUs.
- if (MI->getOpcode() == X86::MOVSX16rr8 &&
- MI->getOperand(0).getReg() == X86::AX &&
- MI->getOperand(1).getReg() == X86::AL)
- return nullptr;
- // Safe to change the instruction.
- MachineInstrBuilder MIB =
- BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
- unsigned NumArgs = MI->getNumOperands();
- for (unsigned i = 1; i < NumArgs; ++i)
- MIB.add(MI->getOperand(i));
- MIB.setMemRefs(MI->memoperands());
- if (unsigned OldInstrNum = MI->peekDebugInstrNum()) {
- unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(),
- MI->getOperand(0).getReg());
- unsigned NewInstrNum = MIB->getDebugInstrNum(*MF);
- MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg);
- }
- return MIB;
- }
- MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI,
- MachineBasicBlock &MBB) const {
- // See if this is an instruction of the type we are currently looking for.
- switch (MI->getOpcode()) {
- case X86::MOV8rm:
- // Replace 8-bit loads with the zero-extending version if not optimizing
- // for size. The extending op is cheaper across a wide range of uarch and
- // it avoids a potentially expensive partial register stall. It takes an
- // extra byte to encode, however, so don't do this when optimizing for size.
- if (!OptForSize)
- return tryReplaceLoad(X86::MOVZX32rm8, MI);
- break;
- case X86::MOV16rm:
- // Always try to replace 16 bit load with 32 bit zero extending.
- // Code size is the same, and there is sometimes a perf advantage
- // from eliminating a false dependence on the upper portion of
- // the register.
- return tryReplaceLoad(X86::MOVZX32rm16, MI);
- case X86::MOV8rr:
- case X86::MOV16rr:
- // Always try to replace 8/16 bit copies with a 32 bit copy.
- // Code size is either less (16) or equal (8), and there is sometimes a
- // perf advantage from eliminating a false dependence on the upper portion
- // of the register.
- return tryReplaceCopy(MI);
- case X86::MOVSX16rr8:
- return tryReplaceExtend(X86::MOVSX32rr8, MI);
- case X86::MOVSX16rm8:
- return tryReplaceExtend(X86::MOVSX32rm8, MI);
- case X86::MOVZX16rr8:
- return tryReplaceExtend(X86::MOVZX32rr8, MI);
- case X86::MOVZX16rm8:
- return tryReplaceExtend(X86::MOVZX32rm8, MI);
- default:
- // nothing to do here.
- break;
- }
- return nullptr;
- }
- void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
- MachineBasicBlock &MBB) {
- // This algorithm doesn't delete the instructions it is replacing
- // right away. By leaving the existing instructions in place, the
- // register liveness information doesn't change, and this makes the
- // analysis that goes on be better than if the replaced instructions
- // were immediately removed.
- //
- // This algorithm always creates a replacement instruction
- // and notes that and the original in a data structure, until the
- // whole BB has been analyzed. This keeps the replacement instructions
- // from making it seem as if the larger register might be live.
- SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
- // Start computing liveness for this block. We iterate from the end to be able
- // to update this for each instruction.
- LiveRegs.clear();
- // We run after PEI, so we need to AddPristinesAndCSRs.
- LiveRegs.addLiveOuts(MBB);
- OptForSize = MF.getFunction().hasOptSize() ||
- llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);
- for (MachineInstr &MI : llvm::reverse(MBB)) {
- if (MachineInstr *NewMI = tryReplaceInstr(&MI, MBB))
- MIReplacements.push_back(std::make_pair(&MI, NewMI));
- // We're done with this instruction, update liveness for the next one.
- LiveRegs.stepBackward(MI);
- }
- while (!MIReplacements.empty()) {
- MachineInstr *MI = MIReplacements.back().first;
- MachineInstr *NewMI = MIReplacements.back().second;
- MIReplacements.pop_back();
- MBB.insert(MI, NewMI);
- MBB.erase(MI);
- }
- }
|