1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243 |
- //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains small standalone helper functions and enum definitions for
- // the X86 target useful for the compiler back-end and the MC libraries.
- // As such, it deliberately does not include references to LLVM core
- // code gen types, passes, etc..
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
- #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
- #include "X86MCTargetDesc.h"
- #include "llvm/MC/MCInstrDesc.h"
- #include "llvm/Support/DataTypes.h"
- #include "llvm/Support/ErrorHandling.h"
- namespace llvm {
- namespace X86 {
- // Enums for memory operand decoding. Each memory operand is represented with
- // a 5 operand sequence in the form:
- // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
- // These enums help decode this.
- enum {
- AddrBaseReg = 0,
- AddrScaleAmt = 1,
- AddrIndexReg = 2,
- AddrDisp = 3,
- /// AddrSegmentReg - The operand # of the segment in the memory operand.
- AddrSegmentReg = 4,
- /// AddrNumOperands - Total number of operands in a memory reference.
- AddrNumOperands = 5
- };
- /// AVX512 static rounding constants. These need to match the values in
- /// avx512fintrin.h.
- enum STATIC_ROUNDING {
- TO_NEAREST_INT = 0,
- TO_NEG_INF = 1,
- TO_POS_INF = 2,
- TO_ZERO = 3,
- CUR_DIRECTION = 4,
- NO_EXC = 8
- };
- /// The constants to describe instr prefixes if there are
- enum IPREFIXES {
- IP_NO_PREFIX = 0,
- IP_HAS_OP_SIZE = 1U << 0,
- IP_HAS_AD_SIZE = 1U << 1,
- IP_HAS_REPEAT_NE = 1U << 2,
- IP_HAS_REPEAT = 1U << 3,
- IP_HAS_LOCK = 1U << 4,
- IP_HAS_NOTRACK = 1U << 5,
- IP_USE_VEX = 1U << 6,
- IP_USE_VEX2 = 1U << 7,
- IP_USE_VEX3 = 1U << 8,
- IP_USE_EVEX = 1U << 9,
- IP_USE_DISP8 = 1U << 10,
- IP_USE_DISP32 = 1U << 11,
- };
- enum OperandType : unsigned {
- /// AVX512 embedded rounding control. This should only have values 0-3.
- OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
- OPERAND_COND_CODE,
- };
- // X86 specific condition code. These correspond to X86_*_COND in
- // X86InstrInfo.td. They must be kept in synch.
- enum CondCode {
- COND_O = 0,
- COND_NO = 1,
- COND_B = 2,
- COND_AE = 3,
- COND_E = 4,
- COND_NE = 5,
- COND_BE = 6,
- COND_A = 7,
- COND_S = 8,
- COND_NS = 9,
- COND_P = 10,
- COND_NP = 11,
- COND_L = 12,
- COND_GE = 13,
- COND_LE = 14,
- COND_G = 15,
- LAST_VALID_COND = COND_G,
- // Artificial condition codes. These are used by analyzeBranch
- // to indicate a block terminated with two conditional branches that together
- // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
- // which can't be represented on x86 with a single condition. These
- // are never used in MachineInstrs and are inverses of one another.
- COND_NE_OR_P,
- COND_E_AND_NP,
- COND_INVALID
- };
- // The classification for the first instruction in macro fusion.
- enum class FirstMacroFusionInstKind {
- // TEST
- Test,
- // CMP
- Cmp,
- // AND
- And,
- // FIXME: Zen 3 support branch fusion for OR/XOR.
- // ADD, SUB
- AddSub,
- // INC, DEC
- IncDec,
- // Not valid as a first macro fusion instruction
- Invalid
- };
- enum class SecondMacroFusionInstKind {
- // JA, JB and variants.
- AB,
- // JE, JL, JG and variants.
- ELG,
- // JS, JP, JO and variants
- SPO,
- // Not a fusible jump.
- Invalid,
- };
- /// \returns the type of the first instruction in macro-fusion.
- inline FirstMacroFusionInstKind
- classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
- switch (Opcode) {
- default:
- return FirstMacroFusionInstKind::Invalid;
- // TEST
- case X86::TEST16i16:
- case X86::TEST16mr:
- case X86::TEST16ri:
- case X86::TEST16rr:
- case X86::TEST32i32:
- case X86::TEST32mr:
- case X86::TEST32ri:
- case X86::TEST32rr:
- case X86::TEST64i32:
- case X86::TEST64mr:
- case X86::TEST64ri32:
- case X86::TEST64rr:
- case X86::TEST8i8:
- case X86::TEST8mr:
- case X86::TEST8ri:
- case X86::TEST8rr:
- return FirstMacroFusionInstKind::Test;
- case X86::AND16i16:
- case X86::AND16ri:
- case X86::AND16ri8:
- case X86::AND16rm:
- case X86::AND16rr:
- case X86::AND16rr_REV:
- case X86::AND32i32:
- case X86::AND32ri:
- case X86::AND32ri8:
- case X86::AND32rm:
- case X86::AND32rr:
- case X86::AND32rr_REV:
- case X86::AND64i32:
- case X86::AND64ri32:
- case X86::AND64ri8:
- case X86::AND64rm:
- case X86::AND64rr:
- case X86::AND64rr_REV:
- case X86::AND8i8:
- case X86::AND8ri:
- case X86::AND8ri8:
- case X86::AND8rm:
- case X86::AND8rr:
- case X86::AND8rr_REV:
- return FirstMacroFusionInstKind::And;
- // FIXME: Zen 3 support branch fusion for OR/XOR.
- // CMP
- case X86::CMP16i16:
- case X86::CMP16mr:
- case X86::CMP16ri:
- case X86::CMP16ri8:
- case X86::CMP16rm:
- case X86::CMP16rr:
- case X86::CMP16rr_REV:
- case X86::CMP32i32:
- case X86::CMP32mr:
- case X86::CMP32ri:
- case X86::CMP32ri8:
- case X86::CMP32rm:
- case X86::CMP32rr:
- case X86::CMP32rr_REV:
- case X86::CMP64i32:
- case X86::CMP64mr:
- case X86::CMP64ri32:
- case X86::CMP64ri8:
- case X86::CMP64rm:
- case X86::CMP64rr:
- case X86::CMP64rr_REV:
- case X86::CMP8i8:
- case X86::CMP8mr:
- case X86::CMP8ri:
- case X86::CMP8ri8:
- case X86::CMP8rm:
- case X86::CMP8rr:
- case X86::CMP8rr_REV:
- return FirstMacroFusionInstKind::Cmp;
- // ADD
- case X86::ADD16i16:
- case X86::ADD16ri:
- case X86::ADD16ri8:
- case X86::ADD16rm:
- case X86::ADD16rr:
- case X86::ADD16rr_REV:
- case X86::ADD32i32:
- case X86::ADD32ri:
- case X86::ADD32ri8:
- case X86::ADD32rm:
- case X86::ADD32rr:
- case X86::ADD32rr_REV:
- case X86::ADD64i32:
- case X86::ADD64ri32:
- case X86::ADD64ri8:
- case X86::ADD64rm:
- case X86::ADD64rr:
- case X86::ADD64rr_REV:
- case X86::ADD8i8:
- case X86::ADD8ri:
- case X86::ADD8ri8:
- case X86::ADD8rm:
- case X86::ADD8rr:
- case X86::ADD8rr_REV:
- // SUB
- case X86::SUB16i16:
- case X86::SUB16ri:
- case X86::SUB16ri8:
- case X86::SUB16rm:
- case X86::SUB16rr:
- case X86::SUB16rr_REV:
- case X86::SUB32i32:
- case X86::SUB32ri:
- case X86::SUB32ri8:
- case X86::SUB32rm:
- case X86::SUB32rr:
- case X86::SUB32rr_REV:
- case X86::SUB64i32:
- case X86::SUB64ri32:
- case X86::SUB64ri8:
- case X86::SUB64rm:
- case X86::SUB64rr:
- case X86::SUB64rr_REV:
- case X86::SUB8i8:
- case X86::SUB8ri:
- case X86::SUB8ri8:
- case X86::SUB8rm:
- case X86::SUB8rr:
- case X86::SUB8rr_REV:
- return FirstMacroFusionInstKind::AddSub;
- // INC
- case X86::INC16r:
- case X86::INC16r_alt:
- case X86::INC32r:
- case X86::INC32r_alt:
- case X86::INC64r:
- case X86::INC8r:
- // DEC
- case X86::DEC16r:
- case X86::DEC16r_alt:
- case X86::DEC32r:
- case X86::DEC32r_alt:
- case X86::DEC64r:
- case X86::DEC8r:
- return FirstMacroFusionInstKind::IncDec;
- }
- }
- /// \returns the type of the second instruction in macro-fusion.
- inline SecondMacroFusionInstKind
- classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
- if (CC == X86::COND_INVALID)
- return SecondMacroFusionInstKind::Invalid;
- switch (CC) {
- default:
- return SecondMacroFusionInstKind::Invalid;
- // JE,JZ
- case X86::COND_E:
- // JNE,JNZ
- case X86::COND_NE:
- // JL,JNGE
- case X86::COND_L:
- // JLE,JNG
- case X86::COND_LE:
- // JG,JNLE
- case X86::COND_G:
- // JGE,JNL
- case X86::COND_GE:
- return SecondMacroFusionInstKind::ELG;
- // JB,JC
- case X86::COND_B:
- // JNA,JBE
- case X86::COND_BE:
- // JA,JNBE
- case X86::COND_A:
- // JAE,JNC,JNB
- case X86::COND_AE:
- return SecondMacroFusionInstKind::AB;
- // JS
- case X86::COND_S:
- // JNS
- case X86::COND_NS:
- // JP,JPE
- case X86::COND_P:
- // JNP,JPO
- case X86::COND_NP:
- // JO
- case X86::COND_O:
- // JNO
- case X86::COND_NO:
- return SecondMacroFusionInstKind::SPO;
- }
- }
- /// \param FirstKind kind of the first instruction in macro fusion.
- /// \param SecondKind kind of the second instruction in macro fusion.
- ///
- /// \returns true if the two instruction can be macro fused.
- inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
- SecondMacroFusionInstKind SecondKind) {
- switch (FirstKind) {
- case X86::FirstMacroFusionInstKind::Test:
- case X86::FirstMacroFusionInstKind::And:
- return true;
- case X86::FirstMacroFusionInstKind::Cmp:
- case X86::FirstMacroFusionInstKind::AddSub:
- return SecondKind == X86::SecondMacroFusionInstKind::AB ||
- SecondKind == X86::SecondMacroFusionInstKind::ELG;
- case X86::FirstMacroFusionInstKind::IncDec:
- return SecondKind == X86::SecondMacroFusionInstKind::ELG;
- case X86::FirstMacroFusionInstKind::Invalid:
- return false;
- }
- llvm_unreachable("unknown fusion type");
- }
- /// Defines the possible values of the branch boundary alignment mask.
- enum AlignBranchBoundaryKind : uint8_t {
- AlignBranchNone = 0,
- AlignBranchFused = 1U << 0,
- AlignBranchJcc = 1U << 1,
- AlignBranchJmp = 1U << 2,
- AlignBranchCall = 1U << 3,
- AlignBranchRet = 1U << 4,
- AlignBranchIndirect = 1U << 5
- };
- /// Defines the encoding values for segment override prefix.
- enum EncodingOfSegmentOverridePrefix : uint8_t {
- CS_Encoding = 0x2E,
- DS_Encoding = 0x3E,
- ES_Encoding = 0x26,
- FS_Encoding = 0x64,
- GS_Encoding = 0x65,
- SS_Encoding = 0x36
- };
- /// Given a segment register, return the encoding of the segment override
- /// prefix for it.
- inline EncodingOfSegmentOverridePrefix
- getSegmentOverridePrefixForReg(unsigned Reg) {
- switch (Reg) {
- default:
- llvm_unreachable("Unknown segment register!");
- case X86::CS:
- return CS_Encoding;
- case X86::DS:
- return DS_Encoding;
- case X86::ES:
- return ES_Encoding;
- case X86::FS:
- return FS_Encoding;
- case X86::GS:
- return GS_Encoding;
- case X86::SS:
- return SS_Encoding;
- }
- }
- } // end namespace X86;
- /// X86II - This namespace holds all of the target specific flags that
- /// instruction info tracks.
- ///
- namespace X86II {
- /// Target Operand Flag enum.
- enum TOF {
- //===------------------------------------------------------------------===//
- // X86 Specific MachineOperand flags.
- MO_NO_FLAG,
- /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
- /// relocation of:
- /// SYMBOL_LABEL + [. - PICBASELABEL]
- MO_GOT_ABSOLUTE_ADDRESS,
- /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
- /// immediate should get the value of the symbol minus the PIC base label:
- /// SYMBOL_LABEL - PICBASELABEL
- MO_PIC_BASE_OFFSET,
- /// MO_GOT - On a symbol operand this indicates that the immediate is the
- /// offset to the GOT entry for the symbol name from the base of the GOT.
- ///
- /// See the X86-64 ELF ABI supplement for more details.
- /// SYMBOL_LABEL @GOT
- MO_GOT,
- /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
- /// the offset to the location of the symbol name from the base of the GOT.
- ///
- /// See the X86-64 ELF ABI supplement for more details.
- /// SYMBOL_LABEL @GOTOFF
- MO_GOTOFF,
- /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
- /// offset to the GOT entry for the symbol name from the current code
- /// location.
- ///
- /// See the X86-64 ELF ABI supplement for more details.
- /// SYMBOL_LABEL @GOTPCREL
- MO_GOTPCREL,
- /// MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL
- /// relocations are guaranteed to be emitted by the integrated assembler
- /// instead of the relaxable R_X86_64[_REX]_GOTPCRELX relocations.
- MO_GOTPCREL_NORELAX,
- /// MO_PLT - On a symbol operand this indicates that the immediate is
- /// offset to the PLT entry of symbol name from the current code location.
- ///
- /// See the X86-64 ELF ABI supplement for more details.
- /// SYMBOL_LABEL @PLT
- MO_PLT,
- /// MO_TLSGD - On a symbol operand this indicates that the immediate is
- /// the offset of the GOT entry with the TLS index structure that contains
- /// the module number and variable offset for the symbol. Used in the
- /// general dynamic TLS access model.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @TLSGD
- MO_TLSGD,
- /// MO_TLSLD - On a symbol operand this indicates that the immediate is
- /// the offset of the GOT entry with the TLS index for the module that
- /// contains the symbol. When this index is passed to a call to
- /// __tls_get_addr, the function will return the base address of the TLS
- /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @TLSLD
- MO_TLSLD,
- /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
- /// the offset of the GOT entry with the TLS index for the module that
- /// contains the symbol. When this index is passed to a call to
- /// ___tls_get_addr, the function will return the base address of the TLS
- /// block for the symbol. Used in the IA32 local dynamic TLS access model.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @TLSLDM
- MO_TLSLDM,
- /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
- /// the offset of the GOT entry with the thread-pointer offset for the
- /// symbol. Used in the x86-64 initial exec TLS access model.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @GOTTPOFF
- MO_GOTTPOFF,
- /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
- /// the absolute address of the GOT entry with the negative thread-pointer
- /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
- /// model.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @INDNTPOFF
- MO_INDNTPOFF,
- /// MO_TPOFF - On a symbol operand this indicates that the immediate is
- /// the thread-pointer offset for the symbol. Used in the x86-64 local
- /// exec TLS access model.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @TPOFF
- MO_TPOFF,
- /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
- /// the offset of the GOT entry with the TLS offset of the symbol. Used
- /// in the local dynamic TLS access model.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @DTPOFF
- MO_DTPOFF,
- /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
- /// the negative thread-pointer offset for the symbol. Used in the IA32
- /// local exec TLS access model.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @NTPOFF
- MO_NTPOFF,
- /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
- /// the offset of the GOT entry with the negative thread-pointer offset for
- /// the symbol. Used in the PIC IA32 initial exec TLS access model.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @GOTNTPOFF
- MO_GOTNTPOFF,
- /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
- /// reference is actually to the "__imp_FOO" symbol. This is used for
- /// dllimport linkage on windows.
- MO_DLLIMPORT,
- /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
- /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
- /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
- MO_DARWIN_NONLAZY,
- /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
- /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
- /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
- MO_DARWIN_NONLAZY_PIC_BASE,
- /// MO_TLVP - On a symbol operand this indicates that the immediate is
- /// some TLS offset.
- ///
- /// This is the TLS offset for the Darwin TLS mechanism.
- MO_TLVP,
- /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
- /// is some TLS offset from the picbase.
- ///
- /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
- MO_TLVP_PIC_BASE,
- /// MO_SECREL - On a symbol operand this indicates that the immediate is
- /// the offset from beginning of section.
- ///
- /// This is the TLS offset for the COFF/Windows TLS mechanism.
- MO_SECREL,
- /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
- /// to be an absolute symbol in range [0,128), so we can use the @ABS8
- /// symbol modifier.
- MO_ABS8,
- /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
- /// reference is actually to the ".refptr.FOO" symbol. This is used for
- /// stub symbols on windows.
- MO_COFFSTUB,
- };
- enum : uint64_t {
- //===------------------------------------------------------------------===//
- // Instruction encodings. These are the standard/most common forms for X86
- // instructions.
- //
- // PseudoFrm - This represents an instruction that is a pseudo instruction
- // or one that has not been implemented yet. It is illegal to code generate
- // it, but tolerated for intermediate implementation stages.
- Pseudo = 0,
- /// Raw - This form is for instructions that don't have any operands, so
- /// they are just a fixed opcode value, like 'leave'.
- RawFrm = 1,
- /// AddRegFrm - This form is used for instructions like 'push r32' that have
- /// their one register operand added to their opcode.
- AddRegFrm = 2,
- /// RawFrmMemOffs - This form is for instructions that store an absolute
- /// memory offset as an immediate with a possible segment override.
- RawFrmMemOffs = 3,
- /// RawFrmSrc - This form is for instructions that use the source index
- /// register SI/ESI/RSI with a possible segment override.
- RawFrmSrc = 4,
- /// RawFrmDst - This form is for instructions that use the destination index
- /// register DI/EDI/RDI.
- RawFrmDst = 5,
- /// RawFrmDstSrc - This form is for instructions that use the source index
- /// register SI/ESI/RSI with a possible segment override, and also the
- /// destination index register DI/EDI/RDI.
- RawFrmDstSrc = 6,
- /// RawFrmImm8 - This is used for the ENTER instruction, which has two
- /// immediates, the first of which is a 16-bit immediate (specified by
- /// the imm encoding) and the second is a 8-bit fixed value.
- RawFrmImm8 = 7,
- /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
- /// immediates, the first of which is a 16 or 32-bit immediate (specified by
- /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
- /// manual, this operand is described as pntr16:32 and pntr16:16
- RawFrmImm16 = 8,
- /// AddCCFrm - This form is used for Jcc that encode the condition code
- /// in the lower 4 bits of the opcode.
- AddCCFrm = 9,
- /// PrefixByte - This form is used for instructions that represent a prefix
- /// byte like data16 or rep.
- PrefixByte = 10,
- /// MRMDestMem4VOp3CC - This form is used for instructions that use the Mod/RM
- /// byte to specify a destination which in this case is memory and operand 3
- /// with VEX.VVVV, and also encodes a condition code.
- MRMDestMem4VOp3CC = 20,
- /// MRM[0-7][rm] - These forms are used to represent instructions that use
- /// a Mod/RM byte, and use the middle field to hold extended opcode
- /// information. In the intel manual these are represented as /0, /1, ...
- ///
- // Instructions operate on a register Reg/Opcode operand not the r/m field.
- MRMr0 = 21,
- /// MRMSrcMem - But force to use the SIB field.
- MRMSrcMemFSIB = 22,
- /// MRMDestMem - But force to use the SIB field.
- MRMDestMemFSIB = 23,
- /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
- /// to specify a destination, which in this case is memory.
- ///
- MRMDestMem = 24,
- /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
- /// to specify a source, which in this case is memory.
- ///
- MRMSrcMem = 25,
- /// MRMSrcMem4VOp3 - This form is used for instructions that encode
- /// operand 3 with VEX.VVVV and load from memory.
- ///
- MRMSrcMem4VOp3 = 26,
- /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
- /// byte to specify the fourth source, which in this case is memory.
- ///
- MRMSrcMemOp4 = 27,
- /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
- /// byte to specify the operands and also encodes a condition code.
- ///
- MRMSrcMemCC = 28,
- /// MRMXm - This form is used for instructions that use the Mod/RM byte
- /// to specify a memory source, but doesn't use the middle field. And has
- /// a condition code.
- ///
- MRMXmCC = 30,
- /// MRMXm - This form is used for instructions that use the Mod/RM byte
- /// to specify a memory source, but doesn't use the middle field.
- ///
- MRMXm = 31,
- // Next, instructions that operate on a memory r/m operand...
- MRM0m = 32, MRM1m = 33, MRM2m = 34, MRM3m = 35, // Format /0 /1 /2 /3
- MRM4m = 36, MRM5m = 37, MRM6m = 38, MRM7m = 39, // Format /4 /5 /6 /7
- /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
- /// to specify a destination, which in this case is a register.
- ///
- MRMDestReg = 40,
- /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
- /// to specify a source, which in this case is a register.
- ///
- MRMSrcReg = 41,
- /// MRMSrcReg4VOp3 - This form is used for instructions that encode
- /// operand 3 with VEX.VVVV and do not load from memory.
- ///
- MRMSrcReg4VOp3 = 42,
- /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
- /// byte to specify the fourth source, which in this case is a register.
- ///
- MRMSrcRegOp4 = 43,
- /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
- /// byte to specify the operands and also encodes a condition code
- ///
- MRMSrcRegCC = 44,
- /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
- /// to specify a register source, but doesn't use the middle field. And has
- /// a condition code.
- ///
- MRMXrCC = 46,
- /// MRMXr - This form is used for instructions that use the Mod/RM byte
- /// to specify a register source, but doesn't use the middle field.
- ///
- MRMXr = 47,
- // Instructions that operate on a register r/m operand...
- MRM0r = 48, MRM1r = 49, MRM2r = 50, MRM3r = 51, // Format /0 /1 /2 /3
- MRM4r = 52, MRM5r = 53, MRM6r = 54, MRM7r = 55, // Format /4 /5 /6 /7
- // Instructions that operate that have mod=11 and an opcode but ignore r/m.
- MRM0X = 56, MRM1X = 57, MRM2X = 58, MRM3X = 59, // Format /0 /1 /2 /3
- MRM4X = 60, MRM5X = 61, MRM6X = 62, MRM7X = 63, // Format /4 /5 /6 /7
- /// MRM_XX - A mod/rm byte of exactly 0xXX.
- MRM_C0 = 64, MRM_C1 = 65, MRM_C2 = 66, MRM_C3 = 67,
- MRM_C4 = 68, MRM_C5 = 69, MRM_C6 = 70, MRM_C7 = 71,
- MRM_C8 = 72, MRM_C9 = 73, MRM_CA = 74, MRM_CB = 75,
- MRM_CC = 76, MRM_CD = 77, MRM_CE = 78, MRM_CF = 79,
- MRM_D0 = 80, MRM_D1 = 81, MRM_D2 = 82, MRM_D3 = 83,
- MRM_D4 = 84, MRM_D5 = 85, MRM_D6 = 86, MRM_D7 = 87,
- MRM_D8 = 88, MRM_D9 = 89, MRM_DA = 90, MRM_DB = 91,
- MRM_DC = 92, MRM_DD = 93, MRM_DE = 94, MRM_DF = 95,
- MRM_E0 = 96, MRM_E1 = 97, MRM_E2 = 98, MRM_E3 = 99,
- MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
- MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
- MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
- MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
- MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
- MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
- MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
- FormMask = 127,
- //===------------------------------------------------------------------===//
- // Actual flags...
- // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
- // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
- // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
- // prefix in 16-bit mode.
- OpSizeShift = 7,
- OpSizeMask = 0x3 << OpSizeShift,
- OpSizeFixed = 0 << OpSizeShift,
- OpSize16 = 1 << OpSizeShift,
- OpSize32 = 2 << OpSizeShift,
- // AsSize - AdSizeX implies this instruction determines its need of 0x67
- // prefix from a normal ModRM memory operand. The other types indicate that
- // an operand is encoded with a specific width and a prefix is needed if
- // it differs from the current mode.
- AdSizeShift = OpSizeShift + 2,
- AdSizeMask = 0x3 << AdSizeShift,
- AdSizeX = 0 << AdSizeShift,
- AdSize16 = 1 << AdSizeShift,
- AdSize32 = 2 << AdSizeShift,
- AdSize64 = 3 << AdSizeShift,
- //===------------------------------------------------------------------===//
- // OpPrefix - There are several prefix bytes that are used as opcode
- // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
- // no prefix.
- //
- OpPrefixShift = AdSizeShift + 2,
- OpPrefixMask = 0x3 << OpPrefixShift,
- // PD - Prefix code for packed double precision vector floating point
- // operations performed in the SSE registers.
- PD = 1 << OpPrefixShift,
- // XS, XD - These prefix codes are for single and double precision scalar
- // floating point operations performed in the SSE registers.
- XS = 2 << OpPrefixShift, XD = 3 << OpPrefixShift,
- //===------------------------------------------------------------------===//
- // OpMap - This field determines which opcode map this instruction
- // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
- //
- OpMapShift = OpPrefixShift + 2,
- OpMapMask = 0xF << OpMapShift,
- // OB - OneByte - Set if this instruction has a one byte opcode.
- OB = 0 << OpMapShift,
- // TB - TwoByte - Set if this instruction has a two byte opcode, which
- // starts with a 0x0F byte before the real opcode.
- TB = 1 << OpMapShift,
- // T8, TA - Prefix after the 0x0F prefix.
- T8 = 2 << OpMapShift, TA = 3 << OpMapShift,
- // XOP8 - Prefix to include use of imm byte.
- XOP8 = 4 << OpMapShift,
- // XOP9 - Prefix to exclude use of imm byte.
- XOP9 = 5 << OpMapShift,
- // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
- XOPA = 6 << OpMapShift,
- /// ThreeDNow - This indicates that the instruction uses the
- /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
- /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
- /// storing a classifier in the imm8 field. To simplify our implementation,
- /// we handle this by storeing the classifier in the opcode field and using
- /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
- ThreeDNow = 7 << OpMapShift,
- // MAP5, MAP6 - Prefix after the 0x0F prefix.
- T_MAP5 = 8 << OpMapShift,
- T_MAP6 = 9 << OpMapShift,
- //===------------------------------------------------------------------===//
- // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
- // They are used to specify GPRs and SSE registers, 64-bit operand size,
- // etc. We only cares about REX.W and REX.R bits and only the former is
- // statically determined.
- //
- REXShift = OpMapShift + 4,
- REX_W = 1 << REXShift,
- //===------------------------------------------------------------------===//
- // This three-bit field describes the size of an immediate operand. Zero is
- // unused so that we can tell if we forgot to set a value.
- ImmShift = REXShift + 1,
- ImmMask = 15 << ImmShift,
- Imm8 = 1 << ImmShift,
- Imm8PCRel = 2 << ImmShift,
- Imm8Reg = 3 << ImmShift,
- Imm16 = 4 << ImmShift,
- Imm16PCRel = 5 << ImmShift,
- Imm32 = 6 << ImmShift,
- Imm32PCRel = 7 << ImmShift,
- Imm32S = 8 << ImmShift,
- Imm64 = 9 << ImmShift,
- //===------------------------------------------------------------------===//
- // FP Instruction Classification... Zero is non-fp instruction.
- // FPTypeMask - Mask for all of the FP types...
- FPTypeShift = ImmShift + 4,
- FPTypeMask = 7 << FPTypeShift,
- // NotFP - The default, set for instructions that do not use FP registers.
- NotFP = 0 << FPTypeShift,
- // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
- ZeroArgFP = 1 << FPTypeShift,
- // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
- OneArgFP = 2 << FPTypeShift,
- // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
- // result back to ST(0). For example, fcos, fsqrt, etc.
- //
- OneArgFPRW = 3 << FPTypeShift,
- // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
- // explicit argument, storing the result to either ST(0) or the implicit
- // argument. For example: fadd, fsub, fmul, etc...
- TwoArgFP = 4 << FPTypeShift,
- // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
- // explicit argument, but have no destination. Example: fucom, fucomi, ...
- CompareFP = 5 << FPTypeShift,
- // CondMovFP - "2 operand" floating point conditional move instructions.
- CondMovFP = 6 << FPTypeShift,
- // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
- SpecialFP = 7 << FPTypeShift,
- // Lock prefix
- LOCKShift = FPTypeShift + 3,
- LOCK = 1 << LOCKShift,
- // REP prefix
- REPShift = LOCKShift + 1,
- REP = 1 << REPShift,
- // Execution domain for SSE instructions.
- // 0 means normal, non-SSE instruction.
- SSEDomainShift = REPShift + 1,
- // Encoding
- EncodingShift = SSEDomainShift + 2,
- EncodingMask = 0x3 << EncodingShift,
- // VEX - encoding using 0xC4/0xC5
- VEX = 1 << EncodingShift,
- /// XOP - Opcode prefix used by XOP instructions.
- XOP = 2 << EncodingShift,
- // VEX_EVEX - Specifies that this instruction use EVEX form which provides
- // syntax support up to 32 512-bit register operands and up to 7 16-bit
- // mask operands as well as source operand data swizzling/memory operand
- // conversion, eviction hint, and rounding mode.
- EVEX = 3 << EncodingShift,
- // Opcode
- OpcodeShift = EncodingShift + 2,
- /// VEX_W - Has a opcode specific functionality, but is used in the same
- /// way as REX_W is for regular SSE instructions.
- VEX_WShift = OpcodeShift + 8,
- VEX_W = 1ULL << VEX_WShift,
- /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
- /// address instructions in SSE are represented as 3 address ones in AVX
- /// and the additional register is encoded in VEX_VVVV prefix.
- VEX_4VShift = VEX_WShift + 1,
- VEX_4V = 1ULL << VEX_4VShift,
- /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
- /// instruction uses 256-bit wide registers. This is usually auto detected
- /// if a VR256 register is used, but some AVX instructions also have this
- /// field marked when using a f256 memory references.
- VEX_LShift = VEX_4VShift + 1,
- VEX_L = 1ULL << VEX_LShift,
- // EVEX_K - Set if this instruction requires masking
- EVEX_KShift = VEX_LShift + 1,
- EVEX_K = 1ULL << EVEX_KShift,
- // EVEX_Z - Set if this instruction has EVEX.Z field set.
- EVEX_ZShift = EVEX_KShift + 1,
- EVEX_Z = 1ULL << EVEX_ZShift,
- // EVEX_L2 - Set if this instruction has EVEX.L' field set.
- EVEX_L2Shift = EVEX_ZShift + 1,
- EVEX_L2 = 1ULL << EVEX_L2Shift,
- // EVEX_B - Set if this instruction has EVEX.B field set.
- EVEX_BShift = EVEX_L2Shift + 1,
- EVEX_B = 1ULL << EVEX_BShift,
- // The scaling factor for the AVX512's 8-bit compressed displacement.
- CD8_Scale_Shift = EVEX_BShift + 1,
- CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
- /// Explicitly specified rounding control
- EVEX_RCShift = CD8_Scale_Shift + 7,
- EVEX_RC = 1ULL << EVEX_RCShift,
- // NOTRACK prefix
- NoTrackShift = EVEX_RCShift + 1,
- NOTRACK = 1ULL << NoTrackShift,
- // Force VEX encoding
- ExplicitVEXShift = NoTrackShift + 1,
- ExplicitVEXPrefix = 1ULL << ExplicitVEXShift
- };
- /// \returns true if the instruction with given opcode is a prefix.
- inline bool isPrefix(uint64_t TSFlags) {
- return (TSFlags & X86II::FormMask) == PrefixByte;
- }
- /// \returns true if the instruction with given opcode is a pseudo.
- inline bool isPseudo(uint64_t TSFlags) {
- return (TSFlags & X86II::FormMask) == Pseudo;
- }
- /// \returns the "base" X86 opcode for the specified machine
- /// instruction.
- inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
- return TSFlags >> X86II::OpcodeShift;
- }
- inline bool hasImm(uint64_t TSFlags) {
- return (TSFlags & X86II::ImmMask) != 0;
- }
- /// Decode the "size of immediate" field from the TSFlags field of the
- /// specified instruction.
- inline unsigned getSizeOfImm(uint64_t TSFlags) {
- switch (TSFlags & X86II::ImmMask) {
- default: llvm_unreachable("Unknown immediate size");
- case X86II::Imm8:
- case X86II::Imm8PCRel:
- case X86II::Imm8Reg: return 1;
- case X86II::Imm16:
- case X86II::Imm16PCRel: return 2;
- case X86II::Imm32:
- case X86II::Imm32S:
- case X86II::Imm32PCRel: return 4;
- case X86II::Imm64: return 8;
- }
- }
- /// \returns true if the immediate of the specified instruction's TSFlags
- /// indicates that it is pc relative.
- inline bool isImmPCRel(uint64_t TSFlags) {
- switch (TSFlags & X86II::ImmMask) {
- default: llvm_unreachable("Unknown immediate size");
- case X86II::Imm8PCRel:
- case X86II::Imm16PCRel:
- case X86II::Imm32PCRel:
- return true;
- case X86II::Imm8:
- case X86II::Imm8Reg:
- case X86II::Imm16:
- case X86II::Imm32:
- case X86II::Imm32S:
- case X86II::Imm64:
- return false;
- }
- }
- /// \returns true if the immediate of the specified instruction's
- /// TSFlags indicates that it is signed.
- inline bool isImmSigned(uint64_t TSFlags) {
- switch (TSFlags & X86II::ImmMask) {
- default: llvm_unreachable("Unknown immediate signedness");
- case X86II::Imm32S:
- return true;
- case X86II::Imm8:
- case X86II::Imm8PCRel:
- case X86II::Imm8Reg:
- case X86II::Imm16:
- case X86II::Imm16PCRel:
- case X86II::Imm32:
- case X86II::Imm32PCRel:
- case X86II::Imm64:
- return false;
- }
- }
- /// Compute whether all of the def operands are repeated in the uses and
- /// therefore should be skipped.
- /// This determines the start of the unique operand list. We need to determine
- /// if all of the defs have a corresponding tied operand in the uses.
- /// Unfortunately, the tied operand information is encoded in the uses not
- /// the defs so we have to use some heuristics to find which operands to
- /// query.
- inline unsigned getOperandBias(const MCInstrDesc& Desc) {
- unsigned NumDefs = Desc.getNumDefs();
- unsigned NumOps = Desc.getNumOperands();
- switch (NumDefs) {
- default: llvm_unreachable("Unexpected number of defs");
- case 0:
- return 0;
- case 1:
- // Common two addr case.
- if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
- return 1;
- // Check for AVX-512 scatter which has a TIED_TO in the second to last
- // operand.
- if (NumOps == 8 &&
- Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
- return 1;
- return 0;
- case 2:
- // XCHG/XADD have two destinations and two sources.
- if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
- Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
- return 2;
- // Check for gather. AVX-512 has the second tied operand early. AVX2
- // has it as the last op.
- if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
- (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
- Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
- return 2;
- return 0;
- }
- }
- /// The function returns the MCInst operand # for the first field of the
- /// memory operand. If the instruction doesn't have a
- /// memory operand, this returns -1.
- ///
- /// Note that this ignores tied operands. If there is a tied register which
- /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
- /// counted as one operand.
- ///
- inline int getMemoryOperandNo(uint64_t TSFlags) {
- bool HasVEX_4V = TSFlags & X86II::VEX_4V;
- bool HasEVEX_K = TSFlags & X86II::EVEX_K;
- switch (TSFlags & X86II::FormMask) {
- default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
- case X86II::Pseudo:
- case X86II::RawFrm:
- case X86II::AddRegFrm:
- case X86II::RawFrmImm8:
- case X86II::RawFrmImm16:
- case X86II::RawFrmMemOffs:
- case X86II::RawFrmSrc:
- case X86II::RawFrmDst:
- case X86II::RawFrmDstSrc:
- case X86II::AddCCFrm:
- case X86II::PrefixByte:
- return -1;
- case X86II::MRMDestMem:
- case X86II::MRMDestMemFSIB:
- return 0;
- case X86II::MRMSrcMem:
- case X86II::MRMSrcMemFSIB:
- // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
- // mask register.
- return 1 + HasVEX_4V + HasEVEX_K;
- case X86II::MRMSrcMem4VOp3:
- // Skip registers encoded in reg.
- return 1 + HasEVEX_K;
- case X86II::MRMSrcMemOp4:
- // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
- return 3;
- case X86II::MRMSrcMemCC:
- case X86II::MRMDestMem4VOp3CC:
- // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
- // mask register.
- return 1;
- case X86II::MRMDestReg:
- case X86II::MRMSrcReg:
- case X86II::MRMSrcReg4VOp3:
- case X86II::MRMSrcRegOp4:
- case X86II::MRMSrcRegCC:
- case X86II::MRMXrCC:
- case X86II::MRMr0:
- case X86II::MRMXr:
- case X86II::MRM0r: case X86II::MRM1r:
- case X86II::MRM2r: case X86II::MRM3r:
- case X86II::MRM4r: case X86II::MRM5r:
- case X86II::MRM6r: case X86II::MRM7r:
- return -1;
- case X86II::MRM0X: case X86II::MRM1X:
- case X86II::MRM2X: case X86II::MRM3X:
- case X86II::MRM4X: case X86II::MRM5X:
- case X86II::MRM6X: case X86II::MRM7X:
- return -1;
- case X86II::MRMXmCC:
- case X86II::MRMXm:
- case X86II::MRM0m: case X86II::MRM1m:
- case X86II::MRM2m: case X86II::MRM3m:
- case X86II::MRM4m: case X86II::MRM5m:
- case X86II::MRM6m: case X86II::MRM7m:
- // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
- return 0 + HasVEX_4V + HasEVEX_K;
- case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
- case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
- case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
- case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
- case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
- case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
- case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
- case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
- case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
- case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
- case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
- case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
- case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
- case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
- case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
- case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
- case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
- case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
- case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
- case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
- case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
- case X86II::MRM_FF:
- return -1;
- }
- }
- /// \returns true if the MachineOperand is a x86-64 extended (r8 or
- /// higher) register, e.g. r8, xmm8, xmm13, etc.
- inline bool isX86_64ExtendedReg(unsigned RegNo) {
- if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
- (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
- (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
- return true;
- switch (RegNo) {
- default: break;
- case X86::R8: case X86::R9: case X86::R10: case X86::R11:
- case X86::R12: case X86::R13: case X86::R14: case X86::R15:
- case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
- case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
- case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
- case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
- case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
- case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
- case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
- case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
- case X86::DR8: case X86::DR9: case X86::DR10: case X86::DR11:
- case X86::DR12: case X86::DR13: case X86::DR14: case X86::DR15:
- return true;
- }
- return false;
- }
- /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
- /// registers, e.g. zmm21, etc.
- static inline bool is32ExtendedReg(unsigned RegNo) {
- return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
- (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
- (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
- }
- inline bool isX86_64NonExtLowByteReg(unsigned reg) {
- return (reg == X86::SPL || reg == X86::BPL ||
- reg == X86::SIL || reg == X86::DIL);
- }
- /// \returns true if this is a masked instruction.
- inline bool isKMasked(uint64_t TSFlags) {
- return (TSFlags & X86II::EVEX_K) != 0;
- }
- /// \returns true if this is a merge masked instruction.
- inline bool isKMergeMasked(uint64_t TSFlags) {
- return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
- }
- }
- } // end namespace llvm;
- #endif
|