123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739 |
- //===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===---------------------------------------------------------------------===//
- //
- // This pass aims to reduce the number of logical operations on bits in the CR
- // register. These instructions have a fairly high latency and only a single
- // pipeline at their disposal in modern PPC cores. Furthermore, they have a
- // tendency to occur in fairly small blocks where there's little opportunity
- // to hide the latency between the CR logical operation and its user.
- //
- //===---------------------------------------------------------------------===//
- #include "PPC.h"
- #include "PPCInstrInfo.h"
- #include "PPCTargetMachine.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
- #include "llvm/CodeGen/MachineDominators.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/Config/llvm-config.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Support/Debug.h"
- using namespace llvm;
- #define DEBUG_TYPE "ppc-reduce-cr-ops"
- STATISTIC(NumContainedSingleUseBinOps,
- "Number of single-use binary CR logical ops contained in a block");
- STATISTIC(NumToSplitBlocks,
- "Number of binary CR logical ops that can be used to split blocks");
- STATISTIC(TotalCRLogicals, "Number of CR logical ops.");
- STATISTIC(TotalNullaryCRLogicals,
- "Number of nullary CR logical ops (CRSET/CRUNSET).");
- STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops.");
- STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops.");
- STATISTIC(NumBlocksSplitOnBinaryCROp,
- "Number of blocks split on CR binary logical ops.");
- STATISTIC(NumNotSplitIdenticalOperands,
- "Number of blocks not split due to operands being identical.");
- STATISTIC(NumNotSplitChainCopies,
- "Number of blocks not split due to operands being chained copies.");
- STATISTIC(NumNotSplitWrongOpcode,
- "Number of blocks not split due to the wrong opcode.");
- /// Given a basic block \p Successor that potentially contains PHIs, this
- /// function will look for any incoming values in the PHIs that are supposed to
- /// be coming from \p OrigMBB but whose definition is actually in \p NewMBB.
- /// Any such PHIs will be updated to reflect reality.
- static void updatePHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB,
- MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) {
- for (auto &MI : Successor->instrs()) {
- if (!MI.isPHI())
- continue;
- // This is a really ugly-looking loop, but it was pillaged directly from
- // MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
- for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
- MachineOperand &MO = MI.getOperand(i);
- if (MO.getMBB() == OrigMBB) {
- // Check if the instruction is actually defined in NewMBB.
- if (MI.getOperand(i - 1).isReg()) {
- MachineInstr *DefMI = MRI->getVRegDef(MI.getOperand(i - 1).getReg());
- if (DefMI->getParent() == NewMBB ||
- !OrigMBB->isSuccessor(Successor)) {
- MO.setMBB(NewMBB);
- break;
- }
- }
- }
- }
- }
- }
- /// Given a basic block \p Successor that potentially contains PHIs, this
- /// function will look for PHIs that have an incoming value from \p OrigMBB
- /// and will add the same incoming value from \p NewMBB.
- /// NOTE: This should only be used if \p NewMBB is an immediate dominator of
- /// \p OrigMBB.
- static void addIncomingValuesToPHIs(MachineBasicBlock *Successor,
- MachineBasicBlock *OrigMBB,
- MachineBasicBlock *NewMBB,
- MachineRegisterInfo *MRI) {
- assert(OrigMBB->isSuccessor(NewMBB) &&
- "NewMBB must be a successor of OrigMBB");
- for (auto &MI : Successor->instrs()) {
- if (!MI.isPHI())
- continue;
- // This is a really ugly-looking loop, but it was pillaged directly from
- // MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
- for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
- MachineOperand &MO = MI.getOperand(i);
- if (MO.getMBB() == OrigMBB) {
- MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI);
- MIB.addReg(MI.getOperand(i - 1).getReg()).addMBB(NewMBB);
- break;
- }
- }
- }
- }
- struct BlockSplitInfo {
- MachineInstr *OrigBranch;
- MachineInstr *SplitBefore;
- MachineInstr *SplitCond;
- bool InvertNewBranch;
- bool InvertOrigBranch;
- bool BranchToFallThrough;
- const MachineBranchProbabilityInfo *MBPI;
- MachineInstr *MIToDelete;
- MachineInstr *NewCond;
- bool allInstrsInSameMBB() {
- if (!OrigBranch || !SplitBefore || !SplitCond)
- return false;
- MachineBasicBlock *MBB = OrigBranch->getParent();
- if (SplitBefore->getParent() != MBB || SplitCond->getParent() != MBB)
- return false;
- if (MIToDelete && MIToDelete->getParent() != MBB)
- return false;
- if (NewCond && NewCond->getParent() != MBB)
- return false;
- return true;
- }
- };
- /// Splits a MachineBasicBlock to branch before \p SplitBefore. The original
- /// branch is \p OrigBranch. The target of the new branch can either be the same
- /// as the target of the original branch or the fallthrough successor of the
- /// original block as determined by \p BranchToFallThrough. The branch
- /// conditions will be inverted according to \p InvertNewBranch and
- /// \p InvertOrigBranch. If an instruction that previously fed the branch is to
- /// be deleted, it is provided in \p MIToDelete and \p NewCond will be used as
- /// the branch condition. The branch probabilities will be set if the
- /// MachineBranchProbabilityInfo isn't null.
- static bool splitMBB(BlockSplitInfo &BSI) {
- assert(BSI.allInstrsInSameMBB() &&
- "All instructions must be in the same block.");
- MachineBasicBlock *ThisMBB = BSI.OrigBranch->getParent();
- MachineFunction *MF = ThisMBB->getParent();
- MachineRegisterInfo *MRI = &MF->getRegInfo();
- assert(MRI->isSSA() && "Can only do this while the function is in SSA form.");
- if (ThisMBB->succ_size() != 2) {
- LLVM_DEBUG(
- dbgs() << "Don't know how to handle blocks that don't have exactly"
- << " two successors.\n");
- return false;
- }
- const PPCInstrInfo *TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
- unsigned OrigBROpcode = BSI.OrigBranch->getOpcode();
- unsigned InvertedOpcode =
- OrigBROpcode == PPC::BC
- ? PPC::BCn
- : OrigBROpcode == PPC::BCn
- ? PPC::BC
- : OrigBROpcode == PPC::BCLR ? PPC::BCLRn : PPC::BCLR;
- unsigned NewBROpcode = BSI.InvertNewBranch ? InvertedOpcode : OrigBROpcode;
- MachineBasicBlock *OrigTarget = BSI.OrigBranch->getOperand(1).getMBB();
- MachineBasicBlock *OrigFallThrough = OrigTarget == *ThisMBB->succ_begin()
- ? *ThisMBB->succ_rbegin()
- : *ThisMBB->succ_begin();
- MachineBasicBlock *NewBRTarget =
- BSI.BranchToFallThrough ? OrigFallThrough : OrigTarget;
- // It's impossible to know the precise branch probability after the split.
- // But it still needs to be reasonable, the whole probability to original
- // targets should not be changed.
- // After split NewBRTarget will get two incoming edges. Assume P0 is the
- // original branch probability to NewBRTarget, P1 and P2 are new branch
- // probabilies to NewBRTarget after split. If the two edge frequencies are
- // same, then
- // F * P1 = F * P0 / 2 ==> P1 = P0 / 2
- // F * (1 - P1) * P2 = F * P1 ==> P2 = P1 / (1 - P1)
- BranchProbability ProbToNewTarget, ProbFallThrough; // Prob for new Br.
- BranchProbability ProbOrigTarget, ProbOrigFallThrough; // Prob for orig Br.
- ProbToNewTarget = ProbFallThrough = BranchProbability::getUnknown();
- ProbOrigTarget = ProbOrigFallThrough = BranchProbability::getUnknown();
- if (BSI.MBPI) {
- if (BSI.BranchToFallThrough) {
- ProbToNewTarget = BSI.MBPI->getEdgeProbability(ThisMBB, OrigFallThrough) / 2;
- ProbFallThrough = ProbToNewTarget.getCompl();
- ProbOrigFallThrough = ProbToNewTarget / ProbToNewTarget.getCompl();
- ProbOrigTarget = ProbOrigFallThrough.getCompl();
- } else {
- ProbToNewTarget = BSI.MBPI->getEdgeProbability(ThisMBB, OrigTarget) / 2;
- ProbFallThrough = ProbToNewTarget.getCompl();
- ProbOrigTarget = ProbToNewTarget / ProbToNewTarget.getCompl();
- ProbOrigFallThrough = ProbOrigTarget.getCompl();
- }
- }
- // Create a new basic block.
- MachineBasicBlock::iterator InsertPoint = BSI.SplitBefore;
- const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
- MachineFunction::iterator It = ThisMBB->getIterator();
- MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(LLVM_BB);
- MF->insert(++It, NewMBB);
- // Move everything after SplitBefore into the new block.
- NewMBB->splice(NewMBB->end(), ThisMBB, InsertPoint, ThisMBB->end());
- NewMBB->transferSuccessors(ThisMBB);
- if (!ProbOrigTarget.isUnknown()) {
- auto MBBI = find(NewMBB->successors(), OrigTarget);
- NewMBB->setSuccProbability(MBBI, ProbOrigTarget);
- MBBI = find(NewMBB->successors(), OrigFallThrough);
- NewMBB->setSuccProbability(MBBI, ProbOrigFallThrough);
- }
- // Add the two successors to ThisMBB.
- ThisMBB->addSuccessor(NewBRTarget, ProbToNewTarget);
- ThisMBB->addSuccessor(NewMBB, ProbFallThrough);
- // Add the branches to ThisMBB.
- BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
- TII->get(NewBROpcode))
- .addReg(BSI.SplitCond->getOperand(0).getReg())
- .addMBB(NewBRTarget);
- BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
- TII->get(PPC::B))
- .addMBB(NewMBB);
- if (BSI.MIToDelete)
- BSI.MIToDelete->eraseFromParent();
- // Change the condition on the original branch and invert it if requested.
- auto FirstTerminator = NewMBB->getFirstTerminator();
- if (BSI.NewCond) {
- assert(FirstTerminator->getOperand(0).isReg() &&
- "Can't update condition of unconditional branch.");
- FirstTerminator->getOperand(0).setReg(BSI.NewCond->getOperand(0).getReg());
- }
- if (BSI.InvertOrigBranch)
- FirstTerminator->setDesc(TII->get(InvertedOpcode));
- // If any of the PHIs in the successors of NewMBB reference values that
- // now come from NewMBB, they need to be updated.
- for (auto *Succ : NewMBB->successors()) {
- updatePHIs(Succ, ThisMBB, NewMBB, MRI);
- }
- addIncomingValuesToPHIs(NewBRTarget, ThisMBB, NewMBB, MRI);
- LLVM_DEBUG(dbgs() << "After splitting, ThisMBB:\n"; ThisMBB->dump());
- LLVM_DEBUG(dbgs() << "NewMBB:\n"; NewMBB->dump());
- LLVM_DEBUG(dbgs() << "New branch-to block:\n"; NewBRTarget->dump());
- return true;
- }
- static bool isBinary(MachineInstr &MI) {
- return MI.getNumOperands() == 3;
- }
- static bool isNullary(MachineInstr &MI) {
- return MI.getNumOperands() == 1;
- }
- /// Given a CR logical operation \p CROp, branch opcode \p BROp as well as
- /// a flag to indicate if the first operand of \p CROp is used as the
- /// SplitBefore operand, determines whether either of the branches are to be
- /// inverted as well as whether the new target should be the original
- /// fall-through block.
- static void
- computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1,
- bool &InvertNewBranch, bool &InvertOrigBranch,
- bool &TargetIsFallThrough) {
- // The conditions under which each of the output operands should be [un]set
- // can certainly be written much more concisely with just 3 if statements or
- // ternary expressions. However, this provides a much clearer overview to the
- // reader as to what is set for each <CROp, BROp, OpUsed> combination.
- if (BROp == PPC::BC || BROp == PPC::BCLR) {
- // Regular branches.
- switch (CROp) {
- default:
- llvm_unreachable("Don't know how to handle this CR logical.");
- case PPC::CROR:
- InvertNewBranch = false;
- InvertOrigBranch = false;
- TargetIsFallThrough = false;
- return;
- case PPC::CRAND:
- InvertNewBranch = true;
- InvertOrigBranch = false;
- TargetIsFallThrough = true;
- return;
- case PPC::CRNAND:
- InvertNewBranch = true;
- InvertOrigBranch = true;
- TargetIsFallThrough = false;
- return;
- case PPC::CRNOR:
- InvertNewBranch = false;
- InvertOrigBranch = true;
- TargetIsFallThrough = true;
- return;
- case PPC::CRORC:
- InvertNewBranch = UsingDef1;
- InvertOrigBranch = !UsingDef1;
- TargetIsFallThrough = false;
- return;
- case PPC::CRANDC:
- InvertNewBranch = !UsingDef1;
- InvertOrigBranch = !UsingDef1;
- TargetIsFallThrough = true;
- return;
- }
- } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) {
- // Negated branches.
- switch (CROp) {
- default:
- llvm_unreachable("Don't know how to handle this CR logical.");
- case PPC::CROR:
- InvertNewBranch = true;
- InvertOrigBranch = false;
- TargetIsFallThrough = true;
- return;
- case PPC::CRAND:
- InvertNewBranch = false;
- InvertOrigBranch = false;
- TargetIsFallThrough = false;
- return;
- case PPC::CRNAND:
- InvertNewBranch = false;
- InvertOrigBranch = true;
- TargetIsFallThrough = true;
- return;
- case PPC::CRNOR:
- InvertNewBranch = true;
- InvertOrigBranch = true;
- TargetIsFallThrough = false;
- return;
- case PPC::CRORC:
- InvertNewBranch = !UsingDef1;
- InvertOrigBranch = !UsingDef1;
- TargetIsFallThrough = true;
- return;
- case PPC::CRANDC:
- InvertNewBranch = UsingDef1;
- InvertOrigBranch = !UsingDef1;
- TargetIsFallThrough = false;
- return;
- }
- } else
- llvm_unreachable("Don't know how to handle this branch.");
- }
- namespace {
- class PPCReduceCRLogicals : public MachineFunctionPass {
- public:
- static char ID;
- struct CRLogicalOpInfo {
- MachineInstr *MI;
- // FIXME: If chains of copies are to be handled, this should be a vector.
- std::pair<MachineInstr*, MachineInstr*> CopyDefs;
- std::pair<MachineInstr*, MachineInstr*> TrueDefs;
- unsigned IsBinary : 1;
- unsigned IsNullary : 1;
- unsigned ContainedInBlock : 1;
- unsigned FeedsISEL : 1;
- unsigned FeedsBR : 1;
- unsigned FeedsLogical : 1;
- unsigned SingleUse : 1;
- unsigned DefsSingleUse : 1;
- unsigned SubregDef1;
- unsigned SubregDef2;
- CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0),
- ContainedInBlock(0), FeedsISEL(0), FeedsBR(0),
- FeedsLogical(0), SingleUse(0), DefsSingleUse(1),
- SubregDef1(0), SubregDef2(0) { }
- void dump();
- };
- private:
- const PPCInstrInfo *TII = nullptr;
- MachineFunction *MF = nullptr;
- MachineRegisterInfo *MRI = nullptr;
- const MachineBranchProbabilityInfo *MBPI = nullptr;
- // A vector to contain all the CR logical operations
- SmallVector<CRLogicalOpInfo, 16> AllCRLogicalOps;
- void initialize(MachineFunction &MFParm);
- void collectCRLogicals();
- bool handleCROp(unsigned Idx);
- bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI);
- static bool isCRLogical(MachineInstr &MI) {
- unsigned Opc = MI.getOpcode();
- return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR ||
- Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CRNOT ||
- Opc == PPC::CREQV || Opc == PPC::CRANDC || Opc == PPC::CRORC ||
- Opc == PPC::CRSET || Opc == PPC::CRUNSET || Opc == PPC::CR6SET ||
- Opc == PPC::CR6UNSET;
- }
- bool simplifyCode() {
- bool Changed = false;
- // Not using a range-based for loop here as the vector may grow while being
- // operated on.
- for (unsigned i = 0; i < AllCRLogicalOps.size(); i++)
- Changed |= handleCROp(i);
- return Changed;
- }
- public:
- PPCReduceCRLogicals() : MachineFunctionPass(ID) {
- initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry());
- }
- MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg,
- MachineInstr *&CpDef);
- bool runOnMachineFunction(MachineFunction &MF) override {
- if (skipFunction(MF.getFunction()))
- return false;
- // If the subtarget doesn't use CR bits, there's nothing to do.
- const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
- if (!STI.useCRBits())
- return false;
- initialize(MF);
- collectCRLogicals();
- return simplifyCode();
- }
- CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI);
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<MachineBranchProbabilityInfo>();
- AU.addRequired<MachineDominatorTree>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- };
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void PPCReduceCRLogicals::CRLogicalOpInfo::dump() {
- dbgs() << "CRLogicalOpMI: ";
- MI->dump();
- dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL;
- dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: ";
- dbgs() << FeedsLogical << ", SingleUse: " << SingleUse;
- dbgs() << ", DefsSingleUse: " << DefsSingleUse;
- dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: ";
- dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock;
- if (!IsNullary) {
- dbgs() << "\nDefs:\n";
- TrueDefs.first->dump();
- }
- if (IsBinary)
- TrueDefs.second->dump();
- dbgs() << "\n";
- if (CopyDefs.first) {
- dbgs() << "CopyDef1: ";
- CopyDefs.first->dump();
- }
- if (CopyDefs.second) {
- dbgs() << "CopyDef2: ";
- CopyDefs.second->dump();
- }
- }
- #endif
- PPCReduceCRLogicals::CRLogicalOpInfo
- PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) {
- CRLogicalOpInfo Ret;
- Ret.MI = &MIParam;
- // Get the defs
- if (isNullary(MIParam)) {
- Ret.IsNullary = 1;
- Ret.TrueDefs = std::make_pair(nullptr, nullptr);
- Ret.CopyDefs = std::make_pair(nullptr, nullptr);
- } else {
- MachineInstr *Def1 = lookThroughCRCopy(MIParam.getOperand(1).getReg(),
- Ret.SubregDef1, Ret.CopyDefs.first);
- assert(Def1 && "Must be able to find a definition of operand 1.");
- Ret.DefsSingleUse &=
- MRI->hasOneNonDBGUse(Def1->getOperand(0).getReg());
- Ret.DefsSingleUse &=
- MRI->hasOneNonDBGUse(Ret.CopyDefs.first->getOperand(0).getReg());
- if (isBinary(MIParam)) {
- Ret.IsBinary = 1;
- MachineInstr *Def2 = lookThroughCRCopy(MIParam.getOperand(2).getReg(),
- Ret.SubregDef2,
- Ret.CopyDefs.second);
- assert(Def2 && "Must be able to find a definition of operand 2.");
- Ret.DefsSingleUse &=
- MRI->hasOneNonDBGUse(Def2->getOperand(0).getReg());
- Ret.DefsSingleUse &=
- MRI->hasOneNonDBGUse(Ret.CopyDefs.second->getOperand(0).getReg());
- Ret.TrueDefs = std::make_pair(Def1, Def2);
- } else {
- Ret.TrueDefs = std::make_pair(Def1, nullptr);
- Ret.CopyDefs.second = nullptr;
- }
- }
- Ret.ContainedInBlock = 1;
- // Get the uses
- for (MachineInstr &UseMI :
- MRI->use_nodbg_instructions(MIParam.getOperand(0).getReg())) {
- unsigned Opc = UseMI.getOpcode();
- if (Opc == PPC::ISEL || Opc == PPC::ISEL8)
- Ret.FeedsISEL = 1;
- if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR ||
- Opc == PPC::BCLRn)
- Ret.FeedsBR = 1;
- Ret.FeedsLogical = isCRLogical(UseMI);
- if (UseMI.getParent() != MIParam.getParent())
- Ret.ContainedInBlock = 0;
- }
- Ret.SingleUse = MRI->hasOneNonDBGUse(MIParam.getOperand(0).getReg()) ? 1 : 0;
- // We now know whether all the uses of the CR logical are in the same block.
- if (!Ret.IsNullary) {
- Ret.ContainedInBlock &=
- (MIParam.getParent() == Ret.TrueDefs.first->getParent());
- if (Ret.IsBinary)
- Ret.ContainedInBlock &=
- (MIParam.getParent() == Ret.TrueDefs.second->getParent());
- }
- LLVM_DEBUG(Ret.dump());
- if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) {
- NumContainedSingleUseBinOps++;
- if (Ret.FeedsBR && Ret.DefsSingleUse)
- NumToSplitBlocks++;
- }
- return Ret;
- }
- /// Looks through a COPY instruction to the actual definition of the CR-bit
- /// register and returns the instruction that defines it.
- /// FIXME: This currently handles what is by-far the most common case:
- /// an instruction that defines a CR field followed by a single copy of a bit
- /// from that field into a virtual register. If chains of copies need to be
- /// handled, this should have a loop until a non-copy instruction is found.
- MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg,
- unsigned &Subreg,
- MachineInstr *&CpDef) {
- Subreg = -1;
- if (!Register::isVirtualRegister(Reg))
- return nullptr;
- MachineInstr *Copy = MRI->getVRegDef(Reg);
- CpDef = Copy;
- if (!Copy->isCopy())
- return Copy;
- Register CopySrc = Copy->getOperand(1).getReg();
- Subreg = Copy->getOperand(1).getSubReg();
- if (!CopySrc.isVirtual()) {
- const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
- // Set the Subreg
- if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ)
- Subreg = PPC::sub_eq;
- if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT)
- Subreg = PPC::sub_lt;
- if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT)
- Subreg = PPC::sub_gt;
- if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN)
- Subreg = PPC::sub_un;
- // Loop backwards and return the first MI that modifies the physical CR Reg.
- MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin();
- while (Me != B)
- if ((--Me)->modifiesRegister(CopySrc, TRI))
- return &*Me;
- return nullptr;
- }
- return MRI->getVRegDef(CopySrc);
- }
- void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) {
- MF = &MFParam;
- MRI = &MF->getRegInfo();
- TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
- MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
- AllCRLogicalOps.clear();
- }
- /// Contains all the implemented transformations on CR logical operations.
- /// For example, a binary CR logical can be used to split a block on its inputs,
- /// a unary CR logical might be used to change the condition code on a
- /// comparison feeding it. A nullary CR logical might simply be removable
- /// if the user of the bit it [un]sets can be transformed.
- bool PPCReduceCRLogicals::handleCROp(unsigned Idx) {
- // We can definitely split a block on the inputs to a binary CR operation
- // whose defs and (single) use are within the same block.
- bool Changed = false;
- CRLogicalOpInfo CRI = AllCRLogicalOps[Idx];
- if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR &&
- CRI.DefsSingleUse) {
- Changed = splitBlockOnBinaryCROp(CRI);
- if (Changed)
- NumBlocksSplitOnBinaryCROp++;
- }
- return Changed;
- }
- /// Splits a block that contains a CR-logical operation that feeds a branch
- /// and whose operands are produced within the block.
- /// Example:
- /// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
- /// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
- /// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
- /// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
- /// %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8
- /// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
- /// Becomes:
- /// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
- /// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
- /// BC %vr6<kill>, <BB#2>; CRBITRC:%vr6
- ///
- /// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
- /// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
- /// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
- bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) {
- if (CRI.CopyDefs.first == CRI.CopyDefs.second) {
- LLVM_DEBUG(dbgs() << "Unable to split as the two operands are the same\n");
- NumNotSplitIdenticalOperands++;
- return false;
- }
- if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() ||
- CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) {
- LLVM_DEBUG(
- dbgs() << "Unable to split because one of the operands is a PHI or "
- "chain of copies.\n");
- NumNotSplitChainCopies++;
- return false;
- }
- // Note: keep in sync with computeBranchTargetAndInversion().
- if (CRI.MI->getOpcode() != PPC::CROR &&
- CRI.MI->getOpcode() != PPC::CRAND &&
- CRI.MI->getOpcode() != PPC::CRNOR &&
- CRI.MI->getOpcode() != PPC::CRNAND &&
- CRI.MI->getOpcode() != PPC::CRORC &&
- CRI.MI->getOpcode() != PPC::CRANDC) {
- LLVM_DEBUG(dbgs() << "Unable to split blocks on this opcode.\n");
- NumNotSplitWrongOpcode++;
- return false;
- }
- LLVM_DEBUG(dbgs() << "Splitting the following CR op:\n"; CRI.dump());
- MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first;
- MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second;
- bool UsingDef1 = false;
- MachineInstr *SplitBefore = &*Def2It;
- for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) {
- if (Def1It == Def2It) { // Def2 comes before Def1.
- SplitBefore = &*Def1It;
- UsingDef1 = true;
- break;
- }
- }
- LLVM_DEBUG(dbgs() << "We will split the following block:\n";);
- LLVM_DEBUG(CRI.MI->getParent()->dump());
- LLVM_DEBUG(dbgs() << "Before instruction:\n"; SplitBefore->dump());
- // Get the branch instruction.
- MachineInstr *Branch =
- MRI->use_nodbg_begin(CRI.MI->getOperand(0).getReg())->getParent();
- // We want the new block to have no code in it other than the definition
- // of the input to the CR logical and the CR logical itself. So we move
- // those to the bottom of the block (just before the branch). Then we
- // will split before the CR logical.
- MachineBasicBlock *MBB = SplitBefore->getParent();
- auto FirstTerminator = MBB->getFirstTerminator();
- MachineBasicBlock::iterator FirstInstrToMove =
- UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second;
- MachineBasicBlock::iterator SecondInstrToMove =
- UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second;
- // The instructions that need to be moved are not guaranteed to be
- // contiguous. Move them individually.
- // FIXME: If one of the operands is a chain of (single use) copies, they
- // can all be moved and we can still split.
- MBB->splice(FirstTerminator, MBB, FirstInstrToMove);
- if (FirstInstrToMove != SecondInstrToMove)
- MBB->splice(FirstTerminator, MBB, SecondInstrToMove);
- MBB->splice(FirstTerminator, MBB, CRI.MI);
- unsigned Opc = CRI.MI->getOpcode();
- bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough;
- computeBranchTargetAndInversion(Opc, Branch->getOpcode(), UsingDef1,
- InvertNewBranch, InvertOrigBranch,
- TargetIsFallThrough);
- MachineInstr *SplitCond =
- UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first;
- LLVM_DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy"));
- LLVM_DEBUG(dbgs() << " the original branch and the target is the "
- << (TargetIsFallThrough ? "fallthrough block\n"
- : "orig. target block\n"));
- LLVM_DEBUG(dbgs() << "Original branch instruction: "; Branch->dump());
- BlockSplitInfo BSI { Branch, SplitBefore, SplitCond, InvertNewBranch,
- InvertOrigBranch, TargetIsFallThrough, MBPI, CRI.MI,
- UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second };
- bool Changed = splitMBB(BSI);
- // If we've split on a CR logical that is fed by a CR logical,
- // recompute the source CR logical as it may be usable for splitting.
- if (Changed) {
- bool Input1CRlogical =
- CRI.TrueDefs.first && isCRLogical(*CRI.TrueDefs.first);
- bool Input2CRlogical =
- CRI.TrueDefs.second && isCRLogical(*CRI.TrueDefs.second);
- if (Input1CRlogical)
- AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.first));
- if (Input2CRlogical)
- AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.second));
- }
- return Changed;
- }
- void PPCReduceCRLogicals::collectCRLogicals() {
- for (MachineBasicBlock &MBB : *MF) {
- for (MachineInstr &MI : MBB) {
- if (isCRLogical(MI)) {
- AllCRLogicalOps.push_back(createCRLogicalOpInfo(MI));
- TotalCRLogicals++;
- if (AllCRLogicalOps.back().IsNullary)
- TotalNullaryCRLogicals++;
- else if (AllCRLogicalOps.back().IsBinary)
- TotalBinaryCRLogicals++;
- else
- TotalUnaryCRLogicals++;
- }
- }
- }
- }
- } // end anonymous namespace
- INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE,
- "PowerPC Reduce CR logical Operation", false, false)
- INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
- INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE,
- "PowerPC Reduce CR logical Operation", false, false)
- char PPCReduceCRLogicals::ID = 0;
- FunctionPass*
- llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); }
|