123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720 |
- /*
- * jcdctmgr.c
- *
- * This file was part of the Independent JPEG Group's software:
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * libjpeg-turbo Modifications:
- * Copyright (C) 1999-2006, MIYASAKA Masaru.
- * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
- * Copyright (C) 2011, 2014-2015, D. R. Commander.
- * For conditions of distribution and use, see the accompanying README.ijg
- * file.
- *
- * This file contains the forward-DCT management logic.
- * This code selects a particular DCT implementation to be used,
- * and it performs related housekeeping chores including coefficient
- * quantization.
- */
- #define JPEG_INTERNALS
- #include "jinclude.h"
- #include "jpeglib.h"
- #include "jdct.h" /* Private declarations for DCT subsystem */
- #include "jsimddct.h"
- /* Private subobject for this module */
- typedef void (*forward_DCT_method_ptr) (DCTELEM *data);
- typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data);
- typedef void (*convsamp_method_ptr) (JSAMPARRAY sample_data,
- JDIMENSION start_col,
- DCTELEM *workspace);
- typedef void (*float_convsamp_method_ptr) (JSAMPARRAY sample_data,
- JDIMENSION start_col,
- FAST_FLOAT *workspace);
- typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors,
- DCTELEM *workspace);
- typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block,
- FAST_FLOAT *divisors,
- FAST_FLOAT *workspace);
- METHODDEF(void) quantize(JCOEFPTR, DCTELEM *, DCTELEM *);
- typedef struct {
- struct jpeg_forward_dct pub; /* public fields */
- /* Pointer to the DCT routine actually in use */
- forward_DCT_method_ptr dct;
- convsamp_method_ptr convsamp;
- quantize_method_ptr quantize;
- /* The actual post-DCT divisors --- not identical to the quant table
- * entries, because of scaling (especially for an unnormalized DCT).
- * Each table is given in normal array order.
- */
- DCTELEM *divisors[NUM_QUANT_TBLS];
- /* work area for FDCT subroutine */
- DCTELEM *workspace;
- #ifdef DCT_FLOAT_SUPPORTED
- /* Same as above for the floating-point case. */
- float_DCT_method_ptr float_dct;
- float_convsamp_method_ptr float_convsamp;
- float_quantize_method_ptr float_quantize;
- FAST_FLOAT *float_divisors[NUM_QUANT_TBLS];
- FAST_FLOAT *float_workspace;
- #endif
- } my_fdct_controller;
- typedef my_fdct_controller *my_fdct_ptr;
- #if BITS_IN_JSAMPLE == 8
- /*
- * Find the highest bit in an integer through binary search.
- */
- LOCAL(int)
- flss(UINT16 val)
- {
- int bit;
- bit = 16;
- if (!val)
- return 0;
- if (!(val & 0xff00)) {
- bit -= 8;
- val <<= 8;
- }
- if (!(val & 0xf000)) {
- bit -= 4;
- val <<= 4;
- }
- if (!(val & 0xc000)) {
- bit -= 2;
- val <<= 2;
- }
- if (!(val & 0x8000)) {
- bit -= 1;
- val <<= 1;
- }
- return bit;
- }
- /*
- * Compute values to do a division using reciprocal.
- *
- * This implementation is based on an algorithm described in
- * "How to optimize for the Pentium family of microprocessors"
- * (http://www.agner.org/assem/).
- * More information about the basic algorithm can be found in
- * the paper "Integer Division Using Reciprocals" by Robert Alverson.
- *
- * The basic idea is to replace x/d by x * d^-1. In order to store
- * d^-1 with enough precision we shift it left a few places. It turns
- * out that this algoright gives just enough precision, and also fits
- * into DCTELEM:
- *
- * b = (the number of significant bits in divisor) - 1
- * r = (word size) + b
- * f = 2^r / divisor
- *
- * f will not be an integer for most cases, so we need to compensate
- * for the rounding error introduced:
- *
- * no fractional part:
- *
- * result = input >> r
- *
- * fractional part of f < 0.5:
- *
- * round f down to nearest integer
- * result = ((input + 1) * f) >> r
- *
- * fractional part of f > 0.5:
- *
- * round f up to nearest integer
- * result = (input * f) >> r
- *
- * This is the original algorithm that gives truncated results. But we
- * want properly rounded results, so we replace "input" with
- * "input + divisor/2".
- *
- * In order to allow SIMD implementations we also tweak the values to
- * allow the same calculation to be made at all times:
- *
- * dctbl[0] = f rounded to nearest integer
- * dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5)
- * dctbl[2] = 1 << ((word size) * 2 - r)
- * dctbl[3] = r - (word size)
- *
- * dctbl[2] is for stupid instruction sets where the shift operation
- * isn't member wise (e.g. MMX).
- *
- * The reason dctbl[2] and dctbl[3] reduce the shift with (word size)
- * is that most SIMD implementations have a "multiply and store top
- * half" operation.
- *
- * Lastly, we store each of the values in their own table instead
- * of in a consecutive manner, yet again in order to allow SIMD
- * routines.
- */
- LOCAL(int)
- compute_reciprocal(UINT16 divisor, DCTELEM *dtbl)
- {
- UDCTELEM2 fq, fr;
- UDCTELEM c;
- int b, r;
- if (divisor == 1) {
- /* divisor == 1 means unquantized, so these reciprocal/correction/shift
- * values will cause the C quantization algorithm to act like the
- * identity function. Since only the C quantization algorithm is used in
- * these cases, the scale value is irrelevant.
- */
- dtbl[DCTSIZE2 * 0] = (DCTELEM)1; /* reciprocal */
- dtbl[DCTSIZE2 * 1] = (DCTELEM)0; /* correction */
- dtbl[DCTSIZE2 * 2] = (DCTELEM)1; /* scale */
- dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8); /* shift */
- return 0;
- }
- b = flss(divisor) - 1;
- r = sizeof(DCTELEM) * 8 + b;
- fq = ((UDCTELEM2)1 << r) / divisor;
- fr = ((UDCTELEM2)1 << r) % divisor;
- c = divisor / 2; /* for rounding */
- if (fr == 0) { /* divisor is power of two */
- /* fq will be one bit too large to fit in DCTELEM, so adjust */
- fq >>= 1;
- r--;
- } else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */
- c++;
- } else { /* fractional part is > 0.5 */
- fq++;
- }
- dtbl[DCTSIZE2 * 0] = (DCTELEM)fq; /* reciprocal */
- dtbl[DCTSIZE2 * 1] = (DCTELEM)c; /* correction + roundfactor */
- #ifdef WITH_SIMD
- dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */
- #else
- dtbl[DCTSIZE2 * 2] = 1;
- #endif
- dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */
- if (r <= 16) return 0;
- else return 1;
- }
- #endif
- /*
- * Initialize for a processing pass.
- * Verify that all referenced Q-tables are present, and set up
- * the divisor table for each one.
- * In the current implementation, DCT of all components is done during
- * the first pass, even if only some components will be output in the
- * first scan. Hence all components should be examined here.
- */
- METHODDEF(void)
- start_pass_fdctmgr(j_compress_ptr cinfo)
- {
- my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
- int ci, qtblno, i;
- jpeg_component_info *compptr;
- JQUANT_TBL *qtbl;
- DCTELEM *dtbl;
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- qtblno = compptr->quant_tbl_no;
- /* Make sure specified quantization table is present */
- if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
- cinfo->quant_tbl_ptrs[qtblno] == NULL)
- ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
- qtbl = cinfo->quant_tbl_ptrs[qtblno];
- /* Compute divisors for this quant table */
- /* We may do this more than once for same table, but it's not a big deal */
- switch (cinfo->dct_method) {
- #ifdef DCT_ISLOW_SUPPORTED
- case JDCT_ISLOW:
- /* For LL&M IDCT method, divisors are equal to raw quantization
- * coefficients multiplied by 8 (to counteract scaling).
- */
- if (fdct->divisors[qtblno] == NULL) {
- fdct->divisors[qtblno] = (DCTELEM *)
- (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
- (DCTSIZE2 * 4) * sizeof(DCTELEM));
- }
- dtbl = fdct->divisors[qtblno];
- for (i = 0; i < DCTSIZE2; i++) {
- #if BITS_IN_JSAMPLE == 8
- if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) &&
- fdct->quantize == jsimd_quantize)
- fdct->quantize = quantize;
- #else
- dtbl[i] = ((DCTELEM)qtbl->quantval[i]) << 3;
- #endif
- }
- break;
- #endif
- #ifdef DCT_IFAST_SUPPORTED
- case JDCT_IFAST:
- {
- /* For AA&N IDCT method, divisors are equal to quantization
- * coefficients scaled by scalefactor[row]*scalefactor[col], where
- * scalefactor[0] = 1
- * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
- * We apply a further scale factor of 8.
- */
- #define CONST_BITS 14
- static const INT16 aanscales[DCTSIZE2] = {
- /* precomputed values scaled up by 14 bits */
- 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
- 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
- 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
- 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
- 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
- 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
- 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
- 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
- };
- SHIFT_TEMPS
- if (fdct->divisors[qtblno] == NULL) {
- fdct->divisors[qtblno] = (DCTELEM *)
- (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
- (DCTSIZE2 * 4) * sizeof(DCTELEM));
- }
- dtbl = fdct->divisors[qtblno];
- for (i = 0; i < DCTSIZE2; i++) {
- #if BITS_IN_JSAMPLE == 8
- if (!compute_reciprocal(
- DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
- (JLONG)aanscales[i]),
- CONST_BITS - 3), &dtbl[i]) &&
- fdct->quantize == jsimd_quantize)
- fdct->quantize = quantize;
- #else
- dtbl[i] = (DCTELEM)
- DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
- (JLONG)aanscales[i]),
- CONST_BITS - 3);
- #endif
- }
- }
- break;
- #endif
- #ifdef DCT_FLOAT_SUPPORTED
- case JDCT_FLOAT:
- {
- /* For float AA&N IDCT method, divisors are equal to quantization
- * coefficients scaled by scalefactor[row]*scalefactor[col], where
- * scalefactor[0] = 1
- * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
- * We apply a further scale factor of 8.
- * What's actually stored is 1/divisor so that the inner loop can
- * use a multiplication rather than a division.
- */
- FAST_FLOAT *fdtbl;
- int row, col;
- static const double aanscalefactor[DCTSIZE] = {
- 1.0, 1.387039845, 1.306562965, 1.175875602,
- 1.0, 0.785694958, 0.541196100, 0.275899379
- };
- if (fdct->float_divisors[qtblno] == NULL) {
- fdct->float_divisors[qtblno] = (FAST_FLOAT *)
- (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
- DCTSIZE2 * sizeof(FAST_FLOAT));
- }
- fdtbl = fdct->float_divisors[qtblno];
- i = 0;
- for (row = 0; row < DCTSIZE; row++) {
- for (col = 0; col < DCTSIZE; col++) {
- fdtbl[i] = (FAST_FLOAT)
- (1.0 / (((double)qtbl->quantval[i] *
- aanscalefactor[row] * aanscalefactor[col] * 8.0)));
- i++;
- }
- }
- }
- break;
- #endif
- default:
- ERREXIT(cinfo, JERR_NOT_COMPILED);
- break;
- }
- }
- }
- /*
- * Load data into workspace, applying unsigned->signed conversion.
- */
- METHODDEF(void)
- convsamp(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace)
- {
- register DCTELEM *workspaceptr;
- register JSAMPROW elemptr;
- register int elemr;
- workspaceptr = workspace;
- for (elemr = 0; elemr < DCTSIZE; elemr++) {
- elemptr = sample_data[elemr] + start_col;
- #if DCTSIZE == 8 /* unroll the inner loop */
- *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE;
- *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE;
- *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE;
- *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE;
- *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE;
- *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE;
- *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE;
- *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE;
- #else
- {
- register int elemc;
- for (elemc = DCTSIZE; elemc > 0; elemc--)
- *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE;
- }
- #endif
- }
- }
- /*
- * Quantize/descale the coefficients, and store into coef_blocks[].
- */
- METHODDEF(void)
- quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace)
- {
- int i;
- DCTELEM temp;
- JCOEFPTR output_ptr = coef_block;
- #if BITS_IN_JSAMPLE == 8
- UDCTELEM recip, corr;
- int shift;
- UDCTELEM2 product;
- for (i = 0; i < DCTSIZE2; i++) {
- temp = workspace[i];
- recip = divisors[i + DCTSIZE2 * 0];
- corr = divisors[i + DCTSIZE2 * 1];
- shift = divisors[i + DCTSIZE2 * 3];
- if (temp < 0) {
- temp = -temp;
- product = (UDCTELEM2)(temp + corr) * recip;
- product >>= shift + sizeof(DCTELEM) * 8;
- temp = (DCTELEM)product;
- temp = -temp;
- } else {
- product = (UDCTELEM2)(temp + corr) * recip;
- product >>= shift + sizeof(DCTELEM) * 8;
- temp = (DCTELEM)product;
- }
- output_ptr[i] = (JCOEF)temp;
- }
- #else
- register DCTELEM qval;
- for (i = 0; i < DCTSIZE2; i++) {
- qval = divisors[i];
- temp = workspace[i];
- /* Divide the coefficient value by qval, ensuring proper rounding.
- * Since C does not specify the direction of rounding for negative
- * quotients, we have to force the dividend positive for portability.
- *
- * In most files, at least half of the output values will be zero
- * (at default quantization settings, more like three-quarters...)
- * so we should ensure that this case is fast. On many machines,
- * a comparison is enough cheaper than a divide to make a special test
- * a win. Since both inputs will be nonnegative, we need only test
- * for a < b to discover whether a/b is 0.
- * If your machine's division is fast enough, define FAST_DIVIDE.
- */
- #ifdef FAST_DIVIDE
- #define DIVIDE_BY(a, b) a /= b
- #else
- #define DIVIDE_BY(a, b) if (a >= b) a /= b; else a = 0
- #endif
- if (temp < 0) {
- temp = -temp;
- temp += qval >> 1; /* for rounding */
- DIVIDE_BY(temp, qval);
- temp = -temp;
- } else {
- temp += qval >> 1; /* for rounding */
- DIVIDE_BY(temp, qval);
- }
- output_ptr[i] = (JCOEF)temp;
- }
- #endif
- }
- /*
- * Perform forward DCT on one or more blocks of a component.
- *
- * The input samples are taken from the sample_data[] array starting at
- * position start_row/start_col, and moving to the right for any additional
- * blocks. The quantized coefficients are returned in coef_blocks[].
- */
- METHODDEF(void)
- forward_DCT(j_compress_ptr cinfo, jpeg_component_info *compptr,
- JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
- JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks)
- /* This version is used for integer DCT implementations. */
- {
- /* This routine is heavily used, so it's worth coding it tightly. */
- my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
- DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no];
- DCTELEM *workspace;
- JDIMENSION bi;
- /* Make sure the compiler doesn't look up these every pass */
- forward_DCT_method_ptr do_dct = fdct->dct;
- convsamp_method_ptr do_convsamp = fdct->convsamp;
- quantize_method_ptr do_quantize = fdct->quantize;
- workspace = fdct->workspace;
- sample_data += start_row; /* fold in the vertical offset once */
- for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
- /* Load data into workspace, applying unsigned->signed conversion */
- (*do_convsamp) (sample_data, start_col, workspace);
- /* Perform the DCT */
- (*do_dct) (workspace);
- /* Quantize/descale the coefficients, and store into coef_blocks[] */
- (*do_quantize) (coef_blocks[bi], divisors, workspace);
- }
- }
- #ifdef DCT_FLOAT_SUPPORTED
- METHODDEF(void)
- convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col,
- FAST_FLOAT *workspace)
- {
- register FAST_FLOAT *workspaceptr;
- register JSAMPROW elemptr;
- register int elemr;
- workspaceptr = workspace;
- for (elemr = 0; elemr < DCTSIZE; elemr++) {
- elemptr = sample_data[elemr] + start_col;
- #if DCTSIZE == 8 /* unroll the inner loop */
- *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE);
- *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE);
- *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE);
- *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE);
- *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE);
- *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE);
- *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE);
- *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE);
- #else
- {
- register int elemc;
- for (elemc = DCTSIZE; elemc > 0; elemc--)
- *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE);
- }
- #endif
- }
- }
- METHODDEF(void)
- quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors,
- FAST_FLOAT *workspace)
- {
- register FAST_FLOAT temp;
- register int i;
- register JCOEFPTR output_ptr = coef_block;
- for (i = 0; i < DCTSIZE2; i++) {
- /* Apply the quantization and scaling factor */
- temp = workspace[i] * divisors[i];
- /* Round to nearest integer.
- * Since C does not specify the direction of rounding for negative
- * quotients, we have to force the dividend positive for portability.
- * The maximum coefficient size is +-16K (for 12-bit data), so this
- * code should work for either 16-bit or 32-bit ints.
- */
- output_ptr[i] = (JCOEF)((int)(temp + (FAST_FLOAT)16384.5) - 16384);
- }
- }
- METHODDEF(void)
- forward_DCT_float(j_compress_ptr cinfo, jpeg_component_info *compptr,
- JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
- JDIMENSION start_row, JDIMENSION start_col,
- JDIMENSION num_blocks)
- /* This version is used for floating-point DCT implementations. */
- {
- /* This routine is heavily used, so it's worth coding it tightly. */
- my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
- FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no];
- FAST_FLOAT *workspace;
- JDIMENSION bi;
- /* Make sure the compiler doesn't look up these every pass */
- float_DCT_method_ptr do_dct = fdct->float_dct;
- float_convsamp_method_ptr do_convsamp = fdct->float_convsamp;
- float_quantize_method_ptr do_quantize = fdct->float_quantize;
- workspace = fdct->float_workspace;
- sample_data += start_row; /* fold in the vertical offset once */
- for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
- /* Load data into workspace, applying unsigned->signed conversion */
- (*do_convsamp) (sample_data, start_col, workspace);
- /* Perform the DCT */
- (*do_dct) (workspace);
- /* Quantize/descale the coefficients, and store into coef_blocks[] */
- (*do_quantize) (coef_blocks[bi], divisors, workspace);
- }
- }
- #endif /* DCT_FLOAT_SUPPORTED */
- /*
- * Initialize FDCT manager.
- */
- GLOBAL(void)
- jinit_forward_dct(j_compress_ptr cinfo)
- {
- my_fdct_ptr fdct;
- int i;
- fdct = (my_fdct_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
- sizeof(my_fdct_controller));
- cinfo->fdct = (struct jpeg_forward_dct *)fdct;
- fdct->pub.start_pass = start_pass_fdctmgr;
- /* First determine the DCT... */
- switch (cinfo->dct_method) {
- #ifdef DCT_ISLOW_SUPPORTED
- case JDCT_ISLOW:
- fdct->pub.forward_DCT = forward_DCT;
- if (jsimd_can_fdct_islow())
- fdct->dct = jsimd_fdct_islow;
- else
- fdct->dct = jpeg_fdct_islow;
- break;
- #endif
- #ifdef DCT_IFAST_SUPPORTED
- case JDCT_IFAST:
- fdct->pub.forward_DCT = forward_DCT;
- if (jsimd_can_fdct_ifast())
- fdct->dct = jsimd_fdct_ifast;
- else
- fdct->dct = jpeg_fdct_ifast;
- break;
- #endif
- #ifdef DCT_FLOAT_SUPPORTED
- case JDCT_FLOAT:
- fdct->pub.forward_DCT = forward_DCT_float;
- if (jsimd_can_fdct_float())
- fdct->float_dct = jsimd_fdct_float;
- else
- fdct->float_dct = jpeg_fdct_float;
- break;
- #endif
- default:
- ERREXIT(cinfo, JERR_NOT_COMPILED);
- break;
- }
- /* ...then the supporting stages. */
- switch (cinfo->dct_method) {
- #ifdef DCT_ISLOW_SUPPORTED
- case JDCT_ISLOW:
- #endif
- #ifdef DCT_IFAST_SUPPORTED
- case JDCT_IFAST:
- #endif
- #if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
- if (jsimd_can_convsamp())
- fdct->convsamp = jsimd_convsamp;
- else
- fdct->convsamp = convsamp;
- if (jsimd_can_quantize())
- fdct->quantize = jsimd_quantize;
- else
- fdct->quantize = quantize;
- break;
- #endif
- #ifdef DCT_FLOAT_SUPPORTED
- case JDCT_FLOAT:
- if (jsimd_can_convsamp_float())
- fdct->float_convsamp = jsimd_convsamp_float;
- else
- fdct->float_convsamp = convsamp_float;
- if (jsimd_can_quantize_float())
- fdct->float_quantize = jsimd_quantize_float;
- else
- fdct->float_quantize = quantize_float;
- break;
- #endif
- default:
- ERREXIT(cinfo, JERR_NOT_COMPILED);
- break;
- }
- /* Allocate workspace memory */
- #ifdef DCT_FLOAT_SUPPORTED
- if (cinfo->dct_method == JDCT_FLOAT)
- fdct->float_workspace = (FAST_FLOAT *)
- (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
- sizeof(FAST_FLOAT) * DCTSIZE2);
- else
- #endif
- fdct->workspace = (DCTELEM *)
- (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
- sizeof(DCTELEM) * DCTSIZE2);
- /* Mark divisor tables unallocated */
- for (i = 0; i < NUM_QUANT_TBLS; i++) {
- fdct->divisors[i] = NULL;
- #ifdef DCT_FLOAT_SUPPORTED
- fdct->float_divisors[i] = NULL;
- #endif
- }
- }
|