123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394 |
- import numpy as np
- import math
- from mpl_toolkits.axisartist.grid_finder import ExtremeFinderSimple
- def select_step_degree(dv):
- degree_limits_ = [1.5, 3, 7, 13, 20, 40, 70, 120, 270, 520]
- degree_steps_ = [1, 2, 5, 10, 15, 30, 45, 90, 180, 360]
- degree_factors = [1.] * len(degree_steps_)
- minsec_limits_ = [1.5, 2.5, 3.5, 8, 11, 18, 25, 45]
- minsec_steps_ = [1, 2, 3, 5, 10, 15, 20, 30]
- minute_limits_ = np.array(minsec_limits_) / 60
- minute_factors = [60.] * len(minute_limits_)
- second_limits_ = np.array(minsec_limits_) / 3600
- second_factors = [3600.] * len(second_limits_)
- degree_limits = [*second_limits_, *minute_limits_, *degree_limits_]
- degree_steps = [*minsec_steps_, *minsec_steps_, *degree_steps_]
- degree_factors = [*second_factors, *minute_factors, *degree_factors]
- n = np.searchsorted(degree_limits, dv)
- step = degree_steps[n]
- factor = degree_factors[n]
- return step, factor
- def select_step_hour(dv):
- hour_limits_ = [1.5, 2.5, 3.5, 5, 7, 10, 15, 21, 36]
- hour_steps_ = [1, 2, 3, 4, 6, 8, 12, 18, 24]
- hour_factors = [1.] * len(hour_steps_)
- minsec_limits_ = [1.5, 2.5, 3.5, 4.5, 5.5, 8, 11, 14, 18, 25, 45]
- minsec_steps_ = [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30]
- minute_limits_ = np.array(minsec_limits_) / 60
- minute_factors = [60.] * len(minute_limits_)
- second_limits_ = np.array(minsec_limits_) / 3600
- second_factors = [3600.] * len(second_limits_)
- hour_limits = [*second_limits_, *minute_limits_, *hour_limits_]
- hour_steps = [*minsec_steps_, *minsec_steps_, *hour_steps_]
- hour_factors = [*second_factors, *minute_factors, *hour_factors]
- n = np.searchsorted(hour_limits, dv)
- step = hour_steps[n]
- factor = hour_factors[n]
- return step, factor
- def select_step_sub(dv):
- # subarcsec or degree
- tmp = 10.**(int(math.log10(dv))-1.)
- factor = 1./tmp
- if 1.5*tmp >= dv:
- step = 1
- elif 3.*tmp >= dv:
- step = 2
- elif 7.*tmp >= dv:
- step = 5
- else:
- step = 1
- factor = 0.1*factor
- return step, factor
- def select_step(v1, v2, nv, hour=False, include_last=True,
- threshold_factor=3600.):
- if v1 > v2:
- v1, v2 = v2, v1
- dv = (v2 - v1) / nv
- if hour:
- _select_step = select_step_hour
- cycle = 24.
- else:
- _select_step = select_step_degree
- cycle = 360.
- # for degree
- if dv > 1 / threshold_factor:
- step, factor = _select_step(dv)
- else:
- step, factor = select_step_sub(dv*threshold_factor)
- factor = factor * threshold_factor
- levs = np.arange(np.floor(v1 * factor / step),
- np.ceil(v2 * factor / step) + 0.5,
- dtype=int) * step
- # n : number of valid levels. If there is a cycle, e.g., [0, 90, 180,
- # 270, 360], the grid line needs to be extended from 0 to 360, so
- # we need to return the whole array. However, the last level (360)
- # needs to be ignored often. In this case, so we return n=4.
- n = len(levs)
- # we need to check the range of values
- # for example, -90 to 90, 0 to 360,
- if factor == 1. and levs[-1] >= levs[0] + cycle: # check for cycle
- nv = int(cycle / step)
- if include_last:
- levs = levs[0] + np.arange(0, nv+1, 1) * step
- else:
- levs = levs[0] + np.arange(0, nv, 1) * step
- n = len(levs)
- return np.array(levs), n, factor
- def select_step24(v1, v2, nv, include_last=True, threshold_factor=3600):
- v1, v2 = v1 / 15, v2 / 15
- levs, n, factor = select_step(v1, v2, nv, hour=True,
- include_last=include_last,
- threshold_factor=threshold_factor)
- return levs * 15, n, factor
- def select_step360(v1, v2, nv, include_last=True, threshold_factor=3600):
- return select_step(v1, v2, nv, hour=False,
- include_last=include_last,
- threshold_factor=threshold_factor)
- class LocatorBase:
- def __init__(self, nbins, include_last=True):
- self.nbins = nbins
- self._include_last = include_last
- def set_params(self, nbins=None):
- if nbins is not None:
- self.nbins = int(nbins)
- class LocatorHMS(LocatorBase):
- def __call__(self, v1, v2):
- return select_step24(v1, v2, self.nbins, self._include_last)
- class LocatorHM(LocatorBase):
- def __call__(self, v1, v2):
- return select_step24(v1, v2, self.nbins, self._include_last,
- threshold_factor=60)
- class LocatorH(LocatorBase):
- def __call__(self, v1, v2):
- return select_step24(v1, v2, self.nbins, self._include_last,
- threshold_factor=1)
- class LocatorDMS(LocatorBase):
- def __call__(self, v1, v2):
- return select_step360(v1, v2, self.nbins, self._include_last)
- class LocatorDM(LocatorBase):
- def __call__(self, v1, v2):
- return select_step360(v1, v2, self.nbins, self._include_last,
- threshold_factor=60)
- class LocatorD(LocatorBase):
- def __call__(self, v1, v2):
- return select_step360(v1, v2, self.nbins, self._include_last,
- threshold_factor=1)
- class FormatterDMS:
- deg_mark = r"^{\circ}"
- min_mark = r"^{\prime}"
- sec_mark = r"^{\prime\prime}"
- fmt_d = "$%d" + deg_mark + "$"
- fmt_ds = r"$%d.%s" + deg_mark + "$"
- # %s for sign
- fmt_d_m = r"$%s%d" + deg_mark + r"\,%02d" + min_mark + "$"
- fmt_d_ms = r"$%s%d" + deg_mark + r"\,%02d.%s" + min_mark + "$"
- fmt_d_m_partial = "$%s%d" + deg_mark + r"\,%02d" + min_mark + r"\,"
- fmt_s_partial = "%02d" + sec_mark + "$"
- fmt_ss_partial = "%02d.%s" + sec_mark + "$"
- def _get_number_fraction(self, factor):
- ## check for fractional numbers
- number_fraction = None
- # check for 60
- for threshold in [1, 60, 3600]:
- if factor <= threshold:
- break
- d = factor // threshold
- int_log_d = int(np.floor(np.log10(d)))
- if 10**int_log_d == d and d != 1:
- number_fraction = int_log_d
- factor = factor // 10**int_log_d
- return factor, number_fraction
- return factor, number_fraction
- def __call__(self, direction, factor, values):
- if len(values) == 0:
- return []
- ss = np.sign(values)
- signs = ["-" if v < 0 else "" for v in values]
- factor, number_fraction = self._get_number_fraction(factor)
- values = np.abs(values)
- if number_fraction is not None:
- values, frac_part = divmod(values, 10 ** number_fraction)
- frac_fmt = "%%0%dd" % (number_fraction,)
- frac_str = [frac_fmt % (f1,) for f1 in frac_part]
- if factor == 1:
- if number_fraction is None:
- return [self.fmt_d % (s * int(v),) for s, v in zip(ss, values)]
- else:
- return [self.fmt_ds % (s * int(v), f1)
- for s, v, f1 in zip(ss, values, frac_str)]
- elif factor == 60:
- deg_part, min_part = divmod(values, 60)
- if number_fraction is None:
- return [self.fmt_d_m % (s1, d1, m1)
- for s1, d1, m1 in zip(signs, deg_part, min_part)]
- else:
- return [self.fmt_d_ms % (s, d1, m1, f1)
- for s, d1, m1, f1
- in zip(signs, deg_part, min_part, frac_str)]
- elif factor == 3600:
- if ss[-1] == -1:
- inverse_order = True
- values = values[::-1]
- signs = signs[::-1]
- else:
- inverse_order = False
- l_hm_old = ""
- r = []
- deg_part, min_part_ = divmod(values, 3600)
- min_part, sec_part = divmod(min_part_, 60)
- if number_fraction is None:
- sec_str = [self.fmt_s_partial % (s1,) for s1 in sec_part]
- else:
- sec_str = [self.fmt_ss_partial % (s1, f1)
- for s1, f1 in zip(sec_part, frac_str)]
- for s, d1, m1, s1 in zip(signs, deg_part, min_part, sec_str):
- l_hm = self.fmt_d_m_partial % (s, d1, m1)
- if l_hm != l_hm_old:
- l_hm_old = l_hm
- l = l_hm + s1
- else:
- l = "$" + s + s1
- r.append(l)
- if inverse_order:
- return r[::-1]
- else:
- return r
- else: # factor > 3600.
- return [r"$%s^{\circ}$" % v for v in ss*values]
- class FormatterHMS(FormatterDMS):
- deg_mark = r"^\mathrm{h}"
- min_mark = r"^\mathrm{m}"
- sec_mark = r"^\mathrm{s}"
- fmt_d = "$%d" + deg_mark + "$"
- fmt_ds = r"$%d.%s" + deg_mark + "$"
- # %s for sign
- fmt_d_m = r"$%s%d" + deg_mark + r"\,%02d" + min_mark+"$"
- fmt_d_ms = r"$%s%d" + deg_mark + r"\,%02d.%s" + min_mark+"$"
- fmt_d_m_partial = "$%s%d" + deg_mark + r"\,%02d" + min_mark + r"\,"
- fmt_s_partial = "%02d" + sec_mark + "$"
- fmt_ss_partial = "%02d.%s" + sec_mark + "$"
- def __call__(self, direction, factor, values): # hour
- return super().__call__(direction, factor, np.asarray(values) / 15)
- class ExtremeFinderCycle(ExtremeFinderSimple):
- # docstring inherited
- def __init__(self, nx, ny,
- lon_cycle=360., lat_cycle=None,
- lon_minmax=None, lat_minmax=(-90, 90)):
- """
- This subclass handles the case where one or both coordinates should be
- taken modulo 360, or be restricted to not exceed a specific range.
- Parameters
- ----------
- nx, ny : int
- The number of samples in each direction.
- lon_cycle, lat_cycle : 360 or None
- If not None, values in the corresponding direction are taken modulo
- *lon_cycle* or *lat_cycle*; in theory this can be any number but
- the implementation actually assumes that it is 360 (if not None);
- other values give nonsensical results.
- This is done by "unwrapping" the transformed grid coordinates so
- that jumps are less than a half-cycle; then normalizing the span to
- no more than a full cycle.
- For example, if values are in the union of the [0, 2] and
- [358, 360] intervals (typically, angles measured modulo 360), the
- values in the second interval are normalized to [-2, 0] instead so
- that the values now cover [-2, 2]. If values are in a range of
- [5, 1000], this gets normalized to [5, 365].
- lon_minmax, lat_minmax : (float, float) or None
- If not None, the computed bounding box is clipped to the given
- range in the corresponding direction.
- """
- self.nx, self.ny = nx, ny
- self.lon_cycle, self.lat_cycle = lon_cycle, lat_cycle
- self.lon_minmax = lon_minmax
- self.lat_minmax = lat_minmax
- def __call__(self, transform_xy, x1, y1, x2, y2):
- # docstring inherited
- x, y = np.meshgrid(
- np.linspace(x1, x2, self.nx), np.linspace(y1, y2, self.ny))
- lon, lat = transform_xy(np.ravel(x), np.ravel(y))
- # iron out jumps, but algorithm should be improved.
- # This is just naive way of doing and my fail for some cases.
- # Consider replacing this with numpy.unwrap
- # We are ignoring invalid warnings. They are triggered when
- # comparing arrays with NaNs using > We are already handling
- # that correctly using np.nanmin and np.nanmax
- with np.errstate(invalid='ignore'):
- if self.lon_cycle is not None:
- lon0 = np.nanmin(lon)
- lon -= 360. * ((lon - lon0) > 180.)
- if self.lat_cycle is not None:
- lat0 = np.nanmin(lat)
- lat -= 360. * ((lat - lat0) > 180.)
- lon_min, lon_max = np.nanmin(lon), np.nanmax(lon)
- lat_min, lat_max = np.nanmin(lat), np.nanmax(lat)
- lon_min, lon_max, lat_min, lat_max = \
- self._add_pad(lon_min, lon_max, lat_min, lat_max)
- # check cycle
- if self.lon_cycle:
- lon_max = min(lon_max, lon_min + self.lon_cycle)
- if self.lat_cycle:
- lat_max = min(lat_max, lat_min + self.lat_cycle)
- if self.lon_minmax is not None:
- min0 = self.lon_minmax[0]
- lon_min = max(min0, lon_min)
- max0 = self.lon_minmax[1]
- lon_max = min(max0, lon_max)
- if self.lat_minmax is not None:
- min0 = self.lat_minmax[0]
- lat_min = max(min0, lat_min)
- max0 = self.lat_minmax[1]
- lat_max = min(max0, lat_max)
- return lon_min, lon_max, lat_min, lat_max
|