123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 |
- ///////////////////////////////////////////////////////////////////////////////
- //
- /// \file simple_coder.c
- /// \brief Wrapper for simple filters
- ///
- /// Simple filters don't change the size of the data i.e. number of bytes
- /// in equals the number of bytes out.
- //
- // Author: Lasse Collin
- //
- // This file has been put into the public domain.
- // You can do whatever you want with this file.
- //
- ///////////////////////////////////////////////////////////////////////////////
- #include "simple_private.h"
- /// Copied or encodes/decodes more data to out[].
- static lzma_ret
- copy_or_code(lzma_simple_coder *coder, const lzma_allocator *allocator,
- const uint8_t *restrict in, size_t *restrict in_pos,
- size_t in_size, uint8_t *restrict out,
- size_t *restrict out_pos, size_t out_size, lzma_action action)
- {
- assert(!coder->end_was_reached);
- if (coder->next.code == NULL) {
- lzma_bufcpy(in, in_pos, in_size, out, out_pos, out_size);
- // Check if end of stream was reached.
- if (coder->is_encoder && action == LZMA_FINISH
- && *in_pos == in_size)
- coder->end_was_reached = true;
- } else {
- // Call the next coder in the chain to provide us some data.
- const lzma_ret ret = coder->next.code(
- coder->next.coder, allocator,
- in, in_pos, in_size,
- out, out_pos, out_size, action);
- if (ret == LZMA_STREAM_END) {
- assert(!coder->is_encoder
- || action == LZMA_FINISH);
- coder->end_was_reached = true;
- } else if (ret != LZMA_OK) {
- return ret;
- }
- }
- return LZMA_OK;
- }
- static size_t
- call_filter(lzma_simple_coder *coder, uint8_t *buffer, size_t size)
- {
- const size_t filtered = coder->filter(coder->simple,
- coder->now_pos, coder->is_encoder,
- buffer, size);
- coder->now_pos += filtered;
- return filtered;
- }
- static lzma_ret
- simple_code(void *coder_ptr, const lzma_allocator *allocator,
- const uint8_t *restrict in, size_t *restrict in_pos,
- size_t in_size, uint8_t *restrict out,
- size_t *restrict out_pos, size_t out_size, lzma_action action)
- {
- lzma_simple_coder *coder = coder_ptr;
- // TODO: Add partial support for LZMA_SYNC_FLUSH. We can support it
- // in cases when the filter is able to filter everything. With most
- // simple filters it can be done at offset that is a multiple of 2,
- // 4, or 16. With x86 filter, it needs good luck, and thus cannot
- // be made to work predictably.
- if (action == LZMA_SYNC_FLUSH)
- return LZMA_OPTIONS_ERROR;
- // Flush already filtered data from coder->buffer[] to out[].
- if (coder->pos < coder->filtered) {
- lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
- out, out_pos, out_size);
- // If we couldn't flush all the filtered data, return to
- // application immediately.
- if (coder->pos < coder->filtered)
- return LZMA_OK;
- if (coder->end_was_reached) {
- assert(coder->filtered == coder->size);
- return LZMA_STREAM_END;
- }
- }
- // If we get here, there is no filtered data left in the buffer.
- coder->filtered = 0;
- assert(!coder->end_was_reached);
- // If there is more output space left than there is unfiltered data
- // in coder->buffer[], flush coder->buffer[] to out[], and copy/code
- // more data to out[] hopefully filling it completely. Then filter
- // the data in out[]. This step is where most of the data gets
- // filtered if the buffer sizes used by the application are reasonable.
- const size_t out_avail = out_size - *out_pos;
- const size_t buf_avail = coder->size - coder->pos;
- if (out_avail > buf_avail || buf_avail == 0) {
- // Store the old position so that we know from which byte
- // to start filtering.
- const size_t out_start = *out_pos;
- // Flush data from coder->buffer[] to out[], but don't reset
- // coder->pos and coder->size yet. This way the coder can be
- // restarted if the next filter in the chain returns e.g.
- // LZMA_MEM_ERROR.
- //
- // Do the memcpy() conditionally because out can be NULL
- // (in which case buf_avail is always 0). Calling memcpy()
- // with a null-pointer is undefined even if the third
- // argument is 0.
- if (buf_avail > 0)
- memcpy(out + *out_pos, coder->buffer + coder->pos,
- buf_avail);
- *out_pos += buf_avail;
- // Copy/Encode/Decode more data to out[].
- {
- const lzma_ret ret = copy_or_code(coder, allocator,
- in, in_pos, in_size,
- out, out_pos, out_size, action);
- assert(ret != LZMA_STREAM_END);
- if (ret != LZMA_OK)
- return ret;
- }
- // Filter out[] unless there is nothing to filter.
- // This way we avoid null pointer + 0 (undefined behavior)
- // when out == NULL.
- const size_t size = *out_pos - out_start;
- const size_t filtered = size == 0 ? 0 : call_filter(
- coder, out + out_start, size);
- const size_t unfiltered = size - filtered;
- assert(unfiltered <= coder->allocated / 2);
- // Now we can update coder->pos and coder->size, because
- // the next coder in the chain (if any) was successful.
- coder->pos = 0;
- coder->size = unfiltered;
- if (coder->end_was_reached) {
- // The last byte has been copied to out[] already.
- // They are left as is.
- coder->size = 0;
- } else if (unfiltered > 0) {
- // There is unfiltered data left in out[]. Copy it to
- // coder->buffer[] and rewind *out_pos appropriately.
- *out_pos -= unfiltered;
- memcpy(coder->buffer, out + *out_pos, unfiltered);
- }
- } else if (coder->pos > 0) {
- memmove(coder->buffer, coder->buffer + coder->pos, buf_avail);
- coder->size -= coder->pos;
- coder->pos = 0;
- }
- assert(coder->pos == 0);
- // If coder->buffer[] isn't empty, try to fill it by copying/decoding
- // more data. Then filter coder->buffer[] and copy the successfully
- // filtered data to out[]. It is probable, that some filtered and
- // unfiltered data will be left to coder->buffer[].
- if (coder->size > 0) {
- {
- const lzma_ret ret = copy_or_code(coder, allocator,
- in, in_pos, in_size,
- coder->buffer, &coder->size,
- coder->allocated, action);
- assert(ret != LZMA_STREAM_END);
- if (ret != LZMA_OK)
- return ret;
- }
- coder->filtered = call_filter(
- coder, coder->buffer, coder->size);
- // Everything is considered to be filtered if coder->buffer[]
- // contains the last bytes of the data.
- if (coder->end_was_reached)
- coder->filtered = coder->size;
- // Flush as much as possible.
- lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
- out, out_pos, out_size);
- }
- // Check if we got everything done.
- if (coder->end_was_reached && coder->pos == coder->size)
- return LZMA_STREAM_END;
- return LZMA_OK;
- }
- static void
- simple_coder_end(void *coder_ptr, const lzma_allocator *allocator)
- {
- lzma_simple_coder *coder = coder_ptr;
- lzma_next_end(&coder->next, allocator);
- lzma_free(coder->simple, allocator);
- lzma_free(coder, allocator);
- return;
- }
- static lzma_ret
- simple_coder_update(void *coder_ptr, const lzma_allocator *allocator,
- const lzma_filter *filters_null lzma_attribute((__unused__)),
- const lzma_filter *reversed_filters)
- {
- lzma_simple_coder *coder = coder_ptr;
- // No update support, just call the next filter in the chain.
- return lzma_next_filter_update(
- &coder->next, allocator, reversed_filters + 1);
- }
- extern lzma_ret
- lzma_simple_coder_init(lzma_next_coder *next, const lzma_allocator *allocator,
- const lzma_filter_info *filters,
- size_t (*filter)(void *simple, uint32_t now_pos,
- bool is_encoder, uint8_t *buffer, size_t size),
- size_t simple_size, size_t unfiltered_max,
- uint32_t alignment, bool is_encoder)
- {
- // Allocate memory for the lzma_simple_coder structure if needed.
- lzma_simple_coder *coder = next->coder;
- if (coder == NULL) {
- // Here we allocate space also for the temporary buffer. We
- // need twice the size of unfiltered_max, because then it
- // is always possible to filter at least unfiltered_max bytes
- // more data in coder->buffer[] if it can be filled completely.
- coder = lzma_alloc(sizeof(lzma_simple_coder)
- + 2 * unfiltered_max, allocator);
- if (coder == NULL)
- return LZMA_MEM_ERROR;
- next->coder = coder;
- next->code = &simple_code;
- next->end = &simple_coder_end;
- next->update = &simple_coder_update;
- coder->next = LZMA_NEXT_CODER_INIT;
- coder->filter = filter;
- coder->allocated = 2 * unfiltered_max;
- // Allocate memory for filter-specific data structure.
- if (simple_size > 0) {
- coder->simple = lzma_alloc(simple_size, allocator);
- if (coder->simple == NULL)
- return LZMA_MEM_ERROR;
- } else {
- coder->simple = NULL;
- }
- }
- if (filters[0].options != NULL) {
- const lzma_options_bcj *simple = filters[0].options;
- coder->now_pos = simple->start_offset;
- if (coder->now_pos & (alignment - 1))
- return LZMA_OPTIONS_ERROR;
- } else {
- coder->now_pos = 0;
- }
- // Reset variables.
- coder->is_encoder = is_encoder;
- coder->end_was_reached = false;
- coder->pos = 0;
- coder->filtered = 0;
- coder->size = 0;
- return lzma_next_filter_init(&coder->next, allocator, filters + 1);
- }
|