123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648 |
- /*
- * Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
- #ifndef LIBMPDEC_UMODARITH_H_
- #define LIBMPDEC_UMODARITH_H_
- #include "mpdecimal.h"
- #include "constants.h"
- #include "typearith.h"
- /* Bignum: Low level routines for unsigned modular arithmetic. These are
- used in the fast convolution functions for very large coefficients. */
- /**************************************************************************/
- /* ANSI modular arithmetic */
- /**************************************************************************/
- /*
- * Restrictions: a < m and b < m
- * ACL2 proof: umodarith.lisp: addmod-correct
- */
- static inline mpd_uint_t
- addmod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m)
- {
- mpd_uint_t s;
- s = a + b;
- s = (s < a) ? s - m : s;
- s = (s >= m) ? s - m : s;
- return s;
- }
- /*
- * Restrictions: a < m and b < m
- * ACL2 proof: umodarith.lisp: submod-2-correct
- */
- static inline mpd_uint_t
- submod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m)
- {
- mpd_uint_t d;
- d = a - b;
- d = (a < b) ? d + m : d;
- return d;
- }
- /*
- * Restrictions: a < 2m and b < 2m
- * ACL2 proof: umodarith.lisp: section ext-submod
- */
- static inline mpd_uint_t
- ext_submod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m)
- {
- mpd_uint_t d;
- a = (a >= m) ? a - m : a;
- b = (b >= m) ? b - m : b;
- d = a - b;
- d = (a < b) ? d + m : d;
- return d;
- }
- /*
- * Reduce double word modulo m.
- * Restrictions: m != 0
- * ACL2 proof: umodarith.lisp: section dw-reduce
- */
- static inline mpd_uint_t
- dw_reduce(mpd_uint_t hi, mpd_uint_t lo, mpd_uint_t m)
- {
- mpd_uint_t r1, r2, w;
- _mpd_div_word(&w, &r1, hi, m);
- _mpd_div_words(&w, &r2, r1, lo, m);
- return r2;
- }
- /*
- * Subtract double word from a.
- * Restrictions: a < m
- * ACL2 proof: umodarith.lisp: section dw-submod
- */
- static inline mpd_uint_t
- dw_submod(mpd_uint_t a, mpd_uint_t hi, mpd_uint_t lo, mpd_uint_t m)
- {
- mpd_uint_t d, r;
- r = dw_reduce(hi, lo, m);
- d = a - r;
- d = (a < r) ? d + m : d;
- return d;
- }
- #ifdef CONFIG_64
- /**************************************************************************/
- /* 64-bit modular arithmetic */
- /**************************************************************************/
- /*
- * A proof of the algorithm is in literature/mulmod-64.txt. An ACL2
- * proof is in umodarith.lisp: section "Fast modular reduction".
- *
- * Algorithm: calculate (a * b) % p:
- *
- * a) hi, lo <- a * b # Calculate a * b.
- *
- * b) hi, lo <- R(hi, lo) # Reduce modulo p.
- *
- * c) Repeat step b) until 0 <= hi * 2**64 + lo < 2*p.
- *
- * d) If the result is less than p, return lo. Otherwise return lo - p.
- */
- static inline mpd_uint_t
- x64_mulmod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m)
- {
- mpd_uint_t hi, lo, x, y;
- _mpd_mul_words(&hi, &lo, a, b);
- if (m & (1ULL<<32)) { /* P1 */
- /* first reduction */
- x = y = hi;
- hi >>= 32;
- x = lo - x;
- if (x > lo) hi--;
- y <<= 32;
- lo = y + x;
- if (lo < y) hi++;
- /* second reduction */
- x = y = hi;
- hi >>= 32;
- x = lo - x;
- if (x > lo) hi--;
- y <<= 32;
- lo = y + x;
- if (lo < y) hi++;
- return (hi || lo >= m ? lo - m : lo);
- }
- else if (m & (1ULL<<34)) { /* P2 */
- /* first reduction */
- x = y = hi;
- hi >>= 30;
- x = lo - x;
- if (x > lo) hi--;
- y <<= 34;
- lo = y + x;
- if (lo < y) hi++;
- /* second reduction */
- x = y = hi;
- hi >>= 30;
- x = lo - x;
- if (x > lo) hi--;
- y <<= 34;
- lo = y + x;
- if (lo < y) hi++;
- /* third reduction */
- x = y = hi;
- hi >>= 30;
- x = lo - x;
- if (x > lo) hi--;
- y <<= 34;
- lo = y + x;
- if (lo < y) hi++;
- return (hi || lo >= m ? lo - m : lo);
- }
- else { /* P3 */
- /* first reduction */
- x = y = hi;
- hi >>= 24;
- x = lo - x;
- if (x > lo) hi--;
- y <<= 40;
- lo = y + x;
- if (lo < y) hi++;
- /* second reduction */
- x = y = hi;
- hi >>= 24;
- x = lo - x;
- if (x > lo) hi--;
- y <<= 40;
- lo = y + x;
- if (lo < y) hi++;
- /* third reduction */
- x = y = hi;
- hi >>= 24;
- x = lo - x;
- if (x > lo) hi--;
- y <<= 40;
- lo = y + x;
- if (lo < y) hi++;
- return (hi || lo >= m ? lo - m : lo);
- }
- }
- static inline void
- x64_mulmod2c(mpd_uint_t *a, mpd_uint_t *b, mpd_uint_t w, mpd_uint_t m)
- {
- *a = x64_mulmod(*a, w, m);
- *b = x64_mulmod(*b, w, m);
- }
- static inline void
- x64_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1,
- mpd_uint_t m)
- {
- *a0 = x64_mulmod(*a0, b0, m);
- *a1 = x64_mulmod(*a1, b1, m);
- }
- static inline mpd_uint_t
- x64_powmod(mpd_uint_t base, mpd_uint_t exp, mpd_uint_t umod)
- {
- mpd_uint_t r = 1;
- while (exp > 0) {
- if (exp & 1)
- r = x64_mulmod(r, base, umod);
- base = x64_mulmod(base, base, umod);
- exp >>= 1;
- }
- return r;
- }
- /* END CONFIG_64 */
- #else /* CONFIG_32 */
- /**************************************************************************/
- /* 32-bit modular arithmetic */
- /**************************************************************************/
- #if defined(ANSI)
- #if !defined(LEGACY_COMPILER)
- /* HAVE_UINT64_T */
- static inline mpd_uint_t
- std_mulmod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m)
- {
- return ((mpd_uuint_t) a * b) % m;
- }
- static inline void
- std_mulmod2c(mpd_uint_t *a, mpd_uint_t *b, mpd_uint_t w, mpd_uint_t m)
- {
- *a = ((mpd_uuint_t) *a * w) % m;
- *b = ((mpd_uuint_t) *b * w) % m;
- }
- static inline void
- std_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1,
- mpd_uint_t m)
- {
- *a0 = ((mpd_uuint_t) *a0 * b0) % m;
- *a1 = ((mpd_uuint_t) *a1 * b1) % m;
- }
- /* END HAVE_UINT64_T */
- #else
- /* LEGACY_COMPILER */
- static inline mpd_uint_t
- std_mulmod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m)
- {
- mpd_uint_t hi, lo, q, r;
- _mpd_mul_words(&hi, &lo, a, b);
- _mpd_div_words(&q, &r, hi, lo, m);
- return r;
- }
- static inline void
- std_mulmod2c(mpd_uint_t *a, mpd_uint_t *b, mpd_uint_t w, mpd_uint_t m)
- {
- *a = std_mulmod(*a, w, m);
- *b = std_mulmod(*b, w, m);
- }
- static inline void
- std_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1,
- mpd_uint_t m)
- {
- *a0 = std_mulmod(*a0, b0, m);
- *a1 = std_mulmod(*a1, b1, m);
- }
- /* END LEGACY_COMPILER */
- #endif
- static inline mpd_uint_t
- std_powmod(mpd_uint_t base, mpd_uint_t exp, mpd_uint_t umod)
- {
- mpd_uint_t r = 1;
- while (exp > 0) {
- if (exp & 1)
- r = std_mulmod(r, base, umod);
- base = std_mulmod(base, base, umod);
- exp >>= 1;
- }
- return r;
- }
- #endif /* ANSI CONFIG_32 */
- /**************************************************************************/
- /* Pentium Pro modular arithmetic */
- /**************************************************************************/
- /*
- * A proof of the algorithm is in literature/mulmod-ppro.txt. The FPU
- * control word must be set to 64-bit precision and truncation mode
- * prior to using these functions.
- *
- * Algorithm: calculate (a * b) % p:
- *
- * p := prime < 2**31
- * pinv := (long double)1.0 / p (precalculated)
- *
- * a) n = a * b # Calculate exact product.
- * b) qest = n * pinv # Calculate estimate for q = n / p.
- * c) q = (qest+2**63)-2**63 # Truncate qest to the exact quotient.
- * d) r = n - q * p # Calculate remainder.
- *
- * Remarks:
- *
- * - p = dmod and pinv = dinvmod.
- * - dinvmod points to an array of three uint32_t, which is interpreted
- * as an 80 bit long double by fldt.
- * - Intel compilers prior to version 11 do not seem to handle the
- * __GNUC__ inline assembly correctly.
- * - random tests are provided in tests/extended/ppro_mulmod.c
- */
- #if defined(PPRO)
- #if defined(ASM)
- /* Return (a * b) % dmod */
- static inline mpd_uint_t
- ppro_mulmod(mpd_uint_t a, mpd_uint_t b, double *dmod, uint32_t *dinvmod)
- {
- mpd_uint_t retval;
- __asm__ (
- "fildl %2\n\t"
- "fildl %1\n\t"
- "fmulp %%st, %%st(1)\n\t"
- "fldt (%4)\n\t"
- "fmul %%st(1), %%st\n\t"
- "flds %5\n\t"
- "fadd %%st, %%st(1)\n\t"
- "fsubrp %%st, %%st(1)\n\t"
- "fldl (%3)\n\t"
- "fmulp %%st, %%st(1)\n\t"
- "fsubrp %%st, %%st(1)\n\t"
- "fistpl %0\n\t"
- : "=m" (retval)
- : "m" (a), "m" (b), "r" (dmod), "r" (dinvmod), "m" (MPD_TWO63)
- : "st", "memory"
- );
- return retval;
- }
- /*
- * Two modular multiplications in parallel:
- * *a0 = (*a0 * w) % dmod
- * *a1 = (*a1 * w) % dmod
- */
- static inline void
- ppro_mulmod2c(mpd_uint_t *a0, mpd_uint_t *a1, mpd_uint_t w,
- double *dmod, uint32_t *dinvmod)
- {
- __asm__ (
- "fildl %2\n\t"
- "fildl (%1)\n\t"
- "fmul %%st(1), %%st\n\t"
- "fxch %%st(1)\n\t"
- "fildl (%0)\n\t"
- "fmulp %%st, %%st(1) \n\t"
- "fldt (%4)\n\t"
- "flds %5\n\t"
- "fld %%st(2)\n\t"
- "fmul %%st(2)\n\t"
- "fadd %%st(1)\n\t"
- "fsub %%st(1)\n\t"
- "fmull (%3)\n\t"
- "fsubrp %%st, %%st(3)\n\t"
- "fxch %%st(2)\n\t"
- "fistpl (%0)\n\t"
- "fmul %%st(2)\n\t"
- "fadd %%st(1)\n\t"
- "fsubp %%st, %%st(1)\n\t"
- "fmull (%3)\n\t"
- "fsubrp %%st, %%st(1)\n\t"
- "fistpl (%1)\n\t"
- : : "r" (a0), "r" (a1), "m" (w),
- "r" (dmod), "r" (dinvmod),
- "m" (MPD_TWO63)
- : "st", "memory"
- );
- }
- /*
- * Two modular multiplications in parallel:
- * *a0 = (*a0 * b0) % dmod
- * *a1 = (*a1 * b1) % dmod
- */
- static inline void
- ppro_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1,
- double *dmod, uint32_t *dinvmod)
- {
- __asm__ (
- "fildl %3\n\t"
- "fildl (%2)\n\t"
- "fmulp %%st, %%st(1)\n\t"
- "fildl %1\n\t"
- "fildl (%0)\n\t"
- "fmulp %%st, %%st(1)\n\t"
- "fldt (%5)\n\t"
- "fld %%st(2)\n\t"
- "fmul %%st(1), %%st\n\t"
- "fxch %%st(1)\n\t"
- "fmul %%st(2), %%st\n\t"
- "flds %6\n\t"
- "fldl (%4)\n\t"
- "fxch %%st(3)\n\t"
- "fadd %%st(1), %%st\n\t"
- "fxch %%st(2)\n\t"
- "fadd %%st(1), %%st\n\t"
- "fxch %%st(2)\n\t"
- "fsub %%st(1), %%st\n\t"
- "fxch %%st(2)\n\t"
- "fsubp %%st, %%st(1)\n\t"
- "fxch %%st(1)\n\t"
- "fmul %%st(2), %%st\n\t"
- "fxch %%st(1)\n\t"
- "fmulp %%st, %%st(2)\n\t"
- "fsubrp %%st, %%st(3)\n\t"
- "fsubrp %%st, %%st(1)\n\t"
- "fxch %%st(1)\n\t"
- "fistpl (%2)\n\t"
- "fistpl (%0)\n\t"
- : : "r" (a0), "m" (b0), "r" (a1), "m" (b1),
- "r" (dmod), "r" (dinvmod),
- "m" (MPD_TWO63)
- : "st", "memory"
- );
- }
- /* END PPRO GCC ASM */
- #elif defined(MASM)
- /* Return (a * b) % dmod */
- static inline mpd_uint_t __cdecl
- ppro_mulmod(mpd_uint_t a, mpd_uint_t b, double *dmod, uint32_t *dinvmod)
- {
- mpd_uint_t retval;
- __asm {
- mov eax, dinvmod
- mov edx, dmod
- fild b
- fild a
- fmulp st(1), st
- fld TBYTE PTR [eax]
- fmul st, st(1)
- fld MPD_TWO63
- fadd st(1), st
- fsubp st(1), st
- fld QWORD PTR [edx]
- fmulp st(1), st
- fsubp st(1), st
- fistp retval
- }
- return retval;
- }
- /*
- * Two modular multiplications in parallel:
- * *a0 = (*a0 * w) % dmod
- * *a1 = (*a1 * w) % dmod
- */
- static inline mpd_uint_t __cdecl
- ppro_mulmod2c(mpd_uint_t *a0, mpd_uint_t *a1, mpd_uint_t w,
- double *dmod, uint32_t *dinvmod)
- {
- __asm {
- mov ecx, dmod
- mov edx, a1
- mov ebx, dinvmod
- mov eax, a0
- fild w
- fild DWORD PTR [edx]
- fmul st, st(1)
- fxch st(1)
- fild DWORD PTR [eax]
- fmulp st(1), st
- fld TBYTE PTR [ebx]
- fld MPD_TWO63
- fld st(2)
- fmul st, st(2)
- fadd st, st(1)
- fsub st, st(1)
- fmul QWORD PTR [ecx]
- fsubp st(3), st
- fxch st(2)
- fistp DWORD PTR [eax]
- fmul st, st(2)
- fadd st, st(1)
- fsubrp st(1), st
- fmul QWORD PTR [ecx]
- fsubp st(1), st
- fistp DWORD PTR [edx]
- }
- }
- /*
- * Two modular multiplications in parallel:
- * *a0 = (*a0 * b0) % dmod
- * *a1 = (*a1 * b1) % dmod
- */
- static inline void __cdecl
- ppro_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1,
- double *dmod, uint32_t *dinvmod)
- {
- __asm {
- mov ecx, dmod
- mov edx, a1
- mov ebx, dinvmod
- mov eax, a0
- fild b1
- fild DWORD PTR [edx]
- fmulp st(1), st
- fild b0
- fild DWORD PTR [eax]
- fmulp st(1), st
- fld TBYTE PTR [ebx]
- fld st(2)
- fmul st, st(1)
- fxch st(1)
- fmul st, st(2)
- fld DWORD PTR MPD_TWO63
- fld QWORD PTR [ecx]
- fxch st(3)
- fadd st, st(1)
- fxch st(2)
- fadd st, st(1)
- fxch st(2)
- fsub st, st(1)
- fxch st(2)
- fsubrp st(1), st
- fxch st(1)
- fmul st, st(2)
- fxch st(1)
- fmulp st(2), st
- fsubp st(3), st
- fsubp st(1), st
- fxch st(1)
- fistp DWORD PTR [edx]
- fistp DWORD PTR [eax]
- }
- }
- #endif /* PPRO MASM (_MSC_VER) */
- /* Return (base ** exp) % dmod */
- static inline mpd_uint_t
- ppro_powmod(mpd_uint_t base, mpd_uint_t exp, double *dmod, uint32_t *dinvmod)
- {
- mpd_uint_t r = 1;
- while (exp > 0) {
- if (exp & 1)
- r = ppro_mulmod(r, base, dmod, dinvmod);
- base = ppro_mulmod(base, base, dmod, dinvmod);
- exp >>= 1;
- }
- return r;
- }
- #endif /* PPRO */
- #endif /* CONFIG_32 */
- #endif /* LIBMPDEC_UMODARITH_H_ */
|