123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214 |
- /*
- * Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
- #include "mpdecimal.h"
- #include <assert.h>
- #include <stdio.h>
- #include "bits.h"
- #include "constants.h"
- #include "difradix2.h"
- #include "numbertheory.h"
- #include "sixstep.h"
- #include "transpose.h"
- #include "umodarith.h"
- /* Bignum: Cache efficient Matrix Fourier Transform for arrays of the
- form 2**n (See literature/six-step.txt). */
- /* forward transform with sign = -1 */
- int
- six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
- {
- struct fnt_params *tparams;
- mpd_size_t log2n, C, R;
- mpd_uint_t kernel;
- mpd_uint_t umod;
- #ifdef PPRO
- double dmod;
- uint32_t dinvmod[3];
- #endif
- mpd_uint_t *x, w0, w1, wstep;
- mpd_size_t i, k;
- assert(ispower2(n));
- assert(n >= 16);
- assert(n <= MPD_MAXTRANSFORM_2N);
- log2n = mpd_bsr(n);
- C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */
- R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */
- /* Transpose the matrix. */
- if (!transpose_pow2(a, R, C)) {
- return 0;
- }
- /* Length R transform on the rows. */
- if ((tparams = _mpd_init_fnt_params(R, -1, modnum)) == NULL) {
- return 0;
- }
- for (x = a; x < a+n; x += R) {
- fnt_dif2(x, R, tparams);
- }
- /* Transpose the matrix. */
- if (!transpose_pow2(a, C, R)) {
- mpd_free(tparams);
- return 0;
- }
- /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
- SETMODULUS(modnum);
- kernel = _mpd_getkernel(n, -1, modnum);
- for (i = 1; i < R; i++) {
- w0 = 1; /* r**(i*0): initial value for k=0 */
- w1 = POWMOD(kernel, i); /* r**(i*1): initial value for k=1 */
- wstep = MULMOD(w1, w1); /* r**(2*i) */
- for (k = 0; k < C; k += 2) {
- mpd_uint_t x0 = a[i*C+k];
- mpd_uint_t x1 = a[i*C+k+1];
- MULMOD2(&x0, w0, &x1, w1);
- MULMOD2C(&w0, &w1, wstep); /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */
- a[i*C+k] = x0;
- a[i*C+k+1] = x1;
- }
- }
- /* Length C transform on the rows. */
- if (C != R) {
- mpd_free(tparams);
- if ((tparams = _mpd_init_fnt_params(C, -1, modnum)) == NULL) {
- return 0;
- }
- }
- for (x = a; x < a+n; x += C) {
- fnt_dif2(x, C, tparams);
- }
- mpd_free(tparams);
- #if 0
- /* An unordered transform is sufficient for convolution. */
- /* Transpose the matrix. */
- if (!transpose_pow2(a, R, C)) {
- return 0;
- }
- #endif
- return 1;
- }
- /* reverse transform, sign = 1 */
- int
- inv_six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
- {
- struct fnt_params *tparams;
- mpd_size_t log2n, C, R;
- mpd_uint_t kernel;
- mpd_uint_t umod;
- #ifdef PPRO
- double dmod;
- uint32_t dinvmod[3];
- #endif
- mpd_uint_t *x, w0, w1, wstep;
- mpd_size_t i, k;
- assert(ispower2(n));
- assert(n >= 16);
- assert(n <= MPD_MAXTRANSFORM_2N);
- log2n = mpd_bsr(n);
- C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */
- R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */
- #if 0
- /* An unordered transform is sufficient for convolution. */
- /* Transpose the matrix, producing an R*C matrix. */
- if (!transpose_pow2(a, C, R)) {
- return 0;
- }
- #endif
- /* Length C transform on the rows. */
- if ((tparams = _mpd_init_fnt_params(C, 1, modnum)) == NULL) {
- return 0;
- }
- for (x = a; x < a+n; x += C) {
- fnt_dif2(x, C, tparams);
- }
- /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
- SETMODULUS(modnum);
- kernel = _mpd_getkernel(n, 1, modnum);
- for (i = 1; i < R; i++) {
- w0 = 1;
- w1 = POWMOD(kernel, i);
- wstep = MULMOD(w1, w1);
- for (k = 0; k < C; k += 2) {
- mpd_uint_t x0 = a[i*C+k];
- mpd_uint_t x1 = a[i*C+k+1];
- MULMOD2(&x0, w0, &x1, w1);
- MULMOD2C(&w0, &w1, wstep);
- a[i*C+k] = x0;
- a[i*C+k+1] = x1;
- }
- }
- /* Transpose the matrix. */
- if (!transpose_pow2(a, R, C)) {
- mpd_free(tparams);
- return 0;
- }
- /* Length R transform on the rows. */
- if (R != C) {
- mpd_free(tparams);
- if ((tparams = _mpd_init_fnt_params(R, 1, modnum)) == NULL) {
- return 0;
- }
- }
- for (x = a; x < a+n; x += R) {
- fnt_dif2(x, R, tparams);
- }
- mpd_free(tparams);
- /* Transpose the matrix. */
- if (!transpose_pow2(a, C, R)) {
- return 0;
- }
- return 1;
- }
|