123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259 |
- /*
- * Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
- #include "mpdecimal.h"
- #include <assert.h>
- #include "constants.h"
- #include "fourstep.h"
- #include "numbertheory.h"
- #include "sixstep.h"
- #include "umodarith.h"
- /* Bignum: Cache efficient Matrix Fourier Transform for arrays of the
- form 3 * 2**n (See literature/matrix-transform.txt). */
- #ifndef PPRO
- static inline void
- std_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3,
- mpd_uint_t w3table[3], mpd_uint_t umod)
- {
- mpd_uint_t r1, r2;
- mpd_uint_t w;
- mpd_uint_t s, tmp;
- /* k = 0 -> w = 1 */
- s = *x1;
- s = addmod(s, *x2, umod);
- s = addmod(s, *x3, umod);
- r1 = s;
- /* k = 1 */
- s = *x1;
- w = w3table[1];
- tmp = MULMOD(*x2, w);
- s = addmod(s, tmp, umod);
- w = w3table[2];
- tmp = MULMOD(*x3, w);
- s = addmod(s, tmp, umod);
- r2 = s;
- /* k = 2 */
- s = *x1;
- w = w3table[2];
- tmp = MULMOD(*x2, w);
- s = addmod(s, tmp, umod);
- w = w3table[1];
- tmp = MULMOD(*x3, w);
- s = addmod(s, tmp, umod);
- *x3 = s;
- *x2 = r2;
- *x1 = r1;
- }
- #else /* PPRO */
- static inline void
- ppro_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_uint_t w3table[3],
- mpd_uint_t umod, double *dmod, uint32_t dinvmod[3])
- {
- mpd_uint_t r1, r2;
- mpd_uint_t w;
- mpd_uint_t s, tmp;
- /* k = 0 -> w = 1 */
- s = *x1;
- s = addmod(s, *x2, umod);
- s = addmod(s, *x3, umod);
- r1 = s;
- /* k = 1 */
- s = *x1;
- w = w3table[1];
- tmp = ppro_mulmod(*x2, w, dmod, dinvmod);
- s = addmod(s, tmp, umod);
- w = w3table[2];
- tmp = ppro_mulmod(*x3, w, dmod, dinvmod);
- s = addmod(s, tmp, umod);
- r2 = s;
- /* k = 2 */
- s = *x1;
- w = w3table[2];
- tmp = ppro_mulmod(*x2, w, dmod, dinvmod);
- s = addmod(s, tmp, umod);
- w = w3table[1];
- tmp = ppro_mulmod(*x3, w, dmod, dinvmod);
- s = addmod(s, tmp, umod);
- *x3 = s;
- *x2 = r2;
- *x1 = r1;
- }
- #endif
- /* forward transform, sign = -1; transform length = 3 * 2**n */
- int
- four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
- {
- mpd_size_t R = 3; /* number of rows */
- mpd_size_t C = n / 3; /* number of columns */
- mpd_uint_t w3table[3];
- mpd_uint_t kernel, w0, w1, wstep;
- mpd_uint_t *s, *p0, *p1, *p2;
- mpd_uint_t umod;
- #ifdef PPRO
- double dmod;
- uint32_t dinvmod[3];
- #endif
- mpd_size_t i, k;
- assert(n >= 48);
- assert(n <= 3*MPD_MAXTRANSFORM_2N);
- /* Length R transform on the columns. */
- SETMODULUS(modnum);
- _mpd_init_w3table(w3table, -1, modnum);
- for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) {
- SIZE3_NTT(p0, p1, p2, w3table);
- }
- /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
- kernel = _mpd_getkernel(n, -1, modnum);
- for (i = 1; i < R; i++) {
- w0 = 1; /* r**(i*0): initial value for k=0 */
- w1 = POWMOD(kernel, i); /* r**(i*1): initial value for k=1 */
- wstep = MULMOD(w1, w1); /* r**(2*i) */
- for (k = 0; k < C-1; k += 2) {
- mpd_uint_t x0 = a[i*C+k];
- mpd_uint_t x1 = a[i*C+k+1];
- MULMOD2(&x0, w0, &x1, w1);
- MULMOD2C(&w0, &w1, wstep); /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */
- a[i*C+k] = x0;
- a[i*C+k+1] = x1;
- }
- }
- /* Length C transform on the rows. */
- for (s = a; s < a+n; s += C) {
- if (!six_step_fnt(s, C, modnum)) {
- return 0;
- }
- }
- #if 0
- /* An unordered transform is sufficient for convolution. */
- /* Transpose the matrix. */
- #include "transpose.h"
- transpose_3xpow2(a, R, C);
- #endif
- return 1;
- }
- /* backward transform, sign = 1; transform length = 3 * 2**n */
- int
- inv_four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
- {
- mpd_size_t R = 3; /* number of rows */
- mpd_size_t C = n / 3; /* number of columns */
- mpd_uint_t w3table[3];
- mpd_uint_t kernel, w0, w1, wstep;
- mpd_uint_t *s, *p0, *p1, *p2;
- mpd_uint_t umod;
- #ifdef PPRO
- double dmod;
- uint32_t dinvmod[3];
- #endif
- mpd_size_t i, k;
- assert(n >= 48);
- assert(n <= 3*MPD_MAXTRANSFORM_2N);
- #if 0
- /* An unordered transform is sufficient for convolution. */
- /* Transpose the matrix, producing an R*C matrix. */
- #include "transpose.h"
- transpose_3xpow2(a, C, R);
- #endif
- /* Length C transform on the rows. */
- for (s = a; s < a+n; s += C) {
- if (!inv_six_step_fnt(s, C, modnum)) {
- return 0;
- }
- }
- /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
- SETMODULUS(modnum);
- kernel = _mpd_getkernel(n, 1, modnum);
- for (i = 1; i < R; i++) {
- w0 = 1;
- w1 = POWMOD(kernel, i);
- wstep = MULMOD(w1, w1);
- for (k = 0; k < C; k += 2) {
- mpd_uint_t x0 = a[i*C+k];
- mpd_uint_t x1 = a[i*C+k+1];
- MULMOD2(&x0, w0, &x1, w1);
- MULMOD2C(&w0, &w1, wstep);
- a[i*C+k] = x0;
- a[i*C+k+1] = x1;
- }
- }
- /* Length R transform on the columns. */
- _mpd_init_w3table(w3table, 1, modnum);
- for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) {
- SIZE3_NTT(p0, p1, p2, w3table);
- }
- return 1;
- }
|