123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- /*
- * Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
- #include "mpdecimal.h"
- #include <assert.h>
- #include "bits.h"
- #include "constants.h"
- #include "difradix2.h"
- #include "numbertheory.h"
- #include "umodarith.h"
- /* Bignum: The actual transform routine (decimation in frequency). */
- /*
- * Generate index pairs (x, bitreverse(x)) and carry out the permutation.
- * n must be a power of two.
- * Algorithm due to Brent/Lehmann, see Joerg Arndt, "Matters Computational",
- * Chapter 1.14.4. [http://www.jjj.de/fxt/]
- */
- static inline void
- bitreverse_permute(mpd_uint_t a[], mpd_size_t n)
- {
- mpd_size_t x = 0;
- mpd_size_t r = 0;
- mpd_uint_t t;
- do { /* Invariant: r = bitreverse(x) */
- if (r > x) {
- t = a[x];
- a[x] = a[r];
- a[r] = t;
- }
- /* Flip trailing consecutive 1 bits and the first zero bit
- * that absorbs a possible carry. */
- x += 1;
- /* Mirror the operation on r: Flip n_trailing_zeros(x)+1
- high bits of r. */
- r ^= (n - (n >> (mpd_bsf(x)+1)));
- /* The loop invariant is preserved. */
- } while (x < n);
- }
- /* Fast Number Theoretic Transform, decimation in frequency. */
- void
- fnt_dif2(mpd_uint_t a[], mpd_size_t n, struct fnt_params *tparams)
- {
- mpd_uint_t *wtable = tparams->wtable;
- mpd_uint_t umod;
- #ifdef PPRO
- double dmod;
- uint32_t dinvmod[3];
- #endif
- mpd_uint_t u0, u1, v0, v1;
- mpd_uint_t w, w0, w1, wstep;
- mpd_size_t m, mhalf;
- mpd_size_t j, r;
- assert(ispower2(n));
- assert(n >= 4);
- SETMODULUS(tparams->modnum);
- /* m == n */
- mhalf = n / 2;
- for (j = 0; j < mhalf; j += 2) {
- w0 = wtable[j];
- w1 = wtable[j+1];
- u0 = a[j];
- v0 = a[j+mhalf];
- u1 = a[j+1];
- v1 = a[j+1+mhalf];
- a[j] = addmod(u0, v0, umod);
- v0 = submod(u0, v0, umod);
- a[j+1] = addmod(u1, v1, umod);
- v1 = submod(u1, v1, umod);
- MULMOD2(&v0, w0, &v1, w1);
- a[j+mhalf] = v0;
- a[j+1+mhalf] = v1;
- }
- wstep = 2;
- for (m = n/2; m >= 2; m>>=1, wstep<<=1) {
- mhalf = m / 2;
- /* j == 0 */
- for (r = 0; r < n; r += 2*m) {
- u0 = a[r];
- v0 = a[r+mhalf];
- u1 = a[m+r];
- v1 = a[m+r+mhalf];
- a[r] = addmod(u0, v0, umod);
- v0 = submod(u0, v0, umod);
- a[m+r] = addmod(u1, v1, umod);
- v1 = submod(u1, v1, umod);
- a[r+mhalf] = v0;
- a[m+r+mhalf] = v1;
- }
- for (j = 1; j < mhalf; j++) {
- w = wtable[j*wstep];
- for (r = 0; r < n; r += 2*m) {
- u0 = a[r+j];
- v0 = a[r+j+mhalf];
- u1 = a[m+r+j];
- v1 = a[m+r+j+mhalf];
- a[r+j] = addmod(u0, v0, umod);
- v0 = submod(u0, v0, umod);
- a[m+r+j] = addmod(u1, v1, umod);
- v1 = submod(u1, v1, umod);
- MULMOD2C(&v0, &v1, w);
- a[r+j+mhalf] = v0;
- a[m+r+j+mhalf] = v1;
- }
- }
- }
- bitreverse_permute(a, n);
- }
|