123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 |
- /*
- * Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
- #include "mpdecimal.h"
- #include <assert.h>
- #include "constants.h"
- #include "crt.h"
- #include "numbertheory.h"
- #include "typearith.h"
- #include "umodarith.h"
- /* Bignum: Chinese Remainder Theorem, extends the maximum transform length. */
- /* Multiply P1P2 by v, store result in w. */
- static inline void
- _crt_mulP1P2_3(mpd_uint_t w[3], mpd_uint_t v)
- {
- mpd_uint_t hi1, hi2, lo;
- _mpd_mul_words(&hi1, &lo, LH_P1P2, v);
- w[0] = lo;
- _mpd_mul_words(&hi2, &lo, UH_P1P2, v);
- lo = hi1 + lo;
- if (lo < hi1) hi2++;
- w[1] = lo;
- w[2] = hi2;
- }
- /* Add 3 words from v to w. The result is known to fit in w. */
- static inline void
- _crt_add3(mpd_uint_t w[3], mpd_uint_t v[3])
- {
- mpd_uint_t carry;
- w[0] = w[0] + v[0];
- carry = (w[0] < v[0]);
- w[1] = w[1] + v[1];
- if (w[1] < v[1]) w[2]++;
- w[1] = w[1] + carry;
- if (w[1] < carry) w[2]++;
- w[2] += v[2];
- }
- /* Divide 3 words in u by v, store result in w, return remainder. */
- static inline mpd_uint_t
- _crt_div3(mpd_uint_t *w, const mpd_uint_t *u, mpd_uint_t v)
- {
- mpd_uint_t r1 = u[2];
- mpd_uint_t r2;
- if (r1 < v) {
- w[2] = 0;
- }
- else {
- _mpd_div_word(&w[2], &r1, u[2], v); /* GCOV_NOT_REACHED */
- }
- _mpd_div_words(&w[1], &r2, r1, u[1], v);
- _mpd_div_words(&w[0], &r1, r2, u[0], v);
- return r1;
- }
- /*
- * Chinese Remainder Theorem:
- * Algorithm from Joerg Arndt, "Matters Computational",
- * Chapter 37.4.1 [http://www.jjj.de/fxt/]
- *
- * See also Knuth, TAOCP, Volume 2, 4.3.2, exercise 7.
- */
- /*
- * CRT with carry: x1, x2, x3 contain numbers modulo p1, p2, p3. For each
- * triple of members of the arrays, find the unique z modulo p1*p2*p3, with
- * zmax = p1*p2*p3 - 1.
- *
- * In each iteration of the loop, split z into result[i] = z % MPD_RADIX
- * and carry = z / MPD_RADIX. Let N be the size of carry[] and cmax the
- * maximum carry.
- *
- * Limits for the 32-bit build:
- *
- * N = 2**96
- * cmax = 7711435591312380274
- *
- * Limits for the 64 bit build:
- *
- * N = 2**192
- * cmax = 627710135393475385904124401220046371710
- *
- * The following statements hold for both versions:
- *
- * 1) cmax + zmax < N, so the addition does not overflow.
- *
- * 2) (cmax + zmax) / MPD_RADIX == cmax.
- *
- * 3) If c <= cmax, then c_next = (c + zmax) / MPD_RADIX <= cmax.
- */
- void
- crt3(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_size_t rsize)
- {
- mpd_uint_t p1 = mpd_moduli[P1];
- mpd_uint_t umod;
- #ifdef PPRO
- double dmod;
- uint32_t dinvmod[3];
- #endif
- mpd_uint_t a1, a2, a3;
- mpd_uint_t s;
- mpd_uint_t z[3], t[3];
- mpd_uint_t carry[3] = {0,0,0};
- mpd_uint_t hi, lo;
- mpd_size_t i;
- for (i = 0; i < rsize; i++) {
- a1 = x1[i];
- a2 = x2[i];
- a3 = x3[i];
- SETMODULUS(P2);
- s = ext_submod(a2, a1, umod);
- s = MULMOD(s, INV_P1_MOD_P2);
- _mpd_mul_words(&hi, &lo, s, p1);
- lo = lo + a1;
- if (lo < a1) hi++;
- SETMODULUS(P3);
- s = dw_submod(a3, hi, lo, umod);
- s = MULMOD(s, INV_P1P2_MOD_P3);
- z[0] = lo;
- z[1] = hi;
- z[2] = 0;
- _crt_mulP1P2_3(t, s);
- _crt_add3(z, t);
- _crt_add3(carry, z);
- x1[i] = _crt_div3(carry, carry, MPD_RADIX);
- }
- assert(carry[0] == 0 && carry[1] == 0 && carry[2] == 0);
- }
|