123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655 |
- /*
- * Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
- #include "mpdecimal.h"
- #include <assert.h>
- #include <stdio.h>
- #include "basearith.h"
- #include "constants.h"
- #include "typearith.h"
- /*********************************************************************/
- /* Calculations in base MPD_RADIX */
- /*********************************************************************/
- /*
- * Knuth, TAOCP, Volume 2, 4.3.1:
- * w := sum of u (len m) and v (len n)
- * n > 0 and m >= n
- * The calling function has to handle a possible final carry.
- */
- mpd_uint_t
- _mpd_baseadd(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
- mpd_size_t m, mpd_size_t n)
- {
- mpd_uint_t s;
- mpd_uint_t carry = 0;
- mpd_size_t i;
- assert(n > 0 && m >= n);
- /* add n members of u and v */
- for (i = 0; i < n; i++) {
- s = u[i] + (v[i] + carry);
- carry = (s < u[i]) | (s >= MPD_RADIX);
- w[i] = carry ? s-MPD_RADIX : s;
- }
- /* if there is a carry, propagate it */
- for (; carry && i < m; i++) {
- s = u[i] + carry;
- carry = (s == MPD_RADIX);
- w[i] = carry ? 0 : s;
- }
- /* copy the rest of u */
- for (; i < m; i++) {
- w[i] = u[i];
- }
- return carry;
- }
- /*
- * Add the contents of u to w. Carries are propagated further. The caller
- * has to make sure that w is big enough.
- */
- void
- _mpd_baseaddto(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n)
- {
- mpd_uint_t s;
- mpd_uint_t carry = 0;
- mpd_size_t i;
- if (n == 0) return;
- /* add n members of u to w */
- for (i = 0; i < n; i++) {
- s = w[i] + (u[i] + carry);
- carry = (s < w[i]) | (s >= MPD_RADIX);
- w[i] = carry ? s-MPD_RADIX : s;
- }
- /* if there is a carry, propagate it */
- for (; carry; i++) {
- s = w[i] + carry;
- carry = (s == MPD_RADIX);
- w[i] = carry ? 0 : s;
- }
- }
- /*
- * Add v to w (len m). The calling function has to handle a possible
- * final carry. Assumption: m > 0.
- */
- mpd_uint_t
- _mpd_shortadd(mpd_uint_t *w, mpd_size_t m, mpd_uint_t v)
- {
- mpd_uint_t s;
- mpd_uint_t carry;
- mpd_size_t i;
- assert(m > 0);
- /* add v to w */
- s = w[0] + v;
- carry = (s < v) | (s >= MPD_RADIX);
- w[0] = carry ? s-MPD_RADIX : s;
- /* if there is a carry, propagate it */
- for (i = 1; carry && i < m; i++) {
- s = w[i] + carry;
- carry = (s == MPD_RADIX);
- w[i] = carry ? 0 : s;
- }
- return carry;
- }
- /* Increment u. The calling function has to handle a possible carry. */
- mpd_uint_t
- _mpd_baseincr(mpd_uint_t *u, mpd_size_t n)
- {
- mpd_uint_t s;
- mpd_uint_t carry = 1;
- mpd_size_t i;
- assert(n > 0);
- /* if there is a carry, propagate it */
- for (i = 0; carry && i < n; i++) {
- s = u[i] + carry;
- carry = (s == MPD_RADIX);
- u[i] = carry ? 0 : s;
- }
- return carry;
- }
- /*
- * Knuth, TAOCP, Volume 2, 4.3.1:
- * w := difference of u (len m) and v (len n).
- * number in u >= number in v;
- */
- void
- _mpd_basesub(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
- mpd_size_t m, mpd_size_t n)
- {
- mpd_uint_t d;
- mpd_uint_t borrow = 0;
- mpd_size_t i;
- assert(m > 0 && n > 0);
- /* subtract n members of v from u */
- for (i = 0; i < n; i++) {
- d = u[i] - (v[i] + borrow);
- borrow = (u[i] < d);
- w[i] = borrow ? d + MPD_RADIX : d;
- }
- /* if there is a borrow, propagate it */
- for (; borrow && i < m; i++) {
- d = u[i] - borrow;
- borrow = (u[i] == 0);
- w[i] = borrow ? MPD_RADIX-1 : d;
- }
- /* copy the rest of u */
- for (; i < m; i++) {
- w[i] = u[i];
- }
- }
- /*
- * Subtract the contents of u from w. w is larger than u. Borrows are
- * propagated further, but eventually w can absorb the final borrow.
- */
- void
- _mpd_basesubfrom(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n)
- {
- mpd_uint_t d;
- mpd_uint_t borrow = 0;
- mpd_size_t i;
- if (n == 0) return;
- /* subtract n members of u from w */
- for (i = 0; i < n; i++) {
- d = w[i] - (u[i] + borrow);
- borrow = (w[i] < d);
- w[i] = borrow ? d + MPD_RADIX : d;
- }
- /* if there is a borrow, propagate it */
- for (; borrow; i++) {
- d = w[i] - borrow;
- borrow = (w[i] == 0);
- w[i] = borrow ? MPD_RADIX-1 : d;
- }
- }
- /* w := product of u (len n) and v (single word) */
- void
- _mpd_shortmul(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v)
- {
- mpd_uint_t hi, lo;
- mpd_uint_t carry = 0;
- mpd_size_t i;
- assert(n > 0);
- for (i=0; i < n; i++) {
- _mpd_mul_words(&hi, &lo, u[i], v);
- lo = carry + lo;
- if (lo < carry) hi++;
- _mpd_div_words_r(&carry, &w[i], hi, lo);
- }
- w[i] = carry;
- }
- /*
- * Knuth, TAOCP, Volume 2, 4.3.1:
- * w := product of u (len m) and v (len n)
- * w must be initialized to zero
- */
- void
- _mpd_basemul(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
- mpd_size_t m, mpd_size_t n)
- {
- mpd_uint_t hi, lo;
- mpd_uint_t carry;
- mpd_size_t i, j;
- assert(m > 0 && n > 0);
- for (j=0; j < n; j++) {
- carry = 0;
- for (i=0; i < m; i++) {
- _mpd_mul_words(&hi, &lo, u[i], v[j]);
- lo = w[i+j] + lo;
- if (lo < w[i+j]) hi++;
- lo = carry + lo;
- if (lo < carry) hi++;
- _mpd_div_words_r(&carry, &w[i+j], hi, lo);
- }
- w[j+m] = carry;
- }
- }
- /*
- * Knuth, TAOCP Volume 2, 4.3.1, exercise 16:
- * w := quotient of u (len n) divided by a single word v
- */
- mpd_uint_t
- _mpd_shortdiv(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v)
- {
- mpd_uint_t hi, lo;
- mpd_uint_t rem = 0;
- mpd_size_t i;
- assert(n > 0);
- for (i=n-1; i != MPD_SIZE_MAX; i--) {
- _mpd_mul_words(&hi, &lo, rem, MPD_RADIX);
- lo = u[i] + lo;
- if (lo < u[i]) hi++;
- _mpd_div_words(&w[i], &rem, hi, lo, v);
- }
- return rem;
- }
- /*
- * Knuth, TAOCP Volume 2, 4.3.1:
- * q, r := quotient and remainder of uconst (len nplusm)
- * divided by vconst (len n)
- * nplusm >= n
- *
- * If r is not NULL, r will contain the remainder. If r is NULL, the
- * return value indicates if there is a remainder: 1 for true, 0 for
- * false. A return value of -1 indicates an error.
- */
- int
- _mpd_basedivmod(mpd_uint_t *q, mpd_uint_t *r,
- const mpd_uint_t *uconst, const mpd_uint_t *vconst,
- mpd_size_t nplusm, mpd_size_t n)
- {
- mpd_uint_t ustatic[MPD_MINALLOC_MAX];
- mpd_uint_t vstatic[MPD_MINALLOC_MAX];
- mpd_uint_t *u = ustatic;
- mpd_uint_t *v = vstatic;
- mpd_uint_t d, qhat, rhat, w2[2];
- mpd_uint_t hi, lo, x;
- mpd_uint_t carry;
- mpd_size_t i, j, m;
- int retval = 0;
- assert(n > 1 && nplusm >= n);
- m = sub_size_t(nplusm, n);
- /* D1: normalize */
- d = MPD_RADIX / (vconst[n-1] + 1);
- if (nplusm >= MPD_MINALLOC_MAX) {
- if ((u = mpd_alloc(nplusm+1, sizeof *u)) == NULL) {
- return -1;
- }
- }
- if (n >= MPD_MINALLOC_MAX) {
- if ((v = mpd_alloc(n+1, sizeof *v)) == NULL) {
- mpd_free(u);
- return -1;
- }
- }
- _mpd_shortmul(u, uconst, nplusm, d);
- _mpd_shortmul(v, vconst, n, d);
- /* D2: loop */
- for (j=m; j != MPD_SIZE_MAX; j--) {
- assert(2 <= j+n && j+n <= nplusm); /* annotation for scan-build */
- /* D3: calculate qhat and rhat */
- rhat = _mpd_shortdiv(w2, u+j+n-1, 2, v[n-1]);
- qhat = w2[1] * MPD_RADIX + w2[0];
- while (1) {
- if (qhat < MPD_RADIX) {
- _mpd_singlemul(w2, qhat, v[n-2]);
- if (w2[1] <= rhat) {
- if (w2[1] != rhat || w2[0] <= u[j+n-2]) {
- break;
- }
- }
- }
- qhat -= 1;
- rhat += v[n-1];
- if (rhat < v[n-1] || rhat >= MPD_RADIX) {
- break;
- }
- }
- /* D4: multiply and subtract */
- carry = 0;
- for (i=0; i <= n; i++) {
- _mpd_mul_words(&hi, &lo, qhat, v[i]);
- lo = carry + lo;
- if (lo < carry) hi++;
- _mpd_div_words_r(&hi, &lo, hi, lo);
- x = u[i+j] - lo;
- carry = (u[i+j] < x);
- u[i+j] = carry ? x+MPD_RADIX : x;
- carry += hi;
- }
- q[j] = qhat;
- /* D5: test remainder */
- if (carry) {
- q[j] -= 1;
- /* D6: add back */
- (void)_mpd_baseadd(u+j, u+j, v, n+1, n);
- }
- }
- /* D8: unnormalize */
- if (r != NULL) {
- _mpd_shortdiv(r, u, n, d);
- /* we are not interested in the return value here */
- retval = 0;
- }
- else {
- retval = !_mpd_isallzero(u, n);
- }
- if (u != ustatic) mpd_free(u);
- if (v != vstatic) mpd_free(v);
- return retval;
- }
- /*
- * Left shift of src by 'shift' digits; src may equal dest.
- *
- * dest := area of n mpd_uint_t with space for srcdigits+shift digits.
- * src := coefficient with length m.
- *
- * The case splits in the function are non-obvious. The following
- * equations might help:
- *
- * Let msdigits denote the number of digits in the most significant
- * word of src. Then 1 <= msdigits <= rdigits.
- *
- * 1) shift = q * rdigits + r
- * 2) srcdigits = qsrc * rdigits + msdigits
- * 3) destdigits = shift + srcdigits
- * = q * rdigits + r + qsrc * rdigits + msdigits
- * = q * rdigits + (qsrc * rdigits + (r + msdigits))
- *
- * The result has q zero words, followed by the coefficient that
- * is left-shifted by r. The case r == 0 is trivial. For r > 0, it
- * is important to keep in mind that we always read m source words,
- * but write m+1 destination words if r + msdigits > rdigits, m words
- * otherwise.
- */
- void
- _mpd_baseshiftl(mpd_uint_t *dest, mpd_uint_t *src, mpd_size_t n, mpd_size_t m,
- mpd_size_t shift)
- {
- #if defined(__GNUC__) && !defined(__INTEL_COMPILER) && !defined(__clang__)
- /* spurious uninitialized warnings */
- mpd_uint_t l=l, lprev=lprev, h=h;
- #else
- mpd_uint_t l, lprev, h;
- #endif
- mpd_uint_t q, r;
- mpd_uint_t ph;
- assert(m > 0 && n >= m);
- _mpd_div_word(&q, &r, (mpd_uint_t)shift, MPD_RDIGITS);
- if (r != 0) {
- ph = mpd_pow10[r];
- --m; --n;
- _mpd_divmod_pow10(&h, &lprev, src[m--], MPD_RDIGITS-r);
- if (h != 0) { /* r + msdigits > rdigits <==> h != 0 */
- dest[n--] = h;
- }
- /* write m-1 shifted words */
- for (; m != MPD_SIZE_MAX; m--,n--) {
- _mpd_divmod_pow10(&h, &l, src[m], MPD_RDIGITS-r);
- dest[n] = ph * lprev + h;
- lprev = l;
- }
- /* write least significant word */
- dest[q] = ph * lprev;
- }
- else {
- while (--m != MPD_SIZE_MAX) {
- dest[m+q] = src[m];
- }
- }
- mpd_uint_zero(dest, q);
- }
- /*
- * Right shift of src by 'shift' digits; src may equal dest.
- * Assumption: srcdigits-shift > 0.
- *
- * dest := area with space for srcdigits-shift digits.
- * src := coefficient with length 'slen'.
- *
- * The case splits in the function rely on the following equations:
- *
- * Let msdigits denote the number of digits in the most significant
- * word of src. Then 1 <= msdigits <= rdigits.
- *
- * 1) shift = q * rdigits + r
- * 2) srcdigits = qsrc * rdigits + msdigits
- * 3) destdigits = srcdigits - shift
- * = qsrc * rdigits + msdigits - (q * rdigits + r)
- * = (qsrc - q) * rdigits + msdigits - r
- *
- * Since destdigits > 0 and 1 <= msdigits <= rdigits:
- *
- * 4) qsrc >= q
- * 5) qsrc == q ==> msdigits > r
- *
- * The result has slen-q words if msdigits > r, slen-q-1 words otherwise.
- */
- mpd_uint_t
- _mpd_baseshiftr(mpd_uint_t *dest, mpd_uint_t *src, mpd_size_t slen,
- mpd_size_t shift)
- {
- #if defined(__GNUC__) && !defined(__INTEL_COMPILER) && !defined(__clang__)
- /* spurious uninitialized warnings */
- mpd_uint_t l=l, h=h, hprev=hprev; /* low, high, previous high */
- #else
- mpd_uint_t l, h, hprev; /* low, high, previous high */
- #endif
- mpd_uint_t rnd, rest; /* rounding digit, rest */
- mpd_uint_t q, r;
- mpd_size_t i, j;
- mpd_uint_t ph;
- assert(slen > 0);
- _mpd_div_word(&q, &r, (mpd_uint_t)shift, MPD_RDIGITS);
- rnd = rest = 0;
- if (r != 0) {
- ph = mpd_pow10[MPD_RDIGITS-r];
- _mpd_divmod_pow10(&hprev, &rest, src[q], r);
- _mpd_divmod_pow10(&rnd, &rest, rest, r-1);
- if (rest == 0 && q > 0) {
- rest = !_mpd_isallzero(src, q);
- }
- /* write slen-q-1 words */
- for (j=0,i=q+1; i<slen; i++,j++) {
- _mpd_divmod_pow10(&h, &l, src[i], r);
- dest[j] = ph * l + hprev;
- hprev = h;
- }
- /* write most significant word */
- if (hprev != 0) { /* always the case if slen==q-1 */
- dest[j] = hprev;
- }
- }
- else {
- if (q > 0) {
- _mpd_divmod_pow10(&rnd, &rest, src[q-1], MPD_RDIGITS-1);
- /* is there any non-zero digit below rnd? */
- if (rest == 0) rest = !_mpd_isallzero(src, q-1);
- }
- for (j = 0; j < slen-q; j++) {
- dest[j] = src[q+j];
- }
- }
- /* 0-4 ==> rnd+rest < 0.5 */
- /* 5 ==> rnd+rest == 0.5 */
- /* 6-9 ==> rnd+rest > 0.5 */
- return (rnd == 0 || rnd == 5) ? rnd + !!rest : rnd;
- }
- /*********************************************************************/
- /* Calculations in base b */
- /*********************************************************************/
- /*
- * Add v to w (len m). The calling function has to handle a possible
- * final carry. Assumption: m > 0.
- */
- mpd_uint_t
- _mpd_shortadd_b(mpd_uint_t *w, mpd_size_t m, mpd_uint_t v, mpd_uint_t b)
- {
- mpd_uint_t s;
- mpd_uint_t carry;
- mpd_size_t i;
- assert(m > 0);
- /* add v to w */
- s = w[0] + v;
- carry = (s < v) | (s >= b);
- w[0] = carry ? s-b : s;
- /* if there is a carry, propagate it */
- for (i = 1; carry && i < m; i++) {
- s = w[i] + carry;
- carry = (s == b);
- w[i] = carry ? 0 : s;
- }
- return carry;
- }
- /* w := product of u (len n) and v (single word). Return carry. */
- mpd_uint_t
- _mpd_shortmul_c(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v)
- {
- mpd_uint_t hi, lo;
- mpd_uint_t carry = 0;
- mpd_size_t i;
- assert(n > 0);
- for (i=0; i < n; i++) {
- _mpd_mul_words(&hi, &lo, u[i], v);
- lo = carry + lo;
- if (lo < carry) hi++;
- _mpd_div_words_r(&carry, &w[i], hi, lo);
- }
- return carry;
- }
- /* w := product of u (len n) and v (single word) */
- mpd_uint_t
- _mpd_shortmul_b(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n,
- mpd_uint_t v, mpd_uint_t b)
- {
- mpd_uint_t hi, lo;
- mpd_uint_t carry = 0;
- mpd_size_t i;
- assert(n > 0);
- for (i=0; i < n; i++) {
- _mpd_mul_words(&hi, &lo, u[i], v);
- lo = carry + lo;
- if (lo < carry) hi++;
- _mpd_div_words(&carry, &w[i], hi, lo, b);
- }
- return carry;
- }
- /*
- * Knuth, TAOCP Volume 2, 4.3.1, exercise 16:
- * w := quotient of u (len n) divided by a single word v
- */
- mpd_uint_t
- _mpd_shortdiv_b(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n,
- mpd_uint_t v, mpd_uint_t b)
- {
- mpd_uint_t hi, lo;
- mpd_uint_t rem = 0;
- mpd_size_t i;
- assert(n > 0);
- for (i=n-1; i != MPD_SIZE_MAX; i--) {
- _mpd_mul_words(&hi, &lo, rem, b);
- lo = u[i] + lo;
- if (lo < u[i]) hi++;
- _mpd_div_words(&w[i], &rem, hi, lo, v);
- }
- return rem;
- }
|