123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #ifndef ABSL_RANDOM_BETA_DISTRIBUTION_H_
- #define ABSL_RANDOM_BETA_DISTRIBUTION_H_
- #include <cassert>
- #include <cmath>
- #include <istream>
- #include <limits>
- #include <ostream>
- #include <type_traits>
- #include "absl/meta/type_traits.h"
- #include "absl/random/internal/fast_uniform_bits.h"
- #include "absl/random/internal/fastmath.h"
- #include "absl/random/internal/generate_real.h"
- #include "absl/random/internal/iostream_state_saver.h"
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- // absl::beta_distribution:
- // Generate a floating-point variate conforming to a Beta distribution:
- // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1),
- // where the params alpha and beta are both strictly positive real values.
- //
- // The support is the open interval (0, 1), but the return value might be equal
- // to 0 or 1, due to numerical errors when alpha and beta are very different.
- //
- // Usage note: One usage is that alpha and beta are counts of number of
- // successes and failures. When the total number of trials are large, consider
- // approximating a beta distribution with a Gaussian distribution with the same
- // mean and variance. One could use the skewness, which depends only on the
- // smaller of alpha and beta when the number of trials are sufficiently large,
- // to quantify how far a beta distribution is from the normal distribution.
- template <typename RealType = double>
- class beta_distribution {
- public:
- using result_type = RealType;
- class param_type {
- public:
- using distribution_type = beta_distribution;
- explicit param_type(result_type alpha, result_type beta)
- : alpha_(alpha), beta_(beta) {
- assert(alpha >= 0);
- assert(beta >= 0);
- assert(alpha <= (std::numeric_limits<result_type>::max)());
- assert(beta <= (std::numeric_limits<result_type>::max)());
- if (alpha == 0 || beta == 0) {
- method_ = DEGENERATE_SMALL;
- x_ = (alpha >= beta) ? 1 : 0;
- return;
- }
- // a_ = min(beta, alpha), b_ = max(beta, alpha).
- if (beta < alpha) {
- inverted_ = true;
- a_ = beta;
- b_ = alpha;
- } else {
- inverted_ = false;
- a_ = alpha;
- b_ = beta;
- }
- if (a_ <= 1 && b_ >= ThresholdForLargeA()) {
- method_ = DEGENERATE_SMALL;
- x_ = inverted_ ? result_type(1) : result_type(0);
- return;
- }
- // For threshold values, see also:
- // Evaluation of Beta Generation Algorithms, Ying-Chao Hung, et. al.
- // February, 2009.
- if ((b_ < 1.0 && a_ + b_ <= 1.2) || a_ <= ThresholdForSmallA()) {
- // Choose Joehnk over Cheng when it's faster or when Cheng encounters
- // numerical issues.
- method_ = JOEHNK;
- a_ = result_type(1) / alpha_;
- b_ = result_type(1) / beta_;
- if (std::isinf(a_) || std::isinf(b_)) {
- method_ = DEGENERATE_SMALL;
- x_ = inverted_ ? result_type(1) : result_type(0);
- }
- return;
- }
- if (a_ >= ThresholdForLargeA()) {
- method_ = DEGENERATE_LARGE;
- // Note: on PPC for long double, evaluating
- // `std::numeric_limits::max() / ThresholdForLargeA` results in NaN.
- result_type r = a_ / b_;
- x_ = (inverted_ ? result_type(1) : r) / (1 + r);
- return;
- }
- x_ = a_ + b_;
- log_x_ = std::log(x_);
- if (a_ <= 1) {
- method_ = CHENG_BA;
- y_ = result_type(1) / a_;
- gamma_ = a_ + a_;
- return;
- }
- method_ = CHENG_BB;
- result_type r = (a_ - 1) / (b_ - 1);
- y_ = std::sqrt((1 + r) / (b_ * r * 2 - r + 1));
- gamma_ = a_ + result_type(1) / y_;
- }
- result_type alpha() const { return alpha_; }
- result_type beta() const { return beta_; }
- friend bool operator==(const param_type& a, const param_type& b) {
- return a.alpha_ == b.alpha_ && a.beta_ == b.beta_;
- }
- friend bool operator!=(const param_type& a, const param_type& b) {
- return !(a == b);
- }
- private:
- friend class beta_distribution;
- #ifdef _MSC_VER
- // MSVC does not have constexpr implementations for std::log and std::exp
- // so they are computed at runtime.
- #define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR
- #else
- #define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR constexpr
- #endif
- // The threshold for whether std::exp(1/a) is finite.
- // Note that this value is quite large, and a smaller a_ is NOT abnormal.
- static ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR result_type
- ThresholdForSmallA() {
- return result_type(1) /
- std::log((std::numeric_limits<result_type>::max)());
- }
- // The threshold for whether a * std::log(a) is finite.
- static ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR result_type
- ThresholdForLargeA() {
- return std::exp(
- std::log((std::numeric_limits<result_type>::max)()) -
- std::log(std::log((std::numeric_limits<result_type>::max)())) -
- ThresholdPadding());
- }
- #undef ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR
- // Pad the threshold for large A for long double on PPC. This is done via a
- // template specialization below.
- static constexpr result_type ThresholdPadding() { return 0; }
- enum Method {
- JOEHNK, // Uses algorithm Joehnk
- CHENG_BA, // Uses algorithm BA in Cheng
- CHENG_BB, // Uses algorithm BB in Cheng
- // Note: See also:
- // Hung et al. Evaluation of beta generation algorithms. Communications
- // in Statistics-Simulation and Computation 38.4 (2009): 750-770.
- // especially:
- // Zechner, Heinz, and Ernst Stadlober. Generating beta variates via
- // patchwork rejection. Computing 50.1 (1993): 1-18.
- DEGENERATE_SMALL, // a_ is abnormally small.
- DEGENERATE_LARGE, // a_ is abnormally large.
- };
- result_type alpha_;
- result_type beta_;
- result_type a_{}; // the smaller of {alpha, beta}, or 1.0/alpha_ in JOEHNK
- result_type b_{}; // the larger of {alpha, beta}, or 1.0/beta_ in JOEHNK
- result_type x_{}; // alpha + beta, or the result in degenerate cases
- result_type log_x_{}; // log(x_)
- result_type y_{}; // "beta" in Cheng
- result_type gamma_{}; // "gamma" in Cheng
- Method method_{};
- // Placing this last for optimal alignment.
- // Whether alpha_ != a_, i.e. true iff alpha_ > beta_.
- bool inverted_{};
- static_assert(std::is_floating_point<RealType>::value,
- "Class-template absl::beta_distribution<> must be "
- "parameterized using a floating-point type.");
- };
- beta_distribution() : beta_distribution(1) {}
- explicit beta_distribution(result_type alpha, result_type beta = 1)
- : param_(alpha, beta) {}
- explicit beta_distribution(const param_type& p) : param_(p) {}
- void reset() {}
- // Generating functions
- template <typename URBG>
- result_type operator()(URBG& g) { // NOLINT(runtime/references)
- return (*this)(g, param_);
- }
- template <typename URBG>
- result_type operator()(URBG& g, // NOLINT(runtime/references)
- const param_type& p);
- param_type param() const { return param_; }
- void param(const param_type& p) { param_ = p; }
- result_type(min)() const { return 0; }
- result_type(max)() const { return 1; }
- result_type alpha() const { return param_.alpha(); }
- result_type beta() const { return param_.beta(); }
- friend bool operator==(const beta_distribution& a,
- const beta_distribution& b) {
- return a.param_ == b.param_;
- }
- friend bool operator!=(const beta_distribution& a,
- const beta_distribution& b) {
- return a.param_ != b.param_;
- }
- private:
- template <typename URBG>
- result_type AlgorithmJoehnk(URBG& g, // NOLINT(runtime/references)
- const param_type& p);
- template <typename URBG>
- result_type AlgorithmCheng(URBG& g, // NOLINT(runtime/references)
- const param_type& p);
- template <typename URBG>
- result_type DegenerateCase(URBG& g, // NOLINT(runtime/references)
- const param_type& p) {
- if (p.method_ == param_type::DEGENERATE_SMALL && p.alpha_ == p.beta_) {
- // Returns 0 or 1 with equal probability.
- random_internal::FastUniformBits<uint8_t> fast_u8;
- return static_cast<result_type>((fast_u8(g) & 0x10) !=
- 0); // pick any single bit.
- }
- return p.x_;
- }
- param_type param_;
- random_internal::FastUniformBits<uint64_t> fast_u64_;
- };
- #if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \
- defined(__ppc__) || defined(__PPC__)
- // PPC needs a more stringent boundary for long double.
- template <>
- constexpr long double
- beta_distribution<long double>::param_type::ThresholdPadding() {
- return 10;
- }
- #endif
- template <typename RealType>
- template <typename URBG>
- typename beta_distribution<RealType>::result_type
- beta_distribution<RealType>::AlgorithmJoehnk(
- URBG& g, // NOLINT(runtime/references)
- const param_type& p) {
- using random_internal::GeneratePositiveTag;
- using random_internal::GenerateRealFromBits;
- using real_type =
- absl::conditional_t<std::is_same<RealType, float>::value, float, double>;
- // Based on Joehnk, M. D. Erzeugung von betaverteilten und gammaverteilten
- // Zufallszahlen. Metrika 8.1 (1964): 5-15.
- // This method is described in Knuth, Vol 2 (Third Edition), pp 134.
- result_type u, v, x, y, z;
- for (;;) {
- u = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
- fast_u64_(g));
- v = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
- fast_u64_(g));
- // Direct method. std::pow is slow for float, so rely on the optimizer to
- // remove the std::pow() path for that case.
- if (!std::is_same<float, result_type>::value) {
- x = std::pow(u, p.a_);
- y = std::pow(v, p.b_);
- z = x + y;
- if (z > 1) {
- // Reject if and only if `x + y > 1.0`
- continue;
- }
- if (z > 0) {
- // When both alpha and beta are small, x and y are both close to 0, so
- // divide by (x+y) directly may result in nan.
- return x / z;
- }
- }
- // Log transform.
- // x = log( pow(u, p.a_) ), y = log( pow(v, p.b_) )
- // since u, v <= 1.0, x, y < 0.
- x = std::log(u) * p.a_;
- y = std::log(v) * p.b_;
- if (!std::isfinite(x) || !std::isfinite(y)) {
- continue;
- }
- // z = log( pow(u, a) + pow(v, b) )
- z = x > y ? (x + std::log(1 + std::exp(y - x)))
- : (y + std::log(1 + std::exp(x - y)));
- // Reject iff log(x+y) > 0.
- if (z > 0) {
- continue;
- }
- return std::exp(x - z);
- }
- }
- template <typename RealType>
- template <typename URBG>
- typename beta_distribution<RealType>::result_type
- beta_distribution<RealType>::AlgorithmCheng(
- URBG& g, // NOLINT(runtime/references)
- const param_type& p) {
- using random_internal::GeneratePositiveTag;
- using random_internal::GenerateRealFromBits;
- using real_type =
- absl::conditional_t<std::is_same<RealType, float>::value, float, double>;
- // Based on Cheng, Russell CH. Generating beta variates with nonintegral
- // shape parameters. Communications of the ACM 21.4 (1978): 317-322.
- // (https://dl.acm.org/citation.cfm?id=359482).
- static constexpr result_type kLogFour =
- result_type(1.3862943611198906188344642429163531361); // log(4)
- static constexpr result_type kS =
- result_type(2.6094379124341003746007593332261876); // 1+log(5)
- const bool use_algorithm_ba = (p.method_ == param_type::CHENG_BA);
- result_type u1, u2, v, w, z, r, s, t, bw_inv, lhs;
- for (;;) {
- u1 = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
- fast_u64_(g));
- u2 = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
- fast_u64_(g));
- v = p.y_ * std::log(u1 / (1 - u1));
- w = p.a_ * std::exp(v);
- bw_inv = result_type(1) / (p.b_ + w);
- r = p.gamma_ * v - kLogFour;
- s = p.a_ + r - w;
- z = u1 * u1 * u2;
- if (!use_algorithm_ba && s + kS >= 5 * z) {
- break;
- }
- t = std::log(z);
- if (!use_algorithm_ba && s >= t) {
- break;
- }
- lhs = p.x_ * (p.log_x_ + std::log(bw_inv)) + r;
- if (lhs >= t) {
- break;
- }
- }
- return p.inverted_ ? (1 - w * bw_inv) : w * bw_inv;
- }
- template <typename RealType>
- template <typename URBG>
- typename beta_distribution<RealType>::result_type
- beta_distribution<RealType>::operator()(URBG& g, // NOLINT(runtime/references)
- const param_type& p) {
- switch (p.method_) {
- case param_type::JOEHNK:
- return AlgorithmJoehnk(g, p);
- case param_type::CHENG_BA:
- ABSL_FALLTHROUGH_INTENDED;
- case param_type::CHENG_BB:
- return AlgorithmCheng(g, p);
- default:
- return DegenerateCase(g, p);
- }
- }
- template <typename CharT, typename Traits, typename RealType>
- std::basic_ostream<CharT, Traits>& operator<<(
- std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
- const beta_distribution<RealType>& x) {
- auto saver = random_internal::make_ostream_state_saver(os);
- os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);
- os << x.alpha() << os.fill() << x.beta();
- return os;
- }
- template <typename CharT, typename Traits, typename RealType>
- std::basic_istream<CharT, Traits>& operator>>(
- std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
- beta_distribution<RealType>& x) { // NOLINT(runtime/references)
- using result_type = typename beta_distribution<RealType>::result_type;
- using param_type = typename beta_distribution<RealType>::param_type;
- result_type alpha, beta;
- auto saver = random_internal::make_istream_state_saver(is);
- alpha = random_internal::read_floating_point<result_type>(is);
- if (is.fail()) return is;
- beta = random_internal::read_floating_point<result_type>(is);
- if (!is.fail()) {
- x.param(param_type(alpha, beta));
- }
- return is;
- }
- ABSL_NAMESPACE_END
- } // namespace absl
- #endif // ABSL_RANDOM_BETA_DISTRIBUTION_H_
|