123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182 |
- // Copyright 2018 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // An open-addressing
- // hashtable with quadratic probing.
- //
- // This is a low level hashtable on top of which different interfaces can be
- // implemented, like flat_hash_set, node_hash_set, string_hash_set, etc.
- //
- // The table interface is similar to that of std::unordered_set. Notable
- // differences are that most member functions support heterogeneous keys when
- // BOTH the hash and eq functions are marked as transparent. They do so by
- // providing a typedef called `is_transparent`.
- //
- // When heterogeneous lookup is enabled, functions that take key_type act as if
- // they have an overload set like:
- //
- // iterator find(const key_type& key);
- // template <class K>
- // iterator find(const K& key);
- //
- // size_type erase(const key_type& key);
- // template <class K>
- // size_type erase(const K& key);
- //
- // std::pair<iterator, iterator> equal_range(const key_type& key);
- // template <class K>
- // std::pair<iterator, iterator> equal_range(const K& key);
- //
- // When heterogeneous lookup is disabled, only the explicit `key_type` overloads
- // exist.
- //
- // find() also supports passing the hash explicitly:
- //
- // iterator find(const key_type& key, size_t hash);
- // template <class U>
- // iterator find(const U& key, size_t hash);
- //
- // In addition the pointer to element and iterator stability guarantees are
- // weaker: all iterators and pointers are invalidated after a new element is
- // inserted.
- //
- // IMPLEMENTATION DETAILS
- //
- // # Table Layout
- //
- // A raw_hash_set's backing array consists of control bytes followed by slots
- // that may or may not contain objects.
- //
- // The layout of the backing array, for `capacity` slots, is thus, as a
- // pseudo-struct:
- //
- // struct BackingArray {
- // // Sampling handler. This field isn't present when the sampling is
- // // disabled or this allocation hasn't been selected for sampling.
- // HashtablezInfoHandle infoz_;
- // // The number of elements we can insert before growing the capacity.
- // size_t growth_left;
- // // Control bytes for the "real" slots.
- // ctrl_t ctrl[capacity];
- // // Always `ctrl_t::kSentinel`. This is used by iterators to find when to
- // // stop and serves no other purpose.
- // ctrl_t sentinel;
- // // A copy of the first `kWidth - 1` elements of `ctrl`. This is used so
- // // that if a probe sequence picks a value near the end of `ctrl`,
- // // `Group` will have valid control bytes to look at.
- // ctrl_t clones[kWidth - 1];
- // // The actual slot data.
- // slot_type slots[capacity];
- // };
- //
- // The length of this array is computed by `RawHashSetLayout::alloc_size` below.
- //
- // Control bytes (`ctrl_t`) are bytes (collected into groups of a
- // platform-specific size) that define the state of the corresponding slot in
- // the slot array. Group manipulation is tightly optimized to be as efficient
- // as possible: SSE and friends on x86, clever bit operations on other arches.
- //
- // Group 1 Group 2 Group 3
- // +---------------+---------------+---------------+
- // | | | | | | | | | | | | | | | | | | | | | | | | |
- // +---------------+---------------+---------------+
- //
- // Each control byte is either a special value for empty slots, deleted slots
- // (sometimes called *tombstones*), and a special end-of-table marker used by
- // iterators, or, if occupied, seven bits (H2) from the hash of the value in the
- // corresponding slot.
- //
- // Storing control bytes in a separate array also has beneficial cache effects,
- // since more logical slots will fit into a cache line.
- //
- // # Small Object Optimization (SOO)
- //
- // When the size/alignment of the value_type and the capacity of the table are
- // small, we enable small object optimization and store the values inline in
- // the raw_hash_set object. This optimization allows us to avoid
- // allocation/deallocation as well as cache/dTLB misses.
- //
- // # Hashing
- //
- // We compute two separate hashes, `H1` and `H2`, from the hash of an object.
- // `H1(hash(x))` is an index into `slots`, and essentially the starting point
- // for the probe sequence. `H2(hash(x))` is a 7-bit value used to filter out
- // objects that cannot possibly be the one we are looking for.
- //
- // # Table operations.
- //
- // The key operations are `insert`, `find`, and `erase`.
- //
- // Since `insert` and `erase` are implemented in terms of `find`, we describe
- // `find` first. To `find` a value `x`, we compute `hash(x)`. From
- // `H1(hash(x))` and the capacity, we construct a `probe_seq` that visits every
- // group of slots in some interesting order.
- //
- // We now walk through these indices. At each index, we select the entire group
- // starting with that index and extract potential candidates: occupied slots
- // with a control byte equal to `H2(hash(x))`. If we find an empty slot in the
- // group, we stop and return an error. Each candidate slot `y` is compared with
- // `x`; if `x == y`, we are done and return `&y`; otherwise we continue to the
- // next probe index. Tombstones effectively behave like full slots that never
- // match the value we're looking for.
- //
- // The `H2` bits ensure when we compare a slot to an object with `==`, we are
- // likely to have actually found the object. That is, the chance is low that
- // `==` is called and returns `false`. Thus, when we search for an object, we
- // are unlikely to call `==` many times. This likelyhood can be analyzed as
- // follows (assuming that H2 is a random enough hash function).
- //
- // Let's assume that there are `k` "wrong" objects that must be examined in a
- // probe sequence. For example, when doing a `find` on an object that is in the
- // table, `k` is the number of objects between the start of the probe sequence
- // and the final found object (not including the final found object). The
- // expected number of objects with an H2 match is then `k/128`. Measurements
- // and analysis indicate that even at high load factors, `k` is less than 32,
- // meaning that the number of "false positive" comparisons we must perform is
- // less than 1/8 per `find`.
- // `insert` is implemented in terms of `unchecked_insert`, which inserts a
- // value presumed to not be in the table (violating this requirement will cause
- // the table to behave erratically). Given `x` and its hash `hash(x)`, to insert
- // it, we construct a `probe_seq` once again, and use it to find the first
- // group with an unoccupied (empty *or* deleted) slot. We place `x` into the
- // first such slot in the group and mark it as full with `x`'s H2.
- //
- // To `insert`, we compose `unchecked_insert` with `find`. We compute `h(x)` and
- // perform a `find` to see if it's already present; if it is, we're done. If
- // it's not, we may decide the table is getting overcrowded (i.e. the load
- // factor is greater than 7/8 for big tables; `is_small()` tables use a max load
- // factor of 1); in this case, we allocate a bigger array, `unchecked_insert`
- // each element of the table into the new array (we know that no insertion here
- // will insert an already-present value), and discard the old backing array. At
- // this point, we may `unchecked_insert` the value `x`.
- //
- // Below, `unchecked_insert` is partly implemented by `prepare_insert`, which
- // presents a viable, initialized slot pointee to the caller.
- //
- // `erase` is implemented in terms of `erase_at`, which takes an index to a
- // slot. Given an offset, we simply create a tombstone and destroy its contents.
- // If we can prove that the slot would not appear in a probe sequence, we can
- // make the slot as empty, instead. We can prove this by observing that if a
- // group has any empty slots, it has never been full (assuming we never create
- // an empty slot in a group with no empties, which this heuristic guarantees we
- // never do) and find would stop at this group anyways (since it does not probe
- // beyond groups with empties).
- //
- // `erase` is `erase_at` composed with `find`: if we
- // have a value `x`, we can perform a `find`, and then `erase_at` the resulting
- // slot.
- //
- // To iterate, we simply traverse the array, skipping empty and deleted slots
- // and stopping when we hit a `kSentinel`.
- #ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
- #define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
- #include <algorithm>
- #include <cassert>
- #include <cmath>
- #include <cstddef>
- #include <cstdint>
- #include <cstring>
- #include <initializer_list>
- #include <iterator>
- #include <limits>
- #include <memory>
- #include <tuple>
- #include <type_traits>
- #include <utility>
- #include "absl/base/attributes.h"
- #include "absl/base/config.h"
- #include "absl/base/internal/endian.h"
- #include "absl/base/internal/raw_logging.h"
- #include "absl/base/macros.h"
- #include "absl/base/optimization.h"
- #include "absl/base/options.h"
- #include "absl/base/port.h"
- #include "absl/base/prefetch.h"
- #include "absl/container/internal/common.h" // IWYU pragma: export // for node_handle
- #include "absl/container/internal/compressed_tuple.h"
- #include "absl/container/internal/container_memory.h"
- #include "absl/container/internal/hash_policy_traits.h"
- #include "absl/container/internal/hashtable_debug_hooks.h"
- #include "absl/container/internal/hashtablez_sampler.h"
- #include "absl/memory/memory.h"
- #include "absl/meta/type_traits.h"
- #include "absl/numeric/bits.h"
- #include "absl/utility/utility.h"
- #ifdef ABSL_INTERNAL_HAVE_SSE2
- #include <emmintrin.h>
- #endif
- #ifdef ABSL_INTERNAL_HAVE_SSSE3
- #include <tmmintrin.h>
- #endif
- #ifdef _MSC_VER
- #include <intrin.h>
- #endif
- #ifdef ABSL_INTERNAL_HAVE_ARM_NEON
- #include <arm_neon.h>
- #endif
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- namespace container_internal {
- #ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS
- #error ABSL_SWISSTABLE_ENABLE_GENERATIONS cannot be directly set
- #elif (defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
- defined(ABSL_HAVE_HWADDRESS_SANITIZER) || \
- defined(ABSL_HAVE_MEMORY_SANITIZER)) && \
- !defined(NDEBUG_SANITIZER) // If defined, performance is important.
- // When compiled in sanitizer mode, we add generation integers to the backing
- // array and iterators. In the backing array, we store the generation between
- // the control bytes and the slots. When iterators are dereferenced, we assert
- // that the container has not been mutated in a way that could cause iterator
- // invalidation since the iterator was initialized.
- #define ABSL_SWISSTABLE_ENABLE_GENERATIONS
- #endif
- // We use uint8_t so we don't need to worry about padding.
- using GenerationType = uint8_t;
- // A sentinel value for empty generations. Using 0 makes it easy to constexpr
- // initialize an array of this value.
- constexpr GenerationType SentinelEmptyGeneration() { return 0; }
- constexpr GenerationType NextGeneration(GenerationType generation) {
- return ++generation == SentinelEmptyGeneration() ? ++generation : generation;
- }
- #ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS
- constexpr bool SwisstableGenerationsEnabled() { return true; }
- constexpr size_t NumGenerationBytes() { return sizeof(GenerationType); }
- #else
- constexpr bool SwisstableGenerationsEnabled() { return false; }
- constexpr size_t NumGenerationBytes() { return 0; }
- #endif
- template <typename AllocType>
- void SwapAlloc(AllocType& lhs, AllocType& rhs,
- std::true_type /* propagate_on_container_swap */) {
- using std::swap;
- swap(lhs, rhs);
- }
- template <typename AllocType>
- void SwapAlloc(AllocType& lhs, AllocType& rhs,
- std::false_type /* propagate_on_container_swap */) {
- (void)lhs;
- (void)rhs;
- assert(lhs == rhs &&
- "It's UB to call swap with unequal non-propagating allocators.");
- }
- template <typename AllocType>
- void CopyAlloc(AllocType& lhs, AllocType& rhs,
- std::true_type /* propagate_alloc */) {
- lhs = rhs;
- }
- template <typename AllocType>
- void CopyAlloc(AllocType&, AllocType&, std::false_type /* propagate_alloc */) {}
- // The state for a probe sequence.
- //
- // Currently, the sequence is a triangular progression of the form
- //
- // p(i) := Width * (i^2 + i)/2 + hash (mod mask + 1)
- //
- // The use of `Width` ensures that each probe step does not overlap groups;
- // the sequence effectively outputs the addresses of *groups* (although not
- // necessarily aligned to any boundary). The `Group` machinery allows us
- // to check an entire group with minimal branching.
- //
- // Wrapping around at `mask + 1` is important, but not for the obvious reason.
- // As described above, the first few entries of the control byte array
- // are mirrored at the end of the array, which `Group` will find and use
- // for selecting candidates. However, when those candidates' slots are
- // actually inspected, there are no corresponding slots for the cloned bytes,
- // so we need to make sure we've treated those offsets as "wrapping around".
- //
- // It turns out that this probe sequence visits every group exactly once if the
- // number of groups is a power of two, since (i^2+i)/2 is a bijection in
- // Z/(2^m). See https://en.wikipedia.org/wiki/Quadratic_probing
- template <size_t Width>
- class probe_seq {
- public:
- // Creates a new probe sequence using `hash` as the initial value of the
- // sequence and `mask` (usually the capacity of the table) as the mask to
- // apply to each value in the progression.
- probe_seq(size_t hash, size_t mask) {
- assert(((mask + 1) & mask) == 0 && "not a mask");
- mask_ = mask;
- offset_ = hash & mask_;
- }
- // The offset within the table, i.e., the value `p(i)` above.
- size_t offset() const { return offset_; }
- size_t offset(size_t i) const { return (offset_ + i) & mask_; }
- void next() {
- index_ += Width;
- offset_ += index_;
- offset_ &= mask_;
- }
- // 0-based probe index, a multiple of `Width`.
- size_t index() const { return index_; }
- private:
- size_t mask_;
- size_t offset_;
- size_t index_ = 0;
- };
- template <class ContainerKey, class Hash, class Eq>
- struct RequireUsableKey {
- template <class PassedKey, class... Args>
- std::pair<
- decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())),
- decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(),
- std::declval<const PassedKey&>()))>*
- operator()(const PassedKey&, const Args&...) const;
- };
- template <class E, class Policy, class Hash, class Eq, class... Ts>
- struct IsDecomposable : std::false_type {};
- template <class Policy, class Hash, class Eq, class... Ts>
- struct IsDecomposable<
- absl::void_t<decltype(Policy::apply(
- RequireUsableKey<typename Policy::key_type, Hash, Eq>(),
- std::declval<Ts>()...))>,
- Policy, Hash, Eq, Ts...> : std::true_type {};
- // TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it.
- template <class T>
- constexpr bool IsNoThrowSwappable(std::true_type = {} /* is_swappable */) {
- using std::swap;
- return noexcept(swap(std::declval<T&>(), std::declval<T&>()));
- }
- template <class T>
- constexpr bool IsNoThrowSwappable(std::false_type /* is_swappable */) {
- return false;
- }
- template <typename T>
- uint32_t TrailingZeros(T x) {
- ABSL_ASSUME(x != 0);
- return static_cast<uint32_t>(countr_zero(x));
- }
- // 8 bytes bitmask with most significant bit set for every byte.
- constexpr uint64_t kMsbs8Bytes = 0x8080808080808080ULL;
- // An abstract bitmask, such as that emitted by a SIMD instruction.
- //
- // Specifically, this type implements a simple bitset whose representation is
- // controlled by `SignificantBits` and `Shift`. `SignificantBits` is the number
- // of abstract bits in the bitset, while `Shift` is the log-base-two of the
- // width of an abstract bit in the representation.
- // This mask provides operations for any number of real bits set in an abstract
- // bit. To add iteration on top of that, implementation must guarantee no more
- // than the most significant real bit is set in a set abstract bit.
- template <class T, int SignificantBits, int Shift = 0>
- class NonIterableBitMask {
- public:
- explicit NonIterableBitMask(T mask) : mask_(mask) {}
- explicit operator bool() const { return this->mask_ != 0; }
- // Returns the index of the lowest *abstract* bit set in `self`.
- uint32_t LowestBitSet() const {
- return container_internal::TrailingZeros(mask_) >> Shift;
- }
- // Returns the index of the highest *abstract* bit set in `self`.
- uint32_t HighestBitSet() const {
- return static_cast<uint32_t>((bit_width(mask_) - 1) >> Shift);
- }
- // Returns the number of trailing zero *abstract* bits.
- uint32_t TrailingZeros() const {
- return container_internal::TrailingZeros(mask_) >> Shift;
- }
- // Returns the number of leading zero *abstract* bits.
- uint32_t LeadingZeros() const {
- constexpr int total_significant_bits = SignificantBits << Shift;
- constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits;
- return static_cast<uint32_t>(
- countl_zero(static_cast<T>(mask_ << extra_bits))) >>
- Shift;
- }
- T mask_;
- };
- // Mask that can be iterable
- //
- // For example, when `SignificantBits` is 16 and `Shift` is zero, this is just
- // an ordinary 16-bit bitset occupying the low 16 bits of `mask`. When
- // `SignificantBits` is 8 and `Shift` is 3, abstract bits are represented as
- // the bytes `0x00` and `0x80`, and it occupies all 64 bits of the bitmask.
- // If NullifyBitsOnIteration is true (only allowed for Shift == 3),
- // non zero abstract bit is allowed to have additional bits
- // (e.g., `0xff`, `0x83` and `0x9c` are ok, but `0x6f` is not).
- //
- // For example:
- // for (int i : BitMask<uint32_t, 16>(0b101)) -> yields 0, 2
- // for (int i : BitMask<uint64_t, 8, 3>(0x0000000080800000)) -> yields 2, 3
- template <class T, int SignificantBits, int Shift = 0,
- bool NullifyBitsOnIteration = false>
- class BitMask : public NonIterableBitMask<T, SignificantBits, Shift> {
- using Base = NonIterableBitMask<T, SignificantBits, Shift>;
- static_assert(std::is_unsigned<T>::value, "");
- static_assert(Shift == 0 || Shift == 3, "");
- static_assert(!NullifyBitsOnIteration || Shift == 3, "");
- public:
- explicit BitMask(T mask) : Base(mask) {
- if (Shift == 3 && !NullifyBitsOnIteration) {
- assert(this->mask_ == (this->mask_ & kMsbs8Bytes));
- }
- }
- // BitMask is an iterator over the indices of its abstract bits.
- using value_type = int;
- using iterator = BitMask;
- using const_iterator = BitMask;
- BitMask& operator++() {
- if (Shift == 3 && NullifyBitsOnIteration) {
- this->mask_ &= kMsbs8Bytes;
- }
- this->mask_ &= (this->mask_ - 1);
- return *this;
- }
- uint32_t operator*() const { return Base::LowestBitSet(); }
- BitMask begin() const { return *this; }
- BitMask end() const { return BitMask(0); }
- private:
- friend bool operator==(const BitMask& a, const BitMask& b) {
- return a.mask_ == b.mask_;
- }
- friend bool operator!=(const BitMask& a, const BitMask& b) {
- return a.mask_ != b.mask_;
- }
- };
- using h2_t = uint8_t;
- // The values here are selected for maximum performance. See the static asserts
- // below for details.
- // A `ctrl_t` is a single control byte, which can have one of four
- // states: empty, deleted, full (which has an associated seven-bit h2_t value)
- // and the sentinel. They have the following bit patterns:
- //
- // empty: 1 0 0 0 0 0 0 0
- // deleted: 1 1 1 1 1 1 1 0
- // full: 0 h h h h h h h // h represents the hash bits.
- // sentinel: 1 1 1 1 1 1 1 1
- //
- // These values are specifically tuned for SSE-flavored SIMD.
- // The static_asserts below detail the source of these choices.
- //
- // We use an enum class so that when strict aliasing is enabled, the compiler
- // knows ctrl_t doesn't alias other types.
- enum class ctrl_t : int8_t {
- kEmpty = -128, // 0b10000000
- kDeleted = -2, // 0b11111110
- kSentinel = -1, // 0b11111111
- };
- static_assert(
- (static_cast<int8_t>(ctrl_t::kEmpty) &
- static_cast<int8_t>(ctrl_t::kDeleted) &
- static_cast<int8_t>(ctrl_t::kSentinel) & 0x80) != 0,
- "Special markers need to have the MSB to make checking for them efficient");
- static_assert(
- ctrl_t::kEmpty < ctrl_t::kSentinel && ctrl_t::kDeleted < ctrl_t::kSentinel,
- "ctrl_t::kEmpty and ctrl_t::kDeleted must be smaller than "
- "ctrl_t::kSentinel to make the SIMD test of IsEmptyOrDeleted() efficient");
- static_assert(
- ctrl_t::kSentinel == static_cast<ctrl_t>(-1),
- "ctrl_t::kSentinel must be -1 to elide loading it from memory into SIMD "
- "registers (pcmpeqd xmm, xmm)");
- static_assert(ctrl_t::kEmpty == static_cast<ctrl_t>(-128),
- "ctrl_t::kEmpty must be -128 to make the SIMD check for its "
- "existence efficient (psignb xmm, xmm)");
- static_assert(
- (~static_cast<int8_t>(ctrl_t::kEmpty) &
- ~static_cast<int8_t>(ctrl_t::kDeleted) &
- static_cast<int8_t>(ctrl_t::kSentinel) & 0x7F) != 0,
- "ctrl_t::kEmpty and ctrl_t::kDeleted must share an unset bit that is not "
- "shared by ctrl_t::kSentinel to make the scalar test for "
- "MaskEmptyOrDeleted() efficient");
- static_assert(ctrl_t::kDeleted == static_cast<ctrl_t>(-2),
- "ctrl_t::kDeleted must be -2 to make the implementation of "
- "ConvertSpecialToEmptyAndFullToDeleted efficient");
- // See definition comment for why this is size 32.
- ABSL_DLL extern const ctrl_t kEmptyGroup[32];
- // Returns a pointer to a control byte group that can be used by empty tables.
- inline ctrl_t* EmptyGroup() {
- // Const must be cast away here; no uses of this function will actually write
- // to it because it is only used for empty tables.
- return const_cast<ctrl_t*>(kEmptyGroup + 16);
- }
- // For use in SOO iterators.
- // TODO(b/289225379): we could potentially get rid of this by adding an is_soo
- // bit in iterators. This would add branches but reduce cache misses.
- ABSL_DLL extern const ctrl_t kSooControl[17];
- // Returns a pointer to a full byte followed by a sentinel byte.
- inline ctrl_t* SooControl() {
- // Const must be cast away here; no uses of this function will actually write
- // to it because it is only used for SOO iterators.
- return const_cast<ctrl_t*>(kSooControl);
- }
- // Whether ctrl is from the SooControl array.
- inline bool IsSooControl(const ctrl_t* ctrl) { return ctrl == SooControl(); }
- // Returns a pointer to a generation to use for an empty hashtable.
- GenerationType* EmptyGeneration();
- // Returns whether `generation` is a generation for an empty hashtable that
- // could be returned by EmptyGeneration().
- inline bool IsEmptyGeneration(const GenerationType* generation) {
- return *generation == SentinelEmptyGeneration();
- }
- // Mixes a randomly generated per-process seed with `hash` and `ctrl` to
- // randomize insertion order within groups.
- bool ShouldInsertBackwardsForDebug(size_t capacity, size_t hash,
- const ctrl_t* ctrl);
- ABSL_ATTRIBUTE_ALWAYS_INLINE inline bool ShouldInsertBackwards(
- ABSL_ATTRIBUTE_UNUSED size_t capacity, ABSL_ATTRIBUTE_UNUSED size_t hash,
- ABSL_ATTRIBUTE_UNUSED const ctrl_t* ctrl) {
- #if defined(NDEBUG)
- return false;
- #else
- return ShouldInsertBackwardsForDebug(capacity, hash, ctrl);
- #endif
- }
- // Returns insert position for the given mask.
- // We want to add entropy even when ASLR is not enabled.
- // In debug build we will randomly insert in either the front or back of
- // the group.
- // TODO(kfm,sbenza): revisit after we do unconditional mixing
- template <class Mask>
- ABSL_ATTRIBUTE_ALWAYS_INLINE inline auto GetInsertionOffset(
- Mask mask, ABSL_ATTRIBUTE_UNUSED size_t capacity,
- ABSL_ATTRIBUTE_UNUSED size_t hash,
- ABSL_ATTRIBUTE_UNUSED const ctrl_t* ctrl) {
- #if defined(NDEBUG)
- return mask.LowestBitSet();
- #else
- return ShouldInsertBackwardsForDebug(capacity, hash, ctrl)
- ? mask.HighestBitSet()
- : mask.LowestBitSet();
- #endif
- }
- // Returns a per-table, hash salt, which changes on resize. This gets mixed into
- // H1 to randomize iteration order per-table.
- //
- // The seed consists of the ctrl_ pointer, which adds enough entropy to ensure
- // non-determinism of iteration order in most cases.
- inline size_t PerTableSalt(const ctrl_t* ctrl) {
- // The low bits of the pointer have little or no entropy because of
- // alignment. We shift the pointer to try to use higher entropy bits. A
- // good number seems to be 12 bits, because that aligns with page size.
- return reinterpret_cast<uintptr_t>(ctrl) >> 12;
- }
- // Extracts the H1 portion of a hash: 57 bits mixed with a per-table salt.
- inline size_t H1(size_t hash, const ctrl_t* ctrl) {
- return (hash >> 7) ^ PerTableSalt(ctrl);
- }
- // Extracts the H2 portion of a hash: the 7 bits not used for H1.
- //
- // These are used as an occupied control byte.
- inline h2_t H2(size_t hash) { return hash & 0x7F; }
- // Helpers for checking the state of a control byte.
- inline bool IsEmpty(ctrl_t c) { return c == ctrl_t::kEmpty; }
- inline bool IsFull(ctrl_t c) {
- // Cast `c` to the underlying type instead of casting `0` to `ctrl_t` as `0`
- // is not a value in the enum. Both ways are equivalent, but this way makes
- // linters happier.
- return static_cast<std::underlying_type_t<ctrl_t>>(c) >= 0;
- }
- inline bool IsDeleted(ctrl_t c) { return c == ctrl_t::kDeleted; }
- inline bool IsEmptyOrDeleted(ctrl_t c) { return c < ctrl_t::kSentinel; }
- #ifdef ABSL_INTERNAL_HAVE_SSE2
- // Quick reference guide for intrinsics used below:
- //
- // * __m128i: An XMM (128-bit) word.
- //
- // * _mm_setzero_si128: Returns a zero vector.
- // * _mm_set1_epi8: Returns a vector with the same i8 in each lane.
- //
- // * _mm_subs_epi8: Saturating-subtracts two i8 vectors.
- // * _mm_and_si128: Ands two i128s together.
- // * _mm_or_si128: Ors two i128s together.
- // * _mm_andnot_si128: And-nots two i128s together.
- //
- // * _mm_cmpeq_epi8: Component-wise compares two i8 vectors for equality,
- // filling each lane with 0x00 or 0xff.
- // * _mm_cmpgt_epi8: Same as above, but using > rather than ==.
- //
- // * _mm_loadu_si128: Performs an unaligned load of an i128.
- // * _mm_storeu_si128: Performs an unaligned store of an i128.
- //
- // * _mm_sign_epi8: Retains, negates, or zeroes each i8 lane of the first
- // argument if the corresponding lane of the second
- // argument is positive, negative, or zero, respectively.
- // * _mm_movemask_epi8: Selects the sign bit out of each i8 lane and produces a
- // bitmask consisting of those bits.
- // * _mm_shuffle_epi8: Selects i8s from the first argument, using the low
- // four bits of each i8 lane in the second argument as
- // indices.
- // https://github.com/abseil/abseil-cpp/issues/209
- // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87853
- // _mm_cmpgt_epi8 is broken under GCC with -funsigned-char
- // Work around this by using the portable implementation of Group
- // when using -funsigned-char under GCC.
- inline __m128i _mm_cmpgt_epi8_fixed(__m128i a, __m128i b) {
- #if defined(__GNUC__) && !defined(__clang__)
- if (std::is_unsigned<char>::value) {
- const __m128i mask = _mm_set1_epi8(0x80);
- const __m128i diff = _mm_subs_epi8(b, a);
- return _mm_cmpeq_epi8(_mm_and_si128(diff, mask), mask);
- }
- #endif
- return _mm_cmpgt_epi8(a, b);
- }
- struct GroupSse2Impl {
- static constexpr size_t kWidth = 16; // the number of slots per group
- explicit GroupSse2Impl(const ctrl_t* pos) {
- ctrl = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pos));
- }
- // Returns a bitmask representing the positions of slots that match hash.
- BitMask<uint16_t, kWidth> Match(h2_t hash) const {
- auto match = _mm_set1_epi8(static_cast<char>(hash));
- BitMask<uint16_t, kWidth> result = BitMask<uint16_t, kWidth>(0);
- result = BitMask<uint16_t, kWidth>(
- static_cast<uint16_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl))));
- return result;
- }
- // Returns a bitmask representing the positions of empty slots.
- NonIterableBitMask<uint16_t, kWidth> MaskEmpty() const {
- #ifdef ABSL_INTERNAL_HAVE_SSSE3
- // This only works because ctrl_t::kEmpty is -128.
- return NonIterableBitMask<uint16_t, kWidth>(
- static_cast<uint16_t>(_mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl))));
- #else
- auto match = _mm_set1_epi8(static_cast<char>(ctrl_t::kEmpty));
- return NonIterableBitMask<uint16_t, kWidth>(
- static_cast<uint16_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl))));
- #endif
- }
- // Returns a bitmask representing the positions of full slots.
- // Note: for `is_small()` tables group may contain the "same" slot twice:
- // original and mirrored.
- BitMask<uint16_t, kWidth> MaskFull() const {
- return BitMask<uint16_t, kWidth>(
- static_cast<uint16_t>(_mm_movemask_epi8(ctrl) ^ 0xffff));
- }
- // Returns a bitmask representing the positions of non full slots.
- // Note: this includes: kEmpty, kDeleted, kSentinel.
- // It is useful in contexts when kSentinel is not present.
- auto MaskNonFull() const {
- return BitMask<uint16_t, kWidth>(
- static_cast<uint16_t>(_mm_movemask_epi8(ctrl)));
- }
- // Returns a bitmask representing the positions of empty or deleted slots.
- NonIterableBitMask<uint16_t, kWidth> MaskEmptyOrDeleted() const {
- auto special = _mm_set1_epi8(static_cast<char>(ctrl_t::kSentinel));
- return NonIterableBitMask<uint16_t, kWidth>(static_cast<uint16_t>(
- _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl))));
- }
- // Returns the number of trailing empty or deleted elements in the group.
- uint32_t CountLeadingEmptyOrDeleted() const {
- auto special = _mm_set1_epi8(static_cast<char>(ctrl_t::kSentinel));
- return TrailingZeros(static_cast<uint32_t>(
- _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1));
- }
- void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
- auto msbs = _mm_set1_epi8(static_cast<char>(-128));
- auto x126 = _mm_set1_epi8(126);
- #ifdef ABSL_INTERNAL_HAVE_SSSE3
- auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs);
- #else
- auto zero = _mm_setzero_si128();
- auto special_mask = _mm_cmpgt_epi8_fixed(zero, ctrl);
- auto res = _mm_or_si128(msbs, _mm_andnot_si128(special_mask, x126));
- #endif
- _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), res);
- }
- __m128i ctrl;
- };
- #endif // ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2
- #if defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN)
- struct GroupAArch64Impl {
- static constexpr size_t kWidth = 8;
- explicit GroupAArch64Impl(const ctrl_t* pos) {
- ctrl = vld1_u8(reinterpret_cast<const uint8_t*>(pos));
- }
- auto Match(h2_t hash) const {
- uint8x8_t dup = vdup_n_u8(hash);
- auto mask = vceq_u8(ctrl, dup);
- return BitMask<uint64_t, kWidth, /*Shift=*/3,
- /*NullifyBitsOnIteration=*/true>(
- vget_lane_u64(vreinterpret_u64_u8(mask), 0));
- }
- NonIterableBitMask<uint64_t, kWidth, 3> MaskEmpty() const {
- uint64_t mask =
- vget_lane_u64(vreinterpret_u64_u8(vceq_s8(
- vdup_n_s8(static_cast<int8_t>(ctrl_t::kEmpty)),
- vreinterpret_s8_u8(ctrl))),
- 0);
- return NonIterableBitMask<uint64_t, kWidth, 3>(mask);
- }
- // Returns a bitmask representing the positions of full slots.
- // Note: for `is_small()` tables group may contain the "same" slot twice:
- // original and mirrored.
- auto MaskFull() const {
- uint64_t mask = vget_lane_u64(
- vreinterpret_u64_u8(vcge_s8(vreinterpret_s8_u8(ctrl),
- vdup_n_s8(static_cast<int8_t>(0)))),
- 0);
- return BitMask<uint64_t, kWidth, /*Shift=*/3,
- /*NullifyBitsOnIteration=*/true>(mask);
- }
- // Returns a bitmask representing the positions of non full slots.
- // Note: this includes: kEmpty, kDeleted, kSentinel.
- // It is useful in contexts when kSentinel is not present.
- auto MaskNonFull() const {
- uint64_t mask = vget_lane_u64(
- vreinterpret_u64_u8(vclt_s8(vreinterpret_s8_u8(ctrl),
- vdup_n_s8(static_cast<int8_t>(0)))),
- 0);
- return BitMask<uint64_t, kWidth, /*Shift=*/3,
- /*NullifyBitsOnIteration=*/true>(mask);
- }
- NonIterableBitMask<uint64_t, kWidth, 3> MaskEmptyOrDeleted() const {
- uint64_t mask =
- vget_lane_u64(vreinterpret_u64_u8(vcgt_s8(
- vdup_n_s8(static_cast<int8_t>(ctrl_t::kSentinel)),
- vreinterpret_s8_u8(ctrl))),
- 0);
- return NonIterableBitMask<uint64_t, kWidth, 3>(mask);
- }
- uint32_t CountLeadingEmptyOrDeleted() const {
- uint64_t mask =
- vget_lane_u64(vreinterpret_u64_u8(vcle_s8(
- vdup_n_s8(static_cast<int8_t>(ctrl_t::kSentinel)),
- vreinterpret_s8_u8(ctrl))),
- 0);
- // Similar to MaskEmptyorDeleted() but we invert the logic to invert the
- // produced bitfield. We then count number of trailing zeros.
- // Clang and GCC optimize countr_zero to rbit+clz without any check for 0,
- // so we should be fine.
- return static_cast<uint32_t>(countr_zero(mask)) >> 3;
- }
- void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
- uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(ctrl), 0);
- constexpr uint64_t slsbs = 0x0202020202020202ULL;
- constexpr uint64_t midbs = 0x7e7e7e7e7e7e7e7eULL;
- auto x = slsbs & (mask >> 6);
- auto res = (x + midbs) | kMsbs8Bytes;
- little_endian::Store64(dst, res);
- }
- uint8x8_t ctrl;
- };
- #endif // ABSL_INTERNAL_HAVE_ARM_NEON && ABSL_IS_LITTLE_ENDIAN
- struct GroupPortableImpl {
- static constexpr size_t kWidth = 8;
- explicit GroupPortableImpl(const ctrl_t* pos)
- : ctrl(little_endian::Load64(pos)) {}
- BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const {
- // For the technique, see:
- // http://graphics.stanford.edu/~seander/bithacks.html##ValueInWord
- // (Determine if a word has a byte equal to n).
- //
- // Caveat: there are false positives but:
- // - they only occur if there is a real match
- // - they never occur on ctrl_t::kEmpty, ctrl_t::kDeleted, ctrl_t::kSentinel
- // - they will be handled gracefully by subsequent checks in code
- //
- // Example:
- // v = 0x1716151413121110
- // hash = 0x12
- // retval = (v - lsbs) & ~v & msbs = 0x0000000080800000
- constexpr uint64_t lsbs = 0x0101010101010101ULL;
- auto x = ctrl ^ (lsbs * hash);
- return BitMask<uint64_t, kWidth, 3>((x - lsbs) & ~x & kMsbs8Bytes);
- }
- NonIterableBitMask<uint64_t, kWidth, 3> MaskEmpty() const {
- return NonIterableBitMask<uint64_t, kWidth, 3>((ctrl & ~(ctrl << 6)) &
- kMsbs8Bytes);
- }
- // Returns a bitmask representing the positions of full slots.
- // Note: for `is_small()` tables group may contain the "same" slot twice:
- // original and mirrored.
- BitMask<uint64_t, kWidth, 3> MaskFull() const {
- return BitMask<uint64_t, kWidth, 3>((ctrl ^ kMsbs8Bytes) & kMsbs8Bytes);
- }
- // Returns a bitmask representing the positions of non full slots.
- // Note: this includes: kEmpty, kDeleted, kSentinel.
- // It is useful in contexts when kSentinel is not present.
- auto MaskNonFull() const {
- return BitMask<uint64_t, kWidth, 3>(ctrl & kMsbs8Bytes);
- }
- NonIterableBitMask<uint64_t, kWidth, 3> MaskEmptyOrDeleted() const {
- return NonIterableBitMask<uint64_t, kWidth, 3>((ctrl & ~(ctrl << 7)) &
- kMsbs8Bytes);
- }
- uint32_t CountLeadingEmptyOrDeleted() const {
- // ctrl | ~(ctrl >> 7) will have the lowest bit set to zero for kEmpty and
- // kDeleted. We lower all other bits and count number of trailing zeros.
- constexpr uint64_t bits = 0x0101010101010101ULL;
- return static_cast<uint32_t>(countr_zero((ctrl | ~(ctrl >> 7)) & bits) >>
- 3);
- }
- void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
- constexpr uint64_t lsbs = 0x0101010101010101ULL;
- auto x = ctrl & kMsbs8Bytes;
- auto res = (~x + (x >> 7)) & ~lsbs;
- little_endian::Store64(dst, res);
- }
- uint64_t ctrl;
- };
- #ifdef ABSL_INTERNAL_HAVE_SSE2
- using Group = GroupSse2Impl;
- using GroupFullEmptyOrDeleted = GroupSse2Impl;
- #elif defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN)
- using Group = GroupAArch64Impl;
- // For Aarch64, we use the portable implementation for counting and masking
- // full, empty or deleted group elements. This is to avoid the latency of moving
- // between data GPRs and Neon registers when it does not provide a benefit.
- // Using Neon is profitable when we call Match(), but is not when we don't,
- // which is the case when we do *EmptyOrDeleted and MaskFull operations.
- // It is difficult to make a similar approach beneficial on other architectures
- // such as x86 since they have much lower GPR <-> vector register transfer
- // latency and 16-wide Groups.
- using GroupFullEmptyOrDeleted = GroupPortableImpl;
- #else
- using Group = GroupPortableImpl;
- using GroupFullEmptyOrDeleted = GroupPortableImpl;
- #endif
- // When there is an insertion with no reserved growth, we rehash with
- // probability `min(1, RehashProbabilityConstant() / capacity())`. Using a
- // constant divided by capacity ensures that inserting N elements is still O(N)
- // in the average case. Using the constant 16 means that we expect to rehash ~8
- // times more often than when generations are disabled. We are adding expected
- // rehash_probability * #insertions/capacity_growth = 16/capacity * ((7/8 -
- // 7/16) * capacity)/capacity_growth = ~7 extra rehashes per capacity growth.
- inline size_t RehashProbabilityConstant() { return 16; }
- class CommonFieldsGenerationInfoEnabled {
- // A sentinel value for reserved_growth_ indicating that we just ran out of
- // reserved growth on the last insertion. When reserve is called and then
- // insertions take place, reserved_growth_'s state machine is N, ..., 1,
- // kReservedGrowthJustRanOut, 0.
- static constexpr size_t kReservedGrowthJustRanOut =
- (std::numeric_limits<size_t>::max)();
- public:
- CommonFieldsGenerationInfoEnabled() = default;
- CommonFieldsGenerationInfoEnabled(CommonFieldsGenerationInfoEnabled&& that)
- : reserved_growth_(that.reserved_growth_),
- reservation_size_(that.reservation_size_),
- generation_(that.generation_) {
- that.reserved_growth_ = 0;
- that.reservation_size_ = 0;
- that.generation_ = EmptyGeneration();
- }
- CommonFieldsGenerationInfoEnabled& operator=(
- CommonFieldsGenerationInfoEnabled&&) = default;
- // Whether we should rehash on insert in order to detect bugs of using invalid
- // references. We rehash on the first insertion after reserved_growth_ reaches
- // 0 after a call to reserve. We also do a rehash with low probability
- // whenever reserved_growth_ is zero.
- bool should_rehash_for_bug_detection_on_insert(const ctrl_t* ctrl,
- size_t capacity) const;
- // Similar to above, except that we don't depend on reserved_growth_.
- bool should_rehash_for_bug_detection_on_move(const ctrl_t* ctrl,
- size_t capacity) const;
- void maybe_increment_generation_on_insert() {
- if (reserved_growth_ == kReservedGrowthJustRanOut) reserved_growth_ = 0;
- if (reserved_growth_ > 0) {
- if (--reserved_growth_ == 0) reserved_growth_ = kReservedGrowthJustRanOut;
- } else {
- increment_generation();
- }
- }
- void increment_generation() { *generation_ = NextGeneration(*generation_); }
- void reset_reserved_growth(size_t reservation, size_t size) {
- reserved_growth_ = reservation - size;
- }
- size_t reserved_growth() const { return reserved_growth_; }
- void set_reserved_growth(size_t r) { reserved_growth_ = r; }
- size_t reservation_size() const { return reservation_size_; }
- void set_reservation_size(size_t r) { reservation_size_ = r; }
- GenerationType generation() const { return *generation_; }
- void set_generation(GenerationType g) { *generation_ = g; }
- GenerationType* generation_ptr() const { return generation_; }
- void set_generation_ptr(GenerationType* g) { generation_ = g; }
- private:
- // The number of insertions remaining that are guaranteed to not rehash due to
- // a prior call to reserve. Note: we store reserved growth in addition to
- // reservation size because calls to erase() decrease size_ but don't decrease
- // reserved growth.
- size_t reserved_growth_ = 0;
- // The maximum argument to reserve() since the container was cleared. We need
- // to keep track of this, in addition to reserved growth, because we reset
- // reserved growth to this when erase(begin(), end()) is called.
- size_t reservation_size_ = 0;
- // Pointer to the generation counter, which is used to validate iterators and
- // is stored in the backing array between the control bytes and the slots.
- // Note that we can't store the generation inside the container itself and
- // keep a pointer to the container in the iterators because iterators must
- // remain valid when the container is moved.
- // Note: we could derive this pointer from the control pointer, but it makes
- // the code more complicated, and there's a benefit in having the sizes of
- // raw_hash_set in sanitizer mode and non-sanitizer mode a bit more different,
- // which is that tests are less likely to rely on the size remaining the same.
- GenerationType* generation_ = EmptyGeneration();
- };
- class CommonFieldsGenerationInfoDisabled {
- public:
- CommonFieldsGenerationInfoDisabled() = default;
- CommonFieldsGenerationInfoDisabled(CommonFieldsGenerationInfoDisabled&&) =
- default;
- CommonFieldsGenerationInfoDisabled& operator=(
- CommonFieldsGenerationInfoDisabled&&) = default;
- bool should_rehash_for_bug_detection_on_insert(const ctrl_t*, size_t) const {
- return false;
- }
- bool should_rehash_for_bug_detection_on_move(const ctrl_t*, size_t) const {
- return false;
- }
- void maybe_increment_generation_on_insert() {}
- void increment_generation() {}
- void reset_reserved_growth(size_t, size_t) {}
- size_t reserved_growth() const { return 0; }
- void set_reserved_growth(size_t) {}
- size_t reservation_size() const { return 0; }
- void set_reservation_size(size_t) {}
- GenerationType generation() const { return 0; }
- void set_generation(GenerationType) {}
- GenerationType* generation_ptr() const { return nullptr; }
- void set_generation_ptr(GenerationType*) {}
- };
- class HashSetIteratorGenerationInfoEnabled {
- public:
- HashSetIteratorGenerationInfoEnabled() = default;
- explicit HashSetIteratorGenerationInfoEnabled(
- const GenerationType* generation_ptr)
- : generation_ptr_(generation_ptr), generation_(*generation_ptr) {}
- GenerationType generation() const { return generation_; }
- void reset_generation() { generation_ = *generation_ptr_; }
- const GenerationType* generation_ptr() const { return generation_ptr_; }
- void set_generation_ptr(const GenerationType* ptr) { generation_ptr_ = ptr; }
- private:
- const GenerationType* generation_ptr_ = EmptyGeneration();
- GenerationType generation_ = *generation_ptr_;
- };
- class HashSetIteratorGenerationInfoDisabled {
- public:
- HashSetIteratorGenerationInfoDisabled() = default;
- explicit HashSetIteratorGenerationInfoDisabled(const GenerationType*) {}
- GenerationType generation() const { return 0; }
- void reset_generation() {}
- const GenerationType* generation_ptr() const { return nullptr; }
- void set_generation_ptr(const GenerationType*) {}
- };
- #ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS
- using CommonFieldsGenerationInfo = CommonFieldsGenerationInfoEnabled;
- using HashSetIteratorGenerationInfo = HashSetIteratorGenerationInfoEnabled;
- #else
- using CommonFieldsGenerationInfo = CommonFieldsGenerationInfoDisabled;
- using HashSetIteratorGenerationInfo = HashSetIteratorGenerationInfoDisabled;
- #endif
- // Stored the information regarding number of slots we can still fill
- // without needing to rehash.
- //
- // We want to ensure sufficient number of empty slots in the table in order
- // to keep probe sequences relatively short. Empty slot in the probe group
- // is required to stop probing.
- //
- // Tombstones (kDeleted slots) are not included in the growth capacity,
- // because we'd like to rehash when the table is filled with tombstones and/or
- // full slots.
- //
- // GrowthInfo also stores a bit that encodes whether table may have any
- // deleted slots.
- // Most of the tables (>95%) have no deleted slots, so some functions can
- // be more efficient with this information.
- //
- // Callers can also force a rehash via the standard `rehash(0)`,
- // which will recompute this value as a side-effect.
- //
- // See also `CapacityToGrowth()`.
- class GrowthInfo {
- public:
- // Leaves data member uninitialized.
- GrowthInfo() = default;
- // Initializes the GrowthInfo assuming we can grow `growth_left` elements
- // and there are no kDeleted slots in the table.
- void InitGrowthLeftNoDeleted(size_t growth_left) {
- growth_left_info_ = growth_left;
- }
- // Overwrites single full slot with an empty slot.
- void OverwriteFullAsEmpty() { ++growth_left_info_; }
- // Overwrites single empty slot with a full slot.
- void OverwriteEmptyAsFull() {
- assert(GetGrowthLeft() > 0);
- --growth_left_info_;
- }
- // Overwrites several empty slots with full slots.
- void OverwriteManyEmptyAsFull(size_t cnt) {
- assert(GetGrowthLeft() >= cnt);
- growth_left_info_ -= cnt;
- }
- // Overwrites specified control element with full slot.
- void OverwriteControlAsFull(ctrl_t ctrl) {
- assert(GetGrowthLeft() >= static_cast<size_t>(IsEmpty(ctrl)));
- growth_left_info_ -= static_cast<size_t>(IsEmpty(ctrl));
- }
- // Overwrites single full slot with a deleted slot.
- void OverwriteFullAsDeleted() { growth_left_info_ |= kDeletedBit; }
- // Returns true if table satisfies two properties:
- // 1. Guaranteed to have no kDeleted slots.
- // 2. There is a place for at least one element to grow.
- bool HasNoDeletedAndGrowthLeft() const {
- return static_cast<std::make_signed_t<size_t>>(growth_left_info_) > 0;
- }
- // Returns true if the table satisfies two properties:
- // 1. Guaranteed to have no kDeleted slots.
- // 2. There is no growth left.
- bool HasNoGrowthLeftAndNoDeleted() const { return growth_left_info_ == 0; }
- // Returns true if table guaranteed to have no k
- bool HasNoDeleted() const {
- return static_cast<std::make_signed_t<size_t>>(growth_left_info_) >= 0;
- }
- // Returns the number of elements left to grow.
- size_t GetGrowthLeft() const { return growth_left_info_ & kGrowthLeftMask; }
- private:
- static constexpr size_t kGrowthLeftMask = ((~size_t{}) >> 1);
- static constexpr size_t kDeletedBit = ~kGrowthLeftMask;
- // Topmost bit signal whenever there are deleted slots.
- size_t growth_left_info_;
- };
- static_assert(sizeof(GrowthInfo) == sizeof(size_t), "");
- static_assert(alignof(GrowthInfo) == alignof(size_t), "");
- // Returns whether `n` is a valid capacity (i.e., number of slots).
- //
- // A valid capacity is a non-zero integer `2^m - 1`.
- inline bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; }
- // Returns the number of "cloned control bytes".
- //
- // This is the number of control bytes that are present both at the beginning
- // of the control byte array and at the end, such that we can create a
- // `Group::kWidth`-width probe window starting from any control byte.
- constexpr size_t NumClonedBytes() { return Group::kWidth - 1; }
- // Returns the number of control bytes including cloned.
- constexpr size_t NumControlBytes(size_t capacity) {
- return capacity + 1 + NumClonedBytes();
- }
- // Computes the offset from the start of the backing allocation of control.
- // infoz and growth_info are stored at the beginning of the backing array.
- inline static size_t ControlOffset(bool has_infoz) {
- return (has_infoz ? sizeof(HashtablezInfoHandle) : 0) + sizeof(GrowthInfo);
- }
- // Helper class for computing offsets and allocation size of hash set fields.
- class RawHashSetLayout {
- public:
- explicit RawHashSetLayout(size_t capacity, size_t slot_align, bool has_infoz)
- : capacity_(capacity),
- control_offset_(ControlOffset(has_infoz)),
- generation_offset_(control_offset_ + NumControlBytes(capacity)),
- slot_offset_(
- (generation_offset_ + NumGenerationBytes() + slot_align - 1) &
- (~slot_align + 1)) {
- assert(IsValidCapacity(capacity));
- }
- // Returns the capacity of a table.
- size_t capacity() const { return capacity_; }
- // Returns precomputed offset from the start of the backing allocation of
- // control.
- size_t control_offset() const { return control_offset_; }
- // Given the capacity of a table, computes the offset (from the start of the
- // backing allocation) of the generation counter (if it exists).
- size_t generation_offset() const { return generation_offset_; }
- // Given the capacity of a table, computes the offset (from the start of the
- // backing allocation) at which the slots begin.
- size_t slot_offset() const { return slot_offset_; }
- // Given the capacity of a table, computes the total size of the backing
- // array.
- size_t alloc_size(size_t slot_size) const {
- ABSL_HARDENING_ASSERT(
- slot_size <=
- ((std::numeric_limits<size_t>::max)() - slot_offset_) / capacity_);
- return slot_offset_ + capacity_ * slot_size;
- }
- private:
- size_t capacity_;
- size_t control_offset_;
- size_t generation_offset_;
- size_t slot_offset_;
- };
- struct HashtableFreeFunctionsAccess;
- // We only allow a maximum of 1 SOO element, which makes the implementation
- // much simpler. Complications with multiple SOO elements include:
- // - Satisfying the guarantee that erasing one element doesn't invalidate
- // iterators to other elements means we would probably need actual SOO
- // control bytes.
- // - In order to prevent user code from depending on iteration order for small
- // tables, we would need to randomize the iteration order somehow.
- constexpr size_t SooCapacity() { return 1; }
- // Sentinel type to indicate SOO CommonFields construction.
- struct soo_tag_t {};
- // Sentinel type to indicate SOO CommonFields construction with full size.
- struct full_soo_tag_t {};
- // Suppress erroneous uninitialized memory errors on GCC. For example, GCC
- // thinks that the call to slot_array() in find_or_prepare_insert() is reading
- // uninitialized memory, but slot_array is only called there when the table is
- // non-empty and this memory is initialized when the table is non-empty.
- #if !defined(__clang__) && defined(__GNUC__)
- #define ABSL_SWISSTABLE_IGNORE_UNINITIALIZED(x) \
- _Pragma("GCC diagnostic push") \
- _Pragma("GCC diagnostic ignored \"-Wmaybe-uninitialized\"") \
- _Pragma("GCC diagnostic ignored \"-Wuninitialized\"") x; \
- _Pragma("GCC diagnostic pop")
- #define ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(x) \
- ABSL_SWISSTABLE_IGNORE_UNINITIALIZED(return x)
- #else
- #define ABSL_SWISSTABLE_IGNORE_UNINITIALIZED(x) x
- #define ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(x) return x
- #endif
- // This allows us to work around an uninitialized memory warning when
- // constructing begin() iterators in empty hashtables.
- union MaybeInitializedPtr {
- void* get() const { ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(p); }
- void set(void* ptr) { p = ptr; }
- void* p;
- };
- struct HeapPtrs {
- HeapPtrs() = default;
- explicit HeapPtrs(ctrl_t* c) : control(c) {}
- // The control bytes (and, also, a pointer near to the base of the backing
- // array).
- //
- // This contains `capacity + 1 + NumClonedBytes()` entries, even
- // when the table is empty (hence EmptyGroup).
- //
- // Note that growth_info is stored immediately before this pointer.
- // May be uninitialized for SOO tables.
- ctrl_t* control;
- // The beginning of the slots, located at `SlotOffset()` bytes after
- // `control`. May be uninitialized for empty tables.
- // Note: we can't use `slots` because Qt defines "slots" as a macro.
- MaybeInitializedPtr slot_array;
- };
- // Manages the backing array pointers or the SOO slot. When raw_hash_set::is_soo
- // is true, the SOO slot is stored in `soo_data`. Otherwise, we use `heap`.
- union HeapOrSoo {
- HeapOrSoo() = default;
- explicit HeapOrSoo(ctrl_t* c) : heap(c) {}
- ctrl_t*& control() {
- ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.control);
- }
- ctrl_t* control() const {
- ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.control);
- }
- MaybeInitializedPtr& slot_array() {
- ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.slot_array);
- }
- MaybeInitializedPtr slot_array() const {
- ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.slot_array);
- }
- void* get_soo_data() {
- ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(soo_data);
- }
- const void* get_soo_data() const {
- ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(soo_data);
- }
- HeapPtrs heap;
- unsigned char soo_data[sizeof(HeapPtrs)];
- };
- // CommonFields hold the fields in raw_hash_set that do not depend
- // on template parameters. This allows us to conveniently pass all
- // of this state to helper functions as a single argument.
- class CommonFields : public CommonFieldsGenerationInfo {
- public:
- CommonFields() : capacity_(0), size_(0), heap_or_soo_(EmptyGroup()) {}
- explicit CommonFields(soo_tag_t) : capacity_(SooCapacity()), size_(0) {}
- explicit CommonFields(full_soo_tag_t)
- : capacity_(SooCapacity()), size_(size_t{1} << HasInfozShift()) {}
- // Not copyable
- CommonFields(const CommonFields&) = delete;
- CommonFields& operator=(const CommonFields&) = delete;
- // Movable
- CommonFields(CommonFields&& that) = default;
- CommonFields& operator=(CommonFields&&) = default;
- template <bool kSooEnabled>
- static CommonFields CreateDefault() {
- return kSooEnabled ? CommonFields{soo_tag_t{}} : CommonFields{};
- }
- // The inline data for SOO is written on top of control_/slots_.
- const void* soo_data() const { return heap_or_soo_.get_soo_data(); }
- void* soo_data() { return heap_or_soo_.get_soo_data(); }
- HeapOrSoo heap_or_soo() const { return heap_or_soo_; }
- const HeapOrSoo& heap_or_soo_ref() const { return heap_or_soo_; }
- ctrl_t* control() const { return heap_or_soo_.control(); }
- void set_control(ctrl_t* c) { heap_or_soo_.control() = c; }
- void* backing_array_start() const {
- // growth_info (and maybe infoz) is stored before control bytes.
- assert(reinterpret_cast<uintptr_t>(control()) % alignof(size_t) == 0);
- return control() - ControlOffset(has_infoz());
- }
- // Note: we can't use slots() because Qt defines "slots" as a macro.
- void* slot_array() const { return heap_or_soo_.slot_array().get(); }
- MaybeInitializedPtr slots_union() const { return heap_or_soo_.slot_array(); }
- void set_slots(void* s) { heap_or_soo_.slot_array().set(s); }
- // The number of filled slots.
- size_t size() const { return size_ >> HasInfozShift(); }
- void set_size(size_t s) {
- size_ = (s << HasInfozShift()) | (size_ & HasInfozMask());
- }
- void set_empty_soo() {
- AssertInSooMode();
- size_ = 0;
- }
- void set_full_soo() {
- AssertInSooMode();
- size_ = size_t{1} << HasInfozShift();
- }
- void increment_size() {
- assert(size() < capacity());
- size_ += size_t{1} << HasInfozShift();
- }
- void decrement_size() {
- assert(size() > 0);
- size_ -= size_t{1} << HasInfozShift();
- }
- // The total number of available slots.
- size_t capacity() const { return capacity_; }
- void set_capacity(size_t c) {
- assert(c == 0 || IsValidCapacity(c));
- capacity_ = c;
- }
- // The number of slots we can still fill without needing to rehash.
- // This is stored in the heap allocation before the control bytes.
- // TODO(b/289225379): experiment with moving growth_info back inline to
- // increase room for SOO.
- size_t growth_left() const { return growth_info().GetGrowthLeft(); }
- GrowthInfo& growth_info() {
- auto* gl_ptr = reinterpret_cast<GrowthInfo*>(control()) - 1;
- assert(reinterpret_cast<uintptr_t>(gl_ptr) % alignof(GrowthInfo) == 0);
- return *gl_ptr;
- }
- GrowthInfo growth_info() const {
- return const_cast<CommonFields*>(this)->growth_info();
- }
- bool has_infoz() const {
- return ABSL_PREDICT_FALSE((size_ & HasInfozMask()) != 0);
- }
- void set_has_infoz(bool has_infoz) {
- size_ = (size() << HasInfozShift()) | static_cast<size_t>(has_infoz);
- }
- HashtablezInfoHandle infoz() {
- return has_infoz()
- ? *reinterpret_cast<HashtablezInfoHandle*>(backing_array_start())
- : HashtablezInfoHandle();
- }
- void set_infoz(HashtablezInfoHandle infoz) {
- assert(has_infoz());
- *reinterpret_cast<HashtablezInfoHandle*>(backing_array_start()) = infoz;
- }
- bool should_rehash_for_bug_detection_on_insert() const {
- return CommonFieldsGenerationInfo::
- should_rehash_for_bug_detection_on_insert(control(), capacity());
- }
- bool should_rehash_for_bug_detection_on_move() const {
- return CommonFieldsGenerationInfo::should_rehash_for_bug_detection_on_move(
- control(), capacity());
- }
- void reset_reserved_growth(size_t reservation) {
- CommonFieldsGenerationInfo::reset_reserved_growth(reservation, size());
- }
- // The size of the backing array allocation.
- size_t alloc_size(size_t slot_size, size_t slot_align) const {
- return RawHashSetLayout(capacity(), slot_align, has_infoz())
- .alloc_size(slot_size);
- }
- // Move fields other than heap_or_soo_.
- void move_non_heap_or_soo_fields(CommonFields& that) {
- static_cast<CommonFieldsGenerationInfo&>(*this) =
- std::move(static_cast<CommonFieldsGenerationInfo&>(that));
- capacity_ = that.capacity_;
- size_ = that.size_;
- }
- // Returns the number of control bytes set to kDeleted. For testing only.
- size_t TombstonesCount() const {
- return static_cast<size_t>(
- std::count(control(), control() + capacity(), ctrl_t::kDeleted));
- }
- private:
- // We store the has_infoz bit in the lowest bit of size_.
- static constexpr size_t HasInfozShift() { return 1; }
- static constexpr size_t HasInfozMask() {
- return (size_t{1} << HasInfozShift()) - 1;
- }
- // We can't assert that SOO is enabled because we don't have SooEnabled(), but
- // we assert what we can.
- void AssertInSooMode() const {
- assert(capacity() == SooCapacity());
- assert(!has_infoz());
- }
- // The number of slots in the backing array. This is always 2^N-1 for an
- // integer N. NOTE: we tried experimenting with compressing the capacity and
- // storing it together with size_: (a) using 6 bits to store the corresponding
- // power (N in 2^N-1), and (b) storing 2^N as the most significant bit of
- // size_ and storing size in the low bits. Both of these experiments were
- // regressions, presumably because we need capacity to do find operations.
- size_t capacity_;
- // The size and also has one bit that stores whether we have infoz.
- // TODO(b/289225379): we could put size_ into HeapOrSoo and make capacity_
- // encode the size in SOO case. We would be making size()/capacity() more
- // expensive in order to have more SOO space.
- size_t size_;
- // Either the control/slots pointers or the SOO slot.
- HeapOrSoo heap_or_soo_;
- };
- template <class Policy, class Hash, class Eq, class Alloc>
- class raw_hash_set;
- // Returns the next valid capacity after `n`.
- inline size_t NextCapacity(size_t n) {
- assert(IsValidCapacity(n) || n == 0);
- return n * 2 + 1;
- }
- // Applies the following mapping to every byte in the control array:
- // * kDeleted -> kEmpty
- // * kEmpty -> kEmpty
- // * _ -> kDeleted
- // PRECONDITION:
- // IsValidCapacity(capacity)
- // ctrl[capacity] == ctrl_t::kSentinel
- // ctrl[i] != ctrl_t::kSentinel for all i < capacity
- void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity);
- // Converts `n` into the next valid capacity, per `IsValidCapacity`.
- inline size_t NormalizeCapacity(size_t n) {
- return n ? ~size_t{} >> countl_zero(n) : 1;
- }
- template <size_t kSlotSize>
- size_t MaxValidCapacity() {
- return NormalizeCapacity((std::numeric_limits<size_t>::max)() / 4 /
- kSlotSize);
- }
- // General notes on capacity/growth methods below:
- // - We use 7/8th as maximum load factor. For 16-wide groups, that gives an
- // average of two empty slots per group.
- // - For (capacity+1) >= Group::kWidth, growth is 7/8*capacity.
- // - For (capacity+1) < Group::kWidth, growth == capacity. In this case, we
- // never need to probe (the whole table fits in one group) so we don't need a
- // load factor less than 1.
- // Given `capacity`, applies the load factor; i.e., it returns the maximum
- // number of values we should put into the table before a resizing rehash.
- inline size_t CapacityToGrowth(size_t capacity) {
- assert(IsValidCapacity(capacity));
- // `capacity*7/8`
- if (Group::kWidth == 8 && capacity == 7) {
- // x-x/8 does not work when x==7.
- return 6;
- }
- return capacity - capacity / 8;
- }
- // Given `growth`, "unapplies" the load factor to find how large the capacity
- // should be to stay within the load factor.
- //
- // This might not be a valid capacity and `NormalizeCapacity()` should be
- // called on this.
- inline size_t GrowthToLowerboundCapacity(size_t growth) {
- // `growth*8/7`
- if (Group::kWidth == 8 && growth == 7) {
- // x+(x-1)/7 does not work when x==7.
- return 8;
- }
- return growth + static_cast<size_t>((static_cast<int64_t>(growth) - 1) / 7);
- }
- template <class InputIter>
- size_t SelectBucketCountForIterRange(InputIter first, InputIter last,
- size_t bucket_count) {
- if (bucket_count != 0) {
- return bucket_count;
- }
- using InputIterCategory =
- typename std::iterator_traits<InputIter>::iterator_category;
- if (std::is_base_of<std::random_access_iterator_tag,
- InputIterCategory>::value) {
- return GrowthToLowerboundCapacity(
- static_cast<size_t>(std::distance(first, last)));
- }
- return 0;
- }
- constexpr bool SwisstableDebugEnabled() {
- #if defined(ABSL_SWISSTABLE_ENABLE_GENERATIONS) || \
- ABSL_OPTION_HARDENED == 1 || !defined(NDEBUG)
- return true;
- #else
- return false;
- #endif
- }
- inline void AssertIsFull(const ctrl_t* ctrl, GenerationType generation,
- const GenerationType* generation_ptr,
- const char* operation) {
- if (!SwisstableDebugEnabled()) return;
- // `SwisstableDebugEnabled()` is also true for release builds with hardening
- // enabled. To minimize their impact in those builds:
- // - use `ABSL_PREDICT_FALSE()` to provide a compiler hint for code layout
- // - use `ABSL_RAW_LOG()` with a format string to reduce code size and improve
- // the chances that the hot paths will be inlined.
- if (ABSL_PREDICT_FALSE(ctrl == nullptr)) {
- ABSL_RAW_LOG(FATAL, "%s called on end() iterator.", operation);
- }
- if (ABSL_PREDICT_FALSE(ctrl == EmptyGroup())) {
- ABSL_RAW_LOG(FATAL, "%s called on default-constructed iterator.",
- operation);
- }
- if (SwisstableGenerationsEnabled()) {
- if (ABSL_PREDICT_FALSE(generation != *generation_ptr)) {
- ABSL_RAW_LOG(FATAL,
- "%s called on invalid iterator. The table could have "
- "rehashed or moved since this iterator was initialized.",
- operation);
- }
- if (ABSL_PREDICT_FALSE(!IsFull(*ctrl))) {
- ABSL_RAW_LOG(
- FATAL,
- "%s called on invalid iterator. The element was likely erased.",
- operation);
- }
- } else {
- if (ABSL_PREDICT_FALSE(!IsFull(*ctrl))) {
- ABSL_RAW_LOG(
- FATAL,
- "%s called on invalid iterator. The element might have been erased "
- "or the table might have rehashed. Consider running with "
- "--config=asan to diagnose rehashing issues.",
- operation);
- }
- }
- }
- // Note that for comparisons, null/end iterators are valid.
- inline void AssertIsValidForComparison(const ctrl_t* ctrl,
- GenerationType generation,
- const GenerationType* generation_ptr) {
- if (!SwisstableDebugEnabled()) return;
- const bool ctrl_is_valid_for_comparison =
- ctrl == nullptr || ctrl == EmptyGroup() || IsFull(*ctrl);
- if (SwisstableGenerationsEnabled()) {
- if (ABSL_PREDICT_FALSE(generation != *generation_ptr)) {
- ABSL_RAW_LOG(FATAL,
- "Invalid iterator comparison. The table could have rehashed "
- "or moved since this iterator was initialized.");
- }
- if (ABSL_PREDICT_FALSE(!ctrl_is_valid_for_comparison)) {
- ABSL_RAW_LOG(
- FATAL, "Invalid iterator comparison. The element was likely erased.");
- }
- } else {
- ABSL_HARDENING_ASSERT(
- ctrl_is_valid_for_comparison &&
- "Invalid iterator comparison. The element might have been erased or "
- "the table might have rehashed. Consider running with --config=asan to "
- "diagnose rehashing issues.");
- }
- }
- // If the two iterators come from the same container, then their pointers will
- // interleave such that ctrl_a <= ctrl_b < slot_a <= slot_b or vice/versa.
- // Note: we take slots by reference so that it's not UB if they're uninitialized
- // as long as we don't read them (when ctrl is null).
- inline bool AreItersFromSameContainer(const ctrl_t* ctrl_a,
- const ctrl_t* ctrl_b,
- const void* const& slot_a,
- const void* const& slot_b) {
- // If either control byte is null, then we can't tell.
- if (ctrl_a == nullptr || ctrl_b == nullptr) return true;
- const bool a_is_soo = IsSooControl(ctrl_a);
- if (a_is_soo != IsSooControl(ctrl_b)) return false;
- if (a_is_soo) return slot_a == slot_b;
- const void* low_slot = slot_a;
- const void* hi_slot = slot_b;
- if (ctrl_a > ctrl_b) {
- std::swap(ctrl_a, ctrl_b);
- std::swap(low_slot, hi_slot);
- }
- return ctrl_b < low_slot && low_slot <= hi_slot;
- }
- // Asserts that two iterators come from the same container.
- // Note: we take slots by reference so that it's not UB if they're uninitialized
- // as long as we don't read them (when ctrl is null).
- inline void AssertSameContainer(const ctrl_t* ctrl_a, const ctrl_t* ctrl_b,
- const void* const& slot_a,
- const void* const& slot_b,
- const GenerationType* generation_ptr_a,
- const GenerationType* generation_ptr_b) {
- if (!SwisstableDebugEnabled()) return;
- // `SwisstableDebugEnabled()` is also true for release builds with hardening
- // enabled. To minimize their impact in those builds:
- // - use `ABSL_PREDICT_FALSE()` to provide a compiler hint for code layout
- // - use `ABSL_RAW_LOG()` with a format string to reduce code size and improve
- // the chances that the hot paths will be inlined.
- // fail_if(is_invalid, message) crashes when is_invalid is true and provides
- // an error message based on `message`.
- const auto fail_if = [](bool is_invalid, const char* message) {
- if (ABSL_PREDICT_FALSE(is_invalid)) {
- ABSL_RAW_LOG(FATAL, "Invalid iterator comparison. %s", message);
- }
- };
- const bool a_is_default = ctrl_a == EmptyGroup();
- const bool b_is_default = ctrl_b == EmptyGroup();
- if (a_is_default && b_is_default) return;
- fail_if(a_is_default != b_is_default,
- "Comparing default-constructed hashtable iterator with a "
- "non-default-constructed hashtable iterator.");
- if (SwisstableGenerationsEnabled()) {
- if (ABSL_PREDICT_TRUE(generation_ptr_a == generation_ptr_b)) return;
- // Users don't need to know whether the tables are SOO so don't mention SOO
- // in the debug message.
- const bool a_is_soo = IsSooControl(ctrl_a);
- const bool b_is_soo = IsSooControl(ctrl_b);
- fail_if(a_is_soo != b_is_soo || (a_is_soo && b_is_soo),
- "Comparing iterators from different hashtables.");
- const bool a_is_empty = IsEmptyGeneration(generation_ptr_a);
- const bool b_is_empty = IsEmptyGeneration(generation_ptr_b);
- fail_if(a_is_empty != b_is_empty,
- "Comparing an iterator from an empty hashtable with an iterator "
- "from a non-empty hashtable.");
- fail_if(a_is_empty && b_is_empty,
- "Comparing iterators from different empty hashtables.");
- const bool a_is_end = ctrl_a == nullptr;
- const bool b_is_end = ctrl_b == nullptr;
- fail_if(a_is_end || b_is_end,
- "Comparing iterator with an end() iterator from a different "
- "hashtable.");
- fail_if(true, "Comparing non-end() iterators from different hashtables.");
- } else {
- ABSL_HARDENING_ASSERT(
- AreItersFromSameContainer(ctrl_a, ctrl_b, slot_a, slot_b) &&
- "Invalid iterator comparison. The iterators may be from different "
- "containers or the container might have rehashed or moved. Consider "
- "running with --config=asan to diagnose issues.");
- }
- }
- struct FindInfo {
- size_t offset;
- size_t probe_length;
- };
- // Whether a table is "small". A small table fits entirely into a probing
- // group, i.e., has a capacity < `Group::kWidth`.
- //
- // In small mode we are able to use the whole capacity. The extra control
- // bytes give us at least one "empty" control byte to stop the iteration.
- // This is important to make 1 a valid capacity.
- //
- // In small mode only the first `capacity` control bytes after the sentinel
- // are valid. The rest contain dummy ctrl_t::kEmpty values that do not
- // represent a real slot. This is important to take into account on
- // `find_first_non_full()`, where we never try
- // `ShouldInsertBackwards()` for small tables.
- inline bool is_small(size_t capacity) { return capacity < Group::kWidth - 1; }
- // Whether a table fits entirely into a probing group.
- // Arbitrary order of elements in such tables is correct.
- inline bool is_single_group(size_t capacity) {
- return capacity <= Group::kWidth;
- }
- // Begins a probing operation on `common.control`, using `hash`.
- inline probe_seq<Group::kWidth> probe(const ctrl_t* ctrl, const size_t capacity,
- size_t hash) {
- return probe_seq<Group::kWidth>(H1(hash, ctrl), capacity);
- }
- inline probe_seq<Group::kWidth> probe(const CommonFields& common, size_t hash) {
- return probe(common.control(), common.capacity(), hash);
- }
- // Probes an array of control bits using a probe sequence derived from `hash`,
- // and returns the offset corresponding to the first deleted or empty slot.
- //
- // Behavior when the entire table is full is undefined.
- //
- // NOTE: this function must work with tables having both empty and deleted
- // slots in the same group. Such tables appear during `erase()`.
- template <typename = void>
- inline FindInfo find_first_non_full(const CommonFields& common, size_t hash) {
- auto seq = probe(common, hash);
- const ctrl_t* ctrl = common.control();
- if (IsEmptyOrDeleted(ctrl[seq.offset()]) &&
- !ShouldInsertBackwards(common.capacity(), hash, ctrl)) {
- return {seq.offset(), /*probe_length=*/0};
- }
- while (true) {
- GroupFullEmptyOrDeleted g{ctrl + seq.offset()};
- auto mask = g.MaskEmptyOrDeleted();
- if (mask) {
- return {
- seq.offset(GetInsertionOffset(mask, common.capacity(), hash, ctrl)),
- seq.index()};
- }
- seq.next();
- assert(seq.index() <= common.capacity() && "full table!");
- }
- }
- // Extern template for inline function keep possibility of inlining.
- // When compiler decided to not inline, no symbols will be added to the
- // corresponding translation unit.
- extern template FindInfo find_first_non_full(const CommonFields&, size_t);
- // Non-inlined version of find_first_non_full for use in less
- // performance critical routines.
- FindInfo find_first_non_full_outofline(const CommonFields&, size_t);
- inline void ResetGrowthLeft(CommonFields& common) {
- common.growth_info().InitGrowthLeftNoDeleted(
- CapacityToGrowth(common.capacity()) - common.size());
- }
- // Sets `ctrl` to `{kEmpty, kSentinel, ..., kEmpty}`, marking the entire
- // array as marked as empty.
- inline void ResetCtrl(CommonFields& common, size_t slot_size) {
- const size_t capacity = common.capacity();
- ctrl_t* ctrl = common.control();
- std::memset(ctrl, static_cast<int8_t>(ctrl_t::kEmpty),
- capacity + 1 + NumClonedBytes());
- ctrl[capacity] = ctrl_t::kSentinel;
- SanitizerPoisonMemoryRegion(common.slot_array(), slot_size * capacity);
- }
- // Sets sanitizer poisoning for slot corresponding to control byte being set.
- inline void DoSanitizeOnSetCtrl(const CommonFields& c, size_t i, ctrl_t h,
- size_t slot_size) {
- assert(i < c.capacity());
- auto* slot_i = static_cast<const char*>(c.slot_array()) + i * slot_size;
- if (IsFull(h)) {
- SanitizerUnpoisonMemoryRegion(slot_i, slot_size);
- } else {
- SanitizerPoisonMemoryRegion(slot_i, slot_size);
- }
- }
- // Sets `ctrl[i]` to `h`.
- //
- // Unlike setting it directly, this function will perform bounds checks and
- // mirror the value to the cloned tail if necessary.
- inline void SetCtrl(const CommonFields& c, size_t i, ctrl_t h,
- size_t slot_size) {
- DoSanitizeOnSetCtrl(c, i, h, slot_size);
- ctrl_t* ctrl = c.control();
- ctrl[i] = h;
- ctrl[((i - NumClonedBytes()) & c.capacity()) +
- (NumClonedBytes() & c.capacity())] = h;
- }
- // Overload for setting to an occupied `h2_t` rather than a special `ctrl_t`.
- inline void SetCtrl(const CommonFields& c, size_t i, h2_t h, size_t slot_size) {
- SetCtrl(c, i, static_cast<ctrl_t>(h), slot_size);
- }
- // Like SetCtrl, but in a single group table, we can save some operations when
- // setting the cloned control byte.
- inline void SetCtrlInSingleGroupTable(const CommonFields& c, size_t i, ctrl_t h,
- size_t slot_size) {
- assert(is_single_group(c.capacity()));
- DoSanitizeOnSetCtrl(c, i, h, slot_size);
- ctrl_t* ctrl = c.control();
- ctrl[i] = h;
- ctrl[i + c.capacity() + 1] = h;
- }
- // Overload for setting to an occupied `h2_t` rather than a special `ctrl_t`.
- inline void SetCtrlInSingleGroupTable(const CommonFields& c, size_t i, h2_t h,
- size_t slot_size) {
- SetCtrlInSingleGroupTable(c, i, static_cast<ctrl_t>(h), slot_size);
- }
- // growth_info (which is a size_t) is stored with the backing array.
- constexpr size_t BackingArrayAlignment(size_t align_of_slot) {
- return (std::max)(align_of_slot, alignof(GrowthInfo));
- }
- // Returns the address of the ith slot in slots where each slot occupies
- // slot_size.
- inline void* SlotAddress(void* slot_array, size_t slot, size_t slot_size) {
- return static_cast<void*>(static_cast<char*>(slot_array) +
- (slot * slot_size));
- }
- // Iterates over all full slots and calls `cb(const ctrl_t*, SlotType*)`.
- // No insertion to the table allowed during Callback call.
- // Erasure is allowed only for the element passed to the callback.
- template <class SlotType, class Callback>
- ABSL_ATTRIBUTE_ALWAYS_INLINE inline void IterateOverFullSlots(
- const CommonFields& c, SlotType* slot, Callback cb) {
- const size_t cap = c.capacity();
- const ctrl_t* ctrl = c.control();
- if (is_small(cap)) {
- // Mirrored/cloned control bytes in small table are also located in the
- // first group (starting from position 0). We are taking group from position
- // `capacity` in order to avoid duplicates.
- // Small tables capacity fits into portable group, where
- // GroupPortableImpl::MaskFull is more efficient for the
- // capacity <= GroupPortableImpl::kWidth.
- assert(cap <= GroupPortableImpl::kWidth &&
- "unexpectedly large small capacity");
- static_assert(Group::kWidth >= GroupPortableImpl::kWidth,
- "unexpected group width");
- // Group starts from kSentinel slot, so indices in the mask will
- // be increased by 1.
- const auto mask = GroupPortableImpl(ctrl + cap).MaskFull();
- --ctrl;
- --slot;
- for (uint32_t i : mask) {
- cb(ctrl + i, slot + i);
- }
- return;
- }
- size_t remaining = c.size();
- ABSL_ATTRIBUTE_UNUSED const size_t original_size_for_assert = remaining;
- while (remaining != 0) {
- for (uint32_t i : GroupFullEmptyOrDeleted(ctrl).MaskFull()) {
- assert(IsFull(ctrl[i]) && "hash table was modified unexpectedly");
- cb(ctrl + i, slot + i);
- --remaining;
- }
- ctrl += Group::kWidth;
- slot += Group::kWidth;
- assert((remaining == 0 || *(ctrl - 1) != ctrl_t::kSentinel) &&
- "hash table was modified unexpectedly");
- }
- // NOTE: erasure of the current element is allowed in callback for
- // absl::erase_if specialization. So we use `>=`.
- assert(original_size_for_assert >= c.size() &&
- "hash table was modified unexpectedly");
- }
- template <typename CharAlloc>
- constexpr bool ShouldSampleHashtablezInfo() {
- // Folks with custom allocators often make unwarranted assumptions about the
- // behavior of their classes vis-a-vis trivial destructability and what
- // calls they will or won't make. Avoid sampling for people with custom
- // allocators to get us out of this mess. This is not a hard guarantee but
- // a workaround while we plan the exact guarantee we want to provide.
- return std::is_same<CharAlloc, std::allocator<char>>::value;
- }
- template <bool kSooEnabled>
- HashtablezInfoHandle SampleHashtablezInfo(size_t sizeof_slot, size_t sizeof_key,
- size_t sizeof_value,
- size_t old_capacity, bool was_soo,
- HashtablezInfoHandle forced_infoz,
- CommonFields& c) {
- if (forced_infoz.IsSampled()) return forced_infoz;
- // In SOO, we sample on the first insertion so if this is an empty SOO case
- // (e.g. when reserve is called), then we still need to sample.
- if (kSooEnabled && was_soo && c.size() == 0) {
- return Sample(sizeof_slot, sizeof_key, sizeof_value, SooCapacity());
- }
- // For non-SOO cases, we sample whenever the capacity is increasing from zero
- // to non-zero.
- if (!kSooEnabled && old_capacity == 0) {
- return Sample(sizeof_slot, sizeof_key, sizeof_value, 0);
- }
- return c.infoz();
- }
- // Helper class to perform resize of the hash set.
- //
- // It contains special optimizations for small group resizes.
- // See GrowIntoSingleGroupShuffleControlBytes for details.
- class HashSetResizeHelper {
- public:
- explicit HashSetResizeHelper(CommonFields& c, bool was_soo, bool had_soo_slot,
- HashtablezInfoHandle forced_infoz)
- : old_capacity_(c.capacity()),
- had_infoz_(c.has_infoz()),
- was_soo_(was_soo),
- had_soo_slot_(had_soo_slot),
- forced_infoz_(forced_infoz) {}
- // Optimized for small groups version of `find_first_non_full`.
- // Beneficial only right after calling `raw_hash_set::resize`.
- // It is safe to call in case capacity is big or was not changed, but there
- // will be no performance benefit.
- // It has implicit assumption that `resize` will call
- // `GrowSizeIntoSingleGroup*` in case `IsGrowingIntoSingleGroupApplicable`.
- // Falls back to `find_first_non_full` in case of big groups.
- static FindInfo FindFirstNonFullAfterResize(const CommonFields& c,
- size_t old_capacity,
- size_t hash) {
- if (!IsGrowingIntoSingleGroupApplicable(old_capacity, c.capacity())) {
- return find_first_non_full(c, hash);
- }
- // Find a location for the new element non-deterministically.
- // Note that any position is correct.
- // It will located at `half_old_capacity` or one of the other
- // empty slots with approximately 50% probability each.
- size_t offset = probe(c, hash).offset();
- // Note that we intentionally use unsigned int underflow.
- if (offset - (old_capacity + 1) >= old_capacity) {
- // Offset fall on kSentinel or into the mostly occupied first half.
- offset = old_capacity / 2;
- }
- assert(IsEmpty(c.control()[offset]));
- return FindInfo{offset, 0};
- }
- HeapOrSoo& old_heap_or_soo() { return old_heap_or_soo_; }
- void* old_soo_data() { return old_heap_or_soo_.get_soo_data(); }
- ctrl_t* old_ctrl() const {
- assert(!was_soo_);
- return old_heap_or_soo_.control();
- }
- void* old_slots() const {
- assert(!was_soo_);
- return old_heap_or_soo_.slot_array().get();
- }
- size_t old_capacity() const { return old_capacity_; }
- // Returns the index of the SOO slot when growing from SOO to non-SOO in a
- // single group. See also InitControlBytesAfterSoo(). It's important to use
- // index 1 so that when resizing from capacity 1 to 3, we can still have
- // random iteration order between the first two inserted elements.
- // I.e. it allows inserting the second element at either index 0 or 2.
- static size_t SooSlotIndex() { return 1; }
- // Allocates a backing array for the hashtable.
- // Reads `capacity` and updates all other fields based on the result of
- // the allocation.
- //
- // It also may do the following actions:
- // 1. initialize control bytes
- // 2. initialize slots
- // 3. deallocate old slots.
- //
- // We are bundling a lot of functionality
- // in one ABSL_ATTRIBUTE_NOINLINE function in order to minimize binary code
- // duplication in raw_hash_set<>::resize.
- //
- // `c.capacity()` must be nonzero.
- // POSTCONDITIONS:
- // 1. CommonFields is initialized.
- //
- // if IsGrowingIntoSingleGroupApplicable && TransferUsesMemcpy
- // Both control bytes and slots are fully initialized.
- // old_slots are deallocated.
- // infoz.RecordRehash is called.
- //
- // if IsGrowingIntoSingleGroupApplicable && !TransferUsesMemcpy
- // Control bytes are fully initialized.
- // infoz.RecordRehash is called.
- // GrowSizeIntoSingleGroup must be called to finish slots initialization.
- //
- // if !IsGrowingIntoSingleGroupApplicable
- // Control bytes are initialized to empty table via ResetCtrl.
- // raw_hash_set<>::resize must insert elements regularly.
- // infoz.RecordRehash is called if old_capacity == 0.
- //
- // Returns IsGrowingIntoSingleGroupApplicable result to avoid recomputation.
- template <typename Alloc, size_t SizeOfSlot, bool TransferUsesMemcpy,
- bool SooEnabled, size_t AlignOfSlot>
- ABSL_ATTRIBUTE_NOINLINE bool InitializeSlots(CommonFields& c, Alloc alloc,
- ctrl_t soo_slot_h2,
- size_t key_size,
- size_t value_size) {
- assert(c.capacity());
- HashtablezInfoHandle infoz =
- ShouldSampleHashtablezInfo<Alloc>()
- ? SampleHashtablezInfo<SooEnabled>(SizeOfSlot, key_size, value_size,
- old_capacity_, was_soo_,
- forced_infoz_, c)
- : HashtablezInfoHandle{};
- const bool has_infoz = infoz.IsSampled();
- RawHashSetLayout layout(c.capacity(), AlignOfSlot, has_infoz);
- char* mem = static_cast<char*>(Allocate<BackingArrayAlignment(AlignOfSlot)>(
- &alloc, layout.alloc_size(SizeOfSlot)));
- const GenerationType old_generation = c.generation();
- c.set_generation_ptr(
- reinterpret_cast<GenerationType*>(mem + layout.generation_offset()));
- c.set_generation(NextGeneration(old_generation));
- c.set_control(reinterpret_cast<ctrl_t*>(mem + layout.control_offset()));
- c.set_slots(mem + layout.slot_offset());
- ResetGrowthLeft(c);
- const bool grow_single_group =
- IsGrowingIntoSingleGroupApplicable(old_capacity_, layout.capacity());
- if (SooEnabled && was_soo_ && grow_single_group) {
- InitControlBytesAfterSoo(c.control(), soo_slot_h2, layout.capacity());
- if (TransferUsesMemcpy && had_soo_slot_) {
- TransferSlotAfterSoo(c, SizeOfSlot);
- }
- // SooEnabled implies that old_capacity_ != 0.
- } else if ((SooEnabled || old_capacity_ != 0) && grow_single_group) {
- if (TransferUsesMemcpy) {
- GrowSizeIntoSingleGroupTransferable(c, SizeOfSlot);
- DeallocateOld<AlignOfSlot>(alloc, SizeOfSlot);
- } else {
- GrowIntoSingleGroupShuffleControlBytes(c.control(), layout.capacity());
- }
- } else {
- ResetCtrl(c, SizeOfSlot);
- }
- c.set_has_infoz(has_infoz);
- if (has_infoz) {
- infoz.RecordStorageChanged(c.size(), layout.capacity());
- if ((SooEnabled && was_soo_) || grow_single_group || old_capacity_ == 0) {
- infoz.RecordRehash(0);
- }
- c.set_infoz(infoz);
- }
- return grow_single_group;
- }
- // Relocates slots into new single group consistent with
- // GrowIntoSingleGroupShuffleControlBytes.
- //
- // PRECONDITIONS:
- // 1. GrowIntoSingleGroupShuffleControlBytes was already called.
- template <class PolicyTraits, class Alloc>
- void GrowSizeIntoSingleGroup(CommonFields& c, Alloc& alloc_ref) {
- assert(old_capacity_ < Group::kWidth / 2);
- assert(IsGrowingIntoSingleGroupApplicable(old_capacity_, c.capacity()));
- using slot_type = typename PolicyTraits::slot_type;
- assert(is_single_group(c.capacity()));
- auto* new_slots = static_cast<slot_type*>(c.slot_array());
- auto* old_slots_ptr = static_cast<slot_type*>(old_slots());
- size_t shuffle_bit = old_capacity_ / 2 + 1;
- for (size_t i = 0; i < old_capacity_; ++i) {
- if (IsFull(old_ctrl()[i])) {
- size_t new_i = i ^ shuffle_bit;
- SanitizerUnpoisonMemoryRegion(new_slots + new_i, sizeof(slot_type));
- PolicyTraits::transfer(&alloc_ref, new_slots + new_i,
- old_slots_ptr + i);
- }
- }
- PoisonSingleGroupEmptySlots(c, sizeof(slot_type));
- }
- // Deallocates old backing array.
- template <size_t AlignOfSlot, class CharAlloc>
- void DeallocateOld(CharAlloc alloc_ref, size_t slot_size) {
- SanitizerUnpoisonMemoryRegion(old_slots(), slot_size * old_capacity_);
- auto layout = RawHashSetLayout(old_capacity_, AlignOfSlot, had_infoz_);
- Deallocate<BackingArrayAlignment(AlignOfSlot)>(
- &alloc_ref, old_ctrl() - layout.control_offset(),
- layout.alloc_size(slot_size));
- }
- private:
- // Returns true if `GrowSizeIntoSingleGroup` can be used for resizing.
- static bool IsGrowingIntoSingleGroupApplicable(size_t old_capacity,
- size_t new_capacity) {
- // NOTE that `old_capacity < new_capacity` in order to have
- // `old_capacity < Group::kWidth / 2` to make faster copies of 8 bytes.
- return is_single_group(new_capacity) && old_capacity < new_capacity;
- }
- // Relocates control bytes and slots into new single group for
- // transferable objects.
- // Must be called only if IsGrowingIntoSingleGroupApplicable returned true.
- void GrowSizeIntoSingleGroupTransferable(CommonFields& c, size_t slot_size);
- // If there was an SOO slot and slots are transferable, transfers the SOO slot
- // into the new heap allocation. Must be called only if
- // IsGrowingIntoSingleGroupApplicable returned true.
- void TransferSlotAfterSoo(CommonFields& c, size_t slot_size);
- // Shuffle control bits deterministically to the next capacity.
- // Returns offset for newly added element with given hash.
- //
- // PRECONDITIONs:
- // 1. new_ctrl is allocated for new_capacity,
- // but not initialized.
- // 2. new_capacity is a single group.
- //
- // All elements are transferred into the first `old_capacity + 1` positions
- // of the new_ctrl. Elements are rotated by `old_capacity_ / 2 + 1` positions
- // in order to change an order and keep it non deterministic.
- // Although rotation itself deterministic, position of the new added element
- // will be based on `H1` and is not deterministic.
- //
- // Examples:
- // S = kSentinel, E = kEmpty
- //
- // old_ctrl = SEEEEEEEE...
- // new_ctrl = ESEEEEEEE...
- //
- // old_ctrl = 0SEEEEEEE...
- // new_ctrl = E0ESE0EEE...
- //
- // old_ctrl = 012S012EEEEEEEEE...
- // new_ctrl = 2E01EEES2E01EEE...
- //
- // old_ctrl = 0123456S0123456EEEEEEEEEEE...
- // new_ctrl = 456E0123EEEEEES456E0123EEE...
- void GrowIntoSingleGroupShuffleControlBytes(ctrl_t* new_ctrl,
- size_t new_capacity) const;
- // If the table was SOO, initializes new control bytes. `h2` is the control
- // byte corresponding to the full slot. Must be called only if
- // IsGrowingIntoSingleGroupApplicable returned true.
- // Requires: `had_soo_slot_ || h2 == ctrl_t::kEmpty`.
- void InitControlBytesAfterSoo(ctrl_t* new_ctrl, ctrl_t h2,
- size_t new_capacity);
- // Shuffle trivially transferable slots in the way consistent with
- // GrowIntoSingleGroupShuffleControlBytes.
- //
- // PRECONDITIONs:
- // 1. old_capacity must be non-zero.
- // 2. new_ctrl is fully initialized using
- // GrowIntoSingleGroupShuffleControlBytes.
- // 3. new_slots is allocated and *not* poisoned.
- //
- // POSTCONDITIONS:
- // 1. new_slots are transferred from old_slots_ consistent with
- // GrowIntoSingleGroupShuffleControlBytes.
- // 2. Empty new_slots are *not* poisoned.
- void GrowIntoSingleGroupShuffleTransferableSlots(void* new_slots,
- size_t slot_size) const;
- // Poison empty slots that were transferred using the deterministic algorithm
- // described above.
- // PRECONDITIONs:
- // 1. new_ctrl is fully initialized using
- // GrowIntoSingleGroupShuffleControlBytes.
- // 2. new_slots is fully initialized consistent with
- // GrowIntoSingleGroupShuffleControlBytes.
- void PoisonSingleGroupEmptySlots(CommonFields& c, size_t slot_size) const {
- // poison non full items
- for (size_t i = 0; i < c.capacity(); ++i) {
- if (!IsFull(c.control()[i])) {
- SanitizerPoisonMemoryRegion(SlotAddress(c.slot_array(), i, slot_size),
- slot_size);
- }
- }
- }
- HeapOrSoo old_heap_or_soo_;
- size_t old_capacity_;
- bool had_infoz_;
- bool was_soo_;
- bool had_soo_slot_;
- // Either null infoz or a pre-sampled forced infoz for SOO tables.
- HashtablezInfoHandle forced_infoz_;
- };
- inline void PrepareInsertCommon(CommonFields& common) {
- common.increment_size();
- common.maybe_increment_generation_on_insert();
- }
- // Like prepare_insert, but for the case of inserting into a full SOO table.
- size_t PrepareInsertAfterSoo(size_t hash, size_t slot_size,
- CommonFields& common);
- // PolicyFunctions bundles together some information for a particular
- // raw_hash_set<T, ...> instantiation. This information is passed to
- // type-erased functions that want to do small amounts of type-specific
- // work.
- struct PolicyFunctions {
- size_t slot_size;
- // Returns the pointer to the hash function stored in the set.
- const void* (*hash_fn)(const CommonFields& common);
- // Returns the hash of the pointed-to slot.
- size_t (*hash_slot)(const void* hash_fn, void* slot);
- // Transfers the contents of src_slot to dst_slot.
- void (*transfer)(void* set, void* dst_slot, void* src_slot);
- // Deallocates the backing store from common.
- void (*dealloc)(CommonFields& common, const PolicyFunctions& policy);
- // Resizes set to the new capacity.
- // Arguments are used as in raw_hash_set::resize_impl.
- void (*resize)(CommonFields& common, size_t new_capacity,
- HashtablezInfoHandle forced_infoz);
- };
- // ClearBackingArray clears the backing array, either modifying it in place,
- // or creating a new one based on the value of "reuse".
- // REQUIRES: c.capacity > 0
- void ClearBackingArray(CommonFields& c, const PolicyFunctions& policy,
- bool reuse, bool soo_enabled);
- // Type-erased version of raw_hash_set::erase_meta_only.
- void EraseMetaOnly(CommonFields& c, size_t index, size_t slot_size);
- // Function to place in PolicyFunctions::dealloc for raw_hash_sets
- // that are using std::allocator. This allows us to share the same
- // function body for raw_hash_set instantiations that have the
- // same slot alignment.
- template <size_t AlignOfSlot>
- ABSL_ATTRIBUTE_NOINLINE void DeallocateStandard(CommonFields& common,
- const PolicyFunctions& policy) {
- // Unpoison before returning the memory to the allocator.
- SanitizerUnpoisonMemoryRegion(common.slot_array(),
- policy.slot_size * common.capacity());
- std::allocator<char> alloc;
- common.infoz().Unregister();
- Deallocate<BackingArrayAlignment(AlignOfSlot)>(
- &alloc, common.backing_array_start(),
- common.alloc_size(policy.slot_size, AlignOfSlot));
- }
- // For trivially relocatable types we use memcpy directly. This allows us to
- // share the same function body for raw_hash_set instantiations that have the
- // same slot size as long as they are relocatable.
- template <size_t SizeOfSlot>
- ABSL_ATTRIBUTE_NOINLINE void TransferRelocatable(void*, void* dst, void* src) {
- memcpy(dst, src, SizeOfSlot);
- }
- // Type erased raw_hash_set::get_hash_ref_fn for the empty hash function case.
- const void* GetHashRefForEmptyHasher(const CommonFields& common);
- // Given the hash of a value not currently in the table and the first empty
- // slot in the probe sequence, finds a viable slot index to insert it at.
- //
- // In case there's no space left, the table can be resized or rehashed
- // (for tables with deleted slots, see FindInsertPositionWithGrowthOrRehash).
- //
- // In the case of absence of deleted slots and positive growth_left, the element
- // can be inserted in the provided `target` position.
- //
- // When the table has deleted slots (according to GrowthInfo), the target
- // position will be searched one more time using `find_first_non_full`.
- //
- // REQUIRES: Table is not SOO.
- // REQUIRES: At least one non-full slot available.
- // REQUIRES: `target` is a valid empty position to insert.
- size_t PrepareInsertNonSoo(CommonFields& common, size_t hash, FindInfo target,
- const PolicyFunctions& policy);
- // A SwissTable.
- //
- // Policy: a policy defines how to perform different operations on
- // the slots of the hashtable (see hash_policy_traits.h for the full interface
- // of policy).
- //
- // Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The
- // functor should accept a key and return size_t as hash. For best performance
- // it is important that the hash function provides high entropy across all bits
- // of the hash.
- //
- // Eq: a (possibly polymorphic) functor that compares two keys for equality. It
- // should accept two (of possibly different type) keys and return a bool: true
- // if they are equal, false if they are not. If two keys compare equal, then
- // their hash values as defined by Hash MUST be equal.
- //
- // Allocator: an Allocator
- // [https://en.cppreference.com/w/cpp/named_req/Allocator] with which
- // the storage of the hashtable will be allocated and the elements will be
- // constructed and destroyed.
- template <class Policy, class Hash, class Eq, class Alloc>
- class raw_hash_set {
- using PolicyTraits = hash_policy_traits<Policy>;
- using KeyArgImpl =
- KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>;
- public:
- using init_type = typename PolicyTraits::init_type;
- using key_type = typename PolicyTraits::key_type;
- // TODO(sbenza): Hide slot_type as it is an implementation detail. Needs user
- // code fixes!
- using slot_type = typename PolicyTraits::slot_type;
- using allocator_type = Alloc;
- using size_type = size_t;
- using difference_type = ptrdiff_t;
- using hasher = Hash;
- using key_equal = Eq;
- using policy_type = Policy;
- using value_type = typename PolicyTraits::value_type;
- using reference = value_type&;
- using const_reference = const value_type&;
- using pointer = typename absl::allocator_traits<
- allocator_type>::template rebind_traits<value_type>::pointer;
- using const_pointer = typename absl::allocator_traits<
- allocator_type>::template rebind_traits<value_type>::const_pointer;
- // Alias used for heterogeneous lookup functions.
- // `key_arg<K>` evaluates to `K` when the functors are transparent and to
- // `key_type` otherwise. It permits template argument deduction on `K` for the
- // transparent case.
- template <class K>
- using key_arg = typename KeyArgImpl::template type<K, key_type>;
- private:
- // TODO(b/289225379): we could add extra SOO space inside raw_hash_set
- // after CommonFields to allow inlining larger slot_types (e.g. std::string),
- // but it's a bit complicated if we want to support incomplete mapped_type in
- // flat_hash_map. We could potentially do this for flat_hash_set and for an
- // allowlist of `mapped_type`s of flat_hash_map that includes e.g. arithmetic
- // types, strings, cords, and pairs/tuples of allowlisted types.
- constexpr static bool SooEnabled() {
- return PolicyTraits::soo_enabled() &&
- sizeof(slot_type) <= sizeof(HeapOrSoo) &&
- alignof(slot_type) <= alignof(HeapOrSoo);
- }
- // Whether `size` fits in the SOO capacity of this table.
- bool fits_in_soo(size_t size) const {
- return SooEnabled() && size <= SooCapacity();
- }
- // Whether this table is in SOO mode or non-SOO mode.
- bool is_soo() const { return fits_in_soo(capacity()); }
- bool is_full_soo() const { return is_soo() && !empty(); }
- // Give an early error when key_type is not hashable/eq.
- auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k));
- auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k));
- using AllocTraits = absl::allocator_traits<allocator_type>;
- using SlotAlloc = typename absl::allocator_traits<
- allocator_type>::template rebind_alloc<slot_type>;
- // People are often sloppy with the exact type of their allocator (sometimes
- // it has an extra const or is missing the pair, but rebinds made it work
- // anyway).
- using CharAlloc =
- typename absl::allocator_traits<Alloc>::template rebind_alloc<char>;
- using SlotAllocTraits = typename absl::allocator_traits<
- allocator_type>::template rebind_traits<slot_type>;
- static_assert(std::is_lvalue_reference<reference>::value,
- "Policy::element() must return a reference");
- template <typename T>
- struct SameAsElementReference
- : std::is_same<typename std::remove_cv<
- typename std::remove_reference<reference>::type>::type,
- typename std::remove_cv<
- typename std::remove_reference<T>::type>::type> {};
- // An enabler for insert(T&&): T must be convertible to init_type or be the
- // same as [cv] value_type [ref].
- // Note: we separate SameAsElementReference into its own type to avoid using
- // reference unless we need to. MSVC doesn't seem to like it in some
- // cases.
- template <class T>
- using RequiresInsertable = typename std::enable_if<
- absl::disjunction<std::is_convertible<T, init_type>,
- SameAsElementReference<T>>::value,
- int>::type;
- // RequiresNotInit is a workaround for gcc prior to 7.1.
- // See https://godbolt.org/g/Y4xsUh.
- template <class T>
- using RequiresNotInit =
- typename std::enable_if<!std::is_same<T, init_type>::value, int>::type;
- template <class... Ts>
- using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>;
- public:
- static_assert(std::is_same<pointer, value_type*>::value,
- "Allocators with custom pointer types are not supported");
- static_assert(std::is_same<const_pointer, const value_type*>::value,
- "Allocators with custom pointer types are not supported");
- class iterator : private HashSetIteratorGenerationInfo {
- friend class raw_hash_set;
- friend struct HashtableFreeFunctionsAccess;
- public:
- using iterator_category = std::forward_iterator_tag;
- using value_type = typename raw_hash_set::value_type;
- using reference =
- absl::conditional_t<PolicyTraits::constant_iterators::value,
- const value_type&, value_type&>;
- using pointer = absl::remove_reference_t<reference>*;
- using difference_type = typename raw_hash_set::difference_type;
- iterator() {}
- // PRECONDITION: not an end() iterator.
- reference operator*() const {
- AssertIsFull(ctrl_, generation(), generation_ptr(), "operator*()");
- return unchecked_deref();
- }
- // PRECONDITION: not an end() iterator.
- pointer operator->() const {
- AssertIsFull(ctrl_, generation(), generation_ptr(), "operator->");
- return &operator*();
- }
- // PRECONDITION: not an end() iterator.
- iterator& operator++() {
- AssertIsFull(ctrl_, generation(), generation_ptr(), "operator++");
- ++ctrl_;
- ++slot_;
- skip_empty_or_deleted();
- if (ABSL_PREDICT_FALSE(*ctrl_ == ctrl_t::kSentinel)) ctrl_ = nullptr;
- return *this;
- }
- // PRECONDITION: not an end() iterator.
- iterator operator++(int) {
- auto tmp = *this;
- ++*this;
- return tmp;
- }
- friend bool operator==(const iterator& a, const iterator& b) {
- AssertIsValidForComparison(a.ctrl_, a.generation(), a.generation_ptr());
- AssertIsValidForComparison(b.ctrl_, b.generation(), b.generation_ptr());
- AssertSameContainer(a.ctrl_, b.ctrl_, a.slot_, b.slot_,
- a.generation_ptr(), b.generation_ptr());
- return a.ctrl_ == b.ctrl_;
- }
- friend bool operator!=(const iterator& a, const iterator& b) {
- return !(a == b);
- }
- private:
- iterator(ctrl_t* ctrl, slot_type* slot,
- const GenerationType* generation_ptr)
- : HashSetIteratorGenerationInfo(generation_ptr),
- ctrl_(ctrl),
- slot_(slot) {
- // This assumption helps the compiler know that any non-end iterator is
- // not equal to any end iterator.
- ABSL_ASSUME(ctrl != nullptr);
- }
- // This constructor is used in begin() to avoid an MSan
- // use-of-uninitialized-value error. Delegating from this constructor to
- // the previous one doesn't avoid the error.
- iterator(ctrl_t* ctrl, MaybeInitializedPtr slot,
- const GenerationType* generation_ptr)
- : HashSetIteratorGenerationInfo(generation_ptr),
- ctrl_(ctrl),
- slot_(to_slot(slot.get())) {
- // This assumption helps the compiler know that any non-end iterator is
- // not equal to any end iterator.
- ABSL_ASSUME(ctrl != nullptr);
- }
- // For end() iterators.
- explicit iterator(const GenerationType* generation_ptr)
- : HashSetIteratorGenerationInfo(generation_ptr), ctrl_(nullptr) {}
- // Fixes up `ctrl_` to point to a full or sentinel by advancing `ctrl_` and
- // `slot_` until they reach one.
- void skip_empty_or_deleted() {
- while (IsEmptyOrDeleted(*ctrl_)) {
- uint32_t shift =
- GroupFullEmptyOrDeleted{ctrl_}.CountLeadingEmptyOrDeleted();
- ctrl_ += shift;
- slot_ += shift;
- }
- }
- ctrl_t* control() const { return ctrl_; }
- slot_type* slot() const { return slot_; }
- // We use EmptyGroup() for default-constructed iterators so that they can
- // be distinguished from end iterators, which have nullptr ctrl_.
- ctrl_t* ctrl_ = EmptyGroup();
- // To avoid uninitialized member warnings, put slot_ in an anonymous union.
- // The member is not initialized on singleton and end iterators.
- union {
- slot_type* slot_;
- };
- // An equality check which skips ABSL Hardening iterator invalidation
- // checks.
- // Should be used when the lifetimes of the iterators are well-enough
- // understood to prove that they cannot be invalid.
- bool unchecked_equals(const iterator& b) { return ctrl_ == b.control(); }
- // Dereferences the iterator without ABSL Hardening iterator invalidation
- // checks.
- reference unchecked_deref() const { return PolicyTraits::element(slot_); }
- };
- class const_iterator {
- friend class raw_hash_set;
- template <class Container, typename Enabler>
- friend struct absl::container_internal::hashtable_debug_internal::
- HashtableDebugAccess;
- public:
- using iterator_category = typename iterator::iterator_category;
- using value_type = typename raw_hash_set::value_type;
- using reference = typename raw_hash_set::const_reference;
- using pointer = typename raw_hash_set::const_pointer;
- using difference_type = typename raw_hash_set::difference_type;
- const_iterator() = default;
- // Implicit construction from iterator.
- const_iterator(iterator i) : inner_(std::move(i)) {} // NOLINT
- reference operator*() const { return *inner_; }
- pointer operator->() const { return inner_.operator->(); }
- const_iterator& operator++() {
- ++inner_;
- return *this;
- }
- const_iterator operator++(int) { return inner_++; }
- friend bool operator==(const const_iterator& a, const const_iterator& b) {
- return a.inner_ == b.inner_;
- }
- friend bool operator!=(const const_iterator& a, const const_iterator& b) {
- return !(a == b);
- }
- private:
- const_iterator(const ctrl_t* ctrl, const slot_type* slot,
- const GenerationType* gen)
- : inner_(const_cast<ctrl_t*>(ctrl), const_cast<slot_type*>(slot), gen) {
- }
- ctrl_t* control() const { return inner_.control(); }
- slot_type* slot() const { return inner_.slot(); }
- iterator inner_;
- bool unchecked_equals(const const_iterator& b) {
- return inner_.unchecked_equals(b.inner_);
- }
- };
- using node_type = node_handle<Policy, hash_policy_traits<Policy>, Alloc>;
- using insert_return_type = InsertReturnType<iterator, node_type>;
- // Note: can't use `= default` due to non-default noexcept (causes
- // problems for some compilers). NOLINTNEXTLINE
- raw_hash_set() noexcept(
- std::is_nothrow_default_constructible<hasher>::value &&
- std::is_nothrow_default_constructible<key_equal>::value &&
- std::is_nothrow_default_constructible<allocator_type>::value) {}
- ABSL_ATTRIBUTE_NOINLINE explicit raw_hash_set(
- size_t bucket_count, const hasher& hash = hasher(),
- const key_equal& eq = key_equal(),
- const allocator_type& alloc = allocator_type())
- : settings_(CommonFields::CreateDefault<SooEnabled()>(), hash, eq,
- alloc) {
- if (bucket_count > (SooEnabled() ? SooCapacity() : 0)) {
- ABSL_RAW_CHECK(bucket_count <= MaxValidCapacity<sizeof(slot_type)>(),
- "Hash table size overflow");
- resize(NormalizeCapacity(bucket_count));
- }
- }
- raw_hash_set(size_t bucket_count, const hasher& hash,
- const allocator_type& alloc)
- : raw_hash_set(bucket_count, hash, key_equal(), alloc) {}
- raw_hash_set(size_t bucket_count, const allocator_type& alloc)
- : raw_hash_set(bucket_count, hasher(), key_equal(), alloc) {}
- explicit raw_hash_set(const allocator_type& alloc)
- : raw_hash_set(0, hasher(), key_equal(), alloc) {}
- template <class InputIter>
- raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0,
- const hasher& hash = hasher(), const key_equal& eq = key_equal(),
- const allocator_type& alloc = allocator_type())
- : raw_hash_set(SelectBucketCountForIterRange(first, last, bucket_count),
- hash, eq, alloc) {
- insert(first, last);
- }
- template <class InputIter>
- raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
- const hasher& hash, const allocator_type& alloc)
- : raw_hash_set(first, last, bucket_count, hash, key_equal(), alloc) {}
- template <class InputIter>
- raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
- const allocator_type& alloc)
- : raw_hash_set(first, last, bucket_count, hasher(), key_equal(), alloc) {}
- template <class InputIter>
- raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc)
- : raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {}
- // Instead of accepting std::initializer_list<value_type> as the first
- // argument like std::unordered_set<value_type> does, we have two overloads
- // that accept std::initializer_list<T> and std::initializer_list<init_type>.
- // This is advantageous for performance.
- //
- // // Turns {"abc", "def"} into std::initializer_list<std::string>, then
- // // copies the strings into the set.
- // std::unordered_set<std::string> s = {"abc", "def"};
- //
- // // Turns {"abc", "def"} into std::initializer_list<const char*>, then
- // // copies the strings into the set.
- // absl::flat_hash_set<std::string> s = {"abc", "def"};
- //
- // The same trick is used in insert().
- //
- // The enabler is necessary to prevent this constructor from triggering where
- // the copy constructor is meant to be called.
- //
- // absl::flat_hash_set<int> a, b{a};
- //
- // RequiresNotInit<T> is a workaround for gcc prior to 7.1.
- template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
- raw_hash_set(std::initializer_list<T> init, size_t bucket_count = 0,
- const hasher& hash = hasher(), const key_equal& eq = key_equal(),
- const allocator_type& alloc = allocator_type())
- : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
- raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count = 0,
- const hasher& hash = hasher(), const key_equal& eq = key_equal(),
- const allocator_type& alloc = allocator_type())
- : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
- template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
- raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
- const hasher& hash, const allocator_type& alloc)
- : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
- raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
- const hasher& hash, const allocator_type& alloc)
- : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
- template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
- raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
- const allocator_type& alloc)
- : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
- raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
- const allocator_type& alloc)
- : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
- template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
- raw_hash_set(std::initializer_list<T> init, const allocator_type& alloc)
- : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
- raw_hash_set(std::initializer_list<init_type> init,
- const allocator_type& alloc)
- : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
- raw_hash_set(const raw_hash_set& that)
- : raw_hash_set(that, AllocTraits::select_on_container_copy_construction(
- that.alloc_ref())) {}
- raw_hash_set(const raw_hash_set& that, const allocator_type& a)
- : raw_hash_set(GrowthToLowerboundCapacity(that.size()), that.hash_ref(),
- that.eq_ref(), a) {
- const size_t size = that.size();
- if (size == 0) {
- return;
- }
- // We don't use `that.is_soo()` here because `that` can have non-SOO
- // capacity but have a size that fits into SOO capacity.
- if (fits_in_soo(size)) {
- assert(size == 1);
- common().set_full_soo();
- emplace_at(soo_iterator(), *that.begin());
- const HashtablezInfoHandle infoz = try_sample_soo();
- if (infoz.IsSampled()) resize_with_soo_infoz(infoz);
- return;
- }
- assert(!that.is_soo());
- const size_t cap = capacity();
- // Note about single group tables:
- // 1. It is correct to have any order of elements.
- // 2. Order has to be non deterministic.
- // 3. We are assigning elements with arbitrary `shift` starting from
- // `capacity + shift` position.
- // 4. `shift` must be coprime with `capacity + 1` in order to be able to use
- // modular arithmetic to traverse all positions, instead if cycling
- // through a subset of positions. Odd numbers are coprime with any
- // `capacity + 1` (2^N).
- size_t offset = cap;
- const size_t shift =
- is_single_group(cap) ? (PerTableSalt(control()) | 1) : 0;
- IterateOverFullSlots(
- that.common(), that.slot_array(),
- [&](const ctrl_t* that_ctrl,
- slot_type* that_slot) ABSL_ATTRIBUTE_ALWAYS_INLINE {
- if (shift == 0) {
- // Big tables case. Position must be searched via probing.
- // The table is guaranteed to be empty, so we can do faster than
- // a full `insert`.
- const size_t hash = PolicyTraits::apply(
- HashElement{hash_ref()}, PolicyTraits::element(that_slot));
- FindInfo target = find_first_non_full_outofline(common(), hash);
- infoz().RecordInsert(hash, target.probe_length);
- offset = target.offset;
- } else {
- // Small tables case. Next position is computed via shift.
- offset = (offset + shift) & cap;
- }
- const h2_t h2 = static_cast<h2_t>(*that_ctrl);
- assert( // We rely that hash is not changed for small tables.
- H2(PolicyTraits::apply(HashElement{hash_ref()},
- PolicyTraits::element(that_slot))) == h2 &&
- "hash function value changed unexpectedly during the copy");
- SetCtrl(common(), offset, h2, sizeof(slot_type));
- emplace_at(iterator_at(offset), PolicyTraits::element(that_slot));
- common().maybe_increment_generation_on_insert();
- });
- if (shift != 0) {
- // On small table copy we do not record individual inserts.
- // RecordInsert requires hash, but it is unknown for small tables.
- infoz().RecordStorageChanged(size, cap);
- }
- common().set_size(size);
- growth_info().OverwriteManyEmptyAsFull(size);
- }
- ABSL_ATTRIBUTE_NOINLINE raw_hash_set(raw_hash_set&& that) noexcept(
- std::is_nothrow_copy_constructible<hasher>::value &&
- std::is_nothrow_copy_constructible<key_equal>::value &&
- std::is_nothrow_copy_constructible<allocator_type>::value)
- : // Hash, equality and allocator are copied instead of moved because
- // `that` must be left valid. If Hash is std::function<Key>, moving it
- // would create a nullptr functor that cannot be called.
- // TODO(b/296061262): move instead of copying hash/eq/alloc.
- // Note: we avoid using exchange for better generated code.
- settings_(PolicyTraits::transfer_uses_memcpy() || !that.is_full_soo()
- ? std::move(that.common())
- : CommonFields{full_soo_tag_t{}},
- that.hash_ref(), that.eq_ref(), that.alloc_ref()) {
- if (!PolicyTraits::transfer_uses_memcpy() && that.is_full_soo()) {
- transfer(soo_slot(), that.soo_slot());
- }
- that.common() = CommonFields::CreateDefault<SooEnabled()>();
- maybe_increment_generation_or_rehash_on_move();
- }
- raw_hash_set(raw_hash_set&& that, const allocator_type& a)
- : settings_(CommonFields::CreateDefault<SooEnabled()>(), that.hash_ref(),
- that.eq_ref(), a) {
- if (a == that.alloc_ref()) {
- swap_common(that);
- maybe_increment_generation_or_rehash_on_move();
- } else {
- move_elements_allocs_unequal(std::move(that));
- }
- }
- raw_hash_set& operator=(const raw_hash_set& that) {
- if (ABSL_PREDICT_FALSE(this == &that)) return *this;
- constexpr bool propagate_alloc =
- AllocTraits::propagate_on_container_copy_assignment::value;
- // TODO(ezb): maybe avoid allocating a new backing array if this->capacity()
- // is an exact match for that.size(). If this->capacity() is too big, then
- // it would make iteration very slow to reuse the allocation. Maybe we can
- // do the same heuristic as clear() and reuse if it's small enough.
- raw_hash_set tmp(that, propagate_alloc ? that.alloc_ref() : alloc_ref());
- // NOLINTNEXTLINE: not returning *this for performance.
- return assign_impl<propagate_alloc>(std::move(tmp));
- }
- raw_hash_set& operator=(raw_hash_set&& that) noexcept(
- absl::allocator_traits<allocator_type>::is_always_equal::value &&
- std::is_nothrow_move_assignable<hasher>::value &&
- std::is_nothrow_move_assignable<key_equal>::value) {
- // TODO(sbenza): We should only use the operations from the noexcept clause
- // to make sure we actually adhere to that contract.
- // NOLINTNEXTLINE: not returning *this for performance.
- return move_assign(
- std::move(that),
- typename AllocTraits::propagate_on_container_move_assignment());
- }
- ~raw_hash_set() { destructor_impl(); }
- iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND {
- if (ABSL_PREDICT_FALSE(empty())) return end();
- if (is_soo()) return soo_iterator();
- iterator it = {control(), common().slots_union(),
- common().generation_ptr()};
- it.skip_empty_or_deleted();
- assert(IsFull(*it.control()));
- return it;
- }
- iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND {
- return iterator(common().generation_ptr());
- }
- const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
- return const_cast<raw_hash_set*>(this)->begin();
- }
- const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
- return iterator(common().generation_ptr());
- }
- const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
- return begin();
- }
- const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); }
- bool empty() const { return !size(); }
- size_t size() const { return common().size(); }
- size_t capacity() const {
- const size_t cap = common().capacity();
- // Compiler complains when using functions in assume so use local variables.
- ABSL_ATTRIBUTE_UNUSED static constexpr bool kEnabled = SooEnabled();
- ABSL_ATTRIBUTE_UNUSED static constexpr size_t kCapacity = SooCapacity();
- ABSL_ASSUME(!kEnabled || cap >= kCapacity);
- return cap;
- }
- size_t max_size() const {
- return CapacityToGrowth(MaxValidCapacity<sizeof(slot_type)>());
- }
- ABSL_ATTRIBUTE_REINITIALIZES void clear() {
- // Iterating over this container is O(bucket_count()). When bucket_count()
- // is much greater than size(), iteration becomes prohibitively expensive.
- // For clear() it is more important to reuse the allocated array when the
- // container is small because allocation takes comparatively long time
- // compared to destruction of the elements of the container. So we pick the
- // largest bucket_count() threshold for which iteration is still fast and
- // past that we simply deallocate the array.
- const size_t cap = capacity();
- if (cap == 0) {
- // Already guaranteed to be empty; so nothing to do.
- } else if (is_soo()) {
- if (!empty()) destroy(soo_slot());
- common().set_empty_soo();
- } else {
- destroy_slots();
- ClearBackingArray(common(), GetPolicyFunctions(), /*reuse=*/cap < 128,
- SooEnabled());
- }
- common().set_reserved_growth(0);
- common().set_reservation_size(0);
- }
- // This overload kicks in when the argument is an rvalue of insertable and
- // decomposable type other than init_type.
- //
- // flat_hash_map<std::string, int> m;
- // m.insert(std::make_pair("abc", 42));
- // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc
- // bug.
- template <class T, RequiresInsertable<T> = 0, class T2 = T,
- typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0,
- T* = nullptr>
- std::pair<iterator, bool> insert(T&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
- return emplace(std::forward<T>(value));
- }
- // This overload kicks in when the argument is a bitfield or an lvalue of
- // insertable and decomposable type.
- //
- // union { int n : 1; };
- // flat_hash_set<int> s;
- // s.insert(n);
- //
- // flat_hash_set<std::string> s;
- // const char* p = "hello";
- // s.insert(p);
- //
- template <
- class T, RequiresInsertable<const T&> = 0,
- typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
- std::pair<iterator, bool> insert(const T& value)
- ABSL_ATTRIBUTE_LIFETIME_BOUND {
- return emplace(value);
- }
- // This overload kicks in when the argument is an rvalue of init_type. Its
- // purpose is to handle brace-init-list arguments.
- //
- // flat_hash_map<std::string, int> s;
- // s.insert({"abc", 42});
- std::pair<iterator, bool> insert(init_type&& value)
- ABSL_ATTRIBUTE_LIFETIME_BOUND {
- return emplace(std::move(value));
- }
- // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc
- // bug.
- template <class T, RequiresInsertable<T> = 0, class T2 = T,
- typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0,
- T* = nullptr>
- iterator insert(const_iterator, T&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
- return insert(std::forward<T>(value)).first;
- }
- template <
- class T, RequiresInsertable<const T&> = 0,
- typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
- iterator insert(const_iterator,
- const T& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
- return insert(value).first;
- }
- iterator insert(const_iterator,
- init_type&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
- return insert(std::move(value)).first;
- }
- template <class InputIt>
- void insert(InputIt first, InputIt last) {
- for (; first != last; ++first) emplace(*first);
- }
- template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0>
- void insert(std::initializer_list<T> ilist) {
- insert(ilist.begin(), ilist.end());
- }
- void insert(std::initializer_list<init_type> ilist) {
- insert(ilist.begin(), ilist.end());
- }
- insert_return_type insert(node_type&& node) ABSL_ATTRIBUTE_LIFETIME_BOUND {
- if (!node) return {end(), false, node_type()};
- const auto& elem = PolicyTraits::element(CommonAccess::GetSlot(node));
- auto res = PolicyTraits::apply(
- InsertSlot<false>{*this, std::move(*CommonAccess::GetSlot(node))},
- elem);
- if (res.second) {
- CommonAccess::Reset(&node);
- return {res.first, true, node_type()};
- } else {
- return {res.first, false, std::move(node)};
- }
- }
- iterator insert(const_iterator,
- node_type&& node) ABSL_ATTRIBUTE_LIFETIME_BOUND {
- auto res = insert(std::move(node));
- node = std::move(res.node);
- return res.position;
- }
- // This overload kicks in if we can deduce the key from args. This enables us
- // to avoid constructing value_type if an entry with the same key already
- // exists.
- //
- // For example:
- //
- // flat_hash_map<std::string, std::string> m = {{"abc", "def"}};
- // // Creates no std::string copies and makes no heap allocations.
- // m.emplace("abc", "xyz");
- template <class... Args, typename std::enable_if<
- IsDecomposable<Args...>::value, int>::type = 0>
- std::pair<iterator, bool> emplace(Args&&... args)
- ABSL_ATTRIBUTE_LIFETIME_BOUND {
- return PolicyTraits::apply(EmplaceDecomposable{*this},
- std::forward<Args>(args)...);
- }
- // This overload kicks in if we cannot deduce the key from args. It constructs
- // value_type unconditionally and then either moves it into the table or
- // destroys.
- template <class... Args, typename std::enable_if<
- !IsDecomposable<Args...>::value, int>::type = 0>
- std::pair<iterator, bool> emplace(Args&&... args)
- ABSL_ATTRIBUTE_LIFETIME_BOUND {
- alignas(slot_type) unsigned char raw[sizeof(slot_type)];
- slot_type* slot = to_slot(&raw);
- construct(slot, std::forward<Args>(args)...);
- const auto& elem = PolicyTraits::element(slot);
- return PolicyTraits::apply(InsertSlot<true>{*this, std::move(*slot)}, elem);
- }
- template <class... Args>
- iterator emplace_hint(const_iterator,
- Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND {
- return emplace(std::forward<Args>(args)...).first;
- }
- // Extension API: support for lazy emplace.
- //
- // Looks up key in the table. If found, returns the iterator to the element.
- // Otherwise calls `f` with one argument of type `raw_hash_set::constructor`,
- // and returns an iterator to the new element.
- //
- // `f` must abide by several restrictions:
- // - it MUST call `raw_hash_set::constructor` with arguments as if a
- // `raw_hash_set::value_type` is constructed,
- // - it MUST NOT access the container before the call to
- // `raw_hash_set::constructor`, and
- // - it MUST NOT erase the lazily emplaced element.
- // Doing any of these is undefined behavior.
- //
- // For example:
- //
- // std::unordered_set<ArenaString> s;
- // // Makes ArenaStr even if "abc" is in the map.
- // s.insert(ArenaString(&arena, "abc"));
- //
- // flat_hash_set<ArenaStr> s;
- // // Makes ArenaStr only if "abc" is not in the map.
- // s.lazy_emplace("abc", [&](const constructor& ctor) {
- // ctor(&arena, "abc");
- // });
- //
- // WARNING: This API is currently experimental. If there is a way to implement
- // the same thing with the rest of the API, prefer that.
- class constructor {
- friend class raw_hash_set;
- public:
- template <class... Args>
- void operator()(Args&&... args) const {
- assert(*slot_);
- PolicyTraits::construct(alloc_, *slot_, std::forward<Args>(args)...);
- *slot_ = nullptr;
- }
- private:
- constructor(allocator_type* a, slot_type** slot) : alloc_(a), slot_(slot) {}
- allocator_type* alloc_;
- slot_type** slot_;
- };
- template <class K = key_type, class F>
- iterator lazy_emplace(const key_arg<K>& key,
- F&& f) ABSL_ATTRIBUTE_LIFETIME_BOUND {
- auto res = find_or_prepare_insert(key);
- if (res.second) {
- slot_type* slot = res.first.slot();
- std::forward<F>(f)(constructor(&alloc_ref(), &slot));
- assert(!slot);
- }
- return res.first;
- }
- // Extension API: support for heterogeneous keys.
- //
- // std::unordered_set<std::string> s;
- // // Turns "abc" into std::string.
- // s.erase("abc");
- //
- // flat_hash_set<std::string> s;
- // // Uses "abc" directly without copying it into std::string.
- // s.erase("abc");
- template <class K = key_type>
- size_type erase(const key_arg<K>& key) {
- auto it = find(key);
- if (it == end()) return 0;
- erase(it);
- return 1;
- }
- // Erases the element pointed to by `it`. Unlike `std::unordered_set::erase`,
- // this method returns void to reduce algorithmic complexity to O(1). The
- // iterator is invalidated, so any increment should be done before calling
- // erase. In order to erase while iterating across a map, use the following
- // idiom (which also works for some standard containers):
- //
- // for (auto it = m.begin(), end = m.end(); it != end;) {
- // // `erase()` will invalidate `it`, so advance `it` first.
- // auto copy_it = it++;
- // if (<pred>) {
- // m.erase(copy_it);
- // }
- // }
- void erase(const_iterator cit) { erase(cit.inner_); }
- // This overload is necessary because otherwise erase<K>(const K&) would be
- // a better match if non-const iterator is passed as an argument.
- void erase(iterator it) {
- AssertIsFull(it.control(), it.generation(), it.generation_ptr(), "erase()");
- destroy(it.slot());
- if (is_soo()) {
- common().set_empty_soo();
- } else {
- erase_meta_only(it);
- }
- }
- iterator erase(const_iterator first,
- const_iterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND {
- // We check for empty first because ClearBackingArray requires that
- // capacity() > 0 as a precondition.
- if (empty()) return end();
- if (first == last) return last.inner_;
- if (is_soo()) {
- destroy(soo_slot());
- common().set_empty_soo();
- return end();
- }
- if (first == begin() && last == end()) {
- // TODO(ezb): we access control bytes in destroy_slots so it could make
- // sense to combine destroy_slots and ClearBackingArray to avoid cache
- // misses when the table is large. Note that we also do this in clear().
- destroy_slots();
- ClearBackingArray(common(), GetPolicyFunctions(), /*reuse=*/true,
- SooEnabled());
- common().set_reserved_growth(common().reservation_size());
- return end();
- }
- while (first != last) {
- erase(first++);
- }
- return last.inner_;
- }
- // Moves elements from `src` into `this`.
- // If the element already exists in `this`, it is left unmodified in `src`.
- template <typename H, typename E>
- void merge(raw_hash_set<Policy, H, E, Alloc>& src) { // NOLINT
- assert(this != &src);
- // Returns whether insertion took place.
- const auto insert_slot = [this](slot_type* src_slot) {
- return PolicyTraits::apply(InsertSlot<false>{*this, std::move(*src_slot)},
- PolicyTraits::element(src_slot))
- .second;
- };
- if (src.is_soo()) {
- if (src.empty()) return;
- if (insert_slot(src.soo_slot())) src.common().set_empty_soo();
- return;
- }
- for (auto it = src.begin(), e = src.end(); it != e;) {
- auto next = std::next(it);
- if (insert_slot(it.slot())) src.erase_meta_only(it);
- it = next;
- }
- }
- template <typename H, typename E>
- void merge(raw_hash_set<Policy, H, E, Alloc>&& src) {
- merge(src);
- }
- node_type extract(const_iterator position) {
- AssertIsFull(position.control(), position.inner_.generation(),
- position.inner_.generation_ptr(), "extract()");
- auto node = CommonAccess::Transfer<node_type>(alloc_ref(), position.slot());
- if (is_soo()) {
- common().set_empty_soo();
- } else {
- erase_meta_only(position);
- }
- return node;
- }
- template <
- class K = key_type,
- typename std::enable_if<!std::is_same<K, iterator>::value, int>::type = 0>
- node_type extract(const key_arg<K>& key) {
- auto it = find(key);
- return it == end() ? node_type() : extract(const_iterator{it});
- }
- void swap(raw_hash_set& that) noexcept(
- IsNoThrowSwappable<hasher>() && IsNoThrowSwappable<key_equal>() &&
- IsNoThrowSwappable<allocator_type>(
- typename AllocTraits::propagate_on_container_swap{})) {
- using std::swap;
- swap_common(that);
- swap(hash_ref(), that.hash_ref());
- swap(eq_ref(), that.eq_ref());
- SwapAlloc(alloc_ref(), that.alloc_ref(),
- typename AllocTraits::propagate_on_container_swap{});
- }
- void rehash(size_t n) {
- const size_t cap = capacity();
- if (n == 0) {
- if (cap == 0 || is_soo()) return;
- if (empty()) {
- ClearBackingArray(common(), GetPolicyFunctions(), /*reuse=*/false,
- SooEnabled());
- return;
- }
- if (fits_in_soo(size())) {
- // When the table is already sampled, we keep it sampled.
- if (infoz().IsSampled()) {
- const size_t kInitialSampledCapacity = NextCapacity(SooCapacity());
- if (capacity() > kInitialSampledCapacity) {
- resize(kInitialSampledCapacity);
- }
- // This asserts that we didn't lose sampling coverage in `resize`.
- assert(infoz().IsSampled());
- return;
- }
- alignas(slot_type) unsigned char slot_space[sizeof(slot_type)];
- slot_type* tmp_slot = to_slot(slot_space);
- transfer(tmp_slot, begin().slot());
- ClearBackingArray(common(), GetPolicyFunctions(), /*reuse=*/false,
- SooEnabled());
- transfer(soo_slot(), tmp_slot);
- common().set_full_soo();
- return;
- }
- }
- // bitor is a faster way of doing `max` here. We will round up to the next
- // power-of-2-minus-1, so bitor is good enough.
- auto m = NormalizeCapacity(n | GrowthToLowerboundCapacity(size()));
- // n == 0 unconditionally rehashes as per the standard.
- if (n == 0 || m > cap) {
- ABSL_RAW_CHECK(m <= MaxValidCapacity<sizeof(slot_type)>(),
- "Hash table size overflow");
- resize(m);
- // This is after resize, to ensure that we have completed the allocation
- // and have potentially sampled the hashtable.
- infoz().RecordReservation(n);
- }
- }
- void reserve(size_t n) {
- const size_t max_size_before_growth =
- is_soo() ? SooCapacity() : size() + growth_left();
- if (n > max_size_before_growth) {
- ABSL_RAW_CHECK(n <= max_size(), "Hash table size overflow");
- size_t m = GrowthToLowerboundCapacity(n);
- resize(NormalizeCapacity(m));
- // This is after resize, to ensure that we have completed the allocation
- // and have potentially sampled the hashtable.
- infoz().RecordReservation(n);
- }
- common().reset_reserved_growth(n);
- common().set_reservation_size(n);
- }
- // Extension API: support for heterogeneous keys.
- //
- // std::unordered_set<std::string> s;
- // // Turns "abc" into std::string.
- // s.count("abc");
- //
- // ch_set<std::string> s;
- // // Uses "abc" directly without copying it into std::string.
- // s.count("abc");
- template <class K = key_type>
- size_t count(const key_arg<K>& key) const {
- return find(key) == end() ? 0 : 1;
- }
- // Issues CPU prefetch instructions for the memory needed to find or insert
- // a key. Like all lookup functions, this support heterogeneous keys.
- //
- // NOTE: This is a very low level operation and should not be used without
- // specific benchmarks indicating its importance.
- template <class K = key_type>
- void prefetch(const key_arg<K>& key) const {
- if (SooEnabled() ? is_soo() : capacity() == 0) return;
- (void)key;
- // Avoid probing if we won't be able to prefetch the addresses received.
- #ifdef ABSL_HAVE_PREFETCH
- prefetch_heap_block();
- auto seq = probe(common(), hash_ref()(key));
- PrefetchToLocalCache(control() + seq.offset());
- PrefetchToLocalCache(slot_array() + seq.offset());
- #endif // ABSL_HAVE_PREFETCH
- }
- // The API of find() has two extensions.
- //
- // 1. The hash can be passed by the user. It must be equal to the hash of the
- // key.
- //
- // 2. The type of the key argument doesn't have to be key_type. This is so
- // called heterogeneous key support.
- template <class K = key_type>
- iterator find(const key_arg<K>& key,
- size_t hash) ABSL_ATTRIBUTE_LIFETIME_BOUND {
- AssertHashEqConsistent(key);
- if (is_soo()) return find_soo(key);
- return find_non_soo(key, hash);
- }
- template <class K = key_type>
- iterator find(const key_arg<K>& key) ABSL_ATTRIBUTE_LIFETIME_BOUND {
- AssertHashEqConsistent(key);
- if (is_soo()) return find_soo(key);
- prefetch_heap_block();
- return find_non_soo(key, hash_ref()(key));
- }
- template <class K = key_type>
- const_iterator find(const key_arg<K>& key,
- size_t hash) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
- return const_cast<raw_hash_set*>(this)->find(key, hash);
- }
- template <class K = key_type>
- const_iterator find(const key_arg<K>& key) const
- ABSL_ATTRIBUTE_LIFETIME_BOUND {
- return const_cast<raw_hash_set*>(this)->find(key);
- }
- template <class K = key_type>
- bool contains(const key_arg<K>& key) const {
- // Here neither the iterator returned by `find()` nor `end()` can be invalid
- // outside of potential thread-safety issues.
- // `find()`'s return value is constructed, used, and then destructed
- // all in this context.
- return !find(key).unchecked_equals(end());
- }
- template <class K = key_type>
- std::pair<iterator, iterator> equal_range(const key_arg<K>& key)
- ABSL_ATTRIBUTE_LIFETIME_BOUND {
- auto it = find(key);
- if (it != end()) return {it, std::next(it)};
- return {it, it};
- }
- template <class K = key_type>
- std::pair<const_iterator, const_iterator> equal_range(
- const key_arg<K>& key) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
- auto it = find(key);
- if (it != end()) return {it, std::next(it)};
- return {it, it};
- }
- size_t bucket_count() const { return capacity(); }
- float load_factor() const {
- return capacity() ? static_cast<double>(size()) / capacity() : 0.0;
- }
- float max_load_factor() const { return 1.0f; }
- void max_load_factor(float) {
- // Does nothing.
- }
- hasher hash_function() const { return hash_ref(); }
- key_equal key_eq() const { return eq_ref(); }
- allocator_type get_allocator() const { return alloc_ref(); }
- friend bool operator==(const raw_hash_set& a, const raw_hash_set& b) {
- if (a.size() != b.size()) return false;
- const raw_hash_set* outer = &a;
- const raw_hash_set* inner = &b;
- if (outer->capacity() > inner->capacity()) std::swap(outer, inner);
- for (const value_type& elem : *outer) {
- auto it = PolicyTraits::apply(FindElement{*inner}, elem);
- if (it == inner->end() || !(*it == elem)) return false;
- }
- return true;
- }
- friend bool operator!=(const raw_hash_set& a, const raw_hash_set& b) {
- return !(a == b);
- }
- template <typename H>
- friend typename std::enable_if<H::template is_hashable<value_type>::value,
- H>::type
- AbslHashValue(H h, const raw_hash_set& s) {
- return H::combine(H::combine_unordered(std::move(h), s.begin(), s.end()),
- s.size());
- }
- friend void swap(raw_hash_set& a,
- raw_hash_set& b) noexcept(noexcept(a.swap(b))) {
- a.swap(b);
- }
- private:
- template <class Container, typename Enabler>
- friend struct absl::container_internal::hashtable_debug_internal::
- HashtableDebugAccess;
- friend struct absl::container_internal::HashtableFreeFunctionsAccess;
- struct FindElement {
- template <class K, class... Args>
- const_iterator operator()(const K& key, Args&&...) const {
- return s.find(key);
- }
- const raw_hash_set& s;
- };
- struct HashElement {
- template <class K, class... Args>
- size_t operator()(const K& key, Args&&...) const {
- return h(key);
- }
- const hasher& h;
- };
- template <class K1>
- struct EqualElement {
- template <class K2, class... Args>
- bool operator()(const K2& lhs, Args&&...) const {
- return eq(lhs, rhs);
- }
- const K1& rhs;
- const key_equal& eq;
- };
- struct EmplaceDecomposable {
- template <class K, class... Args>
- std::pair<iterator, bool> operator()(const K& key, Args&&... args) const {
- auto res = s.find_or_prepare_insert(key);
- if (res.second) {
- s.emplace_at(res.first, std::forward<Args>(args)...);
- }
- return res;
- }
- raw_hash_set& s;
- };
- template <bool do_destroy>
- struct InsertSlot {
- template <class K, class... Args>
- std::pair<iterator, bool> operator()(const K& key, Args&&...) && {
- auto res = s.find_or_prepare_insert(key);
- if (res.second) {
- s.transfer(res.first.slot(), &slot);
- } else if (do_destroy) {
- s.destroy(&slot);
- }
- return res;
- }
- raw_hash_set& s;
- // Constructed slot. Either moved into place or destroyed.
- slot_type&& slot;
- };
- // TODO(b/303305702): re-enable reentrant validation.
- template <typename... Args>
- inline void construct(slot_type* slot, Args&&... args) {
- PolicyTraits::construct(&alloc_ref(), slot, std::forward<Args>(args)...);
- }
- inline void destroy(slot_type* slot) {
- PolicyTraits::destroy(&alloc_ref(), slot);
- }
- inline void transfer(slot_type* to, slot_type* from) {
- PolicyTraits::transfer(&alloc_ref(), to, from);
- }
- // TODO(b/289225379): consider having a helper class that has the impls for
- // SOO functionality.
- template <class K = key_type>
- iterator find_soo(const key_arg<K>& key) {
- assert(is_soo());
- return empty() || !PolicyTraits::apply(EqualElement<K>{key, eq_ref()},
- PolicyTraits::element(soo_slot()))
- ? end()
- : soo_iterator();
- }
- template <class K = key_type>
- iterator find_non_soo(const key_arg<K>& key, size_t hash) {
- assert(!is_soo());
- auto seq = probe(common(), hash);
- const ctrl_t* ctrl = control();
- while (true) {
- Group g{ctrl + seq.offset()};
- for (uint32_t i : g.Match(H2(hash))) {
- if (ABSL_PREDICT_TRUE(PolicyTraits::apply(
- EqualElement<K>{key, eq_ref()},
- PolicyTraits::element(slot_array() + seq.offset(i)))))
- return iterator_at(seq.offset(i));
- }
- if (ABSL_PREDICT_TRUE(g.MaskEmpty())) return end();
- seq.next();
- assert(seq.index() <= capacity() && "full table!");
- }
- }
- // Conditionally samples hashtablez for SOO tables. This should be called on
- // insertion into an empty SOO table and in copy construction when the size
- // can fit in SOO capacity.
- inline HashtablezInfoHandle try_sample_soo() {
- assert(is_soo());
- if (!ShouldSampleHashtablezInfo<CharAlloc>()) return HashtablezInfoHandle{};
- return Sample(sizeof(slot_type), sizeof(key_type), sizeof(value_type),
- SooCapacity());
- }
- inline void destroy_slots() {
- assert(!is_soo());
- if (PolicyTraits::template destroy_is_trivial<Alloc>()) return;
- IterateOverFullSlots(
- common(), slot_array(),
- [&](const ctrl_t*, slot_type* slot)
- ABSL_ATTRIBUTE_ALWAYS_INLINE { this->destroy(slot); });
- }
- inline void dealloc() {
- assert(capacity() != 0);
- // Unpoison before returning the memory to the allocator.
- SanitizerUnpoisonMemoryRegion(slot_array(), sizeof(slot_type) * capacity());
- infoz().Unregister();
- Deallocate<BackingArrayAlignment(alignof(slot_type))>(
- &alloc_ref(), common().backing_array_start(),
- common().alloc_size(sizeof(slot_type), alignof(slot_type)));
- }
- inline void destructor_impl() {
- if (capacity() == 0) return;
- if (is_soo()) {
- if (!empty()) {
- ABSL_SWISSTABLE_IGNORE_UNINITIALIZED(destroy(soo_slot()));
- }
- return;
- }
- destroy_slots();
- dealloc();
- }
- // Erases, but does not destroy, the value pointed to by `it`.
- //
- // This merely updates the pertinent control byte. This can be used in
- // conjunction with Policy::transfer to move the object to another place.
- void erase_meta_only(const_iterator it) {
- assert(!is_soo());
- EraseMetaOnly(common(), static_cast<size_t>(it.control() - control()),
- sizeof(slot_type));
- }
- size_t hash_of(slot_type* slot) const {
- return PolicyTraits::apply(HashElement{hash_ref()},
- PolicyTraits::element(slot));
- }
- // Resizes table to the new capacity and move all elements to the new
- // positions accordingly.
- //
- // Note that for better performance instead of
- // find_first_non_full(common(), hash),
- // HashSetResizeHelper::FindFirstNonFullAfterResize(
- // common(), old_capacity, hash)
- // can be called right after `resize`.
- void resize(size_t new_capacity) {
- raw_hash_set::resize_impl(common(), new_capacity, HashtablezInfoHandle{});
- }
- // As above, except that we also accept a pre-sampled, forced infoz for
- // SOO tables, since they need to switch from SOO to heap in order to
- // store the infoz.
- void resize_with_soo_infoz(HashtablezInfoHandle forced_infoz) {
- assert(forced_infoz.IsSampled());
- raw_hash_set::resize_impl(common(), NextCapacity(SooCapacity()),
- forced_infoz);
- }
- // Resizes set to the new capacity.
- // It is a static function in order to use its pointer in GetPolicyFunctions.
- ABSL_ATTRIBUTE_NOINLINE static void resize_impl(
- CommonFields& common, size_t new_capacity,
- HashtablezInfoHandle forced_infoz) {
- raw_hash_set* set = reinterpret_cast<raw_hash_set*>(&common);
- assert(IsValidCapacity(new_capacity));
- assert(!set->fits_in_soo(new_capacity));
- const bool was_soo = set->is_soo();
- const bool had_soo_slot = was_soo && !set->empty();
- const ctrl_t soo_slot_h2 =
- had_soo_slot ? static_cast<ctrl_t>(H2(set->hash_of(set->soo_slot())))
- : ctrl_t::kEmpty;
- HashSetResizeHelper resize_helper(common, was_soo, had_soo_slot,
- forced_infoz);
- // Initialize HashSetResizeHelper::old_heap_or_soo_. We can't do this in
- // HashSetResizeHelper constructor because it can't transfer slots when
- // transfer_uses_memcpy is false.
- // TODO(b/289225379): try to handle more of the SOO cases inside
- // InitializeSlots. See comment on cl/555990034 snapshot #63.
- if (PolicyTraits::transfer_uses_memcpy() || !had_soo_slot) {
- resize_helper.old_heap_or_soo() = common.heap_or_soo();
- } else {
- set->transfer(set->to_slot(resize_helper.old_soo_data()),
- set->soo_slot());
- }
- common.set_capacity(new_capacity);
- // Note that `InitializeSlots` does different number initialization steps
- // depending on the values of `transfer_uses_memcpy` and capacities.
- // Refer to the comment in `InitializeSlots` for more details.
- const bool grow_single_group =
- resize_helper.InitializeSlots<CharAlloc, sizeof(slot_type),
- PolicyTraits::transfer_uses_memcpy(),
- SooEnabled(), alignof(slot_type)>(
- common, CharAlloc(set->alloc_ref()), soo_slot_h2, sizeof(key_type),
- sizeof(value_type));
- // In the SooEnabled() case, capacity is never 0 so we don't check.
- if (!SooEnabled() && resize_helper.old_capacity() == 0) {
- // InitializeSlots did all the work including infoz().RecordRehash().
- return;
- }
- assert(resize_helper.old_capacity() > 0);
- // Nothing more to do in this case.
- if (was_soo && !had_soo_slot) return;
- slot_type* new_slots = set->slot_array();
- if (grow_single_group) {
- if (PolicyTraits::transfer_uses_memcpy()) {
- // InitializeSlots did all the work.
- return;
- }
- if (was_soo) {
- set->transfer(new_slots + resize_helper.SooSlotIndex(),
- to_slot(resize_helper.old_soo_data()));
- return;
- } else {
- // We want GrowSizeIntoSingleGroup to be called here in order to make
- // InitializeSlots not depend on PolicyTraits.
- resize_helper.GrowSizeIntoSingleGroup<PolicyTraits>(common,
- set->alloc_ref());
- }
- } else {
- // InitializeSlots prepares control bytes to correspond to empty table.
- const auto insert_slot = [&](slot_type* slot) {
- size_t hash = PolicyTraits::apply(HashElement{set->hash_ref()},
- PolicyTraits::element(slot));
- auto target = find_first_non_full(common, hash);
- SetCtrl(common, target.offset, H2(hash), sizeof(slot_type));
- set->transfer(new_slots + target.offset, slot);
- return target.probe_length;
- };
- if (was_soo) {
- insert_slot(to_slot(resize_helper.old_soo_data()));
- return;
- } else {
- auto* old_slots = static_cast<slot_type*>(resize_helper.old_slots());
- size_t total_probe_length = 0;
- for (size_t i = 0; i != resize_helper.old_capacity(); ++i) {
- if (IsFull(resize_helper.old_ctrl()[i])) {
- total_probe_length += insert_slot(old_slots + i);
- }
- }
- common.infoz().RecordRehash(total_probe_length);
- }
- }
- resize_helper.DeallocateOld<alignof(slot_type)>(CharAlloc(set->alloc_ref()),
- sizeof(slot_type));
- }
- // Casting directly from e.g. char* to slot_type* can cause compilation errors
- // on objective-C. This function converts to void* first, avoiding the issue.
- static slot_type* to_slot(void* buf) { return static_cast<slot_type*>(buf); }
- // Requires that lhs does not have a full SOO slot.
- static void move_common(bool that_is_full_soo, allocator_type& rhs_alloc,
- CommonFields& lhs, CommonFields&& rhs) {
- if (PolicyTraits::transfer_uses_memcpy() || !that_is_full_soo) {
- lhs = std::move(rhs);
- } else {
- lhs.move_non_heap_or_soo_fields(rhs);
- // TODO(b/303305702): add reentrancy guard.
- PolicyTraits::transfer(&rhs_alloc, to_slot(lhs.soo_data()),
- to_slot(rhs.soo_data()));
- }
- }
- // Swaps common fields making sure to avoid memcpy'ing a full SOO slot if we
- // aren't allowed to do so.
- void swap_common(raw_hash_set& that) {
- using std::swap;
- if (PolicyTraits::transfer_uses_memcpy()) {
- swap(common(), that.common());
- return;
- }
- CommonFields tmp = CommonFields::CreateDefault<SooEnabled()>();
- const bool that_is_full_soo = that.is_full_soo();
- move_common(that_is_full_soo, that.alloc_ref(), tmp,
- std::move(that.common()));
- move_common(is_full_soo(), alloc_ref(), that.common(), std::move(common()));
- move_common(that_is_full_soo, that.alloc_ref(), common(), std::move(tmp));
- }
- void maybe_increment_generation_or_rehash_on_move() {
- if (!SwisstableGenerationsEnabled() || capacity() == 0 || is_soo()) {
- return;
- }
- common().increment_generation();
- if (!empty() && common().should_rehash_for_bug_detection_on_move()) {
- resize(capacity());
- }
- }
- template <bool propagate_alloc>
- raw_hash_set& assign_impl(raw_hash_set&& that) {
- // We don't bother checking for this/that aliasing. We just need to avoid
- // breaking the invariants in that case.
- destructor_impl();
- move_common(that.is_full_soo(), that.alloc_ref(), common(),
- std::move(that.common()));
- // TODO(b/296061262): move instead of copying hash/eq/alloc.
- hash_ref() = that.hash_ref();
- eq_ref() = that.eq_ref();
- CopyAlloc(alloc_ref(), that.alloc_ref(),
- std::integral_constant<bool, propagate_alloc>());
- that.common() = CommonFields::CreateDefault<SooEnabled()>();
- maybe_increment_generation_or_rehash_on_move();
- return *this;
- }
- raw_hash_set& move_elements_allocs_unequal(raw_hash_set&& that) {
- const size_t size = that.size();
- if (size == 0) return *this;
- reserve(size);
- for (iterator it = that.begin(); it != that.end(); ++it) {
- insert(std::move(PolicyTraits::element(it.slot())));
- that.destroy(it.slot());
- }
- if (!that.is_soo()) that.dealloc();
- that.common() = CommonFields::CreateDefault<SooEnabled()>();
- maybe_increment_generation_or_rehash_on_move();
- return *this;
- }
- raw_hash_set& move_assign(raw_hash_set&& that,
- std::true_type /*propagate_alloc*/) {
- return assign_impl<true>(std::move(that));
- }
- raw_hash_set& move_assign(raw_hash_set&& that,
- std::false_type /*propagate_alloc*/) {
- if (alloc_ref() == that.alloc_ref()) {
- return assign_impl<false>(std::move(that));
- }
- // Aliasing can't happen here because allocs would compare equal above.
- assert(this != &that);
- destructor_impl();
- // We can't take over that's memory so we need to move each element.
- // While moving elements, this should have that's hash/eq so copy hash/eq
- // before moving elements.
- // TODO(b/296061262): move instead of copying hash/eq.
- hash_ref() = that.hash_ref();
- eq_ref() = that.eq_ref();
- return move_elements_allocs_unequal(std::move(that));
- }
- template <class K>
- std::pair<iterator, bool> find_or_prepare_insert_soo(const K& key) {
- if (empty()) {
- const HashtablezInfoHandle infoz = try_sample_soo();
- if (infoz.IsSampled()) {
- resize_with_soo_infoz(infoz);
- } else {
- common().set_full_soo();
- return {soo_iterator(), true};
- }
- } else if (PolicyTraits::apply(EqualElement<K>{key, eq_ref()},
- PolicyTraits::element(soo_slot()))) {
- return {soo_iterator(), false};
- } else {
- resize(NextCapacity(SooCapacity()));
- }
- const size_t index =
- PrepareInsertAfterSoo(hash_ref()(key), sizeof(slot_type), common());
- return {iterator_at(index), true};
- }
- template <class K>
- std::pair<iterator, bool> find_or_prepare_insert_non_soo(const K& key) {
- assert(!is_soo());
- prefetch_heap_block();
- auto hash = hash_ref()(key);
- auto seq = probe(common(), hash);
- const ctrl_t* ctrl = control();
- while (true) {
- Group g{ctrl + seq.offset()};
- for (uint32_t i : g.Match(H2(hash))) {
- if (ABSL_PREDICT_TRUE(PolicyTraits::apply(
- EqualElement<K>{key, eq_ref()},
- PolicyTraits::element(slot_array() + seq.offset(i)))))
- return {iterator_at(seq.offset(i)), false};
- }
- auto mask_empty = g.MaskEmpty();
- if (ABSL_PREDICT_TRUE(mask_empty)) {
- size_t target = seq.offset(
- GetInsertionOffset(mask_empty, capacity(), hash, control()));
- return {iterator_at(PrepareInsertNonSoo(common(), hash,
- FindInfo{target, seq.index()},
- GetPolicyFunctions())),
- true};
- }
- seq.next();
- assert(seq.index() <= capacity() && "full table!");
- }
- }
- protected:
- // Asserts that hash and equal functors provided by the user are consistent,
- // meaning that `eq(k1, k2)` implies `hash(k1)==hash(k2)`.
- template <class K>
- void AssertHashEqConsistent(ABSL_ATTRIBUTE_UNUSED const K& key) {
- #ifndef NDEBUG
- if (empty()) return;
- const size_t hash_of_arg = hash_ref()(key);
- const auto assert_consistent = [&](const ctrl_t*, slot_type* slot) {
- const value_type& element = PolicyTraits::element(slot);
- const bool is_key_equal =
- PolicyTraits::apply(EqualElement<K>{key, eq_ref()}, element);
- if (!is_key_equal) return;
- const size_t hash_of_slot =
- PolicyTraits::apply(HashElement{hash_ref()}, element);
- const bool is_hash_equal = hash_of_arg == hash_of_slot;
- if (!is_hash_equal) {
- // In this case, we're going to crash. Do a couple of other checks for
- // idempotence issues. Recalculating hash/eq here is also convenient for
- // debugging with gdb/lldb.
- const size_t once_more_hash_arg = hash_ref()(key);
- assert(hash_of_arg == once_more_hash_arg && "hash is not idempotent.");
- const size_t once_more_hash_slot =
- PolicyTraits::apply(HashElement{hash_ref()}, element);
- assert(hash_of_slot == once_more_hash_slot &&
- "hash is not idempotent.");
- const bool once_more_eq =
- PolicyTraits::apply(EqualElement<K>{key, eq_ref()}, element);
- assert(is_key_equal == once_more_eq && "equality is not idempotent.");
- }
- assert((!is_key_equal || is_hash_equal) &&
- "eq(k1, k2) must imply that hash(k1) == hash(k2). "
- "hash/eq functors are inconsistent.");
- };
- if (is_soo()) {
- assert_consistent(/*unused*/ nullptr, soo_slot());
- return;
- }
- // We only do validation for small tables so that it's constant time.
- if (capacity() > 16) return;
- IterateOverFullSlots(common(), slot_array(), assert_consistent);
- #endif
- }
- // Attempts to find `key` in the table; if it isn't found, returns an iterator
- // where the value can be inserted into, with the control byte already set to
- // `key`'s H2. Returns a bool indicating whether an insertion can take place.
- template <class K>
- std::pair<iterator, bool> find_or_prepare_insert(const K& key) {
- AssertHashEqConsistent(key);
- if (is_soo()) return find_or_prepare_insert_soo(key);
- return find_or_prepare_insert_non_soo(key);
- }
- // Constructs the value in the space pointed by the iterator. This only works
- // after an unsuccessful find_or_prepare_insert() and before any other
- // modifications happen in the raw_hash_set.
- //
- // PRECONDITION: iter was returned from find_or_prepare_insert(k), where k is
- // the key decomposed from `forward<Args>(args)...`, and the bool returned by
- // find_or_prepare_insert(k) was true.
- // POSTCONDITION: *m.iterator_at(i) == value_type(forward<Args>(args)...).
- template <class... Args>
- void emplace_at(iterator iter, Args&&... args) {
- construct(iter.slot(), std::forward<Args>(args)...);
- assert(PolicyTraits::apply(FindElement{*this}, *iter) == iter &&
- "constructed value does not match the lookup key");
- }
- iterator iterator_at(size_t i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
- return {control() + i, slot_array() + i, common().generation_ptr()};
- }
- const_iterator iterator_at(size_t i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
- return const_cast<raw_hash_set*>(this)->iterator_at(i);
- }
- reference unchecked_deref(iterator it) { return it.unchecked_deref(); }
- private:
- friend struct RawHashSetTestOnlyAccess;
- // The number of slots we can still fill without needing to rehash.
- //
- // This is stored separately due to tombstones: we do not include tombstones
- // in the growth capacity, because we'd like to rehash when the table is
- // otherwise filled with tombstones: otherwise, probe sequences might get
- // unacceptably long without triggering a rehash. Callers can also force a
- // rehash via the standard `rehash(0)`, which will recompute this value as a
- // side-effect.
- //
- // See `CapacityToGrowth()`.
- size_t growth_left() const {
- assert(!is_soo());
- return common().growth_left();
- }
- GrowthInfo& growth_info() {
- assert(!is_soo());
- return common().growth_info();
- }
- GrowthInfo growth_info() const {
- assert(!is_soo());
- return common().growth_info();
- }
- // Prefetch the heap-allocated memory region to resolve potential TLB and
- // cache misses. This is intended to overlap with execution of calculating the
- // hash for a key.
- void prefetch_heap_block() const {
- assert(!is_soo());
- #if ABSL_HAVE_BUILTIN(__builtin_prefetch) || defined(__GNUC__)
- __builtin_prefetch(control(), 0, 1);
- #endif
- }
- CommonFields& common() { return settings_.template get<0>(); }
- const CommonFields& common() const { return settings_.template get<0>(); }
- ctrl_t* control() const {
- assert(!is_soo());
- return common().control();
- }
- slot_type* slot_array() const {
- assert(!is_soo());
- return static_cast<slot_type*>(common().slot_array());
- }
- slot_type* soo_slot() {
- assert(is_soo());
- return static_cast<slot_type*>(common().soo_data());
- }
- const slot_type* soo_slot() const {
- return const_cast<raw_hash_set*>(this)->soo_slot();
- }
- iterator soo_iterator() {
- return {SooControl(), soo_slot(), common().generation_ptr()};
- }
- const_iterator soo_iterator() const {
- return const_cast<raw_hash_set*>(this)->soo_iterator();
- }
- HashtablezInfoHandle infoz() {
- assert(!is_soo());
- return common().infoz();
- }
- hasher& hash_ref() { return settings_.template get<1>(); }
- const hasher& hash_ref() const { return settings_.template get<1>(); }
- key_equal& eq_ref() { return settings_.template get<2>(); }
- const key_equal& eq_ref() const { return settings_.template get<2>(); }
- allocator_type& alloc_ref() { return settings_.template get<3>(); }
- const allocator_type& alloc_ref() const {
- return settings_.template get<3>();
- }
- static const void* get_hash_ref_fn(const CommonFields& common) {
- auto* h = reinterpret_cast<const raw_hash_set*>(&common);
- return &h->hash_ref();
- }
- static void transfer_slot_fn(void* set, void* dst, void* src) {
- auto* h = static_cast<raw_hash_set*>(set);
- h->transfer(static_cast<slot_type*>(dst), static_cast<slot_type*>(src));
- }
- // Note: dealloc_fn will only be used if we have a non-standard allocator.
- static void dealloc_fn(CommonFields& common, const PolicyFunctions&) {
- auto* set = reinterpret_cast<raw_hash_set*>(&common);
- // Unpoison before returning the memory to the allocator.
- SanitizerUnpoisonMemoryRegion(common.slot_array(),
- sizeof(slot_type) * common.capacity());
- common.infoz().Unregister();
- Deallocate<BackingArrayAlignment(alignof(slot_type))>(
- &set->alloc_ref(), common.backing_array_start(),
- common.alloc_size(sizeof(slot_type), alignof(slot_type)));
- }
- static const PolicyFunctions& GetPolicyFunctions() {
- static constexpr PolicyFunctions value = {
- sizeof(slot_type),
- // TODO(b/328722020): try to type erase
- // for standard layout and alignof(Hash) <= alignof(CommonFields).
- std::is_empty<hasher>::value ? &GetHashRefForEmptyHasher
- : &raw_hash_set::get_hash_ref_fn,
- PolicyTraits::template get_hash_slot_fn<hasher>(),
- PolicyTraits::transfer_uses_memcpy()
- ? TransferRelocatable<sizeof(slot_type)>
- : &raw_hash_set::transfer_slot_fn,
- (std::is_same<SlotAlloc, std::allocator<slot_type>>::value
- ? &DeallocateStandard<alignof(slot_type)>
- : &raw_hash_set::dealloc_fn),
- &raw_hash_set::resize_impl,
- };
- return value;
- }
- // Bundle together CommonFields plus other objects which might be empty.
- // CompressedTuple will ensure that sizeof is not affected by any of the empty
- // fields that occur after CommonFields.
- absl::container_internal::CompressedTuple<CommonFields, hasher, key_equal,
- allocator_type>
- settings_{CommonFields::CreateDefault<SooEnabled()>(), hasher{},
- key_equal{}, allocator_type{}};
- };
- // Friend access for free functions in raw_hash_set.h.
- struct HashtableFreeFunctionsAccess {
- template <class Predicate, typename Set>
- static typename Set::size_type EraseIf(Predicate& pred, Set* c) {
- if (c->empty()) {
- return 0;
- }
- if (c->is_soo()) {
- auto it = c->soo_iterator();
- if (!pred(*it)) {
- assert(c->size() == 1 && "hash table was modified unexpectedly");
- return 0;
- }
- c->destroy(it.slot());
- c->common().set_empty_soo();
- return 1;
- }
- ABSL_ATTRIBUTE_UNUSED const size_t original_size_for_assert = c->size();
- size_t num_deleted = 0;
- IterateOverFullSlots(
- c->common(), c->slot_array(), [&](const ctrl_t* ctrl, auto* slot) {
- if (pred(Set::PolicyTraits::element(slot))) {
- c->destroy(slot);
- EraseMetaOnly(c->common(), static_cast<size_t>(ctrl - c->control()),
- sizeof(*slot));
- ++num_deleted;
- }
- });
- // NOTE: IterateOverFullSlots allow removal of the current element, so we
- // verify the size additionally here.
- assert(original_size_for_assert - num_deleted == c->size() &&
- "hash table was modified unexpectedly");
- return num_deleted;
- }
- template <class Callback, typename Set>
- static void ForEach(Callback& cb, Set* c) {
- if (c->empty()) {
- return;
- }
- if (c->is_soo()) {
- cb(*c->soo_iterator());
- return;
- }
- using ElementTypeWithConstness = decltype(*c->begin());
- IterateOverFullSlots(
- c->common(), c->slot_array(), [&cb](const ctrl_t*, auto* slot) {
- ElementTypeWithConstness& element = Set::PolicyTraits::element(slot);
- cb(element);
- });
- }
- };
- // Erases all elements that satisfy the predicate `pred` from the container `c`.
- template <typename P, typename H, typename E, typename A, typename Predicate>
- typename raw_hash_set<P, H, E, A>::size_type EraseIf(
- Predicate& pred, raw_hash_set<P, H, E, A>* c) {
- return HashtableFreeFunctionsAccess::EraseIf(pred, c);
- }
- // Calls `cb` for all elements in the container `c`.
- template <typename P, typename H, typename E, typename A, typename Callback>
- void ForEach(Callback& cb, raw_hash_set<P, H, E, A>* c) {
- return HashtableFreeFunctionsAccess::ForEach(cb, c);
- }
- template <typename P, typename H, typename E, typename A, typename Callback>
- void ForEach(Callback& cb, const raw_hash_set<P, H, E, A>* c) {
- return HashtableFreeFunctionsAccess::ForEach(cb, c);
- }
- namespace hashtable_debug_internal {
- template <typename Set>
- struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> {
- using Traits = typename Set::PolicyTraits;
- using Slot = typename Traits::slot_type;
- static size_t GetNumProbes(const Set& set,
- const typename Set::key_type& key) {
- if (set.is_soo()) return 0;
- size_t num_probes = 0;
- size_t hash = set.hash_ref()(key);
- auto seq = probe(set.common(), hash);
- const ctrl_t* ctrl = set.control();
- while (true) {
- container_internal::Group g{ctrl + seq.offset()};
- for (uint32_t i : g.Match(container_internal::H2(hash))) {
- if (Traits::apply(
- typename Set::template EqualElement<typename Set::key_type>{
- key, set.eq_ref()},
- Traits::element(set.slot_array() + seq.offset(i))))
- return num_probes;
- ++num_probes;
- }
- if (g.MaskEmpty()) return num_probes;
- seq.next();
- ++num_probes;
- }
- }
- static size_t AllocatedByteSize(const Set& c) {
- size_t capacity = c.capacity();
- if (capacity == 0) return 0;
- size_t m =
- c.is_soo() ? 0 : c.common().alloc_size(sizeof(Slot), alignof(Slot));
- size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
- if (per_slot != ~size_t{}) {
- m += per_slot * c.size();
- } else {
- for (auto it = c.begin(); it != c.end(); ++it) {
- m += Traits::space_used(it.slot());
- }
- }
- return m;
- }
- };
- } // namespace hashtable_debug_internal
- } // namespace container_internal
- ABSL_NAMESPACE_END
- } // namespace absl
- #undef ABSL_SWISSTABLE_ENABLE_GENERATIONS
- #undef ABSL_SWISSTABLE_IGNORE_UNINITIALIZED
- #undef ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN
- #endif // ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
|