1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046 |
- // Copyright 2018 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // A btree implementation of the STL set and map interfaces. A btree is smaller
- // and generally also faster than STL set/map (refer to the benchmarks below).
- // The red-black tree implementation of STL set/map has an overhead of 3
- // pointers (left, right and parent) plus the node color information for each
- // stored value. So a set<int32_t> consumes 40 bytes for each value stored in
- // 64-bit mode. This btree implementation stores multiple values on fixed
- // size nodes (usually 256 bytes) and doesn't store child pointers for leaf
- // nodes. The result is that a btree_set<int32_t> may use much less memory per
- // stored value. For the random insertion benchmark in btree_bench.cc, a
- // btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value.
- //
- // The packing of multiple values on to each node of a btree has another effect
- // besides better space utilization: better cache locality due to fewer cache
- // lines being accessed. Better cache locality translates into faster
- // operations.
- //
- // CAVEATS
- //
- // Insertions and deletions on a btree can cause splitting, merging or
- // rebalancing of btree nodes. And even without these operations, insertions
- // and deletions on a btree will move values around within a node. In both
- // cases, the result is that insertions and deletions can invalidate iterators
- // pointing to values other than the one being inserted/deleted. Therefore, this
- // container does not provide pointer stability. This is notably different from
- // STL set/map which takes care to not invalidate iterators on insert/erase
- // except, of course, for iterators pointing to the value being erased. A
- // partial workaround when erasing is available: erase() returns an iterator
- // pointing to the item just after the one that was erased (or end() if none
- // exists).
- #ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_
- #define ABSL_CONTAINER_INTERNAL_BTREE_H_
- #include <algorithm>
- #include <cassert>
- #include <cstddef>
- #include <cstdint>
- #include <cstring>
- #include <functional>
- #include <iterator>
- #include <limits>
- #include <string>
- #include <type_traits>
- #include <utility>
- #include "absl/base/config.h"
- #include "absl/base/internal/raw_logging.h"
- #include "absl/base/macros.h"
- #include "absl/container/internal/common.h"
- #include "absl/container/internal/common_policy_traits.h"
- #include "absl/container/internal/compressed_tuple.h"
- #include "absl/container/internal/container_memory.h"
- #include "absl/container/internal/layout.h"
- #include "absl/memory/memory.h"
- #include "absl/meta/type_traits.h"
- #include "absl/strings/cord.h"
- #include "absl/strings/string_view.h"
- #include "absl/types/compare.h"
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- namespace container_internal {
- #ifdef ABSL_BTREE_ENABLE_GENERATIONS
- #error ABSL_BTREE_ENABLE_GENERATIONS cannot be directly set
- #elif (defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
- defined(ABSL_HAVE_HWADDRESS_SANITIZER) || \
- defined(ABSL_HAVE_MEMORY_SANITIZER)) && \
- !defined(NDEBUG_SANITIZER) // If defined, performance is important.
- // When compiled in sanitizer mode, we add generation integers to the nodes and
- // iterators. When iterators are used, we validate that the container has not
- // been mutated since the iterator was constructed.
- #define ABSL_BTREE_ENABLE_GENERATIONS
- #endif
- #ifdef ABSL_BTREE_ENABLE_GENERATIONS
- constexpr bool BtreeGenerationsEnabled() { return true; }
- #else
- constexpr bool BtreeGenerationsEnabled() { return false; }
- #endif
- template <typename Compare, typename T, typename U>
- using compare_result_t = absl::result_of_t<const Compare(const T &, const U &)>;
- // A helper class that indicates if the Compare parameter is a key-compare-to
- // comparator.
- template <typename Compare, typename T>
- using btree_is_key_compare_to =
- std::is_convertible<compare_result_t<Compare, T, T>, absl::weak_ordering>;
- struct StringBtreeDefaultLess {
- using is_transparent = void;
- StringBtreeDefaultLess() = default;
- // Compatibility constructor.
- StringBtreeDefaultLess(std::less<std::string>) {} // NOLINT
- StringBtreeDefaultLess(std::less<absl::string_view>) {} // NOLINT
- // Allow converting to std::less for use in key_comp()/value_comp().
- explicit operator std::less<std::string>() const { return {}; }
- explicit operator std::less<absl::string_view>() const { return {}; }
- explicit operator std::less<absl::Cord>() const { return {}; }
- absl::weak_ordering operator()(absl::string_view lhs,
- absl::string_view rhs) const {
- return compare_internal::compare_result_as_ordering(lhs.compare(rhs));
- }
- StringBtreeDefaultLess(std::less<absl::Cord>) {} // NOLINT
- absl::weak_ordering operator()(const absl::Cord &lhs,
- const absl::Cord &rhs) const {
- return compare_internal::compare_result_as_ordering(lhs.Compare(rhs));
- }
- absl::weak_ordering operator()(const absl::Cord &lhs,
- absl::string_view rhs) const {
- return compare_internal::compare_result_as_ordering(lhs.Compare(rhs));
- }
- absl::weak_ordering operator()(absl::string_view lhs,
- const absl::Cord &rhs) const {
- return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs));
- }
- };
- struct StringBtreeDefaultGreater {
- using is_transparent = void;
- StringBtreeDefaultGreater() = default;
- StringBtreeDefaultGreater(std::greater<std::string>) {} // NOLINT
- StringBtreeDefaultGreater(std::greater<absl::string_view>) {} // NOLINT
- // Allow converting to std::greater for use in key_comp()/value_comp().
- explicit operator std::greater<std::string>() const { return {}; }
- explicit operator std::greater<absl::string_view>() const { return {}; }
- explicit operator std::greater<absl::Cord>() const { return {}; }
- absl::weak_ordering operator()(absl::string_view lhs,
- absl::string_view rhs) const {
- return compare_internal::compare_result_as_ordering(rhs.compare(lhs));
- }
- StringBtreeDefaultGreater(std::greater<absl::Cord>) {} // NOLINT
- absl::weak_ordering operator()(const absl::Cord &lhs,
- const absl::Cord &rhs) const {
- return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
- }
- absl::weak_ordering operator()(const absl::Cord &lhs,
- absl::string_view rhs) const {
- return compare_internal::compare_result_as_ordering(-lhs.Compare(rhs));
- }
- absl::weak_ordering operator()(absl::string_view lhs,
- const absl::Cord &rhs) const {
- return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
- }
- };
- // See below comments for checked_compare.
- template <typename Compare, bool is_class = std::is_class<Compare>::value>
- struct checked_compare_base : Compare {
- using Compare::Compare;
- explicit checked_compare_base(Compare c) : Compare(std::move(c)) {}
- const Compare &comp() const { return *this; }
- };
- template <typename Compare>
- struct checked_compare_base<Compare, false> {
- explicit checked_compare_base(Compare c) : compare(std::move(c)) {}
- const Compare &comp() const { return compare; }
- Compare compare;
- };
- // A mechanism for opting out of checked_compare for use only in btree_test.cc.
- struct BtreeTestOnlyCheckedCompareOptOutBase {};
- // A helper class to adapt the specified comparator for two use cases:
- // (1) When using common Abseil string types with common comparison functors,
- // convert a boolean comparison into a three-way comparison that returns an
- // `absl::weak_ordering`. This helper class is specialized for
- // less<std::string>, greater<std::string>, less<string_view>,
- // greater<string_view>, less<absl::Cord>, and greater<absl::Cord>.
- // (2) Adapt the comparator to diagnose cases of non-strict-weak-ordering (see
- // https://en.cppreference.com/w/cpp/named_req/Compare) in debug mode. Whenever
- // a comparison is made, we will make assertions to verify that the comparator
- // is valid.
- template <typename Compare, typename Key>
- struct key_compare_adapter {
- // Inherit from checked_compare_base to support function pointers and also
- // keep empty-base-optimization (EBO) support for classes.
- // Note: we can't use CompressedTuple here because that would interfere
- // with the EBO for `btree::rightmost_`. `btree::rightmost_` is itself a
- // CompressedTuple and nested `CompressedTuple`s don't support EBO.
- // TODO(b/214288561): use CompressedTuple instead once it supports EBO for
- // nested `CompressedTuple`s.
- struct checked_compare : checked_compare_base<Compare> {
- private:
- using Base = typename checked_compare::checked_compare_base;
- using Base::comp;
- // If possible, returns whether `t` is equivalent to itself. We can only do
- // this for `Key`s because we can't be sure that it's safe to call
- // `comp()(k, k)` otherwise. Even if SFINAE allows it, there could be a
- // compilation failure inside the implementation of the comparison operator.
- bool is_self_equivalent(const Key &k) const {
- // Note: this works for both boolean and three-way comparators.
- return comp()(k, k) == 0;
- }
- // If we can't compare `t` with itself, returns true unconditionally.
- template <typename T>
- bool is_self_equivalent(const T &) const {
- return true;
- }
- public:
- using Base::Base;
- checked_compare(Compare comp) : Base(std::move(comp)) {} // NOLINT
- // Allow converting to Compare for use in key_comp()/value_comp().
- explicit operator Compare() const { return comp(); }
- template <typename T, typename U,
- absl::enable_if_t<
- std::is_same<bool, compare_result_t<Compare, T, U>>::value,
- int> = 0>
- bool operator()(const T &lhs, const U &rhs) const {
- // NOTE: if any of these assertions fail, then the comparator does not
- // establish a strict-weak-ordering (see
- // https://en.cppreference.com/w/cpp/named_req/Compare).
- assert(is_self_equivalent(lhs));
- assert(is_self_equivalent(rhs));
- const bool lhs_comp_rhs = comp()(lhs, rhs);
- assert(!lhs_comp_rhs || !comp()(rhs, lhs));
- return lhs_comp_rhs;
- }
- template <
- typename T, typename U,
- absl::enable_if_t<std::is_convertible<compare_result_t<Compare, T, U>,
- absl::weak_ordering>::value,
- int> = 0>
- absl::weak_ordering operator()(const T &lhs, const U &rhs) const {
- // NOTE: if any of these assertions fail, then the comparator does not
- // establish a strict-weak-ordering (see
- // https://en.cppreference.com/w/cpp/named_req/Compare).
- assert(is_self_equivalent(lhs));
- assert(is_self_equivalent(rhs));
- const absl::weak_ordering lhs_comp_rhs = comp()(lhs, rhs);
- #ifndef NDEBUG
- const absl::weak_ordering rhs_comp_lhs = comp()(rhs, lhs);
- if (lhs_comp_rhs > 0) {
- assert(rhs_comp_lhs < 0 && "lhs_comp_rhs > 0 -> rhs_comp_lhs < 0");
- } else if (lhs_comp_rhs == 0) {
- assert(rhs_comp_lhs == 0 && "lhs_comp_rhs == 0 -> rhs_comp_lhs == 0");
- } else {
- assert(rhs_comp_lhs > 0 && "lhs_comp_rhs < 0 -> rhs_comp_lhs > 0");
- }
- #endif
- return lhs_comp_rhs;
- }
- };
- using type = absl::conditional_t<
- std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase, Compare>::value,
- Compare, checked_compare>;
- };
- template <>
- struct key_compare_adapter<std::less<std::string>, std::string> {
- using type = StringBtreeDefaultLess;
- };
- template <>
- struct key_compare_adapter<std::greater<std::string>, std::string> {
- using type = StringBtreeDefaultGreater;
- };
- template <>
- struct key_compare_adapter<std::less<absl::string_view>, absl::string_view> {
- using type = StringBtreeDefaultLess;
- };
- template <>
- struct key_compare_adapter<std::greater<absl::string_view>, absl::string_view> {
- using type = StringBtreeDefaultGreater;
- };
- template <>
- struct key_compare_adapter<std::less<absl::Cord>, absl::Cord> {
- using type = StringBtreeDefaultLess;
- };
- template <>
- struct key_compare_adapter<std::greater<absl::Cord>, absl::Cord> {
- using type = StringBtreeDefaultGreater;
- };
- // Detects an 'absl_btree_prefer_linear_node_search' member. This is
- // a protocol used as an opt-in or opt-out of linear search.
- //
- // For example, this would be useful for key types that wrap an integer
- // and define their own cheap operator<(). For example:
- //
- // class K {
- // public:
- // using absl_btree_prefer_linear_node_search = std::true_type;
- // ...
- // private:
- // friend bool operator<(K a, K b) { return a.k_ < b.k_; }
- // int k_;
- // };
- //
- // btree_map<K, V> m; // Uses linear search
- //
- // If T has the preference tag, then it has a preference.
- // Btree will use the tag's truth value.
- template <typename T, typename = void>
- struct has_linear_node_search_preference : std::false_type {};
- template <typename T, typename = void>
- struct prefers_linear_node_search : std::false_type {};
- template <typename T>
- struct has_linear_node_search_preference<
- T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>>
- : std::true_type {};
- template <typename T>
- struct prefers_linear_node_search<
- T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>>
- : T::absl_btree_prefer_linear_node_search {};
- template <typename Compare, typename Key>
- constexpr bool compare_has_valid_result_type() {
- using compare_result_type = compare_result_t<Compare, Key, Key>;
- return std::is_same<compare_result_type, bool>::value ||
- std::is_convertible<compare_result_type, absl::weak_ordering>::value;
- }
- template <typename original_key_compare, typename value_type>
- class map_value_compare {
- template <typename Params>
- friend class btree;
- // Note: this `protected` is part of the API of std::map::value_compare. See
- // https://en.cppreference.com/w/cpp/container/map/value_compare.
- protected:
- explicit map_value_compare(original_key_compare c) : comp(std::move(c)) {}
- original_key_compare comp; // NOLINT
- public:
- auto operator()(const value_type &lhs, const value_type &rhs) const
- -> decltype(comp(lhs.first, rhs.first)) {
- return comp(lhs.first, rhs.first);
- }
- };
- template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
- bool IsMulti, bool IsMap, typename SlotPolicy>
- struct common_params : common_policy_traits<SlotPolicy> {
- using original_key_compare = Compare;
- // If Compare is a common comparator for a string-like type, then we adapt it
- // to use heterogeneous lookup and to be a key-compare-to comparator.
- // We also adapt the comparator to diagnose invalid comparators in debug mode.
- // We disable this when `Compare` is invalid in a way that will cause
- // adaptation to fail (having invalid return type) so that we can give a
- // better compilation failure in static_assert_validation. If we don't do
- // this, then there will be cascading compilation failures that are confusing
- // for users.
- using key_compare =
- absl::conditional_t<!compare_has_valid_result_type<Compare, Key>(),
- Compare,
- typename key_compare_adapter<Compare, Key>::type>;
- static constexpr bool kIsKeyCompareStringAdapted =
- std::is_same<key_compare, StringBtreeDefaultLess>::value ||
- std::is_same<key_compare, StringBtreeDefaultGreater>::value;
- static constexpr bool kIsKeyCompareTransparent =
- IsTransparent<original_key_compare>::value || kIsKeyCompareStringAdapted;
- // A type which indicates if we have a key-compare-to functor or a plain old
- // key-compare functor.
- using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>;
- using allocator_type = Alloc;
- using key_type = Key;
- using size_type = size_t;
- using difference_type = ptrdiff_t;
- using slot_policy = SlotPolicy;
- using slot_type = typename slot_policy::slot_type;
- using value_type = typename slot_policy::value_type;
- using init_type = typename slot_policy::mutable_value_type;
- using pointer = value_type *;
- using const_pointer = const value_type *;
- using reference = value_type &;
- using const_reference = const value_type &;
- using value_compare =
- absl::conditional_t<IsMap,
- map_value_compare<original_key_compare, value_type>,
- original_key_compare>;
- using is_map_container = std::integral_constant<bool, IsMap>;
- // For the given lookup key type, returns whether we can have multiple
- // equivalent keys in the btree. If this is a multi-container, then we can.
- // Otherwise, we can have multiple equivalent keys only if all of the
- // following conditions are met:
- // - The comparator is transparent.
- // - The lookup key type is not the same as key_type.
- // - The comparator is not a StringBtreeDefault{Less,Greater} comparator
- // that we know has the same equivalence classes for all lookup types.
- template <typename LookupKey>
- constexpr static bool can_have_multiple_equivalent_keys() {
- return IsMulti || (IsTransparent<key_compare>::value &&
- !std::is_same<LookupKey, Key>::value &&
- !kIsKeyCompareStringAdapted);
- }
- enum {
- kTargetNodeSize = TargetNodeSize,
- // Upper bound for the available space for slots. This is largest for leaf
- // nodes, which have overhead of at least a pointer + 4 bytes (for storing
- // 3 field_types and an enum).
- kNodeSlotSpace = TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4),
- };
- // This is an integral type large enough to hold as many slots as will fit a
- // node of TargetNodeSize bytes.
- using node_count_type =
- absl::conditional_t<(kNodeSlotSpace / sizeof(slot_type) >
- (std::numeric_limits<uint8_t>::max)()),
- uint16_t, uint8_t>; // NOLINT
- };
- // An adapter class that converts a lower-bound compare into an upper-bound
- // compare. Note: there is no need to make a version of this adapter specialized
- // for key-compare-to functors because the upper-bound (the first value greater
- // than the input) is never an exact match.
- template <typename Compare>
- struct upper_bound_adapter {
- explicit upper_bound_adapter(const Compare &c) : comp(c) {}
- template <typename K1, typename K2>
- bool operator()(const K1 &a, const K2 &b) const {
- // Returns true when a is not greater than b.
- return !compare_internal::compare_result_as_less_than(comp(b, a));
- }
- private:
- Compare comp;
- };
- enum class MatchKind : uint8_t { kEq, kNe };
- template <typename V, bool IsCompareTo>
- struct SearchResult {
- V value;
- MatchKind match;
- static constexpr bool HasMatch() { return true; }
- bool IsEq() const { return match == MatchKind::kEq; }
- };
- // When we don't use CompareTo, `match` is not present.
- // This ensures that callers can't use it accidentally when it provides no
- // useful information.
- template <typename V>
- struct SearchResult<V, false> {
- SearchResult() = default;
- explicit SearchResult(V v) : value(v) {}
- SearchResult(V v, MatchKind /*match*/) : value(v) {}
- V value;
- static constexpr bool HasMatch() { return false; }
- static constexpr bool IsEq() { return false; }
- };
- // A node in the btree holding. The same node type is used for both internal
- // and leaf nodes in the btree, though the nodes are allocated in such a way
- // that the children array is only valid in internal nodes.
- template <typename Params>
- class btree_node {
- using is_key_compare_to = typename Params::is_key_compare_to;
- using field_type = typename Params::node_count_type;
- using allocator_type = typename Params::allocator_type;
- using slot_type = typename Params::slot_type;
- using original_key_compare = typename Params::original_key_compare;
- public:
- using params_type = Params;
- using key_type = typename Params::key_type;
- using value_type = typename Params::value_type;
- using pointer = typename Params::pointer;
- using const_pointer = typename Params::const_pointer;
- using reference = typename Params::reference;
- using const_reference = typename Params::const_reference;
- using key_compare = typename Params::key_compare;
- using size_type = typename Params::size_type;
- using difference_type = typename Params::difference_type;
- // Btree decides whether to use linear node search as follows:
- // - If the comparator expresses a preference, use that.
- // - If the key expresses a preference, use that.
- // - If the key is arithmetic and the comparator is std::less or
- // std::greater, choose linear.
- // - Otherwise, choose binary.
- // TODO(ezb): Might make sense to add condition(s) based on node-size.
- using use_linear_search = std::integral_constant<
- bool, has_linear_node_search_preference<original_key_compare>::value
- ? prefers_linear_node_search<original_key_compare>::value
- : has_linear_node_search_preference<key_type>::value
- ? prefers_linear_node_search<key_type>::value
- : std::is_arithmetic<key_type>::value &&
- (std::is_same<std::less<key_type>,
- original_key_compare>::value ||
- std::is_same<std::greater<key_type>,
- original_key_compare>::value)>;
- // This class is organized by absl::container_internal::Layout as if it had
- // the following structure:
- // // A pointer to the node's parent.
- // btree_node *parent;
- //
- // // When ABSL_BTREE_ENABLE_GENERATIONS is defined, we also have a
- // // generation integer in order to check that when iterators are
- // // used, they haven't been invalidated already. Only the generation on
- // // the root is used, but we have one on each node because whether a node
- // // is root or not can change.
- // uint32_t generation;
- //
- // // The position of the node in the node's parent.
- // field_type position;
- // // The index of the first populated value in `values`.
- // // TODO(ezb): right now, `start` is always 0. Update insertion/merge
- // // logic to allow for floating storage within nodes.
- // field_type start;
- // // The index after the last populated value in `values`. Currently, this
- // // is the same as the count of values.
- // field_type finish;
- // // The maximum number of values the node can hold. This is an integer in
- // // [1, kNodeSlots] for root leaf nodes, kNodeSlots for non-root leaf
- // // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal
- // // nodes (even though there are still kNodeSlots values in the node).
- // // TODO(ezb): make max_count use only 4 bits and record log2(capacity)
- // // to free extra bits for is_root, etc.
- // field_type max_count;
- //
- // // The array of values. The capacity is `max_count` for leaf nodes and
- // // kNodeSlots for internal nodes. Only the values in
- // // [start, finish) have been initialized and are valid.
- // slot_type values[max_count];
- //
- // // The array of child pointers. The keys in children[i] are all less
- // // than key(i). The keys in children[i + 1] are all greater than key(i).
- // // There are 0 children for leaf nodes and kNodeSlots + 1 children for
- // // internal nodes.
- // btree_node *children[kNodeSlots + 1];
- //
- // This class is only constructed by EmptyNodeType. Normally, pointers to the
- // layout above are allocated, cast to btree_node*, and de-allocated within
- // the btree implementation.
- ~btree_node() = default;
- btree_node(btree_node const &) = delete;
- btree_node &operator=(btree_node const &) = delete;
- protected:
- btree_node() = default;
- private:
- using layout_type =
- absl::container_internal::Layout<btree_node *, uint32_t, field_type,
- slot_type, btree_node *>;
- using leaf_layout_type = typename layout_type::template WithStaticSizes<
- /*parent*/ 1,
- /*generation*/ BtreeGenerationsEnabled() ? 1 : 0,
- /*position, start, finish, max_count*/ 4>;
- constexpr static size_type SizeWithNSlots(size_type n) {
- return leaf_layout_type(/*slots*/ n, /*children*/ 0).AllocSize();
- }
- // A lower bound for the overhead of fields other than slots in a leaf node.
- constexpr static size_type MinimumOverhead() {
- return SizeWithNSlots(1) - sizeof(slot_type);
- }
- // Compute how many values we can fit onto a leaf node taking into account
- // padding.
- constexpr static size_type NodeTargetSlots(const size_type begin,
- const size_type end) {
- return begin == end ? begin
- : SizeWithNSlots((begin + end) / 2 + 1) >
- params_type::kTargetNodeSize
- ? NodeTargetSlots(begin, (begin + end) / 2)
- : NodeTargetSlots((begin + end) / 2 + 1, end);
- }
- constexpr static size_type kTargetNodeSize = params_type::kTargetNodeSize;
- constexpr static size_type kNodeTargetSlots =
- NodeTargetSlots(0, kTargetNodeSize);
- // We need a minimum of 3 slots per internal node in order to perform
- // splitting (1 value for the two nodes involved in the split and 1 value
- // propagated to the parent as the delimiter for the split). For performance
- // reasons, we don't allow 3 slots-per-node due to bad worst case occupancy of
- // 1/3 (for a node, not a b-tree).
- constexpr static size_type kMinNodeSlots = 4;
- constexpr static size_type kNodeSlots =
- kNodeTargetSlots >= kMinNodeSlots ? kNodeTargetSlots : kMinNodeSlots;
- using internal_layout_type = typename layout_type::template WithStaticSizes<
- /*parent*/ 1,
- /*generation*/ BtreeGenerationsEnabled() ? 1 : 0,
- /*position, start, finish, max_count*/ 4, /*slots*/ kNodeSlots,
- /*children*/ kNodeSlots + 1>;
- // The node is internal (i.e. is not a leaf node) if and only if `max_count`
- // has this value.
- constexpr static field_type kInternalNodeMaxCount = 0;
- // Leaves can have less than kNodeSlots values.
- constexpr static leaf_layout_type LeafLayout(
- const size_type slot_count = kNodeSlots) {
- return leaf_layout_type(slot_count, 0);
- }
- constexpr static auto InternalLayout() { return internal_layout_type(); }
- constexpr static size_type LeafSize(const size_type slot_count = kNodeSlots) {
- return LeafLayout(slot_count).AllocSize();
- }
- constexpr static size_type InternalSize() {
- return InternalLayout().AllocSize();
- }
- constexpr static size_type Alignment() {
- static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(),
- "Alignment of all nodes must be equal.");
- return InternalLayout().Alignment();
- }
- // N is the index of the type in the Layout definition.
- // ElementType<N> is the Nth type in the Layout definition.
- template <size_type N>
- inline typename layout_type::template ElementType<N> *GetField() {
- // We assert that we don't read from values that aren't there.
- assert(N < 4 || is_internal());
- return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this));
- }
- template <size_type N>
- inline const typename layout_type::template ElementType<N> *GetField() const {
- assert(N < 4 || is_internal());
- return InternalLayout().template Pointer<N>(
- reinterpret_cast<const char *>(this));
- }
- void set_parent(btree_node *p) { *GetField<0>() = p; }
- field_type &mutable_finish() { return GetField<2>()[2]; }
- slot_type *slot(size_type i) { return &GetField<3>()[i]; }
- slot_type *start_slot() { return slot(start()); }
- slot_type *finish_slot() { return slot(finish()); }
- const slot_type *slot(size_type i) const { return &GetField<3>()[i]; }
- void set_position(field_type v) { GetField<2>()[0] = v; }
- void set_start(field_type v) { GetField<2>()[1] = v; }
- void set_finish(field_type v) { GetField<2>()[2] = v; }
- // This method is only called by the node init methods.
- void set_max_count(field_type v) { GetField<2>()[3] = v; }
- public:
- // Whether this is a leaf node or not. This value doesn't change after the
- // node is created.
- bool is_leaf() const { return GetField<2>()[3] != kInternalNodeMaxCount; }
- // Whether this is an internal node or not. This value doesn't change after
- // the node is created.
- bool is_internal() const { return !is_leaf(); }
- // Getter for the position of this node in its parent.
- field_type position() const { return GetField<2>()[0]; }
- // Getter for the offset of the first value in the `values` array.
- field_type start() const {
- // TODO(ezb): when floating storage is implemented, return GetField<2>()[1];
- assert(GetField<2>()[1] == 0);
- return 0;
- }
- // Getter for the offset after the last value in the `values` array.
- field_type finish() const { return GetField<2>()[2]; }
- // Getters for the number of values stored in this node.
- field_type count() const {
- assert(finish() >= start());
- return finish() - start();
- }
- field_type max_count() const {
- // Internal nodes have max_count==kInternalNodeMaxCount.
- // Leaf nodes have max_count in [1, kNodeSlots].
- const field_type max_count = GetField<2>()[3];
- return max_count == field_type{kInternalNodeMaxCount}
- ? field_type{kNodeSlots}
- : max_count;
- }
- // Getter for the parent of this node.
- btree_node *parent() const { return *GetField<0>(); }
- // Getter for whether the node is the root of the tree. The parent of the
- // root of the tree is the leftmost node in the tree which is guaranteed to
- // be a leaf.
- bool is_root() const { return parent()->is_leaf(); }
- void make_root() {
- assert(parent()->is_root());
- set_generation(parent()->generation());
- set_parent(parent()->parent());
- }
- // Gets the root node's generation integer, which is the one used by the tree.
- uint32_t *get_root_generation() const {
- assert(BtreeGenerationsEnabled());
- const btree_node *curr = this;
- for (; !curr->is_root(); curr = curr->parent()) continue;
- return const_cast<uint32_t *>(&curr->GetField<1>()[0]);
- }
- // Returns the generation for iterator validation.
- uint32_t generation() const {
- return BtreeGenerationsEnabled() ? *get_root_generation() : 0;
- }
- // Updates generation. Should only be called on a root node or during node
- // initialization.
- void set_generation(uint32_t generation) {
- if (BtreeGenerationsEnabled()) GetField<1>()[0] = generation;
- }
- // Updates the generation. We do this whenever the node is mutated.
- void next_generation() {
- if (BtreeGenerationsEnabled()) ++*get_root_generation();
- }
- // Getters for the key/value at position i in the node.
- const key_type &key(size_type i) const { return params_type::key(slot(i)); }
- reference value(size_type i) { return params_type::element(slot(i)); }
- const_reference value(size_type i) const {
- return params_type::element(slot(i));
- }
- // Getters/setter for the child at position i in the node.
- btree_node *child(field_type i) const { return GetField<4>()[i]; }
- btree_node *start_child() const { return child(start()); }
- btree_node *&mutable_child(field_type i) { return GetField<4>()[i]; }
- void clear_child(field_type i) {
- absl::container_internal::SanitizerPoisonObject(&mutable_child(i));
- }
- void set_child_noupdate_position(field_type i, btree_node *c) {
- absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i));
- mutable_child(i) = c;
- }
- void set_child(field_type i, btree_node *c) {
- set_child_noupdate_position(i, c);
- c->set_position(i);
- }
- void init_child(field_type i, btree_node *c) {
- set_child(i, c);
- c->set_parent(this);
- }
- // Returns the position of the first value whose key is not less than k.
- template <typename K>
- SearchResult<size_type, is_key_compare_to::value> lower_bound(
- const K &k, const key_compare &comp) const {
- return use_linear_search::value ? linear_search(k, comp)
- : binary_search(k, comp);
- }
- // Returns the position of the first value whose key is greater than k.
- template <typename K>
- size_type upper_bound(const K &k, const key_compare &comp) const {
- auto upper_compare = upper_bound_adapter<key_compare>(comp);
- return use_linear_search::value ? linear_search(k, upper_compare).value
- : binary_search(k, upper_compare).value;
- }
- template <typename K, typename Compare>
- SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value>
- linear_search(const K &k, const Compare &comp) const {
- return linear_search_impl(k, start(), finish(), comp,
- btree_is_key_compare_to<Compare, key_type>());
- }
- template <typename K, typename Compare>
- SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value>
- binary_search(const K &k, const Compare &comp) const {
- return binary_search_impl(k, start(), finish(), comp,
- btree_is_key_compare_to<Compare, key_type>());
- }
- // Returns the position of the first value whose key is not less than k using
- // linear search performed using plain compare.
- template <typename K, typename Compare>
- SearchResult<size_type, false> linear_search_impl(
- const K &k, size_type s, const size_type e, const Compare &comp,
- std::false_type /* IsCompareTo */) const {
- while (s < e) {
- if (!comp(key(s), k)) {
- break;
- }
- ++s;
- }
- return SearchResult<size_type, false>{s};
- }
- // Returns the position of the first value whose key is not less than k using
- // linear search performed using compare-to.
- template <typename K, typename Compare>
- SearchResult<size_type, true> linear_search_impl(
- const K &k, size_type s, const size_type e, const Compare &comp,
- std::true_type /* IsCompareTo */) const {
- while (s < e) {
- const absl::weak_ordering c = comp(key(s), k);
- if (c == 0) {
- return {s, MatchKind::kEq};
- } else if (c > 0) {
- break;
- }
- ++s;
- }
- return {s, MatchKind::kNe};
- }
- // Returns the position of the first value whose key is not less than k using
- // binary search performed using plain compare.
- template <typename K, typename Compare>
- SearchResult<size_type, false> binary_search_impl(
- const K &k, size_type s, size_type e, const Compare &comp,
- std::false_type /* IsCompareTo */) const {
- while (s != e) {
- const size_type mid = (s + e) >> 1;
- if (comp(key(mid), k)) {
- s = mid + 1;
- } else {
- e = mid;
- }
- }
- return SearchResult<size_type, false>{s};
- }
- // Returns the position of the first value whose key is not less than k using
- // binary search performed using compare-to.
- template <typename K, typename CompareTo>
- SearchResult<size_type, true> binary_search_impl(
- const K &k, size_type s, size_type e, const CompareTo &comp,
- std::true_type /* IsCompareTo */) const {
- if (params_type::template can_have_multiple_equivalent_keys<K>()) {
- MatchKind exact_match = MatchKind::kNe;
- while (s != e) {
- const size_type mid = (s + e) >> 1;
- const absl::weak_ordering c = comp(key(mid), k);
- if (c < 0) {
- s = mid + 1;
- } else {
- e = mid;
- if (c == 0) {
- // Need to return the first value whose key is not less than k,
- // which requires continuing the binary search if there could be
- // multiple equivalent keys.
- exact_match = MatchKind::kEq;
- }
- }
- }
- return {s, exact_match};
- } else { // Can't have multiple equivalent keys.
- while (s != e) {
- const size_type mid = (s + e) >> 1;
- const absl::weak_ordering c = comp(key(mid), k);
- if (c < 0) {
- s = mid + 1;
- } else if (c > 0) {
- e = mid;
- } else {
- return {mid, MatchKind::kEq};
- }
- }
- return {s, MatchKind::kNe};
- }
- }
- // Returns whether key i is ordered correctly with respect to the other keys
- // in the node. The motivation here is to detect comparators that violate
- // transitivity. Note: we only do comparisons of keys on this node rather than
- // the whole tree so that this is constant time.
- template <typename Compare>
- bool is_ordered_correctly(field_type i, const Compare &comp) const {
- if (std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase,
- Compare>::value ||
- params_type::kIsKeyCompareStringAdapted) {
- return true;
- }
- const auto compare = [&](field_type a, field_type b) {
- const absl::weak_ordering cmp =
- compare_internal::do_three_way_comparison(comp, key(a), key(b));
- return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
- };
- int cmp = -1;
- constexpr bool kCanHaveEquivKeys =
- params_type::template can_have_multiple_equivalent_keys<key_type>();
- for (field_type j = start(); j < finish(); ++j) {
- if (j == i) {
- if (cmp > 0) return false;
- continue;
- }
- int new_cmp = compare(j, i);
- if (new_cmp < cmp || (!kCanHaveEquivKeys && new_cmp == 0)) return false;
- cmp = new_cmp;
- }
- return true;
- }
- // Emplaces a value at position i, shifting all existing values and
- // children at positions >= i to the right by 1.
- template <typename... Args>
- void emplace_value(field_type i, allocator_type *alloc, Args &&...args);
- // Removes the values at positions [i, i + to_erase), shifting all existing
- // values and children after that range to the left by to_erase. Clears all
- // children between [i, i + to_erase).
- void remove_values(field_type i, field_type to_erase, allocator_type *alloc);
- // Rebalances a node with its right sibling.
- void rebalance_right_to_left(field_type to_move, btree_node *right,
- allocator_type *alloc);
- void rebalance_left_to_right(field_type to_move, btree_node *right,
- allocator_type *alloc);
- // Splits a node, moving a portion of the node's values to its right sibling.
- void split(int insert_position, btree_node *dest, allocator_type *alloc);
- // Merges a node with its right sibling, moving all of the values and the
- // delimiting key in the parent node onto itself, and deleting the src node.
- void merge(btree_node *src, allocator_type *alloc);
- // Node allocation/deletion routines.
- void init_leaf(field_type position, field_type max_count,
- btree_node *parent) {
- set_generation(0);
- set_parent(parent);
- set_position(position);
- set_start(0);
- set_finish(0);
- set_max_count(max_count);
- absl::container_internal::SanitizerPoisonMemoryRegion(
- start_slot(), max_count * sizeof(slot_type));
- }
- void init_internal(field_type position, btree_node *parent) {
- init_leaf(position, kNodeSlots, parent);
- // Set `max_count` to a sentinel value to indicate that this node is
- // internal.
- set_max_count(kInternalNodeMaxCount);
- absl::container_internal::SanitizerPoisonMemoryRegion(
- &mutable_child(start()), (kNodeSlots + 1) * sizeof(btree_node *));
- }
- static void deallocate(const size_type size, btree_node *node,
- allocator_type *alloc) {
- absl::container_internal::SanitizerUnpoisonMemoryRegion(node, size);
- absl::container_internal::Deallocate<Alignment()>(alloc, node, size);
- }
- // Deletes a node and all of its children.
- static void clear_and_delete(btree_node *node, allocator_type *alloc);
- private:
- template <typename... Args>
- void value_init(const field_type i, allocator_type *alloc, Args &&...args) {
- next_generation();
- absl::container_internal::SanitizerUnpoisonObject(slot(i));
- params_type::construct(alloc, slot(i), std::forward<Args>(args)...);
- }
- void value_destroy(const field_type i, allocator_type *alloc) {
- next_generation();
- params_type::destroy(alloc, slot(i));
- absl::container_internal::SanitizerPoisonObject(slot(i));
- }
- void value_destroy_n(const field_type i, const field_type n,
- allocator_type *alloc) {
- next_generation();
- for (slot_type *s = slot(i), *end = slot(i + n); s != end; ++s) {
- params_type::destroy(alloc, s);
- absl::container_internal::SanitizerPoisonObject(s);
- }
- }
- static void transfer(slot_type *dest, slot_type *src, allocator_type *alloc) {
- absl::container_internal::SanitizerUnpoisonObject(dest);
- params_type::transfer(alloc, dest, src);
- absl::container_internal::SanitizerPoisonObject(src);
- }
- // Transfers value from slot `src_i` in `src_node` to slot `dest_i` in `this`.
- void transfer(const size_type dest_i, const size_type src_i,
- btree_node *src_node, allocator_type *alloc) {
- next_generation();
- transfer(slot(dest_i), src_node->slot(src_i), alloc);
- }
- // Transfers `n` values starting at value `src_i` in `src_node` into the
- // values starting at value `dest_i` in `this`.
- void transfer_n(const size_type n, const size_type dest_i,
- const size_type src_i, btree_node *src_node,
- allocator_type *alloc) {
- next_generation();
- for (slot_type *src = src_node->slot(src_i), *end = src + n,
- *dest = slot(dest_i);
- src != end; ++src, ++dest) {
- transfer(dest, src, alloc);
- }
- }
- // Same as above, except that we start at the end and work our way to the
- // beginning.
- void transfer_n_backward(const size_type n, const size_type dest_i,
- const size_type src_i, btree_node *src_node,
- allocator_type *alloc) {
- next_generation();
- for (slot_type *src = src_node->slot(src_i + n), *end = src - n,
- *dest = slot(dest_i + n);
- src != end; --src, --dest) {
- // If we modified the loop index calculations above to avoid the -1s here,
- // it would result in UB in the computation of `end` (and possibly `src`
- // as well, if n == 0), since slot() is effectively an array index and it
- // is UB to compute the address of any out-of-bounds array element except
- // for one-past-the-end.
- transfer(dest - 1, src - 1, alloc);
- }
- }
- template <typename P>
- friend class btree;
- template <typename N, typename R, typename P>
- friend class btree_iterator;
- friend class BtreeNodePeer;
- friend struct btree_access;
- };
- template <typename Node>
- bool AreNodesFromSameContainer(const Node *node_a, const Node *node_b) {
- // If either node is null, then give up on checking whether they're from the
- // same container. (If exactly one is null, then we'll trigger the
- // default-constructed assert in Equals.)
- if (node_a == nullptr || node_b == nullptr) return true;
- while (!node_a->is_root()) node_a = node_a->parent();
- while (!node_b->is_root()) node_b = node_b->parent();
- return node_a == node_b;
- }
- class btree_iterator_generation_info_enabled {
- public:
- explicit btree_iterator_generation_info_enabled(uint32_t g)
- : generation_(g) {}
- // Updates the generation. For use internally right before we return an
- // iterator to the user.
- template <typename Node>
- void update_generation(const Node *node) {
- if (node != nullptr) generation_ = node->generation();
- }
- uint32_t generation() const { return generation_; }
- template <typename Node>
- void assert_valid_generation(const Node *node) const {
- if (node != nullptr && node->generation() != generation_) {
- ABSL_INTERNAL_LOG(
- FATAL,
- "Attempting to use an invalidated iterator. The corresponding b-tree "
- "container has been mutated since this iterator was constructed.");
- }
- }
- private:
- // Used to check that the iterator hasn't been invalidated.
- uint32_t generation_;
- };
- class btree_iterator_generation_info_disabled {
- public:
- explicit btree_iterator_generation_info_disabled(uint32_t) {}
- static void update_generation(const void *) {}
- static uint32_t generation() { return 0; }
- static void assert_valid_generation(const void *) {}
- };
- #ifdef ABSL_BTREE_ENABLE_GENERATIONS
- using btree_iterator_generation_info = btree_iterator_generation_info_enabled;
- #else
- using btree_iterator_generation_info = btree_iterator_generation_info_disabled;
- #endif
- template <typename Node, typename Reference, typename Pointer>
- class btree_iterator : private btree_iterator_generation_info {
- using field_type = typename Node::field_type;
- using key_type = typename Node::key_type;
- using size_type = typename Node::size_type;
- using params_type = typename Node::params_type;
- using is_map_container = typename params_type::is_map_container;
- using node_type = Node;
- using normal_node = typename std::remove_const<Node>::type;
- using const_node = const Node;
- using normal_pointer = typename params_type::pointer;
- using normal_reference = typename params_type::reference;
- using const_pointer = typename params_type::const_pointer;
- using const_reference = typename params_type::const_reference;
- using slot_type = typename params_type::slot_type;
- // In sets, all iterators are const.
- using iterator = absl::conditional_t<
- is_map_container::value,
- btree_iterator<normal_node, normal_reference, normal_pointer>,
- btree_iterator<normal_node, const_reference, const_pointer>>;
- using const_iterator =
- btree_iterator<const_node, const_reference, const_pointer>;
- public:
- // These aliases are public for std::iterator_traits.
- using difference_type = typename Node::difference_type;
- using value_type = typename params_type::value_type;
- using pointer = Pointer;
- using reference = Reference;
- using iterator_category = std::bidirectional_iterator_tag;
- btree_iterator() : btree_iterator(nullptr, -1) {}
- explicit btree_iterator(Node *n) : btree_iterator(n, n->start()) {}
- btree_iterator(Node *n, int p)
- : btree_iterator_generation_info(n != nullptr ? n->generation()
- : ~uint32_t{}),
- node_(n),
- position_(p) {}
- // NOTE: this SFINAE allows for implicit conversions from iterator to
- // const_iterator, but it specifically avoids hiding the copy constructor so
- // that the trivial one will be used when possible.
- template <typename N, typename R, typename P,
- absl::enable_if_t<
- std::is_same<btree_iterator<N, R, P>, iterator>::value &&
- std::is_same<btree_iterator, const_iterator>::value,
- int> = 0>
- btree_iterator(const btree_iterator<N, R, P> other) // NOLINT
- : btree_iterator_generation_info(other),
- node_(other.node_),
- position_(other.position_) {}
- bool operator==(const iterator &other) const {
- return Equals(other);
- }
- bool operator==(const const_iterator &other) const {
- return Equals(other);
- }
- bool operator!=(const iterator &other) const {
- return !Equals(other);
- }
- bool operator!=(const const_iterator &other) const {
- return !Equals(other);
- }
- // Returns n such that n calls to ++other yields *this.
- // Precondition: n exists.
- difference_type operator-(const_iterator other) const {
- if (node_ == other.node_) {
- if (node_->is_leaf()) return position_ - other.position_;
- if (position_ == other.position_) return 0;
- }
- return distance_slow(other);
- }
- // Accessors for the key/value the iterator is pointing at.
- reference operator*() const {
- ABSL_HARDENING_ASSERT(node_ != nullptr);
- assert_valid_generation(node_);
- ABSL_HARDENING_ASSERT(position_ >= node_->start());
- if (position_ >= node_->finish()) {
- ABSL_HARDENING_ASSERT(!IsEndIterator() && "Dereferencing end() iterator");
- ABSL_HARDENING_ASSERT(position_ < node_->finish());
- }
- return node_->value(static_cast<field_type>(position_));
- }
- pointer operator->() const { return &operator*(); }
- btree_iterator &operator++() {
- increment();
- return *this;
- }
- btree_iterator &operator--() {
- decrement();
- return *this;
- }
- btree_iterator operator++(int) {
- btree_iterator tmp = *this;
- ++*this;
- return tmp;
- }
- btree_iterator operator--(int) {
- btree_iterator tmp = *this;
- --*this;
- return tmp;
- }
- private:
- friend iterator;
- friend const_iterator;
- template <typename Params>
- friend class btree;
- template <typename Tree>
- friend class btree_container;
- template <typename Tree>
- friend class btree_set_container;
- template <typename Tree>
- friend class btree_map_container;
- template <typename Tree>
- friend class btree_multiset_container;
- template <typename TreeType, typename CheckerType>
- friend class base_checker;
- friend struct btree_access;
- // This SFINAE allows explicit conversions from const_iterator to
- // iterator, but also avoids hiding the copy constructor.
- // NOTE: the const_cast is safe because this constructor is only called by
- // non-const methods and the container owns the nodes.
- template <typename N, typename R, typename P,
- absl::enable_if_t<
- std::is_same<btree_iterator<N, R, P>, const_iterator>::value &&
- std::is_same<btree_iterator, iterator>::value,
- int> = 0>
- explicit btree_iterator(const btree_iterator<N, R, P> other)
- : btree_iterator_generation_info(other.generation()),
- node_(const_cast<node_type *>(other.node_)),
- position_(other.position_) {}
- bool Equals(const const_iterator other) const {
- ABSL_HARDENING_ASSERT(((node_ == nullptr && other.node_ == nullptr) ||
- (node_ != nullptr && other.node_ != nullptr)) &&
- "Comparing default-constructed iterator with "
- "non-default-constructed iterator.");
- // Note: we use assert instead of ABSL_HARDENING_ASSERT here because this
- // changes the complexity of Equals from O(1) to O(log(N) + log(M)) where
- // N/M are sizes of the containers containing node_/other.node_.
- assert(AreNodesFromSameContainer(node_, other.node_) &&
- "Comparing iterators from different containers.");
- assert_valid_generation(node_);
- other.assert_valid_generation(other.node_);
- return node_ == other.node_ && position_ == other.position_;
- }
- bool IsEndIterator() const {
- if (position_ != node_->finish()) return false;
- node_type *node = node_;
- while (!node->is_root()) {
- if (node->position() != node->parent()->finish()) return false;
- node = node->parent();
- }
- return true;
- }
- // Returns n such that n calls to ++other yields *this.
- // Precondition: n exists && (this->node_ != other.node_ ||
- // !this->node_->is_leaf() || this->position_ != other.position_).
- difference_type distance_slow(const_iterator other) const;
- // Increment/decrement the iterator.
- void increment() {
- assert_valid_generation(node_);
- if (node_->is_leaf() && ++position_ < node_->finish()) {
- return;
- }
- increment_slow();
- }
- void increment_slow();
- void decrement() {
- assert_valid_generation(node_);
- if (node_->is_leaf() && --position_ >= node_->start()) {
- return;
- }
- decrement_slow();
- }
- void decrement_slow();
- const key_type &key() const {
- return node_->key(static_cast<size_type>(position_));
- }
- decltype(std::declval<Node *>()->slot(0)) slot() {
- return node_->slot(static_cast<size_type>(position_));
- }
- void update_generation() {
- btree_iterator_generation_info::update_generation(node_);
- }
- // The node in the tree the iterator is pointing at.
- Node *node_;
- // The position within the node of the tree the iterator is pointing at.
- // NOTE: this is an int rather than a field_type because iterators can point
- // to invalid positions (such as -1) in certain circumstances.
- int position_;
- };
- template <typename Params>
- class btree {
- using node_type = btree_node<Params>;
- using is_key_compare_to = typename Params::is_key_compare_to;
- using field_type = typename node_type::field_type;
- // We use a static empty node for the root/leftmost/rightmost of empty btrees
- // in order to avoid branching in begin()/end().
- struct EmptyNodeType : node_type {
- using field_type = typename node_type::field_type;
- node_type *parent;
- #ifdef ABSL_BTREE_ENABLE_GENERATIONS
- uint32_t generation = 0;
- #endif
- field_type position = 0;
- field_type start = 0;
- field_type finish = 0;
- // max_count must be != kInternalNodeMaxCount (so that this node is regarded
- // as a leaf node). max_count() is never called when the tree is empty.
- field_type max_count = node_type::kInternalNodeMaxCount + 1;
- constexpr EmptyNodeType() : parent(this) {}
- };
- static node_type *EmptyNode() {
- alignas(node_type::Alignment()) static constexpr EmptyNodeType empty_node;
- return const_cast<EmptyNodeType *>(&empty_node);
- }
- enum : uint32_t {
- kNodeSlots = node_type::kNodeSlots,
- kMinNodeValues = kNodeSlots / 2,
- };
- struct node_stats {
- using size_type = typename Params::size_type;
- node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {}
- node_stats &operator+=(const node_stats &other) {
- leaf_nodes += other.leaf_nodes;
- internal_nodes += other.internal_nodes;
- return *this;
- }
- size_type leaf_nodes;
- size_type internal_nodes;
- };
- public:
- using key_type = typename Params::key_type;
- using value_type = typename Params::value_type;
- using size_type = typename Params::size_type;
- using difference_type = typename Params::difference_type;
- using key_compare = typename Params::key_compare;
- using original_key_compare = typename Params::original_key_compare;
- using value_compare = typename Params::value_compare;
- using allocator_type = typename Params::allocator_type;
- using reference = typename Params::reference;
- using const_reference = typename Params::const_reference;
- using pointer = typename Params::pointer;
- using const_pointer = typename Params::const_pointer;
- using iterator =
- typename btree_iterator<node_type, reference, pointer>::iterator;
- using const_iterator = typename iterator::const_iterator;
- using reverse_iterator = std::reverse_iterator<iterator>;
- using const_reverse_iterator = std::reverse_iterator<const_iterator>;
- using node_handle_type = node_handle<Params, Params, allocator_type>;
- // Internal types made public for use by btree_container types.
- using params_type = Params;
- using slot_type = typename Params::slot_type;
- private:
- // Copies or moves (depending on the template parameter) the values in
- // other into this btree in their order in other. This btree must be empty
- // before this method is called. This method is used in copy construction,
- // copy assignment, and move assignment.
- template <typename Btree>
- void copy_or_move_values_in_order(Btree &other);
- // Validates that various assumptions/requirements are true at compile time.
- constexpr static bool static_assert_validation();
- public:
- btree(const key_compare &comp, const allocator_type &alloc)
- : root_(EmptyNode()), rightmost_(comp, alloc, EmptyNode()), size_(0) {}
- btree(const btree &other) : btree(other, other.allocator()) {}
- btree(const btree &other, const allocator_type &alloc)
- : btree(other.key_comp(), alloc) {
- copy_or_move_values_in_order(other);
- }
- btree(btree &&other) noexcept
- : root_(std::exchange(other.root_, EmptyNode())),
- rightmost_(std::move(other.rightmost_)),
- size_(std::exchange(other.size_, 0u)) {
- other.mutable_rightmost() = EmptyNode();
- }
- btree(btree &&other, const allocator_type &alloc)
- : btree(other.key_comp(), alloc) {
- if (alloc == other.allocator()) {
- swap(other);
- } else {
- // Move values from `other` one at a time when allocators are different.
- copy_or_move_values_in_order(other);
- }
- }
- ~btree() {
- // Put static_asserts in destructor to avoid triggering them before the type
- // is complete.
- static_assert(static_assert_validation(), "This call must be elided.");
- clear();
- }
- // Assign the contents of other to *this.
- btree &operator=(const btree &other);
- btree &operator=(btree &&other) noexcept;
- iterator begin() { return iterator(leftmost()); }
- const_iterator begin() const { return const_iterator(leftmost()); }
- iterator end() { return iterator(rightmost(), rightmost()->finish()); }
- const_iterator end() const {
- return const_iterator(rightmost(), rightmost()->finish());
- }
- reverse_iterator rbegin() { return reverse_iterator(end()); }
- const_reverse_iterator rbegin() const {
- return const_reverse_iterator(end());
- }
- reverse_iterator rend() { return reverse_iterator(begin()); }
- const_reverse_iterator rend() const {
- return const_reverse_iterator(begin());
- }
- // Finds the first element whose key is not less than `key`.
- template <typename K>
- iterator lower_bound(const K &key) {
- return internal_end(internal_lower_bound(key).value);
- }
- template <typename K>
- const_iterator lower_bound(const K &key) const {
- return internal_end(internal_lower_bound(key).value);
- }
- // Finds the first element whose key is not less than `key` and also returns
- // whether that element is equal to `key`.
- template <typename K>
- std::pair<iterator, bool> lower_bound_equal(const K &key) const;
- // Finds the first element whose key is greater than `key`.
- template <typename K>
- iterator upper_bound(const K &key) {
- return internal_end(internal_upper_bound(key));
- }
- template <typename K>
- const_iterator upper_bound(const K &key) const {
- return internal_end(internal_upper_bound(key));
- }
- // Finds the range of values which compare equal to key. The first member of
- // the returned pair is equal to lower_bound(key). The second member of the
- // pair is equal to upper_bound(key).
- template <typename K>
- std::pair<iterator, iterator> equal_range(const K &key);
- template <typename K>
- std::pair<const_iterator, const_iterator> equal_range(const K &key) const {
- return const_cast<btree *>(this)->equal_range(key);
- }
- // Inserts a value into the btree only if it does not already exist. The
- // boolean return value indicates whether insertion succeeded or failed.
- // Requirement: if `key` already exists in the btree, does not consume `args`.
- // Requirement: `key` is never referenced after consuming `args`.
- template <typename K, typename... Args>
- std::pair<iterator, bool> insert_unique(const K &key, Args &&...args);
- // Inserts with hint. Checks to see if the value should be placed immediately
- // before `position` in the tree. If so, then the insertion will take
- // amortized constant time. If not, the insertion will take amortized
- // logarithmic time as if a call to insert_unique() were made.
- // Requirement: if `key` already exists in the btree, does not consume `args`.
- // Requirement: `key` is never referenced after consuming `args`.
- template <typename K, typename... Args>
- std::pair<iterator, bool> insert_hint_unique(iterator position, const K &key,
- Args &&...args);
- // Insert a range of values into the btree.
- // Note: the first overload avoids constructing a value_type if the key
- // already exists in the btree.
- template <typename InputIterator,
- typename = decltype(std::declval<const key_compare &>()(
- params_type::key(*std::declval<InputIterator>()),
- std::declval<const key_type &>()))>
- void insert_iterator_unique(InputIterator b, InputIterator e, int);
- // We need the second overload for cases in which we need to construct a
- // value_type in order to compare it with the keys already in the btree.
- template <typename InputIterator>
- void insert_iterator_unique(InputIterator b, InputIterator e, char);
- // Inserts a value into the btree.
- template <typename ValueType>
- iterator insert_multi(const key_type &key, ValueType &&v);
- // Inserts a value into the btree.
- template <typename ValueType>
- iterator insert_multi(ValueType &&v) {
- return insert_multi(params_type::key(v), std::forward<ValueType>(v));
- }
- // Insert with hint. Check to see if the value should be placed immediately
- // before position in the tree. If it does, then the insertion will take
- // amortized constant time. If not, the insertion will take amortized
- // logarithmic time as if a call to insert_multi(v) were made.
- template <typename ValueType>
- iterator insert_hint_multi(iterator position, ValueType &&v);
- // Insert a range of values into the btree.
- template <typename InputIterator>
- void insert_iterator_multi(InputIterator b,
- InputIterator e);
- // Erase the specified iterator from the btree. The iterator must be valid
- // (i.e. not equal to end()). Return an iterator pointing to the node after
- // the one that was erased (or end() if none exists).
- // Requirement: does not read the value at `*iter`.
- iterator erase(iterator iter);
- // Erases range. Returns the number of keys erased and an iterator pointing
- // to the element after the last erased element.
- std::pair<size_type, iterator> erase_range(iterator begin, iterator end);
- // Finds an element with key equivalent to `key` or returns `end()` if `key`
- // is not present.
- template <typename K>
- iterator find(const K &key) {
- return internal_end(internal_find(key));
- }
- template <typename K>
- const_iterator find(const K &key) const {
- return internal_end(internal_find(key));
- }
- // Clear the btree, deleting all of the values it contains.
- void clear();
- // Swaps the contents of `this` and `other`.
- void swap(btree &other);
- const key_compare &key_comp() const noexcept {
- return rightmost_.template get<0>();
- }
- template <typename K1, typename K2>
- bool compare_keys(const K1 &a, const K2 &b) const {
- return compare_internal::compare_result_as_less_than(key_comp()(a, b));
- }
- value_compare value_comp() const {
- return value_compare(original_key_compare(key_comp()));
- }
- // Verifies the structure of the btree.
- void verify() const;
- // Size routines.
- size_type size() const { return size_; }
- size_type max_size() const { return (std::numeric_limits<size_type>::max)(); }
- bool empty() const { return size_ == 0; }
- // The height of the btree. An empty tree will have height 0.
- size_type height() const {
- size_type h = 0;
- if (!empty()) {
- // Count the length of the chain from the leftmost node up to the
- // root. We actually count from the root back around to the level below
- // the root, but the calculation is the same because of the circularity
- // of that traversal.
- const node_type *n = root();
- do {
- ++h;
- n = n->parent();
- } while (n != root());
- }
- return h;
- }
- // The number of internal, leaf and total nodes used by the btree.
- size_type leaf_nodes() const { return internal_stats(root()).leaf_nodes; }
- size_type internal_nodes() const {
- return internal_stats(root()).internal_nodes;
- }
- size_type nodes() const {
- node_stats stats = internal_stats(root());
- return stats.leaf_nodes + stats.internal_nodes;
- }
- // The total number of bytes used by the btree.
- // TODO(b/169338300): update to support node_btree_*.
- size_type bytes_used() const {
- node_stats stats = internal_stats(root());
- if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) {
- return sizeof(*this) + node_type::LeafSize(root()->max_count());
- } else {
- return sizeof(*this) + stats.leaf_nodes * node_type::LeafSize() +
- stats.internal_nodes * node_type::InternalSize();
- }
- }
- // The average number of bytes used per value stored in the btree assuming
- // random insertion order.
- static double average_bytes_per_value() {
- // The expected number of values per node with random insertion order is the
- // average of the maximum and minimum numbers of values per node.
- const double expected_values_per_node = (kNodeSlots + kMinNodeValues) / 2.0;
- return node_type::LeafSize() / expected_values_per_node;
- }
- // The fullness of the btree. Computed as the number of elements in the btree
- // divided by the maximum number of elements a tree with the current number
- // of nodes could hold. A value of 1 indicates perfect space
- // utilization. Smaller values indicate space wastage.
- // Returns 0 for empty trees.
- double fullness() const {
- if (empty()) return 0.0;
- return static_cast<double>(size()) / (nodes() * kNodeSlots);
- }
- // The overhead of the btree structure in bytes per node. Computed as the
- // total number of bytes used by the btree minus the number of bytes used for
- // storing elements divided by the number of elements.
- // Returns 0 for empty trees.
- double overhead() const {
- if (empty()) return 0.0;
- return (bytes_used() - size() * sizeof(value_type)) /
- static_cast<double>(size());
- }
- // The allocator used by the btree.
- allocator_type get_allocator() const { return allocator(); }
- private:
- friend struct btree_access;
- // Internal accessor routines.
- node_type *root() { return root_; }
- const node_type *root() const { return root_; }
- node_type *&mutable_root() noexcept { return root_; }
- node_type *rightmost() { return rightmost_.template get<2>(); }
- const node_type *rightmost() const { return rightmost_.template get<2>(); }
- node_type *&mutable_rightmost() noexcept {
- return rightmost_.template get<2>();
- }
- key_compare *mutable_key_comp() noexcept {
- return &rightmost_.template get<0>();
- }
- // The leftmost node is stored as the parent of the root node.
- node_type *leftmost() { return root()->parent(); }
- const node_type *leftmost() const { return root()->parent(); }
- // Allocator routines.
- allocator_type *mutable_allocator() noexcept {
- return &rightmost_.template get<1>();
- }
- const allocator_type &allocator() const noexcept {
- return rightmost_.template get<1>();
- }
- // Allocates a correctly aligned node of at least size bytes using the
- // allocator.
- node_type *allocate(size_type size) {
- return reinterpret_cast<node_type *>(
- absl::container_internal::Allocate<node_type::Alignment()>(
- mutable_allocator(), size));
- }
- // Node creation/deletion routines.
- node_type *new_internal_node(field_type position, node_type *parent) {
- node_type *n = allocate(node_type::InternalSize());
- n->init_internal(position, parent);
- return n;
- }
- node_type *new_leaf_node(field_type position, node_type *parent) {
- node_type *n = allocate(node_type::LeafSize());
- n->init_leaf(position, kNodeSlots, parent);
- return n;
- }
- node_type *new_leaf_root_node(field_type max_count) {
- node_type *n = allocate(node_type::LeafSize(max_count));
- n->init_leaf(/*position=*/0, max_count, /*parent=*/n);
- return n;
- }
- // Deletion helper routines.
- iterator rebalance_after_delete(iterator iter);
- // Rebalances or splits the node iter points to.
- void rebalance_or_split(iterator *iter);
- // Merges the values of left, right and the delimiting key on their parent
- // onto left, removing the delimiting key and deleting right.
- void merge_nodes(node_type *left, node_type *right);
- // Tries to merge node with its left or right sibling, and failing that,
- // rebalance with its left or right sibling. Returns true if a merge
- // occurred, at which point it is no longer valid to access node. Returns
- // false if no merging took place.
- bool try_merge_or_rebalance(iterator *iter);
- // Tries to shrink the height of the tree by 1.
- void try_shrink();
- iterator internal_end(iterator iter) {
- return iter.node_ != nullptr ? iter : end();
- }
- const_iterator internal_end(const_iterator iter) const {
- return iter.node_ != nullptr ? iter : end();
- }
- // Emplaces a value into the btree immediately before iter. Requires that
- // key(v) <= iter.key() and (--iter).key() <= key(v).
- template <typename... Args>
- iterator internal_emplace(iterator iter, Args &&...args);
- // Returns an iterator pointing to the first value >= the value "iter" is
- // pointing at. Note that "iter" might be pointing to an invalid location such
- // as iter.position_ == iter.node_->finish(). This routine simply moves iter
- // up in the tree to a valid location. Requires: iter.node_ is non-null.
- template <typename IterType>
- static IterType internal_last(IterType iter);
- // Returns an iterator pointing to the leaf position at which key would
- // reside in the tree, unless there is an exact match - in which case, the
- // result may not be on a leaf. When there's a three-way comparator, we can
- // return whether there was an exact match. This allows the caller to avoid a
- // subsequent comparison to determine if an exact match was made, which is
- // important for keys with expensive comparison, such as strings.
- template <typename K>
- SearchResult<iterator, is_key_compare_to::value> internal_locate(
- const K &key) const;
- // Internal routine which implements lower_bound().
- template <typename K>
- SearchResult<iterator, is_key_compare_to::value> internal_lower_bound(
- const K &key) const;
- // Internal routine which implements upper_bound().
- template <typename K>
- iterator internal_upper_bound(const K &key) const;
- // Internal routine which implements find().
- template <typename K>
- iterator internal_find(const K &key) const;
- // Verifies the tree structure of node.
- size_type internal_verify(const node_type *node, const key_type *lo,
- const key_type *hi) const;
- node_stats internal_stats(const node_type *node) const {
- // The root can be a static empty node.
- if (node == nullptr || (node == root() && empty())) {
- return node_stats(0, 0);
- }
- if (node->is_leaf()) {
- return node_stats(1, 0);
- }
- node_stats res(0, 1);
- for (int i = node->start(); i <= node->finish(); ++i) {
- res += internal_stats(node->child(i));
- }
- return res;
- }
- node_type *root_;
- // A pointer to the rightmost node. Note that the leftmost node is stored as
- // the root's parent. We use compressed tuple in order to save space because
- // key_compare and allocator_type are usually empty.
- absl::container_internal::CompressedTuple<key_compare, allocator_type,
- node_type *>
- rightmost_;
- // Number of values.
- size_type size_;
- };
- ////
- // btree_node methods
- template <typename P>
- template <typename... Args>
- inline void btree_node<P>::emplace_value(const field_type i,
- allocator_type *alloc,
- Args &&...args) {
- assert(i >= start());
- assert(i <= finish());
- // Shift old values to create space for new value and then construct it in
- // place.
- if (i < finish()) {
- transfer_n_backward(finish() - i, /*dest_i=*/i + 1, /*src_i=*/i, this,
- alloc);
- }
- value_init(static_cast<field_type>(i), alloc, std::forward<Args>(args)...);
- set_finish(finish() + 1);
- if (is_internal() && finish() > i + 1) {
- for (field_type j = finish(); j > i + 1; --j) {
- set_child(j, child(j - 1));
- }
- clear_child(i + 1);
- }
- }
- template <typename P>
- inline void btree_node<P>::remove_values(const field_type i,
- const field_type to_erase,
- allocator_type *alloc) {
- // Transfer values after the removed range into their new places.
- value_destroy_n(i, to_erase, alloc);
- const field_type orig_finish = finish();
- const field_type src_i = i + to_erase;
- transfer_n(orig_finish - src_i, i, src_i, this, alloc);
- if (is_internal()) {
- // Delete all children between begin and end.
- for (field_type j = 0; j < to_erase; ++j) {
- clear_and_delete(child(i + j + 1), alloc);
- }
- // Rotate children after end into new positions.
- for (field_type j = i + to_erase + 1; j <= orig_finish; ++j) {
- set_child(j - to_erase, child(j));
- clear_child(j);
- }
- }
- set_finish(orig_finish - to_erase);
- }
- template <typename P>
- void btree_node<P>::rebalance_right_to_left(field_type to_move,
- btree_node *right,
- allocator_type *alloc) {
- assert(parent() == right->parent());
- assert(position() + 1 == right->position());
- assert(right->count() >= count());
- assert(to_move >= 1);
- assert(to_move <= right->count());
- // 1) Move the delimiting value in the parent to the left node.
- transfer(finish(), position(), parent(), alloc);
- // 2) Move the (to_move - 1) values from the right node to the left node.
- transfer_n(to_move - 1, finish() + 1, right->start(), right, alloc);
- // 3) Move the new delimiting value to the parent from the right node.
- parent()->transfer(position(), right->start() + to_move - 1, right, alloc);
- // 4) Shift the values in the right node to their correct positions.
- right->transfer_n(right->count() - to_move, right->start(),
- right->start() + to_move, right, alloc);
- if (is_internal()) {
- // Move the child pointers from the right to the left node.
- for (field_type i = 0; i < to_move; ++i) {
- init_child(finish() + i + 1, right->child(i));
- }
- for (field_type i = right->start(); i <= right->finish() - to_move; ++i) {
- assert(i + to_move <= right->max_count());
- right->init_child(i, right->child(i + to_move));
- right->clear_child(i + to_move);
- }
- }
- // Fixup `finish` on the left and right nodes.
- set_finish(finish() + to_move);
- right->set_finish(right->finish() - to_move);
- }
- template <typename P>
- void btree_node<P>::rebalance_left_to_right(field_type to_move,
- btree_node *right,
- allocator_type *alloc) {
- assert(parent() == right->parent());
- assert(position() + 1 == right->position());
- assert(count() >= right->count());
- assert(to_move >= 1);
- assert(to_move <= count());
- // Values in the right node are shifted to the right to make room for the
- // new to_move values. Then, the delimiting value in the parent and the
- // other (to_move - 1) values in the left node are moved into the right node.
- // Lastly, a new delimiting value is moved from the left node into the
- // parent, and the remaining empty left node entries are destroyed.
- // 1) Shift existing values in the right node to their correct positions.
- right->transfer_n_backward(right->count(), right->start() + to_move,
- right->start(), right, alloc);
- // 2) Move the delimiting value in the parent to the right node.
- right->transfer(right->start() + to_move - 1, position(), parent(), alloc);
- // 3) Move the (to_move - 1) values from the left node to the right node.
- right->transfer_n(to_move - 1, right->start(), finish() - (to_move - 1), this,
- alloc);
- // 4) Move the new delimiting value to the parent from the left node.
- parent()->transfer(position(), finish() - to_move, this, alloc);
- if (is_internal()) {
- // Move the child pointers from the left to the right node.
- for (field_type i = right->finish() + 1; i > right->start(); --i) {
- right->init_child(i - 1 + to_move, right->child(i - 1));
- right->clear_child(i - 1);
- }
- for (field_type i = 1; i <= to_move; ++i) {
- right->init_child(i - 1, child(finish() - to_move + i));
- clear_child(finish() - to_move + i);
- }
- }
- // Fixup the counts on the left and right nodes.
- set_finish(finish() - to_move);
- right->set_finish(right->finish() + to_move);
- }
- template <typename P>
- void btree_node<P>::split(const int insert_position, btree_node *dest,
- allocator_type *alloc) {
- assert(dest->count() == 0);
- assert(max_count() == kNodeSlots);
- assert(position() + 1 == dest->position());
- assert(parent() == dest->parent());
- // We bias the split based on the position being inserted. If we're
- // inserting at the beginning of the left node then bias the split to put
- // more values on the right node. If we're inserting at the end of the
- // right node then bias the split to put more values on the left node.
- if (insert_position == start()) {
- dest->set_finish(dest->start() + finish() - 1);
- } else if (insert_position == kNodeSlots) {
- dest->set_finish(dest->start());
- } else {
- dest->set_finish(dest->start() + count() / 2);
- }
- set_finish(finish() - dest->count());
- assert(count() >= 1);
- // Move values from the left sibling to the right sibling.
- dest->transfer_n(dest->count(), dest->start(), finish(), this, alloc);
- // The split key is the largest value in the left sibling.
- --mutable_finish();
- parent()->emplace_value(position(), alloc, finish_slot());
- value_destroy(finish(), alloc);
- parent()->set_child_noupdate_position(position() + 1, dest);
- if (is_internal()) {
- for (field_type i = dest->start(), j = finish() + 1; i <= dest->finish();
- ++i, ++j) {
- assert(child(j) != nullptr);
- dest->init_child(i, child(j));
- clear_child(j);
- }
- }
- }
- template <typename P>
- void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
- assert(parent() == src->parent());
- assert(position() + 1 == src->position());
- // Move the delimiting value to the left node.
- value_init(finish(), alloc, parent()->slot(position()));
- // Move the values from the right to the left node.
- transfer_n(src->count(), finish() + 1, src->start(), src, alloc);
- if (is_internal()) {
- // Move the child pointers from the right to the left node.
- for (field_type i = src->start(), j = finish() + 1; i <= src->finish();
- ++i, ++j) {
- init_child(j, src->child(i));
- src->clear_child(i);
- }
- }
- // Fixup `finish` on the src and dest nodes.
- set_finish(start() + 1 + count() + src->count());
- src->set_finish(src->start());
- // Remove the value on the parent node and delete the src node.
- parent()->remove_values(position(), /*to_erase=*/1, alloc);
- }
- template <typename P>
- void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) {
- if (node->is_leaf()) {
- node->value_destroy_n(node->start(), node->count(), alloc);
- deallocate(LeafSize(node->max_count()), node, alloc);
- return;
- }
- if (node->count() == 0) {
- deallocate(InternalSize(), node, alloc);
- return;
- }
- // The parent of the root of the subtree we are deleting.
- btree_node *delete_root_parent = node->parent();
- // Navigate to the leftmost leaf under node, and then delete upwards.
- while (node->is_internal()) node = node->start_child();
- #ifdef ABSL_BTREE_ENABLE_GENERATIONS
- // When generations are enabled, we delete the leftmost leaf last in case it's
- // the parent of the root and we need to check whether it's a leaf before we
- // can update the root's generation.
- // TODO(ezb): if we change btree_node::is_root to check a bool inside the node
- // instead of checking whether the parent is a leaf, we can remove this logic.
- btree_node *leftmost_leaf = node;
- #endif
- // Use `size_type` because `pos` needs to be able to hold `kNodeSlots+1`,
- // which isn't guaranteed to be a valid `field_type`.
- size_type pos = node->position();
- btree_node *parent = node->parent();
- for (;;) {
- // In each iteration of the next loop, we delete one leaf node and go right.
- assert(pos <= parent->finish());
- do {
- node = parent->child(static_cast<field_type>(pos));
- if (node->is_internal()) {
- // Navigate to the leftmost leaf under node.
- while (node->is_internal()) node = node->start_child();
- pos = node->position();
- parent = node->parent();
- }
- node->value_destroy_n(node->start(), node->count(), alloc);
- #ifdef ABSL_BTREE_ENABLE_GENERATIONS
- if (leftmost_leaf != node)
- #endif
- deallocate(LeafSize(node->max_count()), node, alloc);
- ++pos;
- } while (pos <= parent->finish());
- // Once we've deleted all children of parent, delete parent and go up/right.
- assert(pos > parent->finish());
- do {
- node = parent;
- pos = node->position();
- parent = node->parent();
- node->value_destroy_n(node->start(), node->count(), alloc);
- deallocate(InternalSize(), node, alloc);
- if (parent == delete_root_parent) {
- #ifdef ABSL_BTREE_ENABLE_GENERATIONS
- deallocate(LeafSize(leftmost_leaf->max_count()), leftmost_leaf, alloc);
- #endif
- return;
- }
- ++pos;
- } while (pos > parent->finish());
- }
- }
- ////
- // btree_iterator methods
- // Note: the implementation here is based on btree_node::clear_and_delete.
- template <typename N, typename R, typename P>
- auto btree_iterator<N, R, P>::distance_slow(const_iterator other) const
- -> difference_type {
- const_iterator begin = other;
- const_iterator end = *this;
- assert(begin.node_ != end.node_ || !begin.node_->is_leaf() ||
- begin.position_ != end.position_);
- const node_type *node = begin.node_;
- // We need to compensate for double counting if begin.node_ is a leaf node.
- difference_type count = node->is_leaf() ? -begin.position_ : 0;
- // First navigate to the leftmost leaf node past begin.
- if (node->is_internal()) {
- ++count;
- node = node->child(begin.position_ + 1);
- }
- while (node->is_internal()) node = node->start_child();
- // Use `size_type` because `pos` needs to be able to hold `kNodeSlots+1`,
- // which isn't guaranteed to be a valid `field_type`.
- size_type pos = node->position();
- const node_type *parent = node->parent();
- for (;;) {
- // In each iteration of the next loop, we count one leaf node and go right.
- assert(pos <= parent->finish());
- do {
- node = parent->child(static_cast<field_type>(pos));
- if (node->is_internal()) {
- // Navigate to the leftmost leaf under node.
- while (node->is_internal()) node = node->start_child();
- pos = node->position();
- parent = node->parent();
- }
- if (node == end.node_) return count + end.position_;
- if (parent == end.node_ && pos == static_cast<size_type>(end.position_))
- return count + node->count();
- // +1 is for the next internal node value.
- count += node->count() + 1;
- ++pos;
- } while (pos <= parent->finish());
- // Once we've counted all children of parent, go up/right.
- assert(pos > parent->finish());
- do {
- node = parent;
- pos = node->position();
- parent = node->parent();
- // -1 because we counted the value at end and shouldn't.
- if (parent == end.node_ && pos == static_cast<size_type>(end.position_))
- return count - 1;
- ++pos;
- } while (pos > parent->finish());
- }
- }
- template <typename N, typename R, typename P>
- void btree_iterator<N, R, P>::increment_slow() {
- if (node_->is_leaf()) {
- assert(position_ >= node_->finish());
- btree_iterator save(*this);
- while (position_ == node_->finish() && !node_->is_root()) {
- assert(node_->parent()->child(node_->position()) == node_);
- position_ = node_->position();
- node_ = node_->parent();
- }
- // TODO(ezb): assert we aren't incrementing end() instead of handling.
- if (position_ == node_->finish()) {
- *this = save;
- }
- } else {
- assert(position_ < node_->finish());
- node_ = node_->child(static_cast<field_type>(position_ + 1));
- while (node_->is_internal()) {
- node_ = node_->start_child();
- }
- position_ = node_->start();
- }
- }
- template <typename N, typename R, typename P>
- void btree_iterator<N, R, P>::decrement_slow() {
- if (node_->is_leaf()) {
- assert(position_ <= -1);
- btree_iterator save(*this);
- while (position_ < node_->start() && !node_->is_root()) {
- assert(node_->parent()->child(node_->position()) == node_);
- position_ = node_->position() - 1;
- node_ = node_->parent();
- }
- // TODO(ezb): assert we aren't decrementing begin() instead of handling.
- if (position_ < node_->start()) {
- *this = save;
- }
- } else {
- assert(position_ >= node_->start());
- node_ = node_->child(static_cast<field_type>(position_));
- while (node_->is_internal()) {
- node_ = node_->child(node_->finish());
- }
- position_ = node_->finish() - 1;
- }
- }
- ////
- // btree methods
- template <typename P>
- template <typename Btree>
- void btree<P>::copy_or_move_values_in_order(Btree &other) {
- static_assert(std::is_same<btree, Btree>::value ||
- std::is_same<const btree, Btree>::value,
- "Btree type must be same or const.");
- assert(empty());
- // We can avoid key comparisons because we know the order of the
- // values is the same order we'll store them in.
- auto iter = other.begin();
- if (iter == other.end()) return;
- insert_multi(iter.slot());
- ++iter;
- for (; iter != other.end(); ++iter) {
- // If the btree is not empty, we can just insert the new value at the end
- // of the tree.
- internal_emplace(end(), iter.slot());
- }
- }
- template <typename P>
- constexpr bool btree<P>::static_assert_validation() {
- static_assert(std::is_nothrow_copy_constructible<key_compare>::value,
- "Key comparison must be nothrow copy constructible");
- static_assert(std::is_nothrow_copy_constructible<allocator_type>::value,
- "Allocator must be nothrow copy constructible");
- static_assert(std::is_trivially_copyable<iterator>::value,
- "iterator not trivially copyable.");
- // Note: We assert that kTargetValues, which is computed from
- // Params::kTargetNodeSize, must fit the node_type::field_type.
- static_assert(
- kNodeSlots < (1 << (8 * sizeof(typename node_type::field_type))),
- "target node size too large");
- // Verify that key_compare returns an absl::{weak,strong}_ordering or bool.
- static_assert(
- compare_has_valid_result_type<key_compare, key_type>(),
- "key comparison function must return absl::{weak,strong}_ordering or "
- "bool.");
- // Test the assumption made in setting kNodeSlotSpace.
- static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4,
- "node space assumption incorrect");
- return true;
- }
- template <typename P>
- template <typename K>
- auto btree<P>::lower_bound_equal(const K &key) const
- -> std::pair<iterator, bool> {
- const SearchResult<iterator, is_key_compare_to::value> res =
- internal_lower_bound(key);
- const iterator lower = iterator(internal_end(res.value));
- const bool equal = res.HasMatch()
- ? res.IsEq()
- : lower != end() && !compare_keys(key, lower.key());
- return {lower, equal};
- }
- template <typename P>
- template <typename K>
- auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> {
- const std::pair<iterator, bool> lower_and_equal = lower_bound_equal(key);
- const iterator lower = lower_and_equal.first;
- if (!lower_and_equal.second) {
- return {lower, lower};
- }
- const iterator next = std::next(lower);
- if (!params_type::template can_have_multiple_equivalent_keys<K>()) {
- // The next iterator after lower must point to a key greater than `key`.
- // Note: if this assert fails, then it may indicate that the comparator does
- // not meet the equivalence requirements for Compare
- // (see https://en.cppreference.com/w/cpp/named_req/Compare).
- assert(next == end() || compare_keys(key, next.key()));
- return {lower, next};
- }
- // Try once more to avoid the call to upper_bound() if there's only one
- // equivalent key. This should prevent all calls to upper_bound() in cases of
- // unique-containers with heterogeneous comparators in which all comparison
- // operators have the same equivalence classes.
- if (next == end() || compare_keys(key, next.key())) return {lower, next};
- // In this case, we need to call upper_bound() to avoid worst case O(N)
- // behavior if we were to iterate over equal keys.
- return {lower, upper_bound(key)};
- }
- template <typename P>
- template <typename K, typename... Args>
- auto btree<P>::insert_unique(const K &key, Args &&...args)
- -> std::pair<iterator, bool> {
- if (empty()) {
- mutable_root() = mutable_rightmost() = new_leaf_root_node(1);
- }
- SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key);
- iterator iter = res.value;
- if (res.HasMatch()) {
- if (res.IsEq()) {
- // The key already exists in the tree, do nothing.
- return {iter, false};
- }
- } else {
- iterator last = internal_last(iter);
- if (last.node_ && !compare_keys(key, last.key())) {
- // The key already exists in the tree, do nothing.
- return {last, false};
- }
- }
- return {internal_emplace(iter, std::forward<Args>(args)...), true};
- }
- template <typename P>
- template <typename K, typename... Args>
- inline auto btree<P>::insert_hint_unique(iterator position, const K &key,
- Args &&...args)
- -> std::pair<iterator, bool> {
- if (!empty()) {
- if (position == end() || compare_keys(key, position.key())) {
- if (position == begin() || compare_keys(std::prev(position).key(), key)) {
- // prev.key() < key < position.key()
- return {internal_emplace(position, std::forward<Args>(args)...), true};
- }
- } else if (compare_keys(position.key(), key)) {
- ++position;
- if (position == end() || compare_keys(key, position.key())) {
- // {original `position`}.key() < key < {current `position`}.key()
- return {internal_emplace(position, std::forward<Args>(args)...), true};
- }
- } else {
- // position.key() == key
- return {position, false};
- }
- }
- return insert_unique(key, std::forward<Args>(args)...);
- }
- template <typename P>
- template <typename InputIterator, typename>
- void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, int) {
- for (; b != e; ++b) {
- insert_hint_unique(end(), params_type::key(*b), *b);
- }
- }
- template <typename P>
- template <typename InputIterator>
- void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) {
- for (; b != e; ++b) {
- // Use a node handle to manage a temp slot.
- auto node_handle =
- CommonAccess::Construct<node_handle_type>(get_allocator(), *b);
- slot_type *slot = CommonAccess::GetSlot(node_handle);
- insert_hint_unique(end(), params_type::key(slot), slot);
- }
- }
- template <typename P>
- template <typename ValueType>
- auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator {
- if (empty()) {
- mutable_root() = mutable_rightmost() = new_leaf_root_node(1);
- }
- iterator iter = internal_upper_bound(key);
- if (iter.node_ == nullptr) {
- iter = end();
- }
- return internal_emplace(iter, std::forward<ValueType>(v));
- }
- template <typename P>
- template <typename ValueType>
- auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator {
- if (!empty()) {
- const key_type &key = params_type::key(v);
- if (position == end() || !compare_keys(position.key(), key)) {
- if (position == begin() ||
- !compare_keys(key, std::prev(position).key())) {
- // prev.key() <= key <= position.key()
- return internal_emplace(position, std::forward<ValueType>(v));
- }
- } else {
- ++position;
- if (position == end() || !compare_keys(position.key(), key)) {
- // {original `position`}.key() < key < {current `position`}.key()
- return internal_emplace(position, std::forward<ValueType>(v));
- }
- }
- }
- return insert_multi(std::forward<ValueType>(v));
- }
- template <typename P>
- template <typename InputIterator>
- void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) {
- for (; b != e; ++b) {
- insert_hint_multi(end(), *b);
- }
- }
- template <typename P>
- auto btree<P>::operator=(const btree &other) -> btree & {
- if (this != &other) {
- clear();
- *mutable_key_comp() = other.key_comp();
- if (absl::allocator_traits<
- allocator_type>::propagate_on_container_copy_assignment::value) {
- *mutable_allocator() = other.allocator();
- }
- copy_or_move_values_in_order(other);
- }
- return *this;
- }
- template <typename P>
- auto btree<P>::operator=(btree &&other) noexcept -> btree & {
- if (this != &other) {
- clear();
- using std::swap;
- if (absl::allocator_traits<
- allocator_type>::propagate_on_container_move_assignment::value) {
- swap(root_, other.root_);
- // Note: `rightmost_` also contains the allocator and the key comparator.
- swap(rightmost_, other.rightmost_);
- swap(size_, other.size_);
- } else {
- if (allocator() == other.allocator()) {
- swap(mutable_root(), other.mutable_root());
- swap(*mutable_key_comp(), *other.mutable_key_comp());
- swap(mutable_rightmost(), other.mutable_rightmost());
- swap(size_, other.size_);
- } else {
- // We aren't allowed to propagate the allocator and the allocator is
- // different so we can't take over its memory. We must move each element
- // individually. We need both `other` and `this` to have `other`s key
- // comparator while moving the values so we can't swap the key
- // comparators.
- *mutable_key_comp() = other.key_comp();
- copy_or_move_values_in_order(other);
- }
- }
- }
- return *this;
- }
- template <typename P>
- auto btree<P>::erase(iterator iter) -> iterator {
- iter.node_->value_destroy(static_cast<field_type>(iter.position_),
- mutable_allocator());
- iter.update_generation();
- const bool internal_delete = iter.node_->is_internal();
- if (internal_delete) {
- // Deletion of a value on an internal node. First, transfer the largest
- // value from our left child here, then erase/rebalance from that position.
- // We can get to the largest value from our left child by decrementing iter.
- iterator internal_iter(iter);
- --iter;
- assert(iter.node_->is_leaf());
- internal_iter.node_->transfer(
- static_cast<size_type>(internal_iter.position_),
- static_cast<size_type>(iter.position_), iter.node_,
- mutable_allocator());
- } else {
- // Shift values after erased position in leaf. In the internal case, we
- // don't need to do this because the leaf position is the end of the node.
- const field_type transfer_from =
- static_cast<field_type>(iter.position_ + 1);
- const field_type num_to_transfer = iter.node_->finish() - transfer_from;
- iter.node_->transfer_n(num_to_transfer,
- static_cast<size_type>(iter.position_),
- transfer_from, iter.node_, mutable_allocator());
- }
- // Update node finish and container size.
- iter.node_->set_finish(iter.node_->finish() - 1);
- --size_;
- // We want to return the next value after the one we just erased. If we
- // erased from an internal node (internal_delete == true), then the next
- // value is ++(++iter). If we erased from a leaf node (internal_delete ==
- // false) then the next value is ++iter. Note that ++iter may point to an
- // internal node and the value in the internal node may move to a leaf node
- // (iter.node_) when rebalancing is performed at the leaf level.
- iterator res = rebalance_after_delete(iter);
- // If we erased from an internal node, advance the iterator.
- if (internal_delete) {
- ++res;
- }
- return res;
- }
- template <typename P>
- auto btree<P>::rebalance_after_delete(iterator iter) -> iterator {
- // Merge/rebalance as we walk back up the tree.
- iterator res(iter);
- bool first_iteration = true;
- for (;;) {
- if (iter.node_ == root()) {
- try_shrink();
- if (empty()) {
- return end();
- }
- break;
- }
- if (iter.node_->count() >= kMinNodeValues) {
- break;
- }
- bool merged = try_merge_or_rebalance(&iter);
- // On the first iteration, we should update `res` with `iter` because `res`
- // may have been invalidated.
- if (first_iteration) {
- res = iter;
- first_iteration = false;
- }
- if (!merged) {
- break;
- }
- iter.position_ = iter.node_->position();
- iter.node_ = iter.node_->parent();
- }
- res.update_generation();
- // Adjust our return value. If we're pointing at the end of a node, advance
- // the iterator.
- if (res.position_ == res.node_->finish()) {
- res.position_ = res.node_->finish() - 1;
- ++res;
- }
- return res;
- }
- // Note: we tried implementing this more efficiently by erasing all of the
- // elements in [begin, end) at once and then doing rebalancing once at the end
- // (rather than interleaving deletion and rebalancing), but that adds a lot of
- // complexity, which seems to outweigh the performance win.
- template <typename P>
- auto btree<P>::erase_range(iterator begin, iterator end)
- -> std::pair<size_type, iterator> {
- size_type count = static_cast<size_type>(end - begin);
- assert(count >= 0);
- if (count == 0) {
- return {0, begin};
- }
- if (static_cast<size_type>(count) == size_) {
- clear();
- return {count, this->end()};
- }
- if (begin.node_ == end.node_) {
- assert(end.position_ > begin.position_);
- begin.node_->remove_values(
- static_cast<field_type>(begin.position_),
- static_cast<field_type>(end.position_ - begin.position_),
- mutable_allocator());
- size_ -= count;
- return {count, rebalance_after_delete(begin)};
- }
- const size_type target_size = size_ - count;
- while (size_ > target_size) {
- if (begin.node_->is_leaf()) {
- const size_type remaining_to_erase = size_ - target_size;
- const size_type remaining_in_node =
- static_cast<size_type>(begin.node_->finish() - begin.position_);
- const field_type to_erase = static_cast<field_type>(
- (std::min)(remaining_to_erase, remaining_in_node));
- begin.node_->remove_values(static_cast<field_type>(begin.position_),
- to_erase, mutable_allocator());
- size_ -= to_erase;
- begin = rebalance_after_delete(begin);
- } else {
- begin = erase(begin);
- }
- }
- begin.update_generation();
- return {count, begin};
- }
- template <typename P>
- void btree<P>::clear() {
- if (!empty()) {
- node_type::clear_and_delete(root(), mutable_allocator());
- }
- mutable_root() = mutable_rightmost() = EmptyNode();
- size_ = 0;
- }
- template <typename P>
- void btree<P>::swap(btree &other) {
- using std::swap;
- if (absl::allocator_traits<
- allocator_type>::propagate_on_container_swap::value) {
- // Note: `rightmost_` also contains the allocator and the key comparator.
- swap(rightmost_, other.rightmost_);
- } else {
- // It's undefined behavior if the allocators are unequal here.
- assert(allocator() == other.allocator());
- swap(mutable_rightmost(), other.mutable_rightmost());
- swap(*mutable_key_comp(), *other.mutable_key_comp());
- }
- swap(mutable_root(), other.mutable_root());
- swap(size_, other.size_);
- }
- template <typename P>
- void btree<P>::verify() const {
- assert(root() != nullptr);
- assert(leftmost() != nullptr);
- assert(rightmost() != nullptr);
- assert(empty() || size() == internal_verify(root(), nullptr, nullptr));
- assert(leftmost() == (++const_iterator(root(), -1)).node_);
- assert(rightmost() == (--const_iterator(root(), root()->finish())).node_);
- assert(leftmost()->is_leaf());
- assert(rightmost()->is_leaf());
- }
- template <typename P>
- void btree<P>::rebalance_or_split(iterator *iter) {
- node_type *&node = iter->node_;
- int &insert_position = iter->position_;
- assert(node->count() == node->max_count());
- assert(kNodeSlots == node->max_count());
- // First try to make room on the node by rebalancing.
- node_type *parent = node->parent();
- if (node != root()) {
- if (node->position() > parent->start()) {
- // Try rebalancing with our left sibling.
- node_type *left = parent->child(node->position() - 1);
- assert(left->max_count() == kNodeSlots);
- if (left->count() < kNodeSlots) {
- // We bias rebalancing based on the position being inserted. If we're
- // inserting at the end of the right node then we bias rebalancing to
- // fill up the left node.
- field_type to_move =
- (kNodeSlots - left->count()) /
- (1 + (static_cast<field_type>(insert_position) < kNodeSlots));
- to_move = (std::max)(field_type{1}, to_move);
- if (static_cast<field_type>(insert_position) - to_move >=
- node->start() ||
- left->count() + to_move < kNodeSlots) {
- left->rebalance_right_to_left(to_move, node, mutable_allocator());
- assert(node->max_count() - node->count() == to_move);
- insert_position = static_cast<int>(
- static_cast<field_type>(insert_position) - to_move);
- if (insert_position < node->start()) {
- insert_position = insert_position + left->count() + 1;
- node = left;
- }
- assert(node->count() < node->max_count());
- return;
- }
- }
- }
- if (node->position() < parent->finish()) {
- // Try rebalancing with our right sibling.
- node_type *right = parent->child(node->position() + 1);
- assert(right->max_count() == kNodeSlots);
- if (right->count() < kNodeSlots) {
- // We bias rebalancing based on the position being inserted. If we're
- // inserting at the beginning of the left node then we bias rebalancing
- // to fill up the right node.
- field_type to_move = (kNodeSlots - right->count()) /
- (1 + (insert_position > node->start()));
- to_move = (std::max)(field_type{1}, to_move);
- if (static_cast<field_type>(insert_position) <=
- node->finish() - to_move ||
- right->count() + to_move < kNodeSlots) {
- node->rebalance_left_to_right(to_move, right, mutable_allocator());
- if (insert_position > node->finish()) {
- insert_position = insert_position - node->count() - 1;
- node = right;
- }
- assert(node->count() < node->max_count());
- return;
- }
- }
- }
- // Rebalancing failed, make sure there is room on the parent node for a new
- // value.
- assert(parent->max_count() == kNodeSlots);
- if (parent->count() == kNodeSlots) {
- iterator parent_iter(parent, node->position());
- rebalance_or_split(&parent_iter);
- parent = node->parent();
- }
- } else {
- // Rebalancing not possible because this is the root node.
- // Create a new root node and set the current root node as the child of the
- // new root.
- parent = new_internal_node(/*position=*/0, parent);
- parent->set_generation(root()->generation());
- parent->init_child(parent->start(), node);
- mutable_root() = parent;
- // If the former root was a leaf node, then it's now the rightmost node.
- assert(parent->start_child()->is_internal() ||
- parent->start_child() == rightmost());
- }
- // Split the node.
- node_type *split_node;
- if (node->is_leaf()) {
- split_node = new_leaf_node(node->position() + 1, parent);
- node->split(insert_position, split_node, mutable_allocator());
- if (rightmost() == node) mutable_rightmost() = split_node;
- } else {
- split_node = new_internal_node(node->position() + 1, parent);
- node->split(insert_position, split_node, mutable_allocator());
- }
- if (insert_position > node->finish()) {
- insert_position = insert_position - node->count() - 1;
- node = split_node;
- }
- }
- template <typename P>
- void btree<P>::merge_nodes(node_type *left, node_type *right) {
- left->merge(right, mutable_allocator());
- if (rightmost() == right) mutable_rightmost() = left;
- }
- template <typename P>
- bool btree<P>::try_merge_or_rebalance(iterator *iter) {
- node_type *parent = iter->node_->parent();
- if (iter->node_->position() > parent->start()) {
- // Try merging with our left sibling.
- node_type *left = parent->child(iter->node_->position() - 1);
- assert(left->max_count() == kNodeSlots);
- if (1U + left->count() + iter->node_->count() <= kNodeSlots) {
- iter->position_ += 1 + left->count();
- merge_nodes(left, iter->node_);
- iter->node_ = left;
- return true;
- }
- }
- if (iter->node_->position() < parent->finish()) {
- // Try merging with our right sibling.
- node_type *right = parent->child(iter->node_->position() + 1);
- assert(right->max_count() == kNodeSlots);
- if (1U + iter->node_->count() + right->count() <= kNodeSlots) {
- merge_nodes(iter->node_, right);
- return true;
- }
- // Try rebalancing with our right sibling. We don't perform rebalancing if
- // we deleted the first element from iter->node_ and the node is not
- // empty. This is a small optimization for the common pattern of deleting
- // from the front of the tree.
- if (right->count() > kMinNodeValues &&
- (iter->node_->count() == 0 || iter->position_ > iter->node_->start())) {
- field_type to_move = (right->count() - iter->node_->count()) / 2;
- to_move =
- (std::min)(to_move, static_cast<field_type>(right->count() - 1));
- iter->node_->rebalance_right_to_left(to_move, right, mutable_allocator());
- return false;
- }
- }
- if (iter->node_->position() > parent->start()) {
- // Try rebalancing with our left sibling. We don't perform rebalancing if
- // we deleted the last element from iter->node_ and the node is not
- // empty. This is a small optimization for the common pattern of deleting
- // from the back of the tree.
- node_type *left = parent->child(iter->node_->position() - 1);
- if (left->count() > kMinNodeValues &&
- (iter->node_->count() == 0 ||
- iter->position_ < iter->node_->finish())) {
- field_type to_move = (left->count() - iter->node_->count()) / 2;
- to_move = (std::min)(to_move, static_cast<field_type>(left->count() - 1));
- left->rebalance_left_to_right(to_move, iter->node_, mutable_allocator());
- iter->position_ += to_move;
- return false;
- }
- }
- return false;
- }
- template <typename P>
- void btree<P>::try_shrink() {
- node_type *orig_root = root();
- if (orig_root->count() > 0) {
- return;
- }
- // Deleted the last item on the root node, shrink the height of the tree.
- if (orig_root->is_leaf()) {
- assert(size() == 0);
- mutable_root() = mutable_rightmost() = EmptyNode();
- } else {
- node_type *child = orig_root->start_child();
- child->make_root();
- mutable_root() = child;
- }
- node_type::clear_and_delete(orig_root, mutable_allocator());
- }
- template <typename P>
- template <typename IterType>
- inline IterType btree<P>::internal_last(IterType iter) {
- assert(iter.node_ != nullptr);
- while (iter.position_ == iter.node_->finish()) {
- iter.position_ = iter.node_->position();
- iter.node_ = iter.node_->parent();
- if (iter.node_->is_leaf()) {
- iter.node_ = nullptr;
- break;
- }
- }
- iter.update_generation();
- return iter;
- }
- template <typename P>
- template <typename... Args>
- inline auto btree<P>::internal_emplace(iterator iter, Args &&...args)
- -> iterator {
- if (iter.node_->is_internal()) {
- // We can't insert on an internal node. Instead, we'll insert after the
- // previous value which is guaranteed to be on a leaf node.
- --iter;
- ++iter.position_;
- }
- const field_type max_count = iter.node_->max_count();
- allocator_type *alloc = mutable_allocator();
- const auto transfer_and_delete = [&](node_type *old_node,
- node_type *new_node) {
- new_node->transfer_n(old_node->count(), new_node->start(),
- old_node->start(), old_node, alloc);
- new_node->set_finish(old_node->finish());
- old_node->set_finish(old_node->start());
- new_node->set_generation(old_node->generation());
- node_type::clear_and_delete(old_node, alloc);
- };
- const auto replace_leaf_root_node = [&](field_type new_node_size) {
- assert(iter.node_ == root());
- node_type *old_root = iter.node_;
- node_type *new_root = iter.node_ = new_leaf_root_node(new_node_size);
- transfer_and_delete(old_root, new_root);
- mutable_root() = mutable_rightmost() = new_root;
- };
- bool replaced_node = false;
- if (iter.node_->count() == max_count) {
- // Make room in the leaf for the new item.
- if (max_count < kNodeSlots) {
- // Insertion into the root where the root is smaller than the full node
- // size. Simply grow the size of the root node.
- replace_leaf_root_node(static_cast<field_type>(
- (std::min)(static_cast<int>(kNodeSlots), 2 * max_count)));
- replaced_node = true;
- } else {
- rebalance_or_split(&iter);
- }
- }
- (void)replaced_node;
- #if defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
- defined(ABSL_HAVE_HWADDRESS_SANITIZER)
- if (!replaced_node) {
- assert(iter.node_->is_leaf());
- if (iter.node_->is_root()) {
- replace_leaf_root_node(max_count);
- } else {
- node_type *old_node = iter.node_;
- const bool was_rightmost = rightmost() == old_node;
- const bool was_leftmost = leftmost() == old_node;
- node_type *parent = old_node->parent();
- const field_type position = old_node->position();
- node_type *new_node = iter.node_ = new_leaf_node(position, parent);
- parent->set_child_noupdate_position(position, new_node);
- transfer_and_delete(old_node, new_node);
- if (was_rightmost) mutable_rightmost() = new_node;
- // The leftmost node is stored as the parent of the root node.
- if (was_leftmost) root()->set_parent(new_node);
- }
- }
- #endif
- iter.node_->emplace_value(static_cast<field_type>(iter.position_), alloc,
- std::forward<Args>(args)...);
- assert(
- iter.node_->is_ordered_correctly(static_cast<field_type>(iter.position_),
- original_key_compare(key_comp())) &&
- "If this assert fails, then either (1) the comparator may violate "
- "transitivity, i.e. comp(a,b) && comp(b,c) -> comp(a,c) (see "
- "https://en.cppreference.com/w/cpp/named_req/Compare), or (2) a "
- "key may have been mutated after it was inserted into the tree.");
- ++size_;
- iter.update_generation();
- return iter;
- }
- template <typename P>
- template <typename K>
- inline auto btree<P>::internal_locate(const K &key) const
- -> SearchResult<iterator, is_key_compare_to::value> {
- iterator iter(const_cast<node_type *>(root()));
- for (;;) {
- SearchResult<size_type, is_key_compare_to::value> res =
- iter.node_->lower_bound(key, key_comp());
- iter.position_ = static_cast<int>(res.value);
- if (res.IsEq()) {
- return {iter, MatchKind::kEq};
- }
- // Note: in the non-key-compare-to case, we don't need to walk all the way
- // down the tree if the keys are equal, but determining equality would
- // require doing an extra comparison on each node on the way down, and we
- // will need to go all the way to the leaf node in the expected case.
- if (iter.node_->is_leaf()) {
- break;
- }
- iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_));
- }
- // Note: in the non-key-compare-to case, the key may actually be equivalent
- // here (and the MatchKind::kNe is ignored).
- return {iter, MatchKind::kNe};
- }
- template <typename P>
- template <typename K>
- auto btree<P>::internal_lower_bound(const K &key) const
- -> SearchResult<iterator, is_key_compare_to::value> {
- if (!params_type::template can_have_multiple_equivalent_keys<K>()) {
- SearchResult<iterator, is_key_compare_to::value> ret = internal_locate(key);
- ret.value = internal_last(ret.value);
- return ret;
- }
- iterator iter(const_cast<node_type *>(root()));
- SearchResult<size_type, is_key_compare_to::value> res;
- bool seen_eq = false;
- for (;;) {
- res = iter.node_->lower_bound(key, key_comp());
- iter.position_ = static_cast<int>(res.value);
- if (iter.node_->is_leaf()) {
- break;
- }
- seen_eq = seen_eq || res.IsEq();
- iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_));
- }
- if (res.IsEq()) return {iter, MatchKind::kEq};
- return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe};
- }
- template <typename P>
- template <typename K>
- auto btree<P>::internal_upper_bound(const K &key) const -> iterator {
- iterator iter(const_cast<node_type *>(root()));
- for (;;) {
- iter.position_ = static_cast<int>(iter.node_->upper_bound(key, key_comp()));
- if (iter.node_->is_leaf()) {
- break;
- }
- iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_));
- }
- return internal_last(iter);
- }
- template <typename P>
- template <typename K>
- auto btree<P>::internal_find(const K &key) const -> iterator {
- SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key);
- if (res.HasMatch()) {
- if (res.IsEq()) {
- return res.value;
- }
- } else {
- const iterator iter = internal_last(res.value);
- if (iter.node_ != nullptr && !compare_keys(key, iter.key())) {
- return iter;
- }
- }
- return {nullptr, 0};
- }
- template <typename P>
- typename btree<P>::size_type btree<P>::internal_verify(
- const node_type *node, const key_type *lo, const key_type *hi) const {
- assert(node->count() > 0);
- assert(node->count() <= node->max_count());
- if (lo) {
- assert(!compare_keys(node->key(node->start()), *lo));
- }
- if (hi) {
- assert(!compare_keys(*hi, node->key(node->finish() - 1)));
- }
- for (int i = node->start() + 1; i < node->finish(); ++i) {
- assert(!compare_keys(node->key(i), node->key(i - 1)));
- }
- size_type count = node->count();
- if (node->is_internal()) {
- for (field_type i = node->start(); i <= node->finish(); ++i) {
- assert(node->child(i) != nullptr);
- assert(node->child(i)->parent() == node);
- assert(node->child(i)->position() == i);
- count += internal_verify(node->child(i),
- i == node->start() ? lo : &node->key(i - 1),
- i == node->finish() ? hi : &node->key(i));
- }
- }
- return count;
- }
- struct btree_access {
- template <typename BtreeContainer, typename Pred>
- static auto erase_if(BtreeContainer &container, Pred pred) ->
- typename BtreeContainer::size_type {
- const auto initial_size = container.size();
- auto &tree = container.tree_;
- auto *alloc = tree.mutable_allocator();
- for (auto it = container.begin(); it != container.end();) {
- if (!pred(*it)) {
- ++it;
- continue;
- }
- auto *node = it.node_;
- if (node->is_internal()) {
- // Handle internal nodes normally.
- it = container.erase(it);
- continue;
- }
- // If this is a leaf node, then we do all the erases from this node
- // at once before doing rebalancing.
- // The current position to transfer slots to.
- int to_pos = it.position_;
- node->value_destroy(it.position_, alloc);
- while (++it.position_ < node->finish()) {
- it.update_generation();
- if (pred(*it)) {
- node->value_destroy(it.position_, alloc);
- } else {
- node->transfer(node->slot(to_pos++), node->slot(it.position_), alloc);
- }
- }
- const int num_deleted = node->finish() - to_pos;
- tree.size_ -= num_deleted;
- node->set_finish(to_pos);
- it.position_ = to_pos;
- it = tree.rebalance_after_delete(it);
- }
- return initial_size - container.size();
- }
- };
- #undef ABSL_BTREE_ENABLE_GENERATIONS
- } // namespace container_internal
- ABSL_NAMESPACE_END
- } // namespace absl
- #endif // ABSL_CONTAINER_INTERNAL_BTREE_H_
|