123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416 |
- from __future__ import (absolute_import, division, print_function,
- unicode_literals)
- import six
- import numpy as np
- import math
- from mpl_toolkits.axisartist.grid_finder import ExtremeFinderSimple
- def select_step_degree(dv):
- degree_limits_ = [1.5, 3, 7, 13, 20, 40, 70, 120, 270, 520]
- degree_steps_ = [ 1, 2, 5, 10, 15, 30, 45, 90, 180, 360]
- degree_factors = [1.] * len(degree_steps_)
- minsec_limits_ = [1.5, 2.5, 3.5, 8, 11, 18, 25, 45]
- minsec_steps_ = [1, 2, 3, 5, 10, 15, 20, 30]
- minute_limits_ = np.array(minsec_limits_) / 60
- minute_factors = [60.] * len(minute_limits_)
- second_limits_ = np.array(minsec_limits_) / 3600
- second_factors = [3600.] * len(second_limits_)
- degree_limits = np.concatenate([second_limits_,
- minute_limits_,
- degree_limits_])
- degree_steps = np.concatenate([minsec_steps_,
- minsec_steps_,
- degree_steps_])
- degree_factors = np.concatenate([second_factors,
- minute_factors,
- degree_factors])
- n = degree_limits.searchsorted(dv)
- step = degree_steps[n]
- factor = degree_factors[n]
- return step, factor
- def select_step_hour(dv):
- hour_limits_ = [1.5, 2.5, 3.5, 5, 7, 10, 15, 21, 36]
- hour_steps_ = [1, 2 , 3, 4, 6, 8, 12, 18, 24]
- hour_factors = [1.] * len(hour_steps_)
- minsec_limits_ = [1.5, 2.5, 3.5, 4.5, 5.5, 8, 11, 14, 18, 25, 45]
- minsec_steps_ = [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30]
- minute_limits_ = np.array(minsec_limits_) / 60
- minute_factors = [60.] * len(minute_limits_)
- second_limits_ = np.array(minsec_limits_) / 3600
- second_factors = [3600.] * len(second_limits_)
- hour_limits = np.concatenate([second_limits_,
- minute_limits_,
- hour_limits_])
- hour_steps = np.concatenate([minsec_steps_,
- minsec_steps_,
- hour_steps_])
- hour_factors = np.concatenate([second_factors,
- minute_factors,
- hour_factors])
- n = hour_limits.searchsorted(dv)
- step = hour_steps[n]
- factor = hour_factors[n]
- return step, factor
- def select_step_sub(dv):
- # subarcsec or degree
- tmp = 10.**(int(math.log10(dv))-1.)
- factor = 1./tmp
- if 1.5*tmp >= dv:
- step = 1
- elif 3.*tmp >= dv:
- step = 2
- elif 7.*tmp >= dv:
- step = 5
- else:
- step = 1
- factor = 0.1*factor
- return step, factor
- def select_step(v1, v2, nv, hour=False, include_last=True,
- threshold_factor=3600.):
- if v1 > v2:
- v1, v2 = v2, v1
- dv = (v2 - v1) / nv
- if hour:
- _select_step = select_step_hour
- cycle = 24.
- else:
- _select_step = select_step_degree
- cycle = 360.
- # for degree
- if dv > 1./threshold_factor:
- step, factor = _select_step(dv)
- else:
- step, factor = select_step_sub(dv*threshold_factor)
- factor = factor * threshold_factor
- f1, f2, fstep = v1*factor, v2*factor, step/factor
- levs = np.arange(np.floor(f1/step), np.ceil(f2/step)+0.5, dtype=int) * step
- # n : number of valid levels. If there is a cycle, e.g., [0, 90, 180,
- # 270, 360], the grid line needs to be extended from 0 to 360, so
- # we need to return the whole array. However, the last level (360)
- # needs to be ignored often. In this case, so we return n=4.
- n = len(levs)
- # we need to check the range of values
- # for example, -90 to 90, 0 to 360,
- if factor == 1. and (levs[-1] >= levs[0]+cycle): # check for cycle
- nv = int(cycle / step)
- if include_last:
- levs = levs[0] + np.arange(0, nv+1, 1) * step
- else:
- levs = levs[0] + np.arange(0, nv, 1) * step
- n = len(levs)
- return np.array(levs), n, factor
- def select_step24(v1, v2, nv, include_last=True, threshold_factor=3600):
- v1, v2 = v1/15., v2/15.
- levs, n, factor = select_step(v1, v2, nv, hour=True,
- include_last=include_last,
- threshold_factor=threshold_factor)
- return levs*15., n, factor
- def select_step360(v1, v2, nv, include_last=True, threshold_factor=3600):
- return select_step(v1, v2, nv, hour=False,
- include_last=include_last,
- threshold_factor=threshold_factor)
- class LocatorBase(object):
- def __init__(self, den, include_last=True):
- self.den = den
- self._include_last = include_last
- @property
- def nbins(self):
- return self.den
- @nbins.setter
- def nbins(self, v):
- self.den = v
- def set_params(self, nbins=None):
- if nbins is not None:
- self.den = int(nbins)
- class LocatorHMS(LocatorBase):
- def __call__(self, v1, v2):
- return select_step24(v1, v2, self.den, self._include_last)
- class LocatorHM(LocatorBase):
- def __call__(self, v1, v2):
- return select_step24(v1, v2, self.den, self._include_last,
- threshold_factor=60)
- class LocatorH(LocatorBase):
- def __call__(self, v1, v2):
- return select_step24(v1, v2, self.den, self._include_last,
- threshold_factor=1)
- class LocatorDMS(LocatorBase):
- def __call__(self, v1, v2):
- return select_step360(v1, v2, self.den, self._include_last)
- class LocatorDM(LocatorBase):
- def __call__(self, v1, v2):
- return select_step360(v1, v2, self.den, self._include_last,
- threshold_factor=60)
- class LocatorD(LocatorBase):
- def __call__(self, v1, v2):
- return select_step360(v1, v2, self.den, self._include_last,
- threshold_factor=1)
- class FormatterDMS(object):
- deg_mark = r"^{\circ}"
- min_mark = r"^{\prime}"
- sec_mark = r"^{\prime\prime}"
- fmt_d = "$%d" + deg_mark + "$"
- fmt_ds = r"$%d.%s" + deg_mark + "$"
- # %s for sign
- fmt_d_m = r"$%s%d" + deg_mark + r"\,%02d" + min_mark + "$"
- fmt_d_ms = r"$%s%d" + deg_mark + r"\,%02d.%s" + min_mark + "$"
- fmt_d_m_partial = "$%s%d" + deg_mark + r"\,%02d" + min_mark + r"\,"
- fmt_s_partial = "%02d" + sec_mark + "$"
- fmt_ss_partial = "%02d.%s" + sec_mark + "$"
- def _get_number_fraction(self, factor):
- ## check for fractional numbers
- number_fraction = None
- # check for 60
- for threshold in [1, 60, 3600]:
- if factor <= threshold:
- break
- d = factor // threshold
- int_log_d = int(np.floor(np.log10(d)))
- if 10**int_log_d == d and d != 1:
- number_fraction = int_log_d
- factor = factor // 10**int_log_d
- return factor, number_fraction
- return factor, number_fraction
- def __call__(self, direction, factor, values):
- if len(values) == 0:
- return []
- #ss = [[-1, 1][v>0] for v in values] #not py24 compliant
- values = np.asarray(values)
- ss = np.where(values>0, 1, -1)
- sign_map = {(-1, True):"-"}
- signs = [sign_map.get((s, v!=0), "") for s, v in zip(ss, values)]
- factor, number_fraction = self._get_number_fraction(factor)
- values = np.abs(values)
- if number_fraction is not None:
- values, frac_part = divmod(values, 10**number_fraction)
- frac_fmt = "%%0%dd" % (number_fraction,)
- frac_str = [frac_fmt % (f1,) for f1 in frac_part]
- if factor == 1:
- if number_fraction is None:
- return [self.fmt_d % (s*int(v),) for (s, v) in zip(ss, values)]
- else:
- return [self.fmt_ds % (s*int(v), f1)
- for (s, v, f1) in zip(ss, values, frac_str)]
- elif factor == 60:
- deg_part, min_part = divmod(values, 60)
- if number_fraction is None:
- return [self.fmt_d_m % (s1, d1, m1)
- for s1, d1, m1 in zip(signs, deg_part, min_part)]
- else:
- return [self.fmt_d_ms % (s, d1, m1, f1)
- for s, d1, m1, f1 in zip(signs, deg_part, min_part, frac_str)]
- elif factor == 3600:
- if ss[-1] == -1:
- inverse_order = True
- values = values[::-1]
- signs = signs[::-1]
- else:
- inverse_order = False
- l_hm_old = ""
- r = []
- deg_part, min_part_ = divmod(values, 3600)
- min_part, sec_part = divmod(min_part_, 60)
- if number_fraction is None:
- sec_str = [self.fmt_s_partial % (s1,) for s1 in sec_part]
- else:
- sec_str = [self.fmt_ss_partial % (s1, f1) for s1, f1 in zip(sec_part, frac_str)]
- for s, d1, m1, s1 in zip(signs, deg_part, min_part, sec_str):
- l_hm = self.fmt_d_m_partial % (s, d1, m1)
- if l_hm != l_hm_old:
- l_hm_old = l_hm
- l = l_hm + s1 #l_s
- else:
- l = "$" + s + s1
- r.append(l)
- if inverse_order:
- return r[::-1]
- else:
- return r
- else: # factor > 3600.
- return [r"$%s^{\circ}$" % (str(v),) for v in ss*values]
- class FormatterHMS(FormatterDMS):
- deg_mark = r"^\mathrm{h}"
- min_mark = r"^\mathrm{m}"
- sec_mark = r"^\mathrm{s}"
- fmt_d = "$%d" + deg_mark + "$"
- fmt_ds = r"$%d.%s" + deg_mark + "$"
- # %s for sign
- fmt_d_m = r"$%s%d" + deg_mark + r"\,%02d" + min_mark+"$"
- fmt_d_ms = r"$%s%d" + deg_mark + r"\,%02d.%s" + min_mark+"$"
- fmt_d_m_partial = "$%s%d" + deg_mark + r"\,%02d" + min_mark + r"\,"
- fmt_s_partial = "%02d" + sec_mark + "$"
- fmt_ss_partial = "%02d.%s" + sec_mark + "$"
- def __call__(self, direction, factor, values): # hour
- return FormatterDMS.__call__(self, direction, factor, np.asarray(values)/15.)
- class ExtremeFinderCycle(ExtremeFinderSimple):
- """
- When there is a cycle, e.g., longitude goes from 0-360.
- """
- def __init__(self,
- nx, ny,
- lon_cycle = 360.,
- lat_cycle = None,
- lon_minmax = None,
- lat_minmax = (-90, 90)
- ):
- #self.transfrom_xy = transform_xy
- #self.inv_transfrom_xy = inv_transform_xy
- self.nx, self.ny = nx, ny
- self.lon_cycle, self.lat_cycle = lon_cycle, lat_cycle
- self.lon_minmax = lon_minmax
- self.lat_minmax = lat_minmax
- def __call__(self, transform_xy, x1, y1, x2, y2):
- """
- get extreme values.
- x1, y1, x2, y2 in image coordinates (0-based)
- nx, ny : number of divisions in each axis
- """
- x_, y_ = np.linspace(x1, x2, self.nx), np.linspace(y1, y2, self.ny)
- x, y = np.meshgrid(x_, y_)
- lon, lat = transform_xy(np.ravel(x), np.ravel(y))
- # iron out jumps, but algorithm should be improved.
- # This is just naive way of doing and my fail for some cases.
- # Consider replacing this with numpy.unwrap
- # We are ignoring invalid warnings. They are triggered when
- # comparing arrays with NaNs using > We are already handling
- # that correctly using np.nanmin and np.nanmax
- with np.errstate(invalid='ignore'):
- if self.lon_cycle is not None:
- lon0 = np.nanmin(lon)
- lon -= 360. * ((lon - lon0) > 180.)
- if self.lat_cycle is not None:
- lat0 = np.nanmin(lat)
- lat -= 360. * ((lat - lat0) > 180.)
- lon_min, lon_max = np.nanmin(lon), np.nanmax(lon)
- lat_min, lat_max = np.nanmin(lat), np.nanmax(lat)
- lon_min, lon_max, lat_min, lat_max = \
- self._adjust_extremes(lon_min, lon_max, lat_min, lat_max)
- return lon_min, lon_max, lat_min, lat_max
- def _adjust_extremes(self, lon_min, lon_max, lat_min, lat_max):
- lon_min, lon_max, lat_min, lat_max = \
- self._add_pad(lon_min, lon_max, lat_min, lat_max)
- # check cycle
- if self.lon_cycle:
- lon_max = min(lon_max, lon_min + self.lon_cycle)
- if self.lat_cycle:
- lat_max = min(lat_max, lat_min + self.lat_cycle)
- if self.lon_minmax is not None:
- min0 = self.lon_minmax[0]
- lon_min = max(min0, lon_min)
- max0 = self.lon_minmax[1]
- lon_max = min(max0, lon_max)
- if self.lat_minmax is not None:
- min0 = self.lat_minmax[0]
- lat_min = max(min0, lat_min)
- max0 = self.lat_minmax[1]
- lat_max = min(max0, lat_max)
- return lon_min, lon_max, lat_min, lat_max
|