huf_decompress.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944
  1. /* ******************************************************************
  2. * huff0 huffman decoder,
  3. * part of Finite State Entropy library
  4. * Copyright (c) Meta Platforms, Inc. and affiliates.
  5. *
  6. * You can contact the author at :
  7. * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
  8. *
  9. * This source code is licensed under both the BSD-style license (found in the
  10. * LICENSE file in the root directory of this source tree) and the GPLv2 (found
  11. * in the COPYING file in the root directory of this source tree).
  12. * You may select, at your option, one of the above-listed licenses.
  13. ****************************************************************** */
  14. /* **************************************************************
  15. * Dependencies
  16. ****************************************************************/
  17. #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
  18. #include "../common/compiler.h"
  19. #include "../common/bitstream.h" /* BIT_* */
  20. #include "../common/fse.h" /* to compress headers */
  21. #include "../common/huf.h"
  22. #include "../common/error_private.h"
  23. #include "../common/zstd_internal.h"
  24. #include "../common/bits.h" /* ZSTD_highbit32, ZSTD_countTrailingZeros64 */
  25. /* **************************************************************
  26. * Constants
  27. ****************************************************************/
  28. #define HUF_DECODER_FAST_TABLELOG 11
  29. /* **************************************************************
  30. * Macros
  31. ****************************************************************/
  32. #ifdef HUF_DISABLE_FAST_DECODE
  33. # define HUF_ENABLE_FAST_DECODE 0
  34. #else
  35. # define HUF_ENABLE_FAST_DECODE 1
  36. #endif
  37. /* These two optional macros force the use one way or another of the two
  38. * Huffman decompression implementations. You can't force in both directions
  39. * at the same time.
  40. */
  41. #if defined(HUF_FORCE_DECOMPRESS_X1) && \
  42. defined(HUF_FORCE_DECOMPRESS_X2)
  43. #error "Cannot force the use of the X1 and X2 decoders at the same time!"
  44. #endif
  45. /* When DYNAMIC_BMI2 is enabled, fast decoders are only called when bmi2 is
  46. * supported at runtime, so we can add the BMI2 target attribute.
  47. * When it is disabled, we will still get BMI2 if it is enabled statically.
  48. */
  49. #if DYNAMIC_BMI2
  50. # define HUF_FAST_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE
  51. #else
  52. # define HUF_FAST_BMI2_ATTRS
  53. #endif
  54. #ifdef __cplusplus
  55. # define HUF_EXTERN_C extern "C"
  56. #else
  57. # define HUF_EXTERN_C
  58. #endif
  59. #define HUF_ASM_DECL HUF_EXTERN_C
  60. #if DYNAMIC_BMI2
  61. # define HUF_NEED_BMI2_FUNCTION 1
  62. #else
  63. # define HUF_NEED_BMI2_FUNCTION 0
  64. #endif
  65. /* **************************************************************
  66. * Error Management
  67. ****************************************************************/
  68. #define HUF_isError ERR_isError
  69. /* **************************************************************
  70. * Byte alignment for workSpace management
  71. ****************************************************************/
  72. #define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1)
  73. #define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
  74. /* **************************************************************
  75. * BMI2 Variant Wrappers
  76. ****************************************************************/
  77. typedef size_t (*HUF_DecompressUsingDTableFn)(void *dst, size_t dstSize,
  78. const void *cSrc,
  79. size_t cSrcSize,
  80. const HUF_DTable *DTable);
  81. #if DYNAMIC_BMI2
  82. #define HUF_DGEN(fn) \
  83. \
  84. static size_t fn##_default( \
  85. void* dst, size_t dstSize, \
  86. const void* cSrc, size_t cSrcSize, \
  87. const HUF_DTable* DTable) \
  88. { \
  89. return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
  90. } \
  91. \
  92. static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \
  93. void* dst, size_t dstSize, \
  94. const void* cSrc, size_t cSrcSize, \
  95. const HUF_DTable* DTable) \
  96. { \
  97. return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
  98. } \
  99. \
  100. static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
  101. size_t cSrcSize, HUF_DTable const* DTable, int flags) \
  102. { \
  103. if (flags & HUF_flags_bmi2) { \
  104. return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \
  105. } \
  106. return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \
  107. }
  108. #else
  109. #define HUF_DGEN(fn) \
  110. static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
  111. size_t cSrcSize, HUF_DTable const* DTable, int flags) \
  112. { \
  113. (void)flags; \
  114. return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
  115. }
  116. #endif
  117. /*-***************************/
  118. /* generic DTableDesc */
  119. /*-***************************/
  120. typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
  121. static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
  122. {
  123. DTableDesc dtd;
  124. ZSTD_memcpy(&dtd, table, sizeof(dtd));
  125. return dtd;
  126. }
  127. static size_t HUF_initFastDStream(BYTE const* ip) {
  128. BYTE const lastByte = ip[7];
  129. size_t const bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0;
  130. size_t const value = MEM_readLEST(ip) | 1;
  131. assert(bitsConsumed <= 8);
  132. assert(sizeof(size_t) == 8);
  133. return value << bitsConsumed;
  134. }
  135. /**
  136. * The input/output arguments to the Huffman fast decoding loop:
  137. *
  138. * ip [in/out] - The input pointers, must be updated to reflect what is consumed.
  139. * op [in/out] - The output pointers, must be updated to reflect what is written.
  140. * bits [in/out] - The bitstream containers, must be updated to reflect the current state.
  141. * dt [in] - The decoding table.
  142. * ilowest [in] - The beginning of the valid range of the input. Decoders may read
  143. * down to this pointer. It may be below iend[0].
  144. * oend [in] - The end of the output stream. op[3] must not cross oend.
  145. * iend [in] - The end of each input stream. ip[i] may cross iend[i],
  146. * as long as it is above ilowest, but that indicates corruption.
  147. */
  148. typedef struct {
  149. BYTE const* ip[4];
  150. BYTE* op[4];
  151. U64 bits[4];
  152. void const* dt;
  153. BYTE const* ilowest;
  154. BYTE* oend;
  155. BYTE const* iend[4];
  156. } HUF_DecompressFastArgs;
  157. typedef void (*HUF_DecompressFastLoopFn)(HUF_DecompressFastArgs*);
  158. /**
  159. * Initializes args for the fast decoding loop.
  160. * @returns 1 on success
  161. * 0 if the fallback implementation should be used.
  162. * Or an error code on failure.
  163. */
  164. static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable)
  165. {
  166. void const* dt = DTable + 1;
  167. U32 const dtLog = HUF_getDTableDesc(DTable).tableLog;
  168. const BYTE* const istart = (const BYTE*)src;
  169. BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
  170. /* The fast decoding loop assumes 64-bit little-endian.
  171. * This condition is false on x32.
  172. */
  173. if (!MEM_isLittleEndian() || MEM_32bits())
  174. return 0;
  175. /* Avoid nullptr addition */
  176. if (dstSize == 0)
  177. return 0;
  178. assert(dst != NULL);
  179. /* strict minimum : jump table + 1 byte per stream */
  180. if (srcSize < 10)
  181. return ERROR(corruption_detected);
  182. /* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers.
  183. * If table log is not correct at this point, fallback to the old decoder.
  184. * On small inputs we don't have enough data to trigger the fast loop, so use the old decoder.
  185. */
  186. if (dtLog != HUF_DECODER_FAST_TABLELOG)
  187. return 0;
  188. /* Read the jump table. */
  189. {
  190. size_t const length1 = MEM_readLE16(istart);
  191. size_t const length2 = MEM_readLE16(istart+2);
  192. size_t const length3 = MEM_readLE16(istart+4);
  193. size_t const length4 = srcSize - (length1 + length2 + length3 + 6);
  194. args->iend[0] = istart + 6; /* jumpTable */
  195. args->iend[1] = args->iend[0] + length1;
  196. args->iend[2] = args->iend[1] + length2;
  197. args->iend[3] = args->iend[2] + length3;
  198. /* HUF_initFastDStream() requires this, and this small of an input
  199. * won't benefit from the ASM loop anyways.
  200. */
  201. if (length1 < 8 || length2 < 8 || length3 < 8 || length4 < 8)
  202. return 0;
  203. if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */
  204. }
  205. /* ip[] contains the position that is currently loaded into bits[]. */
  206. args->ip[0] = args->iend[1] - sizeof(U64);
  207. args->ip[1] = args->iend[2] - sizeof(U64);
  208. args->ip[2] = args->iend[3] - sizeof(U64);
  209. args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64);
  210. /* op[] contains the output pointers. */
  211. args->op[0] = (BYTE*)dst;
  212. args->op[1] = args->op[0] + (dstSize+3)/4;
  213. args->op[2] = args->op[1] + (dstSize+3)/4;
  214. args->op[3] = args->op[2] + (dstSize+3)/4;
  215. /* No point to call the ASM loop for tiny outputs. */
  216. if (args->op[3] >= oend)
  217. return 0;
  218. /* bits[] is the bit container.
  219. * It is read from the MSB down to the LSB.
  220. * It is shifted left as it is read, and zeros are
  221. * shifted in. After the lowest valid bit a 1 is
  222. * set, so that CountTrailingZeros(bits[]) can be used
  223. * to count how many bits we've consumed.
  224. */
  225. args->bits[0] = HUF_initFastDStream(args->ip[0]);
  226. args->bits[1] = HUF_initFastDStream(args->ip[1]);
  227. args->bits[2] = HUF_initFastDStream(args->ip[2]);
  228. args->bits[3] = HUF_initFastDStream(args->ip[3]);
  229. /* The decoders must be sure to never read beyond ilowest.
  230. * This is lower than iend[0], but allowing decoders to read
  231. * down to ilowest can allow an extra iteration or two in the
  232. * fast loop.
  233. */
  234. args->ilowest = istart;
  235. args->oend = oend;
  236. args->dt = dt;
  237. return 1;
  238. }
  239. static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressFastArgs const* args, int stream, BYTE* segmentEnd)
  240. {
  241. /* Validate that we haven't overwritten. */
  242. if (args->op[stream] > segmentEnd)
  243. return ERROR(corruption_detected);
  244. /* Validate that we haven't read beyond iend[].
  245. * Note that ip[] may be < iend[] because the MSB is
  246. * the next bit to read, and we may have consumed 100%
  247. * of the stream, so down to iend[i] - 8 is valid.
  248. */
  249. if (args->ip[stream] < args->iend[stream] - 8)
  250. return ERROR(corruption_detected);
  251. /* Construct the BIT_DStream_t. */
  252. assert(sizeof(size_t) == 8);
  253. bit->bitContainer = MEM_readLEST(args->ip[stream]);
  254. bit->bitsConsumed = ZSTD_countTrailingZeros64(args->bits[stream]);
  255. bit->start = (const char*)args->ilowest;
  256. bit->limitPtr = bit->start + sizeof(size_t);
  257. bit->ptr = (const char*)args->ip[stream];
  258. return 0;
  259. }
  260. /* Calls X(N) for each stream 0, 1, 2, 3. */
  261. #define HUF_4X_FOR_EACH_STREAM(X) \
  262. do { \
  263. X(0); \
  264. X(1); \
  265. X(2); \
  266. X(3); \
  267. } while (0)
  268. /* Calls X(N, var) for each stream 0, 1, 2, 3. */
  269. #define HUF_4X_FOR_EACH_STREAM_WITH_VAR(X, var) \
  270. do { \
  271. X(0, (var)); \
  272. X(1, (var)); \
  273. X(2, (var)); \
  274. X(3, (var)); \
  275. } while (0)
  276. #ifndef HUF_FORCE_DECOMPRESS_X2
  277. /*-***************************/
  278. /* single-symbol decoding */
  279. /*-***************************/
  280. typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */
  281. /**
  282. * Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at
  283. * a time.
  284. */
  285. static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) {
  286. U64 D4;
  287. if (MEM_isLittleEndian()) {
  288. D4 = (U64)((symbol << 8) + nbBits);
  289. } else {
  290. D4 = (U64)(symbol + (nbBits << 8));
  291. }
  292. assert(D4 < (1U << 16));
  293. D4 *= 0x0001000100010001ULL;
  294. return D4;
  295. }
  296. /**
  297. * Increase the tableLog to targetTableLog and rescales the stats.
  298. * If tableLog > targetTableLog this is a no-op.
  299. * @returns New tableLog
  300. */
  301. static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog)
  302. {
  303. if (tableLog > targetTableLog)
  304. return tableLog;
  305. if (tableLog < targetTableLog) {
  306. U32 const scale = targetTableLog - tableLog;
  307. U32 s;
  308. /* Increase the weight for all non-zero probability symbols by scale. */
  309. for (s = 0; s < nbSymbols; ++s) {
  310. huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale);
  311. }
  312. /* Update rankVal to reflect the new weights.
  313. * All weights except 0 get moved to weight + scale.
  314. * Weights [1, scale] are empty.
  315. */
  316. for (s = targetTableLog; s > scale; --s) {
  317. rankVal[s] = rankVal[s - scale];
  318. }
  319. for (s = scale; s > 0; --s) {
  320. rankVal[s] = 0;
  321. }
  322. }
  323. return targetTableLog;
  324. }
  325. typedef struct {
  326. U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
  327. U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1];
  328. U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
  329. BYTE symbols[HUF_SYMBOLVALUE_MAX + 1];
  330. BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
  331. } HUF_ReadDTableX1_Workspace;
  332. size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags)
  333. {
  334. U32 tableLog = 0;
  335. U32 nbSymbols = 0;
  336. size_t iSize;
  337. void* const dtPtr = DTable + 1;
  338. HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
  339. HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace;
  340. DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp));
  341. if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge);
  342. DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
  343. /* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
  344. iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), flags);
  345. if (HUF_isError(iSize)) return iSize;
  346. /* Table header */
  347. { DTableDesc dtd = HUF_getDTableDesc(DTable);
  348. U32 const maxTableLog = dtd.maxTableLog + 1;
  349. U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG);
  350. tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog);
  351. if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */
  352. dtd.tableType = 0;
  353. dtd.tableLog = (BYTE)tableLog;
  354. ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
  355. }
  356. /* Compute symbols and rankStart given rankVal:
  357. *
  358. * rankVal already contains the number of values of each weight.
  359. *
  360. * symbols contains the symbols ordered by weight. First are the rankVal[0]
  361. * weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on.
  362. * symbols[0] is filled (but unused) to avoid a branch.
  363. *
  364. * rankStart contains the offset where each rank belongs in the DTable.
  365. * rankStart[0] is not filled because there are no entries in the table for
  366. * weight 0.
  367. */
  368. { int n;
  369. U32 nextRankStart = 0;
  370. int const unroll = 4;
  371. int const nLimit = (int)nbSymbols - unroll + 1;
  372. for (n=0; n<(int)tableLog+1; n++) {
  373. U32 const curr = nextRankStart;
  374. nextRankStart += wksp->rankVal[n];
  375. wksp->rankStart[n] = curr;
  376. }
  377. for (n=0; n < nLimit; n += unroll) {
  378. int u;
  379. for (u=0; u < unroll; ++u) {
  380. size_t const w = wksp->huffWeight[n+u];
  381. wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u);
  382. }
  383. }
  384. for (; n < (int)nbSymbols; ++n) {
  385. size_t const w = wksp->huffWeight[n];
  386. wksp->symbols[wksp->rankStart[w]++] = (BYTE)n;
  387. }
  388. }
  389. /* fill DTable
  390. * We fill all entries of each weight in order.
  391. * That way length is a constant for each iteration of the outer loop.
  392. * We can switch based on the length to a different inner loop which is
  393. * optimized for that particular case.
  394. */
  395. { U32 w;
  396. int symbol = wksp->rankVal[0];
  397. int rankStart = 0;
  398. for (w=1; w<tableLog+1; ++w) {
  399. int const symbolCount = wksp->rankVal[w];
  400. int const length = (1 << w) >> 1;
  401. int uStart = rankStart;
  402. BYTE const nbBits = (BYTE)(tableLog + 1 - w);
  403. int s;
  404. int u;
  405. switch (length) {
  406. case 1:
  407. for (s=0; s<symbolCount; ++s) {
  408. HUF_DEltX1 D;
  409. D.byte = wksp->symbols[symbol + s];
  410. D.nbBits = nbBits;
  411. dt[uStart] = D;
  412. uStart += 1;
  413. }
  414. break;
  415. case 2:
  416. for (s=0; s<symbolCount; ++s) {
  417. HUF_DEltX1 D;
  418. D.byte = wksp->symbols[symbol + s];
  419. D.nbBits = nbBits;
  420. dt[uStart+0] = D;
  421. dt[uStart+1] = D;
  422. uStart += 2;
  423. }
  424. break;
  425. case 4:
  426. for (s=0; s<symbolCount; ++s) {
  427. U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
  428. MEM_write64(dt + uStart, D4);
  429. uStart += 4;
  430. }
  431. break;
  432. case 8:
  433. for (s=0; s<symbolCount; ++s) {
  434. U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
  435. MEM_write64(dt + uStart, D4);
  436. MEM_write64(dt + uStart + 4, D4);
  437. uStart += 8;
  438. }
  439. break;
  440. default:
  441. for (s=0; s<symbolCount; ++s) {
  442. U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
  443. for (u=0; u < length; u += 16) {
  444. MEM_write64(dt + uStart + u + 0, D4);
  445. MEM_write64(dt + uStart + u + 4, D4);
  446. MEM_write64(dt + uStart + u + 8, D4);
  447. MEM_write64(dt + uStart + u + 12, D4);
  448. }
  449. assert(u == length);
  450. uStart += length;
  451. }
  452. break;
  453. }
  454. symbol += symbolCount;
  455. rankStart += symbolCount * length;
  456. }
  457. }
  458. return iSize;
  459. }
  460. FORCE_INLINE_TEMPLATE BYTE
  461. HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
  462. {
  463. size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
  464. BYTE const c = dt[val].byte;
  465. BIT_skipBits(Dstream, dt[val].nbBits);
  466. return c;
  467. }
  468. #define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
  469. do { *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog); } while (0)
  470. #define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \
  471. do { \
  472. if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
  473. HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr); \
  474. } while (0)
  475. #define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
  476. do { \
  477. if (MEM_64bits()) \
  478. HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr); \
  479. } while (0)
  480. HINT_INLINE size_t
  481. HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
  482. {
  483. BYTE* const pStart = p;
  484. /* up to 4 symbols at a time */
  485. if ((pEnd - p) > 3) {
  486. while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
  487. HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
  488. HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
  489. HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
  490. HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
  491. }
  492. } else {
  493. BIT_reloadDStream(bitDPtr);
  494. }
  495. /* [0-3] symbols remaining */
  496. if (MEM_32bits())
  497. while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
  498. HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
  499. /* no more data to retrieve from bitstream, no need to reload */
  500. while (p < pEnd)
  501. HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
  502. return (size_t)(pEnd-pStart);
  503. }
  504. FORCE_INLINE_TEMPLATE size_t
  505. HUF_decompress1X1_usingDTable_internal_body(
  506. void* dst, size_t dstSize,
  507. const void* cSrc, size_t cSrcSize,
  508. const HUF_DTable* DTable)
  509. {
  510. BYTE* op = (BYTE*)dst;
  511. BYTE* const oend = ZSTD_maybeNullPtrAdd(op, dstSize);
  512. const void* dtPtr = DTable + 1;
  513. const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
  514. BIT_DStream_t bitD;
  515. DTableDesc const dtd = HUF_getDTableDesc(DTable);
  516. U32 const dtLog = dtd.tableLog;
  517. CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
  518. HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);
  519. if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
  520. return dstSize;
  521. }
  522. /* HUF_decompress4X1_usingDTable_internal_body():
  523. * Conditions :
  524. * @dstSize >= 6
  525. */
  526. FORCE_INLINE_TEMPLATE size_t
  527. HUF_decompress4X1_usingDTable_internal_body(
  528. void* dst, size_t dstSize,
  529. const void* cSrc, size_t cSrcSize,
  530. const HUF_DTable* DTable)
  531. {
  532. /* Check */
  533. if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
  534. if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
  535. { const BYTE* const istart = (const BYTE*) cSrc;
  536. BYTE* const ostart = (BYTE*) dst;
  537. BYTE* const oend = ostart + dstSize;
  538. BYTE* const olimit = oend - 3;
  539. const void* const dtPtr = DTable + 1;
  540. const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
  541. /* Init */
  542. BIT_DStream_t bitD1;
  543. BIT_DStream_t bitD2;
  544. BIT_DStream_t bitD3;
  545. BIT_DStream_t bitD4;
  546. size_t const length1 = MEM_readLE16(istart);
  547. size_t const length2 = MEM_readLE16(istart+2);
  548. size_t const length3 = MEM_readLE16(istart+4);
  549. size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
  550. const BYTE* const istart1 = istart + 6; /* jumpTable */
  551. const BYTE* const istart2 = istart1 + length1;
  552. const BYTE* const istart3 = istart2 + length2;
  553. const BYTE* const istart4 = istart3 + length3;
  554. const size_t segmentSize = (dstSize+3) / 4;
  555. BYTE* const opStart2 = ostart + segmentSize;
  556. BYTE* const opStart3 = opStart2 + segmentSize;
  557. BYTE* const opStart4 = opStart3 + segmentSize;
  558. BYTE* op1 = ostart;
  559. BYTE* op2 = opStart2;
  560. BYTE* op3 = opStart3;
  561. BYTE* op4 = opStart4;
  562. DTableDesc const dtd = HUF_getDTableDesc(DTable);
  563. U32 const dtLog = dtd.tableLog;
  564. U32 endSignal = 1;
  565. if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
  566. if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
  567. assert(dstSize >= 6); /* validated above */
  568. CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
  569. CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
  570. CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
  571. CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
  572. /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
  573. if ((size_t)(oend - op4) >= sizeof(size_t)) {
  574. for ( ; (endSignal) & (op4 < olimit) ; ) {
  575. HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
  576. HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
  577. HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
  578. HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
  579. HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
  580. HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
  581. HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
  582. HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
  583. HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
  584. HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
  585. HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
  586. HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
  587. HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
  588. HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
  589. HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
  590. HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
  591. endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
  592. endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
  593. endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
  594. endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
  595. }
  596. }
  597. /* check corruption */
  598. /* note : should not be necessary : op# advance in lock step, and we control op4.
  599. * but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
  600. if (op1 > opStart2) return ERROR(corruption_detected);
  601. if (op2 > opStart3) return ERROR(corruption_detected);
  602. if (op3 > opStart4) return ERROR(corruption_detected);
  603. /* note : op4 supposed already verified within main loop */
  604. /* finish bitStreams one by one */
  605. HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
  606. HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
  607. HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
  608. HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog);
  609. /* check */
  610. { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
  611. if (!endCheck) return ERROR(corruption_detected); }
  612. /* decoded size */
  613. return dstSize;
  614. }
  615. }
  616. #if HUF_NEED_BMI2_FUNCTION
  617. static BMI2_TARGET_ATTRIBUTE
  618. size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
  619. size_t cSrcSize, HUF_DTable const* DTable) {
  620. return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
  621. }
  622. #endif
  623. static
  624. size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
  625. size_t cSrcSize, HUF_DTable const* DTable) {
  626. return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
  627. }
  628. #if ZSTD_ENABLE_ASM_X86_64_BMI2
  629. HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;
  630. #endif
  631. static HUF_FAST_BMI2_ATTRS
  632. void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
  633. {
  634. U64 bits[4];
  635. BYTE const* ip[4];
  636. BYTE* op[4];
  637. U16 const* const dtable = (U16 const*)args->dt;
  638. BYTE* const oend = args->oend;
  639. BYTE const* const ilowest = args->ilowest;
  640. /* Copy the arguments to local variables */
  641. ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
  642. ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
  643. ZSTD_memcpy(&op, &args->op, sizeof(op));
  644. assert(MEM_isLittleEndian());
  645. assert(!MEM_32bits());
  646. for (;;) {
  647. BYTE* olimit;
  648. int stream;
  649. /* Assert loop preconditions */
  650. #ifndef NDEBUG
  651. for (stream = 0; stream < 4; ++stream) {
  652. assert(op[stream] <= (stream == 3 ? oend : op[stream + 1]));
  653. assert(ip[stream] >= ilowest);
  654. }
  655. #endif
  656. /* Compute olimit */
  657. {
  658. /* Each iteration produces 5 output symbols per stream */
  659. size_t const oiters = (size_t)(oend - op[3]) / 5;
  660. /* Each iteration consumes up to 11 bits * 5 = 55 bits < 7 bytes
  661. * per stream.
  662. */
  663. size_t const iiters = (size_t)(ip[0] - ilowest) / 7;
  664. /* We can safely run iters iterations before running bounds checks */
  665. size_t const iters = MIN(oiters, iiters);
  666. size_t const symbols = iters * 5;
  667. /* We can simply check that op[3] < olimit, instead of checking all
  668. * of our bounds, since we can't hit the other bounds until we've run
  669. * iters iterations, which only happens when op[3] == olimit.
  670. */
  671. olimit = op[3] + symbols;
  672. /* Exit fast decoding loop once we reach the end. */
  673. if (op[3] == olimit)
  674. break;
  675. /* Exit the decoding loop if any input pointer has crossed the
  676. * previous one. This indicates corruption, and a precondition
  677. * to our loop is that ip[i] >= ip[0].
  678. */
  679. for (stream = 1; stream < 4; ++stream) {
  680. if (ip[stream] < ip[stream - 1])
  681. goto _out;
  682. }
  683. }
  684. #ifndef NDEBUG
  685. for (stream = 1; stream < 4; ++stream) {
  686. assert(ip[stream] >= ip[stream - 1]);
  687. }
  688. #endif
  689. #define HUF_4X1_DECODE_SYMBOL(_stream, _symbol) \
  690. do { \
  691. int const index = (int)(bits[(_stream)] >> 53); \
  692. int const entry = (int)dtable[index]; \
  693. bits[(_stream)] <<= (entry & 0x3F); \
  694. op[(_stream)][(_symbol)] = (BYTE)((entry >> 8) & 0xFF); \
  695. } while (0)
  696. #define HUF_4X1_RELOAD_STREAM(_stream) \
  697. do { \
  698. int const ctz = ZSTD_countTrailingZeros64(bits[(_stream)]); \
  699. int const nbBits = ctz & 7; \
  700. int const nbBytes = ctz >> 3; \
  701. op[(_stream)] += 5; \
  702. ip[(_stream)] -= nbBytes; \
  703. bits[(_stream)] = MEM_read64(ip[(_stream)]) | 1; \
  704. bits[(_stream)] <<= nbBits; \
  705. } while (0)
  706. /* Manually unroll the loop because compilers don't consistently
  707. * unroll the inner loops, which destroys performance.
  708. */
  709. do {
  710. /* Decode 5 symbols in each of the 4 streams */
  711. HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 0);
  712. HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 1);
  713. HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 2);
  714. HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 3);
  715. HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 4);
  716. /* Reload each of the 4 the bitstreams */
  717. HUF_4X_FOR_EACH_STREAM(HUF_4X1_RELOAD_STREAM);
  718. } while (op[3] < olimit);
  719. #undef HUF_4X1_DECODE_SYMBOL
  720. #undef HUF_4X1_RELOAD_STREAM
  721. }
  722. _out:
  723. /* Save the final values of each of the state variables back to args. */
  724. ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
  725. ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
  726. ZSTD_memcpy(&args->op, &op, sizeof(op));
  727. }
  728. /**
  729. * @returns @p dstSize on success (>= 6)
  730. * 0 if the fallback implementation should be used
  731. * An error if an error occurred
  732. */
  733. static HUF_FAST_BMI2_ATTRS
  734. size_t
  735. HUF_decompress4X1_usingDTable_internal_fast(
  736. void* dst, size_t dstSize,
  737. const void* cSrc, size_t cSrcSize,
  738. const HUF_DTable* DTable,
  739. HUF_DecompressFastLoopFn loopFn)
  740. {
  741. void const* dt = DTable + 1;
  742. BYTE const* const ilowest = (BYTE const*)cSrc;
  743. BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
  744. HUF_DecompressFastArgs args;
  745. { size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
  746. FORWARD_IF_ERROR(ret, "Failed to init fast loop args");
  747. if (ret == 0)
  748. return 0;
  749. }
  750. assert(args.ip[0] >= args.ilowest);
  751. loopFn(&args);
  752. /* Our loop guarantees that ip[] >= ilowest and that we haven't
  753. * overwritten any op[].
  754. */
  755. assert(args.ip[0] >= ilowest);
  756. assert(args.ip[0] >= ilowest);
  757. assert(args.ip[1] >= ilowest);
  758. assert(args.ip[2] >= ilowest);
  759. assert(args.ip[3] >= ilowest);
  760. assert(args.op[3] <= oend);
  761. assert(ilowest == args.ilowest);
  762. assert(ilowest + 6 == args.iend[0]);
  763. (void)ilowest;
  764. /* finish bit streams one by one. */
  765. { size_t const segmentSize = (dstSize+3) / 4;
  766. BYTE* segmentEnd = (BYTE*)dst;
  767. int i;
  768. for (i = 0; i < 4; ++i) {
  769. BIT_DStream_t bit;
  770. if (segmentSize <= (size_t)(oend - segmentEnd))
  771. segmentEnd += segmentSize;
  772. else
  773. segmentEnd = oend;
  774. FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
  775. /* Decompress and validate that we've produced exactly the expected length. */
  776. args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG);
  777. if (args.op[i] != segmentEnd) return ERROR(corruption_detected);
  778. }
  779. }
  780. /* decoded size */
  781. assert(dstSize != 0);
  782. return dstSize;
  783. }
  784. HUF_DGEN(HUF_decompress1X1_usingDTable_internal)
  785. static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
  786. size_t cSrcSize, HUF_DTable const* DTable, int flags)
  787. {
  788. HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X1_usingDTable_internal_default;
  789. HUF_DecompressFastLoopFn loopFn = HUF_decompress4X1_usingDTable_internal_fast_c_loop;
  790. #if DYNAMIC_BMI2
  791. if (flags & HUF_flags_bmi2) {
  792. fallbackFn = HUF_decompress4X1_usingDTable_internal_bmi2;
  793. # if ZSTD_ENABLE_ASM_X86_64_BMI2
  794. if (!(flags & HUF_flags_disableAsm)) {
  795. loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
  796. }
  797. # endif
  798. } else {
  799. return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
  800. }
  801. #endif
  802. #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
  803. if (!(flags & HUF_flags_disableAsm)) {
  804. loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
  805. }
  806. #endif
  807. if (HUF_ENABLE_FAST_DECODE && !(flags & HUF_flags_disableFast)) {
  808. size_t const ret = HUF_decompress4X1_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
  809. if (ret != 0)
  810. return ret;
  811. }
  812. return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
  813. }
  814. static size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
  815. const void* cSrc, size_t cSrcSize,
  816. void* workSpace, size_t wkspSize, int flags)
  817. {
  818. const BYTE* ip = (const BYTE*) cSrc;
  819. size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
  820. if (HUF_isError(hSize)) return hSize;
  821. if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
  822. ip += hSize; cSrcSize -= hSize;
  823. return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
  824. }
  825. #endif /* HUF_FORCE_DECOMPRESS_X2 */
  826. #ifndef HUF_FORCE_DECOMPRESS_X1
  827. /* *************************/
  828. /* double-symbols decoding */
  829. /* *************************/
  830. typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */
  831. typedef struct { BYTE symbol; } sortedSymbol_t;
  832. typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
  833. typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
  834. /**
  835. * Constructs a HUF_DEltX2 in a U32.
  836. */
  837. static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level)
  838. {
  839. U32 seq;
  840. DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0);
  841. DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2);
  842. DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3);
  843. DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32));
  844. if (MEM_isLittleEndian()) {
  845. seq = level == 1 ? symbol : (baseSeq + (symbol << 8));
  846. return seq + (nbBits << 16) + ((U32)level << 24);
  847. } else {
  848. seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol);
  849. return (seq << 16) + (nbBits << 8) + (U32)level;
  850. }
  851. }
  852. /**
  853. * Constructs a HUF_DEltX2.
  854. */
  855. static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level)
  856. {
  857. HUF_DEltX2 DElt;
  858. U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
  859. DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val));
  860. ZSTD_memcpy(&DElt, &val, sizeof(val));
  861. return DElt;
  862. }
  863. /**
  864. * Constructs 2 HUF_DEltX2s and packs them into a U64.
  865. */
  866. static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level)
  867. {
  868. U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
  869. return (U64)DElt + ((U64)DElt << 32);
  870. }
  871. /**
  872. * Fills the DTable rank with all the symbols from [begin, end) that are each
  873. * nbBits long.
  874. *
  875. * @param DTableRank The start of the rank in the DTable.
  876. * @param begin The first symbol to fill (inclusive).
  877. * @param end The last symbol to fill (exclusive).
  878. * @param nbBits Each symbol is nbBits long.
  879. * @param tableLog The table log.
  880. * @param baseSeq If level == 1 { 0 } else { the first level symbol }
  881. * @param level The level in the table. Must be 1 or 2.
  882. */
  883. static void HUF_fillDTableX2ForWeight(
  884. HUF_DEltX2* DTableRank,
  885. sortedSymbol_t const* begin, sortedSymbol_t const* end,
  886. U32 nbBits, U32 tableLog,
  887. U16 baseSeq, int const level)
  888. {
  889. U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */);
  890. const sortedSymbol_t* ptr;
  891. assert(level >= 1 && level <= 2);
  892. switch (length) {
  893. case 1:
  894. for (ptr = begin; ptr != end; ++ptr) {
  895. HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
  896. *DTableRank++ = DElt;
  897. }
  898. break;
  899. case 2:
  900. for (ptr = begin; ptr != end; ++ptr) {
  901. HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
  902. DTableRank[0] = DElt;
  903. DTableRank[1] = DElt;
  904. DTableRank += 2;
  905. }
  906. break;
  907. case 4:
  908. for (ptr = begin; ptr != end; ++ptr) {
  909. U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
  910. ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
  911. ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
  912. DTableRank += 4;
  913. }
  914. break;
  915. case 8:
  916. for (ptr = begin; ptr != end; ++ptr) {
  917. U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
  918. ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
  919. ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
  920. ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
  921. ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
  922. DTableRank += 8;
  923. }
  924. break;
  925. default:
  926. for (ptr = begin; ptr != end; ++ptr) {
  927. U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
  928. HUF_DEltX2* const DTableRankEnd = DTableRank + length;
  929. for (; DTableRank != DTableRankEnd; DTableRank += 8) {
  930. ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
  931. ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
  932. ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
  933. ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
  934. }
  935. }
  936. break;
  937. }
  938. }
  939. /* HUF_fillDTableX2Level2() :
  940. * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
  941. static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits,
  942. const U32* rankVal, const int minWeight, const int maxWeight1,
  943. const sortedSymbol_t* sortedSymbols, U32 const* rankStart,
  944. U32 nbBitsBaseline, U16 baseSeq)
  945. {
  946. /* Fill skipped values (all positions up to rankVal[minWeight]).
  947. * These are positions only get a single symbol because the combined weight
  948. * is too large.
  949. */
  950. if (minWeight>1) {
  951. U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */);
  952. U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1);
  953. int const skipSize = rankVal[minWeight];
  954. assert(length > 1);
  955. assert((U32)skipSize < length);
  956. switch (length) {
  957. case 2:
  958. assert(skipSize == 1);
  959. ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2));
  960. break;
  961. case 4:
  962. assert(skipSize <= 4);
  963. ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2));
  964. ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2));
  965. break;
  966. default:
  967. {
  968. int i;
  969. for (i = 0; i < skipSize; i += 8) {
  970. ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2));
  971. ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2));
  972. ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2));
  973. ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2));
  974. }
  975. }
  976. }
  977. }
  978. /* Fill each of the second level symbols by weight. */
  979. {
  980. int w;
  981. for (w = minWeight; w < maxWeight1; ++w) {
  982. int const begin = rankStart[w];
  983. int const end = rankStart[w+1];
  984. U32 const nbBits = nbBitsBaseline - w;
  985. U32 const totalBits = nbBits + consumedBits;
  986. HUF_fillDTableX2ForWeight(
  987. DTable + rankVal[w],
  988. sortedSymbols + begin, sortedSymbols + end,
  989. totalBits, targetLog,
  990. baseSeq, /* level */ 2);
  991. }
  992. }
  993. }
  994. static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog,
  995. const sortedSymbol_t* sortedList,
  996. const U32* rankStart, rankValCol_t* rankValOrigin, const U32 maxWeight,
  997. const U32 nbBitsBaseline)
  998. {
  999. U32* const rankVal = rankValOrigin[0];
  1000. const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
  1001. const U32 minBits = nbBitsBaseline - maxWeight;
  1002. int w;
  1003. int const wEnd = (int)maxWeight + 1;
  1004. /* Fill DTable in order of weight. */
  1005. for (w = 1; w < wEnd; ++w) {
  1006. int const begin = (int)rankStart[w];
  1007. int const end = (int)rankStart[w+1];
  1008. U32 const nbBits = nbBitsBaseline - w;
  1009. if (targetLog-nbBits >= minBits) {
  1010. /* Enough room for a second symbol. */
  1011. int start = rankVal[w];
  1012. U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */);
  1013. int minWeight = nbBits + scaleLog;
  1014. int s;
  1015. if (minWeight < 1) minWeight = 1;
  1016. /* Fill the DTable for every symbol of weight w.
  1017. * These symbols get at least 1 second symbol.
  1018. */
  1019. for (s = begin; s != end; ++s) {
  1020. HUF_fillDTableX2Level2(
  1021. DTable + start, targetLog, nbBits,
  1022. rankValOrigin[nbBits], minWeight, wEnd,
  1023. sortedList, rankStart,
  1024. nbBitsBaseline, sortedList[s].symbol);
  1025. start += length;
  1026. }
  1027. } else {
  1028. /* Only a single symbol. */
  1029. HUF_fillDTableX2ForWeight(
  1030. DTable + rankVal[w],
  1031. sortedList + begin, sortedList + end,
  1032. nbBits, targetLog,
  1033. /* baseSeq */ 0, /* level */ 1);
  1034. }
  1035. }
  1036. }
  1037. typedef struct {
  1038. rankValCol_t rankVal[HUF_TABLELOG_MAX];
  1039. U32 rankStats[HUF_TABLELOG_MAX + 1];
  1040. U32 rankStart0[HUF_TABLELOG_MAX + 3];
  1041. sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
  1042. BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
  1043. U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
  1044. } HUF_ReadDTableX2_Workspace;
  1045. size_t HUF_readDTableX2_wksp(HUF_DTable* DTable,
  1046. const void* src, size_t srcSize,
  1047. void* workSpace, size_t wkspSize, int flags)
  1048. {
  1049. U32 tableLog, maxW, nbSymbols;
  1050. DTableDesc dtd = HUF_getDTableDesc(DTable);
  1051. U32 maxTableLog = dtd.maxTableLog;
  1052. size_t iSize;
  1053. void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */
  1054. HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
  1055. U32 *rankStart;
  1056. HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace;
  1057. if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC);
  1058. rankStart = wksp->rankStart0 + 1;
  1059. ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats));
  1060. ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0));
  1061. DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */
  1062. if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
  1063. /* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
  1064. iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), flags);
  1065. if (HUF_isError(iSize)) return iSize;
  1066. /* check result */
  1067. if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
  1068. if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG;
  1069. /* find maxWeight */
  1070. for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
  1071. /* Get start index of each weight */
  1072. { U32 w, nextRankStart = 0;
  1073. for (w=1; w<maxW+1; w++) {
  1074. U32 curr = nextRankStart;
  1075. nextRankStart += wksp->rankStats[w];
  1076. rankStart[w] = curr;
  1077. }
  1078. rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
  1079. rankStart[maxW+1] = nextRankStart;
  1080. }
  1081. /* sort symbols by weight */
  1082. { U32 s;
  1083. for (s=0; s<nbSymbols; s++) {
  1084. U32 const w = wksp->weightList[s];
  1085. U32 const r = rankStart[w]++;
  1086. wksp->sortedSymbol[r].symbol = (BYTE)s;
  1087. }
  1088. rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
  1089. }
  1090. /* Build rankVal */
  1091. { U32* const rankVal0 = wksp->rankVal[0];
  1092. { int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */
  1093. U32 nextRankVal = 0;
  1094. U32 w;
  1095. for (w=1; w<maxW+1; w++) {
  1096. U32 curr = nextRankVal;
  1097. nextRankVal += wksp->rankStats[w] << (w+rescale);
  1098. rankVal0[w] = curr;
  1099. } }
  1100. { U32 const minBits = tableLog+1 - maxW;
  1101. U32 consumed;
  1102. for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
  1103. U32* const rankValPtr = wksp->rankVal[consumed];
  1104. U32 w;
  1105. for (w = 1; w < maxW+1; w++) {
  1106. rankValPtr[w] = rankVal0[w] >> consumed;
  1107. } } } }
  1108. HUF_fillDTableX2(dt, maxTableLog,
  1109. wksp->sortedSymbol,
  1110. wksp->rankStart0, wksp->rankVal, maxW,
  1111. tableLog+1);
  1112. dtd.tableLog = (BYTE)maxTableLog;
  1113. dtd.tableType = 1;
  1114. ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
  1115. return iSize;
  1116. }
  1117. FORCE_INLINE_TEMPLATE U32
  1118. HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
  1119. {
  1120. size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
  1121. ZSTD_memcpy(op, &dt[val].sequence, 2);
  1122. BIT_skipBits(DStream, dt[val].nbBits);
  1123. return dt[val].length;
  1124. }
  1125. FORCE_INLINE_TEMPLATE U32
  1126. HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
  1127. {
  1128. size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
  1129. ZSTD_memcpy(op, &dt[val].sequence, 1);
  1130. if (dt[val].length==1) {
  1131. BIT_skipBits(DStream, dt[val].nbBits);
  1132. } else {
  1133. if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
  1134. BIT_skipBits(DStream, dt[val].nbBits);
  1135. if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
  1136. /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
  1137. DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
  1138. }
  1139. }
  1140. return 1;
  1141. }
  1142. #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
  1143. do { ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); } while (0)
  1144. #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
  1145. do { \
  1146. if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
  1147. ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); \
  1148. } while (0)
  1149. #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
  1150. do { \
  1151. if (MEM_64bits()) \
  1152. ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); \
  1153. } while (0)
  1154. HINT_INLINE size_t
  1155. HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
  1156. const HUF_DEltX2* const dt, const U32 dtLog)
  1157. {
  1158. BYTE* const pStart = p;
  1159. /* up to 8 symbols at a time */
  1160. if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) {
  1161. if (dtLog <= 11 && MEM_64bits()) {
  1162. /* up to 10 symbols at a time */
  1163. while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) {
  1164. HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
  1165. HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
  1166. HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
  1167. HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
  1168. HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
  1169. }
  1170. } else {
  1171. /* up to 8 symbols at a time */
  1172. while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
  1173. HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
  1174. HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
  1175. HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
  1176. HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
  1177. }
  1178. }
  1179. } else {
  1180. BIT_reloadDStream(bitDPtr);
  1181. }
  1182. /* closer to end : up to 2 symbols at a time */
  1183. if ((size_t)(pEnd - p) >= 2) {
  1184. while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
  1185. HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
  1186. while (p <= pEnd-2)
  1187. HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
  1188. }
  1189. if (p < pEnd)
  1190. p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog);
  1191. return p-pStart;
  1192. }
  1193. FORCE_INLINE_TEMPLATE size_t
  1194. HUF_decompress1X2_usingDTable_internal_body(
  1195. void* dst, size_t dstSize,
  1196. const void* cSrc, size_t cSrcSize,
  1197. const HUF_DTable* DTable)
  1198. {
  1199. BIT_DStream_t bitD;
  1200. /* Init */
  1201. CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
  1202. /* decode */
  1203. { BYTE* const ostart = (BYTE*) dst;
  1204. BYTE* const oend = ZSTD_maybeNullPtrAdd(ostart, dstSize);
  1205. const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
  1206. const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
  1207. DTableDesc const dtd = HUF_getDTableDesc(DTable);
  1208. HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog);
  1209. }
  1210. /* check */
  1211. if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
  1212. /* decoded size */
  1213. return dstSize;
  1214. }
  1215. /* HUF_decompress4X2_usingDTable_internal_body():
  1216. * Conditions:
  1217. * @dstSize >= 6
  1218. */
  1219. FORCE_INLINE_TEMPLATE size_t
  1220. HUF_decompress4X2_usingDTable_internal_body(
  1221. void* dst, size_t dstSize,
  1222. const void* cSrc, size_t cSrcSize,
  1223. const HUF_DTable* DTable)
  1224. {
  1225. if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
  1226. if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
  1227. { const BYTE* const istart = (const BYTE*) cSrc;
  1228. BYTE* const ostart = (BYTE*) dst;
  1229. BYTE* const oend = ostart + dstSize;
  1230. BYTE* const olimit = oend - (sizeof(size_t)-1);
  1231. const void* const dtPtr = DTable+1;
  1232. const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
  1233. /* Init */
  1234. BIT_DStream_t bitD1;
  1235. BIT_DStream_t bitD2;
  1236. BIT_DStream_t bitD3;
  1237. BIT_DStream_t bitD4;
  1238. size_t const length1 = MEM_readLE16(istart);
  1239. size_t const length2 = MEM_readLE16(istart+2);
  1240. size_t const length3 = MEM_readLE16(istart+4);
  1241. size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
  1242. const BYTE* const istart1 = istart + 6; /* jumpTable */
  1243. const BYTE* const istart2 = istart1 + length1;
  1244. const BYTE* const istart3 = istart2 + length2;
  1245. const BYTE* const istart4 = istart3 + length3;
  1246. size_t const segmentSize = (dstSize+3) / 4;
  1247. BYTE* const opStart2 = ostart + segmentSize;
  1248. BYTE* const opStart3 = opStart2 + segmentSize;
  1249. BYTE* const opStart4 = opStart3 + segmentSize;
  1250. BYTE* op1 = ostart;
  1251. BYTE* op2 = opStart2;
  1252. BYTE* op3 = opStart3;
  1253. BYTE* op4 = opStart4;
  1254. U32 endSignal = 1;
  1255. DTableDesc const dtd = HUF_getDTableDesc(DTable);
  1256. U32 const dtLog = dtd.tableLog;
  1257. if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
  1258. if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
  1259. assert(dstSize >= 6 /* validated above */);
  1260. CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
  1261. CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
  1262. CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
  1263. CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
  1264. /* 16-32 symbols per loop (4-8 symbols per stream) */
  1265. if ((size_t)(oend - op4) >= sizeof(size_t)) {
  1266. for ( ; (endSignal) & (op4 < olimit); ) {
  1267. #if defined(__clang__) && (defined(__x86_64__) || defined(__i386__))
  1268. HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
  1269. HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
  1270. HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
  1271. HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
  1272. HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
  1273. HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
  1274. HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
  1275. HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
  1276. endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
  1277. endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
  1278. HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
  1279. HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
  1280. HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
  1281. HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
  1282. HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
  1283. HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
  1284. HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
  1285. HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
  1286. endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
  1287. endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
  1288. #else
  1289. HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
  1290. HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
  1291. HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
  1292. HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
  1293. HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
  1294. HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
  1295. HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
  1296. HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
  1297. HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
  1298. HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
  1299. HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
  1300. HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
  1301. HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
  1302. HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
  1303. HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
  1304. HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
  1305. endSignal = (U32)LIKELY((U32)
  1306. (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
  1307. & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished)
  1308. & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished)
  1309. & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished));
  1310. #endif
  1311. }
  1312. }
  1313. /* check corruption */
  1314. if (op1 > opStart2) return ERROR(corruption_detected);
  1315. if (op2 > opStart3) return ERROR(corruption_detected);
  1316. if (op3 > opStart4) return ERROR(corruption_detected);
  1317. /* note : op4 already verified within main loop */
  1318. /* finish bitStreams one by one */
  1319. HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
  1320. HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
  1321. HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
  1322. HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
  1323. /* check */
  1324. { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
  1325. if (!endCheck) return ERROR(corruption_detected); }
  1326. /* decoded size */
  1327. return dstSize;
  1328. }
  1329. }
  1330. #if HUF_NEED_BMI2_FUNCTION
  1331. static BMI2_TARGET_ATTRIBUTE
  1332. size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
  1333. size_t cSrcSize, HUF_DTable const* DTable) {
  1334. return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
  1335. }
  1336. #endif
  1337. static
  1338. size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
  1339. size_t cSrcSize, HUF_DTable const* DTable) {
  1340. return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
  1341. }
  1342. #if ZSTD_ENABLE_ASM_X86_64_BMI2
  1343. HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;
  1344. #endif
  1345. static HUF_FAST_BMI2_ATTRS
  1346. void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
  1347. {
  1348. U64 bits[4];
  1349. BYTE const* ip[4];
  1350. BYTE* op[4];
  1351. BYTE* oend[4];
  1352. HUF_DEltX2 const* const dtable = (HUF_DEltX2 const*)args->dt;
  1353. BYTE const* const ilowest = args->ilowest;
  1354. /* Copy the arguments to local registers. */
  1355. ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
  1356. ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
  1357. ZSTD_memcpy(&op, &args->op, sizeof(op));
  1358. oend[0] = op[1];
  1359. oend[1] = op[2];
  1360. oend[2] = op[3];
  1361. oend[3] = args->oend;
  1362. assert(MEM_isLittleEndian());
  1363. assert(!MEM_32bits());
  1364. for (;;) {
  1365. BYTE* olimit;
  1366. int stream;
  1367. /* Assert loop preconditions */
  1368. #ifndef NDEBUG
  1369. for (stream = 0; stream < 4; ++stream) {
  1370. assert(op[stream] <= oend[stream]);
  1371. assert(ip[stream] >= ilowest);
  1372. }
  1373. #endif
  1374. /* Compute olimit */
  1375. {
  1376. /* Each loop does 5 table lookups for each of the 4 streams.
  1377. * Each table lookup consumes up to 11 bits of input, and produces
  1378. * up to 2 bytes of output.
  1379. */
  1380. /* We can consume up to 7 bytes of input per iteration per stream.
  1381. * We also know that each input pointer is >= ip[0]. So we can run
  1382. * iters loops before running out of input.
  1383. */
  1384. size_t iters = (size_t)(ip[0] - ilowest) / 7;
  1385. /* Each iteration can produce up to 10 bytes of output per stream.
  1386. * Each output stream my advance at different rates. So take the
  1387. * minimum number of safe iterations among all the output streams.
  1388. */
  1389. for (stream = 0; stream < 4; ++stream) {
  1390. size_t const oiters = (size_t)(oend[stream] - op[stream]) / 10;
  1391. iters = MIN(iters, oiters);
  1392. }
  1393. /* Each iteration produces at least 5 output symbols. So until
  1394. * op[3] crosses olimit, we know we haven't executed iters
  1395. * iterations yet. This saves us maintaining an iters counter,
  1396. * at the expense of computing the remaining # of iterations
  1397. * more frequently.
  1398. */
  1399. olimit = op[3] + (iters * 5);
  1400. /* Exit the fast decoding loop once we reach the end. */
  1401. if (op[3] == olimit)
  1402. break;
  1403. /* Exit the decoding loop if any input pointer has crossed the
  1404. * previous one. This indicates corruption, and a precondition
  1405. * to our loop is that ip[i] >= ip[0].
  1406. */
  1407. for (stream = 1; stream < 4; ++stream) {
  1408. if (ip[stream] < ip[stream - 1])
  1409. goto _out;
  1410. }
  1411. }
  1412. #ifndef NDEBUG
  1413. for (stream = 1; stream < 4; ++stream) {
  1414. assert(ip[stream] >= ip[stream - 1]);
  1415. }
  1416. #endif
  1417. #define HUF_4X2_DECODE_SYMBOL(_stream, _decode3) \
  1418. do { \
  1419. if ((_decode3) || (_stream) != 3) { \
  1420. int const index = (int)(bits[(_stream)] >> 53); \
  1421. HUF_DEltX2 const entry = dtable[index]; \
  1422. MEM_write16(op[(_stream)], entry.sequence); \
  1423. bits[(_stream)] <<= (entry.nbBits) & 0x3F; \
  1424. op[(_stream)] += (entry.length); \
  1425. } \
  1426. } while (0)
  1427. #define HUF_4X2_RELOAD_STREAM(_stream) \
  1428. do { \
  1429. HUF_4X2_DECODE_SYMBOL(3, 1); \
  1430. { \
  1431. int const ctz = ZSTD_countTrailingZeros64(bits[(_stream)]); \
  1432. int const nbBits = ctz & 7; \
  1433. int const nbBytes = ctz >> 3; \
  1434. ip[(_stream)] -= nbBytes; \
  1435. bits[(_stream)] = MEM_read64(ip[(_stream)]) | 1; \
  1436. bits[(_stream)] <<= nbBits; \
  1437. } \
  1438. } while (0)
  1439. /* Manually unroll the loop because compilers don't consistently
  1440. * unroll the inner loops, which destroys performance.
  1441. */
  1442. do {
  1443. /* Decode 5 symbols from each of the first 3 streams.
  1444. * The final stream will be decoded during the reload phase
  1445. * to reduce register pressure.
  1446. */
  1447. HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
  1448. HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
  1449. HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
  1450. HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
  1451. HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
  1452. /* Decode one symbol from the final stream */
  1453. HUF_4X2_DECODE_SYMBOL(3, 1);
  1454. /* Decode 4 symbols from the final stream & reload bitstreams.
  1455. * The final stream is reloaded last, meaning that all 5 symbols
  1456. * are decoded from the final stream before it is reloaded.
  1457. */
  1458. HUF_4X_FOR_EACH_STREAM(HUF_4X2_RELOAD_STREAM);
  1459. } while (op[3] < olimit);
  1460. }
  1461. #undef HUF_4X2_DECODE_SYMBOL
  1462. #undef HUF_4X2_RELOAD_STREAM
  1463. _out:
  1464. /* Save the final values of each of the state variables back to args. */
  1465. ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
  1466. ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
  1467. ZSTD_memcpy(&args->op, &op, sizeof(op));
  1468. }
  1469. static HUF_FAST_BMI2_ATTRS size_t
  1470. HUF_decompress4X2_usingDTable_internal_fast(
  1471. void* dst, size_t dstSize,
  1472. const void* cSrc, size_t cSrcSize,
  1473. const HUF_DTable* DTable,
  1474. HUF_DecompressFastLoopFn loopFn) {
  1475. void const* dt = DTable + 1;
  1476. const BYTE* const ilowest = (const BYTE*)cSrc;
  1477. BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
  1478. HUF_DecompressFastArgs args;
  1479. {
  1480. size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
  1481. FORWARD_IF_ERROR(ret, "Failed to init asm args");
  1482. if (ret == 0)
  1483. return 0;
  1484. }
  1485. assert(args.ip[0] >= args.ilowest);
  1486. loopFn(&args);
  1487. /* note : op4 already verified within main loop */
  1488. assert(args.ip[0] >= ilowest);
  1489. assert(args.ip[1] >= ilowest);
  1490. assert(args.ip[2] >= ilowest);
  1491. assert(args.ip[3] >= ilowest);
  1492. assert(args.op[3] <= oend);
  1493. assert(ilowest == args.ilowest);
  1494. assert(ilowest + 6 == args.iend[0]);
  1495. (void)ilowest;
  1496. /* finish bitStreams one by one */
  1497. {
  1498. size_t const segmentSize = (dstSize+3) / 4;
  1499. BYTE* segmentEnd = (BYTE*)dst;
  1500. int i;
  1501. for (i = 0; i < 4; ++i) {
  1502. BIT_DStream_t bit;
  1503. if (segmentSize <= (size_t)(oend - segmentEnd))
  1504. segmentEnd += segmentSize;
  1505. else
  1506. segmentEnd = oend;
  1507. FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
  1508. args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG);
  1509. if (args.op[i] != segmentEnd)
  1510. return ERROR(corruption_detected);
  1511. }
  1512. }
  1513. /* decoded size */
  1514. return dstSize;
  1515. }
  1516. static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
  1517. size_t cSrcSize, HUF_DTable const* DTable, int flags)
  1518. {
  1519. HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X2_usingDTable_internal_default;
  1520. HUF_DecompressFastLoopFn loopFn = HUF_decompress4X2_usingDTable_internal_fast_c_loop;
  1521. #if DYNAMIC_BMI2
  1522. if (flags & HUF_flags_bmi2) {
  1523. fallbackFn = HUF_decompress4X2_usingDTable_internal_bmi2;
  1524. # if ZSTD_ENABLE_ASM_X86_64_BMI2
  1525. if (!(flags & HUF_flags_disableAsm)) {
  1526. loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop;
  1527. }
  1528. # endif
  1529. } else {
  1530. return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
  1531. }
  1532. #endif
  1533. #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
  1534. if (!(flags & HUF_flags_disableAsm)) {
  1535. loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop;
  1536. }
  1537. #endif
  1538. if (HUF_ENABLE_FAST_DECODE && !(flags & HUF_flags_disableFast)) {
  1539. size_t const ret = HUF_decompress4X2_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
  1540. if (ret != 0)
  1541. return ret;
  1542. }
  1543. return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
  1544. }
  1545. HUF_DGEN(HUF_decompress1X2_usingDTable_internal)
  1546. size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
  1547. const void* cSrc, size_t cSrcSize,
  1548. void* workSpace, size_t wkspSize, int flags)
  1549. {
  1550. const BYTE* ip = (const BYTE*) cSrc;
  1551. size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize,
  1552. workSpace, wkspSize, flags);
  1553. if (HUF_isError(hSize)) return hSize;
  1554. if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
  1555. ip += hSize; cSrcSize -= hSize;
  1556. return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, flags);
  1557. }
  1558. static size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
  1559. const void* cSrc, size_t cSrcSize,
  1560. void* workSpace, size_t wkspSize, int flags)
  1561. {
  1562. const BYTE* ip = (const BYTE*) cSrc;
  1563. size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize,
  1564. workSpace, wkspSize, flags);
  1565. if (HUF_isError(hSize)) return hSize;
  1566. if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
  1567. ip += hSize; cSrcSize -= hSize;
  1568. return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
  1569. }
  1570. #endif /* HUF_FORCE_DECOMPRESS_X1 */
  1571. /* ***********************************/
  1572. /* Universal decompression selectors */
  1573. /* ***********************************/
  1574. #if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
  1575. typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
  1576. static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] =
  1577. {
  1578. /* single, double, quad */
  1579. {{0,0}, {1,1}}, /* Q==0 : impossible */
  1580. {{0,0}, {1,1}}, /* Q==1 : impossible */
  1581. {{ 150,216}, { 381,119}}, /* Q == 2 : 12-18% */
  1582. {{ 170,205}, { 514,112}}, /* Q == 3 : 18-25% */
  1583. {{ 177,199}, { 539,110}}, /* Q == 4 : 25-32% */
  1584. {{ 197,194}, { 644,107}}, /* Q == 5 : 32-38% */
  1585. {{ 221,192}, { 735,107}}, /* Q == 6 : 38-44% */
  1586. {{ 256,189}, { 881,106}}, /* Q == 7 : 44-50% */
  1587. {{ 359,188}, {1167,109}}, /* Q == 8 : 50-56% */
  1588. {{ 582,187}, {1570,114}}, /* Q == 9 : 56-62% */
  1589. {{ 688,187}, {1712,122}}, /* Q ==10 : 62-69% */
  1590. {{ 825,186}, {1965,136}}, /* Q ==11 : 69-75% */
  1591. {{ 976,185}, {2131,150}}, /* Q ==12 : 75-81% */
  1592. {{1180,186}, {2070,175}}, /* Q ==13 : 81-87% */
  1593. {{1377,185}, {1731,202}}, /* Q ==14 : 87-93% */
  1594. {{1412,185}, {1695,202}}, /* Q ==15 : 93-99% */
  1595. };
  1596. #endif
  1597. /** HUF_selectDecoder() :
  1598. * Tells which decoder is likely to decode faster,
  1599. * based on a set of pre-computed metrics.
  1600. * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
  1601. * Assumption : 0 < dstSize <= 128 KB */
  1602. U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
  1603. {
  1604. assert(dstSize > 0);
  1605. assert(dstSize <= 128*1024);
  1606. #if defined(HUF_FORCE_DECOMPRESS_X1)
  1607. (void)dstSize;
  1608. (void)cSrcSize;
  1609. return 0;
  1610. #elif defined(HUF_FORCE_DECOMPRESS_X2)
  1611. (void)dstSize;
  1612. (void)cSrcSize;
  1613. return 1;
  1614. #else
  1615. /* decoder timing evaluation */
  1616. { U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */
  1617. U32 const D256 = (U32)(dstSize >> 8);
  1618. U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
  1619. U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
  1620. DTime1 += DTime1 >> 5; /* small advantage to algorithm using less memory, to reduce cache eviction */
  1621. return DTime1 < DTime0;
  1622. }
  1623. #endif
  1624. }
  1625. size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
  1626. const void* cSrc, size_t cSrcSize,
  1627. void* workSpace, size_t wkspSize, int flags)
  1628. {
  1629. /* validation checks */
  1630. if (dstSize == 0) return ERROR(dstSize_tooSmall);
  1631. if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
  1632. if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
  1633. if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
  1634. { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
  1635. #if defined(HUF_FORCE_DECOMPRESS_X1)
  1636. (void)algoNb;
  1637. assert(algoNb == 0);
  1638. return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
  1639. cSrcSize, workSpace, wkspSize, flags);
  1640. #elif defined(HUF_FORCE_DECOMPRESS_X2)
  1641. (void)algoNb;
  1642. assert(algoNb == 1);
  1643. return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
  1644. cSrcSize, workSpace, wkspSize, flags);
  1645. #else
  1646. return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
  1647. cSrcSize, workSpace, wkspSize, flags):
  1648. HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
  1649. cSrcSize, workSpace, wkspSize, flags);
  1650. #endif
  1651. }
  1652. }
  1653. size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags)
  1654. {
  1655. DTableDesc const dtd = HUF_getDTableDesc(DTable);
  1656. #if defined(HUF_FORCE_DECOMPRESS_X1)
  1657. (void)dtd;
  1658. assert(dtd.tableType == 0);
  1659. return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
  1660. #elif defined(HUF_FORCE_DECOMPRESS_X2)
  1661. (void)dtd;
  1662. assert(dtd.tableType == 1);
  1663. return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
  1664. #else
  1665. return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) :
  1666. HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
  1667. #endif
  1668. }
  1669. #ifndef HUF_FORCE_DECOMPRESS_X2
  1670. size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags)
  1671. {
  1672. const BYTE* ip = (const BYTE*) cSrc;
  1673. size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
  1674. if (HUF_isError(hSize)) return hSize;
  1675. if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
  1676. ip += hSize; cSrcSize -= hSize;
  1677. return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
  1678. }
  1679. #endif
  1680. size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags)
  1681. {
  1682. DTableDesc const dtd = HUF_getDTableDesc(DTable);
  1683. #if defined(HUF_FORCE_DECOMPRESS_X1)
  1684. (void)dtd;
  1685. assert(dtd.tableType == 0);
  1686. return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
  1687. #elif defined(HUF_FORCE_DECOMPRESS_X2)
  1688. (void)dtd;
  1689. assert(dtd.tableType == 1);
  1690. return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
  1691. #else
  1692. return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) :
  1693. HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
  1694. #endif
  1695. }
  1696. size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags)
  1697. {
  1698. /* validation checks */
  1699. if (dstSize == 0) return ERROR(dstSize_tooSmall);
  1700. if (cSrcSize == 0) return ERROR(corruption_detected);
  1701. { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
  1702. #if defined(HUF_FORCE_DECOMPRESS_X1)
  1703. (void)algoNb;
  1704. assert(algoNb == 0);
  1705. return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
  1706. #elif defined(HUF_FORCE_DECOMPRESS_X2)
  1707. (void)algoNb;
  1708. assert(algoNb == 1);
  1709. return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
  1710. #else
  1711. return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags) :
  1712. HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
  1713. #endif
  1714. }
  1715. }