123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845 |
- //===----------------- LoopRotationUtils.cpp -----------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file provides utilities to convert a loop into a loop with bottom test.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/LoopRotationUtils.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CodeMetrics.h"
- #include "llvm/Analysis/DomTreeUpdater.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/MemorySSA.h"
- #include "llvm/Analysis/MemorySSAUpdater.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/SSAUpdater.h"
- #include "llvm/Transforms/Utils/ValueMapper.h"
- using namespace llvm;
- #define DEBUG_TYPE "loop-rotate"
- STATISTIC(NumNotRotatedDueToHeaderSize,
- "Number of loops not rotated due to the header size");
- STATISTIC(NumInstrsHoisted,
- "Number of instructions hoisted into loop preheader");
- STATISTIC(NumInstrsDuplicated,
- "Number of instructions cloned into loop preheader");
- STATISTIC(NumRotated, "Number of loops rotated");
- static cl::opt<bool>
- MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden,
- cl::desc("Allow loop rotation multiple times in order to reach "
- "a better latch exit"));
- namespace {
- /// A simple loop rotation transformation.
- class LoopRotate {
- const unsigned MaxHeaderSize;
- LoopInfo *LI;
- const TargetTransformInfo *TTI;
- AssumptionCache *AC;
- DominatorTree *DT;
- ScalarEvolution *SE;
- MemorySSAUpdater *MSSAU;
- const SimplifyQuery &SQ;
- bool RotationOnly;
- bool IsUtilMode;
- bool PrepareForLTO;
- public:
- LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
- const TargetTransformInfo *TTI, AssumptionCache *AC,
- DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
- const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode,
- bool PrepareForLTO)
- : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
- MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
- IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {}
- bool processLoop(Loop *L);
- private:
- bool rotateLoop(Loop *L, bool SimplifiedLatch);
- bool simplifyLoopLatch(Loop *L);
- };
- } // end anonymous namespace
- /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
- /// previously exist in the map, and the value was inserted.
- static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) {
- bool Inserted = VM.insert({K, V}).second;
- assert(Inserted);
- (void)Inserted;
- }
- /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
- /// old header into the preheader. If there were uses of the values produced by
- /// these instruction that were outside of the loop, we have to insert PHI nodes
- /// to merge the two values. Do this now.
- static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
- BasicBlock *OrigPreheader,
- ValueToValueMapTy &ValueMap,
- ScalarEvolution *SE,
- SmallVectorImpl<PHINode*> *InsertedPHIs) {
- // Remove PHI node entries that are no longer live.
- BasicBlock::iterator I, E = OrigHeader->end();
- for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
- PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
- // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
- // as necessary.
- SSAUpdater SSA(InsertedPHIs);
- for (I = OrigHeader->begin(); I != E; ++I) {
- Value *OrigHeaderVal = &*I;
- // If there are no uses of the value (e.g. because it returns void), there
- // is nothing to rewrite.
- if (OrigHeaderVal->use_empty())
- continue;
- Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
- // The value now exits in two versions: the initial value in the preheader
- // and the loop "next" value in the original header.
- SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
- // Force re-computation of OrigHeaderVal, as some users now need to use the
- // new PHI node.
- if (SE)
- SE->forgetValue(OrigHeaderVal);
- SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
- SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
- // Visit each use of the OrigHeader instruction.
- for (Use &U : llvm::make_early_inc_range(OrigHeaderVal->uses())) {
- // SSAUpdater can't handle a non-PHI use in the same block as an
- // earlier def. We can easily handle those cases manually.
- Instruction *UserInst = cast<Instruction>(U.getUser());
- if (!isa<PHINode>(UserInst)) {
- BasicBlock *UserBB = UserInst->getParent();
- // The original users in the OrigHeader are already using the
- // original definitions.
- if (UserBB == OrigHeader)
- continue;
- // Users in the OrigPreHeader need to use the value to which the
- // original definitions are mapped.
- if (UserBB == OrigPreheader) {
- U = OrigPreHeaderVal;
- continue;
- }
- }
- // Anything else can be handled by SSAUpdater.
- SSA.RewriteUse(U);
- }
- // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
- // intrinsics.
- SmallVector<DbgValueInst *, 1> DbgValues;
- llvm::findDbgValues(DbgValues, OrigHeaderVal);
- for (auto &DbgValue : DbgValues) {
- // The original users in the OrigHeader are already using the original
- // definitions.
- BasicBlock *UserBB = DbgValue->getParent();
- if (UserBB == OrigHeader)
- continue;
- // Users in the OrigPreHeader need to use the value to which the
- // original definitions are mapped and anything else can be handled by
- // the SSAUpdater. To avoid adding PHINodes, check if the value is
- // available in UserBB, if not substitute undef.
- Value *NewVal;
- if (UserBB == OrigPreheader)
- NewVal = OrigPreHeaderVal;
- else if (SSA.HasValueForBlock(UserBB))
- NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
- else
- NewVal = UndefValue::get(OrigHeaderVal->getType());
- DbgValue->replaceVariableLocationOp(OrigHeaderVal, NewVal);
- }
- }
- }
- // Assuming both header and latch are exiting, look for a phi which is only
- // used outside the loop (via a LCSSA phi) in the exit from the header.
- // This means that rotating the loop can remove the phi.
- static bool profitableToRotateLoopExitingLatch(Loop *L) {
- BasicBlock *Header = L->getHeader();
- BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator());
- assert(BI && BI->isConditional() && "need header with conditional exit");
- BasicBlock *HeaderExit = BI->getSuccessor(0);
- if (L->contains(HeaderExit))
- HeaderExit = BI->getSuccessor(1);
- for (auto &Phi : Header->phis()) {
- // Look for uses of this phi in the loop/via exits other than the header.
- if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
- return cast<Instruction>(U)->getParent() != HeaderExit;
- }))
- continue;
- return true;
- }
- return false;
- }
- // Check that latch exit is deoptimizing (which means - very unlikely to happen)
- // and there is another exit from the loop which is non-deoptimizing.
- // If we rotate latch to that exit our loop has a better chance of being fully
- // canonical.
- //
- // It can give false positives in some rare cases.
- static bool canRotateDeoptimizingLatchExit(Loop *L) {
- BasicBlock *Latch = L->getLoopLatch();
- assert(Latch && "need latch");
- BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
- // Need normal exiting latch.
- if (!BI || !BI->isConditional())
- return false;
- BasicBlock *Exit = BI->getSuccessor(1);
- if (L->contains(Exit))
- Exit = BI->getSuccessor(0);
- // Latch exit is non-deoptimizing, no need to rotate.
- if (!Exit->getPostdominatingDeoptimizeCall())
- return false;
- SmallVector<BasicBlock *, 4> Exits;
- L->getUniqueExitBlocks(Exits);
- if (!Exits.empty()) {
- // There is at least one non-deoptimizing exit.
- //
- // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
- // as it can conservatively return false for deoptimizing exits with
- // complex enough control flow down to deoptimize call.
- //
- // That means here we can report success for a case where
- // all exits are deoptimizing but one of them has complex enough
- // control flow (e.g. with loops).
- //
- // That should be a very rare case and false positives for this function
- // have compile-time effect only.
- return any_of(Exits, [](const BasicBlock *BB) {
- return !BB->getPostdominatingDeoptimizeCall();
- });
- }
- return false;
- }
- /// Rotate loop LP. Return true if the loop is rotated.
- ///
- /// \param SimplifiedLatch is true if the latch was just folded into the final
- /// loop exit. In this case we may want to rotate even though the new latch is
- /// now an exiting branch. This rotation would have happened had the latch not
- /// been simplified. However, if SimplifiedLatch is false, then we avoid
- /// rotating loops in which the latch exits to avoid excessive or endless
- /// rotation. LoopRotate should be repeatable and converge to a canonical
- /// form. This property is satisfied because simplifying the loop latch can only
- /// happen once across multiple invocations of the LoopRotate pass.
- ///
- /// If -loop-rotate-multi is enabled we can do multiple rotations in one go
- /// so to reach a suitable (non-deoptimizing) exit.
- bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
- // If the loop has only one block then there is not much to rotate.
- if (L->getBlocks().size() == 1)
- return false;
- bool Rotated = false;
- do {
- BasicBlock *OrigHeader = L->getHeader();
- BasicBlock *OrigLatch = L->getLoopLatch();
- BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
- if (!BI || BI->isUnconditional())
- return Rotated;
- // If the loop header is not one of the loop exiting blocks then
- // either this loop is already rotated or it is not
- // suitable for loop rotation transformations.
- if (!L->isLoopExiting(OrigHeader))
- return Rotated;
- // If the loop latch already contains a branch that leaves the loop then the
- // loop is already rotated.
- if (!OrigLatch)
- return Rotated;
- // Rotate if either the loop latch does *not* exit the loop, or if the loop
- // latch was just simplified. Or if we think it will be profitable.
- if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
- !profitableToRotateLoopExitingLatch(L) &&
- !canRotateDeoptimizingLatchExit(L))
- return Rotated;
- // Check size of original header and reject loop if it is very big or we can't
- // duplicate blocks inside it.
- {
- SmallPtrSet<const Value *, 32> EphValues;
- CodeMetrics::collectEphemeralValues(L, AC, EphValues);
- CodeMetrics Metrics;
- Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues, PrepareForLTO);
- if (Metrics.notDuplicatable) {
- LLVM_DEBUG(
- dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
- << " instructions: ";
- L->dump());
- return Rotated;
- }
- if (Metrics.convergent) {
- LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
- "instructions: ";
- L->dump());
- return Rotated;
- }
- if (!Metrics.NumInsts.isValid()) {
- LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains instructions"
- " with invalid cost: ";
- L->dump());
- return Rotated;
- }
- if (Metrics.NumInsts > MaxHeaderSize) {
- LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains "
- << Metrics.NumInsts
- << " instructions, which is more than the threshold ("
- << MaxHeaderSize << " instructions): ";
- L->dump());
- ++NumNotRotatedDueToHeaderSize;
- return Rotated;
- }
- // When preparing for LTO, avoid rotating loops with calls that could be
- // inlined during the LTO stage.
- if (PrepareForLTO && Metrics.NumInlineCandidates > 0)
- return Rotated;
- }
- // Now, this loop is suitable for rotation.
- BasicBlock *OrigPreheader = L->getLoopPreheader();
- // If the loop could not be converted to canonical form, it must have an
- // indirectbr in it, just give up.
- if (!OrigPreheader || !L->hasDedicatedExits())
- return Rotated;
- // Anything ScalarEvolution may know about this loop or the PHI nodes
- // in its header will soon be invalidated. We should also invalidate
- // all outer loops because insertion and deletion of blocks that happens
- // during the rotation may violate invariants related to backedge taken
- // infos in them.
- if (SE) {
- SE->forgetTopmostLoop(L);
- // We may hoist some instructions out of loop. In case if they were cached
- // as "loop variant" or "loop computable", these caches must be dropped.
- // We also may fold basic blocks, so cached block dispositions also need
- // to be dropped.
- SE->forgetBlockAndLoopDispositions();
- }
- LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- // Find new Loop header. NewHeader is a Header's one and only successor
- // that is inside loop. Header's other successor is outside the
- // loop. Otherwise loop is not suitable for rotation.
- BasicBlock *Exit = BI->getSuccessor(0);
- BasicBlock *NewHeader = BI->getSuccessor(1);
- if (L->contains(Exit))
- std::swap(Exit, NewHeader);
- assert(NewHeader && "Unable to determine new loop header");
- assert(L->contains(NewHeader) && !L->contains(Exit) &&
- "Unable to determine loop header and exit blocks");
- // This code assumes that the new header has exactly one predecessor.
- // Remove any single-entry PHI nodes in it.
- assert(NewHeader->getSinglePredecessor() &&
- "New header doesn't have one pred!");
- FoldSingleEntryPHINodes(NewHeader);
- // Begin by walking OrigHeader and populating ValueMap with an entry for
- // each Instruction.
- BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
- ValueToValueMapTy ValueMap, ValueMapMSSA;
- // For PHI nodes, the value available in OldPreHeader is just the
- // incoming value from OldPreHeader.
- for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
- InsertNewValueIntoMap(ValueMap, PN,
- PN->getIncomingValueForBlock(OrigPreheader));
- // For the rest of the instructions, either hoist to the OrigPreheader if
- // possible or create a clone in the OldPreHeader if not.
- Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
- // Record all debug intrinsics preceding LoopEntryBranch to avoid
- // duplication.
- using DbgIntrinsicHash =
- std::pair<std::pair<hash_code, DILocalVariable *>, DIExpression *>;
- auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
- auto VarLocOps = D->location_ops();
- return {{hash_combine_range(VarLocOps.begin(), VarLocOps.end()),
- D->getVariable()},
- D->getExpression()};
- };
- SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
- for (Instruction &I : llvm::drop_begin(llvm::reverse(*OrigPreheader))) {
- if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I))
- DbgIntrinsics.insert(makeHash(DII));
- else
- break;
- }
- // Remember the local noalias scope declarations in the header. After the
- // rotation, they must be duplicated and the scope must be cloned. This
- // avoids unwanted interaction across iterations.
- SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions;
- for (Instruction &I : *OrigHeader)
- if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
- NoAliasDeclInstructions.push_back(Decl);
- while (I != E) {
- Instruction *Inst = &*I++;
- // If the instruction's operands are invariant and it doesn't read or write
- // memory, then it is safe to hoist. Doing this doesn't change the order of
- // execution in the preheader, but does prevent the instruction from
- // executing in each iteration of the loop. This means it is safe to hoist
- // something that might trap, but isn't safe to hoist something that reads
- // memory (without proving that the loop doesn't write).
- if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
- !Inst->mayWriteToMemory() && !Inst->isTerminator() &&
- !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
- Inst->moveBefore(LoopEntryBranch);
- ++NumInstrsHoisted;
- continue;
- }
- // Otherwise, create a duplicate of the instruction.
- Instruction *C = Inst->clone();
- ++NumInstrsDuplicated;
- // Eagerly remap the operands of the instruction.
- RemapInstruction(C, ValueMap,
- RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
- // Avoid inserting the same intrinsic twice.
- if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
- if (DbgIntrinsics.count(makeHash(DII))) {
- C->deleteValue();
- continue;
- }
- // With the operands remapped, see if the instruction constant folds or is
- // otherwise simplifyable. This commonly occurs because the entry from PHI
- // nodes allows icmps and other instructions to fold.
- Value *V = simplifyInstruction(C, SQ);
- if (V && LI->replacementPreservesLCSSAForm(C, V)) {
- // If so, then delete the temporary instruction and stick the folded value
- // in the map.
- InsertNewValueIntoMap(ValueMap, Inst, V);
- if (!C->mayHaveSideEffects()) {
- C->deleteValue();
- C = nullptr;
- }
- } else {
- InsertNewValueIntoMap(ValueMap, Inst, C);
- }
- if (C) {
- // Otherwise, stick the new instruction into the new block!
- C->setName(Inst->getName());
- C->insertBefore(LoopEntryBranch);
- if (auto *II = dyn_cast<AssumeInst>(C))
- AC->registerAssumption(II);
- // MemorySSA cares whether the cloned instruction was inserted or not, and
- // not whether it can be remapped to a simplified value.
- if (MSSAU)
- InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
- }
- }
- if (!NoAliasDeclInstructions.empty()) {
- // There are noalias scope declarations:
- // (general):
- // Original: OrigPre { OrigHeader NewHeader ... Latch }
- // after: (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader }
- //
- // with D: llvm.experimental.noalias.scope.decl,
- // U: !noalias or !alias.scope depending on D
- // ... { D U1 U2 } can transform into:
- // (0) : ... { D U1 U2 } // no relevant rotation for this part
- // (1) : ... D' { U1 U2 D } // D is part of OrigHeader
- // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader
- //
- // We now want to transform:
- // (1) -> : ... D' { D U1 U2 D'' }
- // (2) -> : ... D' U1' { D U2 D'' U1'' }
- // D: original llvm.experimental.noalias.scope.decl
- // D', U1': duplicate with replaced scopes
- // D'', U1'': different duplicate with replaced scopes
- // This ensures a safe fallback to 'may_alias' introduced by the rotate,
- // as U1'' and U1' scopes will not be compatible wrt to the local restrict
- // Clone the llvm.experimental.noalias.decl again for the NewHeader.
- Instruction *NewHeaderInsertionPoint = &(*NewHeader->getFirstNonPHI());
- for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) {
- LLVM_DEBUG(dbgs() << " Cloning llvm.experimental.noalias.scope.decl:"
- << *NAD << "\n");
- Instruction *NewNAD = NAD->clone();
- NewNAD->insertBefore(NewHeaderInsertionPoint);
- }
- // Scopes must now be duplicated, once for OrigHeader and once for
- // OrigPreHeader'.
- {
- auto &Context = NewHeader->getContext();
- SmallVector<MDNode *, 8> NoAliasDeclScopes;
- for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions)
- NoAliasDeclScopes.push_back(NAD->getScopeList());
- LLVM_DEBUG(dbgs() << " Updating OrigHeader scopes\n");
- cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, {OrigHeader}, Context,
- "h.rot");
- LLVM_DEBUG(OrigHeader->dump());
- // Keep the compile time impact low by only adapting the inserted block
- // of instructions in the OrigPreHeader. This might result in slightly
- // more aliasing between these instructions and those that were already
- // present, but it will be much faster when the original PreHeader is
- // large.
- LLVM_DEBUG(dbgs() << " Updating part of OrigPreheader scopes\n");
- auto *FirstDecl =
- cast<Instruction>(ValueMap[*NoAliasDeclInstructions.begin()]);
- auto *LastInst = &OrigPreheader->back();
- cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, FirstDecl, LastInst,
- Context, "pre.rot");
- LLVM_DEBUG(OrigPreheader->dump());
- LLVM_DEBUG(dbgs() << " Updated NewHeader:\n");
- LLVM_DEBUG(NewHeader->dump());
- }
- }
- // Along with all the other instructions, we just cloned OrigHeader's
- // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
- // successors by duplicating their incoming values for OrigHeader.
- for (BasicBlock *SuccBB : successors(OrigHeader))
- for (BasicBlock::iterator BI = SuccBB->begin();
- PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
- PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
- // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
- // OrigPreHeader's old terminator (the original branch into the loop), and
- // remove the corresponding incoming values from the PHI nodes in OrigHeader.
- LoopEntryBranch->eraseFromParent();
- // Update MemorySSA before the rewrite call below changes the 1:1
- // instruction:cloned_instruction_or_value mapping.
- if (MSSAU) {
- InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
- MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
- ValueMapMSSA);
- }
- SmallVector<PHINode*, 2> InsertedPHIs;
- // If there were any uses of instructions in the duplicated block outside the
- // loop, update them, inserting PHI nodes as required
- RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, SE,
- &InsertedPHIs);
- // Attach dbg.value intrinsics to the new phis if that phi uses a value that
- // previously had debug metadata attached. This keeps the debug info
- // up-to-date in the loop body.
- if (!InsertedPHIs.empty())
- insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
- // NewHeader is now the header of the loop.
- L->moveToHeader(NewHeader);
- assert(L->getHeader() == NewHeader && "Latch block is our new header");
- // Inform DT about changes to the CFG.
- if (DT) {
- // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
- // the DT about the removed edge to the OrigHeader (that got removed).
- SmallVector<DominatorTree::UpdateType, 3> Updates;
- Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
- Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
- Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
- if (MSSAU) {
- MSSAU->applyUpdates(Updates, *DT, /*UpdateDT=*/true);
- if (VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- } else {
- DT->applyUpdates(Updates);
- }
- }
- // At this point, we've finished our major CFG changes. As part of cloning
- // the loop into the preheader we've simplified instructions and the
- // duplicated conditional branch may now be branching on a constant. If it is
- // branching on a constant and if that constant means that we enter the loop,
- // then we fold away the cond branch to an uncond branch. This simplifies the
- // loop in cases important for nested loops, and it also means we don't have
- // to split as many edges.
- BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
- assert(PHBI->isConditional() && "Should be clone of BI condbr!");
- if (!isa<ConstantInt>(PHBI->getCondition()) ||
- PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
- NewHeader) {
- // The conditional branch can't be folded, handle the general case.
- // Split edges as necessary to preserve LoopSimplify form.
- // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
- // thus is not a preheader anymore.
- // Split the edge to form a real preheader.
- BasicBlock *NewPH = SplitCriticalEdge(
- OrigPreheader, NewHeader,
- CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
- NewPH->setName(NewHeader->getName() + ".lr.ph");
- // Preserve canonical loop form, which means that 'Exit' should have only
- // one predecessor. Note that Exit could be an exit block for multiple
- // nested loops, causing both of the edges to now be critical and need to
- // be split.
- SmallVector<BasicBlock *, 4> ExitPreds(predecessors(Exit));
- bool SplitLatchEdge = false;
- for (BasicBlock *ExitPred : ExitPreds) {
- // We only need to split loop exit edges.
- Loop *PredLoop = LI->getLoopFor(ExitPred);
- if (!PredLoop || PredLoop->contains(Exit) ||
- isa<IndirectBrInst>(ExitPred->getTerminator()))
- continue;
- SplitLatchEdge |= L->getLoopLatch() == ExitPred;
- BasicBlock *ExitSplit = SplitCriticalEdge(
- ExitPred, Exit,
- CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
- ExitSplit->moveBefore(Exit);
- }
- assert(SplitLatchEdge &&
- "Despite splitting all preds, failed to split latch exit?");
- (void)SplitLatchEdge;
- } else {
- // We can fold the conditional branch in the preheader, this makes things
- // simpler. The first step is to remove the extra edge to the Exit block.
- Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
- BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
- NewBI->setDebugLoc(PHBI->getDebugLoc());
- PHBI->eraseFromParent();
- // With our CFG finalized, update DomTree if it is available.
- if (DT) DT->deleteEdge(OrigPreheader, Exit);
- // Update MSSA too, if available.
- if (MSSAU)
- MSSAU->removeEdge(OrigPreheader, Exit);
- }
- assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
- assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- // Now that the CFG and DomTree are in a consistent state again, try to merge
- // the OrigHeader block into OrigLatch. This will succeed if they are
- // connected by an unconditional branch. This is just a cleanup so the
- // emitted code isn't too gross in this common case.
- DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
- BasicBlock *PredBB = OrigHeader->getUniquePredecessor();
- bool DidMerge = MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
- if (DidMerge)
- RemoveRedundantDbgInstrs(PredBB);
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
- ++NumRotated;
- Rotated = true;
- SimplifiedLatch = false;
- // Check that new latch is a deoptimizing exit and then repeat rotation if possible.
- // Deoptimizing latch exit is not a generally typical case, so we just loop over.
- // TODO: if it becomes a performance bottleneck extend rotation algorithm
- // to handle multiple rotations in one go.
- } while (MultiRotate && canRotateDeoptimizingLatchExit(L));
- return true;
- }
- /// Determine whether the instructions in this range may be safely and cheaply
- /// speculated. This is not an important enough situation to develop complex
- /// heuristics. We handle a single arithmetic instruction along with any type
- /// conversions.
- static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
- BasicBlock::iterator End, Loop *L) {
- bool seenIncrement = false;
- bool MultiExitLoop = false;
- if (!L->getExitingBlock())
- MultiExitLoop = true;
- for (BasicBlock::iterator I = Begin; I != End; ++I) {
- if (!isSafeToSpeculativelyExecute(&*I))
- return false;
- if (isa<DbgInfoIntrinsic>(I))
- continue;
- switch (I->getOpcode()) {
- default:
- return false;
- case Instruction::GetElementPtr:
- // GEPs are cheap if all indices are constant.
- if (!cast<GEPOperator>(I)->hasAllConstantIndices())
- return false;
- // fall-thru to increment case
- [[fallthrough]];
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr: {
- Value *IVOpnd =
- !isa<Constant>(I->getOperand(0))
- ? I->getOperand(0)
- : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
- if (!IVOpnd)
- return false;
- // If increment operand is used outside of the loop, this speculation
- // could cause extra live range interference.
- if (MultiExitLoop) {
- for (User *UseI : IVOpnd->users()) {
- auto *UserInst = cast<Instruction>(UseI);
- if (!L->contains(UserInst))
- return false;
- }
- }
- if (seenIncrement)
- return false;
- seenIncrement = true;
- break;
- }
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- // ignore type conversions
- break;
- }
- }
- return true;
- }
- /// Fold the loop tail into the loop exit by speculating the loop tail
- /// instructions. Typically, this is a single post-increment. In the case of a
- /// simple 2-block loop, hoisting the increment can be much better than
- /// duplicating the entire loop header. In the case of loops with early exits,
- /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
- /// canonical form so downstream passes can handle it.
- ///
- /// I don't believe this invalidates SCEV.
- bool LoopRotate::simplifyLoopLatch(Loop *L) {
- BasicBlock *Latch = L->getLoopLatch();
- if (!Latch || Latch->hasAddressTaken())
- return false;
- BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
- if (!Jmp || !Jmp->isUnconditional())
- return false;
- BasicBlock *LastExit = Latch->getSinglePredecessor();
- if (!LastExit || !L->isLoopExiting(LastExit))
- return false;
- BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
- if (!BI)
- return false;
- if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
- return false;
- LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
- << LastExit->getName() << "\n");
- DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
- MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr,
- /*PredecessorWithTwoSuccessors=*/true);
- if (SE) {
- // Merging blocks may remove blocks reference in the block disposition cache. Clear the cache.
- SE->forgetBlockAndLoopDispositions();
- }
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- return true;
- }
- /// Rotate \c L, and return true if any modification was made.
- bool LoopRotate::processLoop(Loop *L) {
- // Save the loop metadata.
- MDNode *LoopMD = L->getLoopID();
- bool SimplifiedLatch = false;
- // Simplify the loop latch before attempting to rotate the header
- // upward. Rotation may not be needed if the loop tail can be folded into the
- // loop exit.
- if (!RotationOnly)
- SimplifiedLatch = simplifyLoopLatch(L);
- bool MadeChange = rotateLoop(L, SimplifiedLatch);
- assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
- "Loop latch should be exiting after loop-rotate.");
- // Restore the loop metadata.
- // NB! We presume LoopRotation DOESN'T ADD its own metadata.
- if ((MadeChange || SimplifiedLatch) && LoopMD)
- L->setLoopID(LoopMD);
- return MadeChange || SimplifiedLatch;
- }
- /// The utility to convert a loop into a loop with bottom test.
- bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
- AssumptionCache *AC, DominatorTree *DT,
- ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
- const SimplifyQuery &SQ, bool RotationOnly = true,
- unsigned Threshold = unsigned(-1),
- bool IsUtilMode = true, bool PrepareForLTO) {
- LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
- IsUtilMode, PrepareForLTO);
- return LR.processLoop(L);
- }
|