1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729 |
- //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains logic for simplifying instructions based on information
- // about how they are used.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Transforms/InstCombine/InstCombiner.h"
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "instcombine"
- /// Check to see if the specified operand of the specified instruction is a
- /// constant integer. If so, check to see if there are any bits set in the
- /// constant that are not demanded. If so, shrink the constant and return true.
- static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
- const APInt &Demanded) {
- assert(I && "No instruction?");
- assert(OpNo < I->getNumOperands() && "Operand index too large");
- // The operand must be a constant integer or splat integer.
- Value *Op = I->getOperand(OpNo);
- const APInt *C;
- if (!match(Op, m_APInt(C)))
- return false;
- // If there are no bits set that aren't demanded, nothing to do.
- if (C->isSubsetOf(Demanded))
- return false;
- // This instruction is producing bits that are not demanded. Shrink the RHS.
- I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
- return true;
- }
- /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
- /// the instruction has any properties that allow us to simplify its operands.
- bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) {
- unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
- KnownBits Known(BitWidth);
- APInt DemandedMask(APInt::getAllOnes(BitWidth));
- Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
- 0, &Inst);
- if (!V) return false;
- if (V == &Inst) return true;
- replaceInstUsesWith(Inst, V);
- return true;
- }
- /// This form of SimplifyDemandedBits simplifies the specified instruction
- /// operand if possible, updating it in place. It returns true if it made any
- /// change and false otherwise.
- bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
- const APInt &DemandedMask,
- KnownBits &Known, unsigned Depth) {
- Use &U = I->getOperandUse(OpNo);
- Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
- Depth, I);
- if (!NewVal) return false;
- if (Instruction* OpInst = dyn_cast<Instruction>(U))
- salvageDebugInfo(*OpInst);
- replaceUse(U, NewVal);
- return true;
- }
- /// This function attempts to replace V with a simpler value based on the
- /// demanded bits. When this function is called, it is known that only the bits
- /// set in DemandedMask of the result of V are ever used downstream.
- /// Consequently, depending on the mask and V, it may be possible to replace V
- /// with a constant or one of its operands. In such cases, this function does
- /// the replacement and returns true. In all other cases, it returns false after
- /// analyzing the expression and setting KnownOne and known to be one in the
- /// expression. Known.Zero contains all the bits that are known to be zero in
- /// the expression. These are provided to potentially allow the caller (which
- /// might recursively be SimplifyDemandedBits itself) to simplify the
- /// expression.
- /// Known.One and Known.Zero always follow the invariant that:
- /// Known.One & Known.Zero == 0.
- /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
- /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
- /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
- /// be the same.
- ///
- /// This returns null if it did not change anything and it permits no
- /// simplification. This returns V itself if it did some simplification of V's
- /// operands based on the information about what bits are demanded. This returns
- /// some other non-null value if it found out that V is equal to another value
- /// in the context where the specified bits are demanded, but not for all users.
- Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
- KnownBits &Known,
- unsigned Depth,
- Instruction *CxtI) {
- assert(V != nullptr && "Null pointer of Value???");
- assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
- uint32_t BitWidth = DemandedMask.getBitWidth();
- Type *VTy = V->getType();
- assert(
- (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
- Known.getBitWidth() == BitWidth &&
- "Value *V, DemandedMask and Known must have same BitWidth");
- if (isa<Constant>(V)) {
- computeKnownBits(V, Known, Depth, CxtI);
- return nullptr;
- }
- Known.resetAll();
- if (DemandedMask.isZero()) // Not demanding any bits from V.
- return UndefValue::get(VTy);
- if (Depth == MaxAnalysisRecursionDepth)
- return nullptr;
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) {
- computeKnownBits(V, Known, Depth, CxtI);
- return nullptr; // Only analyze instructions.
- }
- // If there are multiple uses of this value and we aren't at the root, then
- // we can't do any simplifications of the operands, because DemandedMask
- // only reflects the bits demanded by *one* of the users.
- if (Depth != 0 && !I->hasOneUse())
- return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
- KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
- // If this is the root being simplified, allow it to have multiple uses,
- // just set the DemandedMask to all bits so that we can try to simplify the
- // operands. This allows visitTruncInst (for example) to simplify the
- // operand of a trunc without duplicating all the logic below.
- if (Depth == 0 && !V->hasOneUse())
- DemandedMask.setAllBits();
- // Update flags after simplifying an operand based on the fact that some high
- // order bits are not demanded.
- auto disableWrapFlagsBasedOnUnusedHighBits = [](Instruction *I,
- unsigned NLZ) {
- if (NLZ > 0) {
- // Disable the nsw and nuw flags here: We can no longer guarantee that
- // we won't wrap after simplification. Removing the nsw/nuw flags is
- // legal here because the top bit is not demanded.
- I->setHasNoSignedWrap(false);
- I->setHasNoUnsignedWrap(false);
- }
- return I;
- };
- // If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care
- // about the high bits of the operands.
- auto simplifyOperandsBasedOnUnusedHighBits = [&](APInt &DemandedFromOps) {
- unsigned NLZ = DemandedMask.countLeadingZeros();
- // Right fill the mask of bits for the operands to demand the most
- // significant bit and all those below it.
- DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
- if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
- SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
- ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
- SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
- disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
- return true;
- }
- return false;
- };
- switch (I->getOpcode()) {
- default:
- computeKnownBits(I, Known, Depth, CxtI);
- break;
- case Instruction::And: {
- // If either the LHS or the RHS are Zero, the result is zero.
- if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
- SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
- Depth + 1))
- return I;
- assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
- assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
- Known = LHSKnown & RHSKnown;
- // If the client is only demanding bits that we know, return the known
- // constant.
- if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
- return Constant::getIntegerValue(VTy, Known.One);
- // If all of the demanded bits are known 1 on one side, return the other.
- // These bits cannot contribute to the result of the 'and'.
- if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
- return I->getOperand(0);
- if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
- return I->getOperand(1);
- // If the RHS is a constant, see if we can simplify it.
- if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
- return I;
- break;
- }
- case Instruction::Or: {
- // If either the LHS or the RHS are One, the result is One.
- if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
- SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
- Depth + 1))
- return I;
- assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
- assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
- Known = LHSKnown | RHSKnown;
- // If the client is only demanding bits that we know, return the known
- // constant.
- if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
- return Constant::getIntegerValue(VTy, Known.One);
- // If all of the demanded bits are known zero on one side, return the other.
- // These bits cannot contribute to the result of the 'or'.
- if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
- return I->getOperand(0);
- if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
- return I->getOperand(1);
- // If the RHS is a constant, see if we can simplify it.
- if (ShrinkDemandedConstant(I, 1, DemandedMask))
- return I;
- break;
- }
- case Instruction::Xor: {
- if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
- SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
- return I;
- Value *LHS, *RHS;
- if (DemandedMask == 1 &&
- match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) &&
- match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) {
- // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1
- IRBuilderBase::InsertPointGuard Guard(Builder);
- Builder.SetInsertPoint(I);
- auto *Xor = Builder.CreateXor(LHS, RHS);
- return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor);
- }
- assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
- assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
- Known = LHSKnown ^ RHSKnown;
- // If the client is only demanding bits that we know, return the known
- // constant.
- if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
- return Constant::getIntegerValue(VTy, Known.One);
- // If all of the demanded bits are known zero on one side, return the other.
- // These bits cannot contribute to the result of the 'xor'.
- if (DemandedMask.isSubsetOf(RHSKnown.Zero))
- return I->getOperand(0);
- if (DemandedMask.isSubsetOf(LHSKnown.Zero))
- return I->getOperand(1);
- // If all of the demanded bits are known to be zero on one side or the
- // other, turn this into an *inclusive* or.
- // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
- if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
- Instruction *Or =
- BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
- I->getName());
- return InsertNewInstWith(Or, *I);
- }
- // If all of the demanded bits on one side are known, and all of the set
- // bits on that side are also known to be set on the other side, turn this
- // into an AND, as we know the bits will be cleared.
- // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
- if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
- RHSKnown.One.isSubsetOf(LHSKnown.One)) {
- Constant *AndC = Constant::getIntegerValue(VTy,
- ~RHSKnown.One & DemandedMask);
- Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
- return InsertNewInstWith(And, *I);
- }
- // If the RHS is a constant, see if we can change it. Don't alter a -1
- // constant because that's a canonical 'not' op, and that is better for
- // combining, SCEV, and codegen.
- const APInt *C;
- if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) {
- if ((*C | ~DemandedMask).isAllOnes()) {
- // Force bits to 1 to create a 'not' op.
- I->setOperand(1, ConstantInt::getAllOnesValue(VTy));
- return I;
- }
- // If we can't turn this into a 'not', try to shrink the constant.
- if (ShrinkDemandedConstant(I, 1, DemandedMask))
- return I;
- }
- // If our LHS is an 'and' and if it has one use, and if any of the bits we
- // are flipping are known to be set, then the xor is just resetting those
- // bits to zero. We can just knock out bits from the 'and' and the 'xor',
- // simplifying both of them.
- if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) {
- ConstantInt *AndRHS, *XorRHS;
- if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
- match(I->getOperand(1), m_ConstantInt(XorRHS)) &&
- match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) &&
- (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
- APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
- Constant *AndC = ConstantInt::get(VTy, NewMask & AndRHS->getValue());
- Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
- InsertNewInstWith(NewAnd, *I);
- Constant *XorC = ConstantInt::get(VTy, NewMask & XorRHS->getValue());
- Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
- return InsertNewInstWith(NewXor, *I);
- }
- }
- break;
- }
- case Instruction::Select: {
- if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
- SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
- return I;
- assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
- assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
- // If the operands are constants, see if we can simplify them.
- // This is similar to ShrinkDemandedConstant, but for a select we want to
- // try to keep the selected constants the same as icmp value constants, if
- // we can. This helps not break apart (or helps put back together)
- // canonical patterns like min and max.
- auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
- const APInt &DemandedMask) {
- const APInt *SelC;
- if (!match(I->getOperand(OpNo), m_APInt(SelC)))
- return false;
- // Get the constant out of the ICmp, if there is one.
- // Only try this when exactly 1 operand is a constant (if both operands
- // are constant, the icmp should eventually simplify). Otherwise, we may
- // invert the transform that reduces set bits and infinite-loop.
- Value *X;
- const APInt *CmpC;
- ICmpInst::Predicate Pred;
- if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) ||
- isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth())
- return ShrinkDemandedConstant(I, OpNo, DemandedMask);
- // If the constant is already the same as the ICmp, leave it as-is.
- if (*CmpC == *SelC)
- return false;
- // If the constants are not already the same, but can be with the demand
- // mask, use the constant value from the ICmp.
- if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
- I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
- return true;
- }
- return ShrinkDemandedConstant(I, OpNo, DemandedMask);
- };
- if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
- CanonicalizeSelectConstant(I, 2, DemandedMask))
- return I;
- // Only known if known in both the LHS and RHS.
- Known = KnownBits::commonBits(LHSKnown, RHSKnown);
- break;
- }
- case Instruction::Trunc: {
- // If we do not demand the high bits of a right-shifted and truncated value,
- // then we may be able to truncate it before the shift.
- Value *X;
- const APInt *C;
- if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
- // The shift amount must be valid (not poison) in the narrow type, and
- // it must not be greater than the high bits demanded of the result.
- if (C->ult(VTy->getScalarSizeInBits()) &&
- C->ule(DemandedMask.countLeadingZeros())) {
- // trunc (lshr X, C) --> lshr (trunc X), C
- IRBuilderBase::InsertPointGuard Guard(Builder);
- Builder.SetInsertPoint(I);
- Value *Trunc = Builder.CreateTrunc(X, VTy);
- return Builder.CreateLShr(Trunc, C->getZExtValue());
- }
- }
- }
- [[fallthrough]];
- case Instruction::ZExt: {
- unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
- APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
- KnownBits InputKnown(SrcBitWidth);
- if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
- return I;
- assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
- Known = InputKnown.zextOrTrunc(BitWidth);
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- break;
- }
- case Instruction::BitCast:
- if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
- return nullptr; // vector->int or fp->int?
- if (auto *DstVTy = dyn_cast<VectorType>(VTy)) {
- if (auto *SrcVTy = dyn_cast<VectorType>(I->getOperand(0)->getType())) {
- if (isa<ScalableVectorType>(DstVTy) ||
- isa<ScalableVectorType>(SrcVTy) ||
- cast<FixedVectorType>(DstVTy)->getNumElements() !=
- cast<FixedVectorType>(SrcVTy)->getNumElements())
- // Don't touch a bitcast between vectors of different element counts.
- return nullptr;
- } else
- // Don't touch a scalar-to-vector bitcast.
- return nullptr;
- } else if (I->getOperand(0)->getType()->isVectorTy())
- // Don't touch a vector-to-scalar bitcast.
- return nullptr;
- if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
- return I;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- break;
- case Instruction::SExt: {
- // Compute the bits in the result that are not present in the input.
- unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
- APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
- // If any of the sign extended bits are demanded, we know that the sign
- // bit is demanded.
- if (DemandedMask.getActiveBits() > SrcBitWidth)
- InputDemandedBits.setBit(SrcBitWidth-1);
- KnownBits InputKnown(SrcBitWidth);
- if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
- return I;
- // If the input sign bit is known zero, or if the NewBits are not demanded
- // convert this into a zero extension.
- if (InputKnown.isNonNegative() ||
- DemandedMask.getActiveBits() <= SrcBitWidth) {
- // Convert to ZExt cast.
- CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
- return InsertNewInstWith(NewCast, *I);
- }
- // If the sign bit of the input is known set or clear, then we know the
- // top bits of the result.
- Known = InputKnown.sext(BitWidth);
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- break;
- }
- case Instruction::Add: {
- if ((DemandedMask & 1) == 0) {
- // If we do not need the low bit, try to convert bool math to logic:
- // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN
- Value *X, *Y;
- if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))),
- m_OneUse(m_SExt(m_Value(Y))))) &&
- X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
- // Truth table for inputs and output signbits:
- // X:0 | X:1
- // ----------
- // Y:0 | 0 | 0 |
- // Y:1 | -1 | 0 |
- // ----------
- IRBuilderBase::InsertPointGuard Guard(Builder);
- Builder.SetInsertPoint(I);
- Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y);
- return Builder.CreateSExt(AndNot, VTy);
- }
- // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN
- // TODO: Relax the one-use checks because we are removing an instruction?
- if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))),
- m_OneUse(m_SExt(m_Value(Y))))) &&
- X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
- // Truth table for inputs and output signbits:
- // X:0 | X:1
- // -----------
- // Y:0 | -1 | -1 |
- // Y:1 | -1 | 0 |
- // -----------
- IRBuilderBase::InsertPointGuard Guard(Builder);
- Builder.SetInsertPoint(I);
- Value *Or = Builder.CreateOr(X, Y);
- return Builder.CreateSExt(Or, VTy);
- }
- }
- // Right fill the mask of bits for the operands to demand the most
- // significant bit and all those below it.
- unsigned NLZ = DemandedMask.countLeadingZeros();
- APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
- if (ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
- SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1))
- return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
- // If low order bits are not demanded and known to be zero in one operand,
- // then we don't need to demand them from the other operand, since they
- // can't cause overflow into any bits that are demanded in the result.
- unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countTrailingOnes();
- APInt DemandedFromLHS = DemandedFromOps;
- DemandedFromLHS.clearLowBits(NTZ);
- if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) ||
- SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1))
- return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
- // If we are known to be adding zeros to every bit below
- // the highest demanded bit, we just return the other side.
- if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
- return I->getOperand(0);
- if (DemandedFromOps.isSubsetOf(LHSKnown.Zero))
- return I->getOperand(1);
- // Otherwise just compute the known bits of the result.
- bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- Known = KnownBits::computeForAddSub(true, NSW, LHSKnown, RHSKnown);
- break;
- }
- case Instruction::Sub: {
- // Right fill the mask of bits for the operands to demand the most
- // significant bit and all those below it.
- unsigned NLZ = DemandedMask.countLeadingZeros();
- APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
- if (ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
- SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1))
- return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
- // If low order bits are not demanded and are known to be zero in RHS,
- // then we don't need to demand them from LHS, since they can't cause a
- // borrow from any bits that are demanded in the result.
- unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countTrailingOnes();
- APInt DemandedFromLHS = DemandedFromOps;
- DemandedFromLHS.clearLowBits(NTZ);
- if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) ||
- SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1))
- return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
- // If we are known to be subtracting zeros from every bit below
- // the highest demanded bit, we just return the other side.
- if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
- return I->getOperand(0);
- // We can't do this with the LHS for subtraction, unless we are only
- // demanding the LSB.
- if (DemandedFromOps.isOne() && DemandedFromOps.isSubsetOf(LHSKnown.Zero))
- return I->getOperand(1);
- // Otherwise just compute the known bits of the result.
- bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- Known = KnownBits::computeForAddSub(false, NSW, LHSKnown, RHSKnown);
- break;
- }
- case Instruction::Mul: {
- APInt DemandedFromOps;
- if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps))
- return I;
- if (DemandedMask.isPowerOf2()) {
- // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
- // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
- // odd (has LSB set), then the left-shifted low bit of X is the answer.
- unsigned CTZ = DemandedMask.countTrailingZeros();
- const APInt *C;
- if (match(I->getOperand(1), m_APInt(C)) &&
- C->countTrailingZeros() == CTZ) {
- Constant *ShiftC = ConstantInt::get(VTy, CTZ);
- Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC);
- return InsertNewInstWith(Shl, *I);
- }
- }
- // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
- // X * X is odd iff X is odd.
- // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
- if (I->getOperand(0) == I->getOperand(1) && DemandedMask.ult(4)) {
- Constant *One = ConstantInt::get(VTy, 1);
- Instruction *And1 = BinaryOperator::CreateAnd(I->getOperand(0), One);
- return InsertNewInstWith(And1, *I);
- }
- computeKnownBits(I, Known, Depth, CxtI);
- break;
- }
- case Instruction::Shl: {
- const APInt *SA;
- if (match(I->getOperand(1), m_APInt(SA))) {
- const APInt *ShrAmt;
- if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
- if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
- if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
- DemandedMask, Known))
- return R;
- // TODO: If we only want bits that already match the signbit then we don't
- // need to shift.
- // If we can pre-shift a right-shifted constant to the left without
- // losing any high bits amd we don't demand the low bits, then eliminate
- // the left-shift:
- // (C >> X) << LeftShiftAmtC --> (C << RightShiftAmtC) >> X
- uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
- Value *X;
- Constant *C;
- if (DemandedMask.countTrailingZeros() >= ShiftAmt &&
- match(I->getOperand(0), m_LShr(m_ImmConstant(C), m_Value(X)))) {
- Constant *LeftShiftAmtC = ConstantInt::get(VTy, ShiftAmt);
- Constant *NewC = ConstantExpr::getShl(C, LeftShiftAmtC);
- if (ConstantExpr::getLShr(NewC, LeftShiftAmtC) == C) {
- Instruction *Lshr = BinaryOperator::CreateLShr(NewC, X);
- return InsertNewInstWith(Lshr, *I);
- }
- }
- APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
- // If the shift is NUW/NSW, then it does demand the high bits.
- ShlOperator *IOp = cast<ShlOperator>(I);
- if (IOp->hasNoSignedWrap())
- DemandedMaskIn.setHighBits(ShiftAmt+1);
- else if (IOp->hasNoUnsignedWrap())
- DemandedMaskIn.setHighBits(ShiftAmt);
- if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
- return I;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- bool SignBitZero = Known.Zero.isSignBitSet();
- bool SignBitOne = Known.One.isSignBitSet();
- Known.Zero <<= ShiftAmt;
- Known.One <<= ShiftAmt;
- // low bits known zero.
- if (ShiftAmt)
- Known.Zero.setLowBits(ShiftAmt);
- // If this shift has "nsw" keyword, then the result is either a poison
- // value or has the same sign bit as the first operand.
- if (IOp->hasNoSignedWrap()) {
- if (SignBitZero)
- Known.Zero.setSignBit();
- else if (SignBitOne)
- Known.One.setSignBit();
- if (Known.hasConflict())
- return UndefValue::get(VTy);
- }
- } else {
- // This is a variable shift, so we can't shift the demand mask by a known
- // amount. But if we are not demanding high bits, then we are not
- // demanding those bits from the pre-shifted operand either.
- if (unsigned CTLZ = DemandedMask.countLeadingZeros()) {
- APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
- if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) {
- // We can't guarantee that nsw/nuw hold after simplifying the operand.
- I->dropPoisonGeneratingFlags();
- return I;
- }
- }
- computeKnownBits(I, Known, Depth, CxtI);
- }
- break;
- }
- case Instruction::LShr: {
- const APInt *SA;
- if (match(I->getOperand(1), m_APInt(SA))) {
- uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
- // If we are just demanding the shifted sign bit and below, then this can
- // be treated as an ASHR in disguise.
- if (DemandedMask.countLeadingZeros() >= ShiftAmt) {
- // If we only want bits that already match the signbit then we don't
- // need to shift.
- unsigned NumHiDemandedBits =
- BitWidth - DemandedMask.countTrailingZeros();
- unsigned SignBits =
- ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
- if (SignBits >= NumHiDemandedBits)
- return I->getOperand(0);
- // If we can pre-shift a left-shifted constant to the right without
- // losing any low bits (we already know we don't demand the high bits),
- // then eliminate the right-shift:
- // (C << X) >> RightShiftAmtC --> (C >> RightShiftAmtC) << X
- Value *X;
- Constant *C;
- if (match(I->getOperand(0), m_Shl(m_ImmConstant(C), m_Value(X)))) {
- Constant *RightShiftAmtC = ConstantInt::get(VTy, ShiftAmt);
- Constant *NewC = ConstantExpr::getLShr(C, RightShiftAmtC);
- if (ConstantExpr::getShl(NewC, RightShiftAmtC) == C) {
- Instruction *Shl = BinaryOperator::CreateShl(NewC, X);
- return InsertNewInstWith(Shl, *I);
- }
- }
- }
- // Unsigned shift right.
- APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
- // If the shift is exact, then it does demand the low bits (and knows that
- // they are zero).
- if (cast<LShrOperator>(I)->isExact())
- DemandedMaskIn.setLowBits(ShiftAmt);
- if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
- return I;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- Known.Zero.lshrInPlace(ShiftAmt);
- Known.One.lshrInPlace(ShiftAmt);
- if (ShiftAmt)
- Known.Zero.setHighBits(ShiftAmt); // high bits known zero.
- } else {
- computeKnownBits(I, Known, Depth, CxtI);
- }
- break;
- }
- case Instruction::AShr: {
- unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
- // If we only want bits that already match the signbit then we don't need
- // to shift.
- unsigned NumHiDemandedBits = BitWidth - DemandedMask.countTrailingZeros();
- if (SignBits >= NumHiDemandedBits)
- return I->getOperand(0);
- // If this is an arithmetic shift right and only the low-bit is set, we can
- // always convert this into a logical shr, even if the shift amount is
- // variable. The low bit of the shift cannot be an input sign bit unless
- // the shift amount is >= the size of the datatype, which is undefined.
- if (DemandedMask.isOne()) {
- // Perform the logical shift right.
- Instruction *NewVal = BinaryOperator::CreateLShr(
- I->getOperand(0), I->getOperand(1), I->getName());
- return InsertNewInstWith(NewVal, *I);
- }
- const APInt *SA;
- if (match(I->getOperand(1), m_APInt(SA))) {
- uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
- // Signed shift right.
- APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
- // If any of the high bits are demanded, we should set the sign bit as
- // demanded.
- if (DemandedMask.countLeadingZeros() <= ShiftAmt)
- DemandedMaskIn.setSignBit();
- // If the shift is exact, then it does demand the low bits (and knows that
- // they are zero).
- if (cast<AShrOperator>(I)->isExact())
- DemandedMaskIn.setLowBits(ShiftAmt);
- if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
- return I;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- // Compute the new bits that are at the top now plus sign bits.
- APInt HighBits(APInt::getHighBitsSet(
- BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
- Known.Zero.lshrInPlace(ShiftAmt);
- Known.One.lshrInPlace(ShiftAmt);
- // If the input sign bit is known to be zero, or if none of the top bits
- // are demanded, turn this into an unsigned shift right.
- assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
- if (Known.Zero[BitWidth-ShiftAmt-1] ||
- !DemandedMask.intersects(HighBits)) {
- BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
- I->getOperand(1));
- LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
- return InsertNewInstWith(LShr, *I);
- } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
- Known.One |= HighBits;
- }
- } else {
- computeKnownBits(I, Known, Depth, CxtI);
- }
- break;
- }
- case Instruction::UDiv: {
- // UDiv doesn't demand low bits that are zero in the divisor.
- const APInt *SA;
- if (match(I->getOperand(1), m_APInt(SA))) {
- // TODO: Take the demanded mask of the result into account.
- unsigned RHSTrailingZeros = SA->countTrailingZeros();
- APInt DemandedMaskIn =
- APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
- if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) {
- // We can't guarantee that "exact" is still true after changing the
- // the dividend.
- I->dropPoisonGeneratingFlags();
- return I;
- }
- // Increase high zero bits from the input.
- Known.Zero.setHighBits(std::min(
- BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
- } else {
- computeKnownBits(I, Known, Depth, CxtI);
- }
- break;
- }
- case Instruction::SRem: {
- const APInt *Rem;
- if (match(I->getOperand(1), m_APInt(Rem))) {
- // X % -1 demands all the bits because we don't want to introduce
- // INT_MIN % -1 (== undef) by accident.
- if (Rem->isAllOnes())
- break;
- APInt RA = Rem->abs();
- if (RA.isPowerOf2()) {
- if (DemandedMask.ult(RA)) // srem won't affect demanded bits
- return I->getOperand(0);
- APInt LowBits = RA - 1;
- APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
- if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
- return I;
- // The low bits of LHS are unchanged by the srem.
- Known.Zero = LHSKnown.Zero & LowBits;
- Known.One = LHSKnown.One & LowBits;
- // If LHS is non-negative or has all low bits zero, then the upper bits
- // are all zero.
- if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
- Known.Zero |= ~LowBits;
- // If LHS is negative and not all low bits are zero, then the upper bits
- // are all one.
- if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
- Known.One |= ~LowBits;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- break;
- }
- }
- // The sign bit is the LHS's sign bit, except when the result of the
- // remainder is zero.
- if (DemandedMask.isSignBitSet()) {
- computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
- // If it's known zero, our sign bit is also zero.
- if (LHSKnown.isNonNegative())
- Known.makeNonNegative();
- }
- break;
- }
- case Instruction::URem: {
- KnownBits Known2(BitWidth);
- APInt AllOnes = APInt::getAllOnes(BitWidth);
- if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
- SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
- return I;
- unsigned Leaders = Known2.countMinLeadingZeros();
- Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
- break;
- }
- case Instruction::Call: {
- bool KnownBitsComputed = false;
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- case Intrinsic::abs: {
- if (DemandedMask == 1)
- return II->getArgOperand(0);
- break;
- }
- case Intrinsic::ctpop: {
- // Checking if the number of clear bits is odd (parity)? If the type has
- // an even number of bits, that's the same as checking if the number of
- // set bits is odd, so we can eliminate the 'not' op.
- Value *X;
- if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 &&
- match(II->getArgOperand(0), m_Not(m_Value(X)))) {
- Function *Ctpop = Intrinsic::getDeclaration(
- II->getModule(), Intrinsic::ctpop, VTy);
- return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I);
- }
- break;
- }
- case Intrinsic::bswap: {
- // If the only bits demanded come from one byte of the bswap result,
- // just shift the input byte into position to eliminate the bswap.
- unsigned NLZ = DemandedMask.countLeadingZeros();
- unsigned NTZ = DemandedMask.countTrailingZeros();
- // Round NTZ down to the next byte. If we have 11 trailing zeros, then
- // we need all the bits down to bit 8. Likewise, round NLZ. If we
- // have 14 leading zeros, round to 8.
- NLZ = alignDown(NLZ, 8);
- NTZ = alignDown(NTZ, 8);
- // If we need exactly one byte, we can do this transformation.
- if (BitWidth - NLZ - NTZ == 8) {
- // Replace this with either a left or right shift to get the byte into
- // the right place.
- Instruction *NewVal;
- if (NLZ > NTZ)
- NewVal = BinaryOperator::CreateLShr(
- II->getArgOperand(0), ConstantInt::get(VTy, NLZ - NTZ));
- else
- NewVal = BinaryOperator::CreateShl(
- II->getArgOperand(0), ConstantInt::get(VTy, NTZ - NLZ));
- NewVal->takeName(I);
- return InsertNewInstWith(NewVal, *I);
- }
- break;
- }
- case Intrinsic::fshr:
- case Intrinsic::fshl: {
- const APInt *SA;
- if (!match(I->getOperand(2), m_APInt(SA)))
- break;
- // Normalize to funnel shift left. APInt shifts of BitWidth are well-
- // defined, so no need to special-case zero shifts here.
- uint64_t ShiftAmt = SA->urem(BitWidth);
- if (II->getIntrinsicID() == Intrinsic::fshr)
- ShiftAmt = BitWidth - ShiftAmt;
- APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
- APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
- if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
- SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
- return I;
- Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
- RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
- Known.One = LHSKnown.One.shl(ShiftAmt) |
- RHSKnown.One.lshr(BitWidth - ShiftAmt);
- KnownBitsComputed = true;
- break;
- }
- case Intrinsic::umax: {
- // UMax(A, C) == A if ...
- // The lowest non-zero bit of DemandMask is higher than the highest
- // non-zero bit of C.
- const APInt *C;
- unsigned CTZ = DemandedMask.countTrailingZeros();
- if (match(II->getArgOperand(1), m_APInt(C)) &&
- CTZ >= C->getActiveBits())
- return II->getArgOperand(0);
- break;
- }
- case Intrinsic::umin: {
- // UMin(A, C) == A if ...
- // The lowest non-zero bit of DemandMask is higher than the highest
- // non-one bit of C.
- // This comes from using DeMorgans on the above umax example.
- const APInt *C;
- unsigned CTZ = DemandedMask.countTrailingZeros();
- if (match(II->getArgOperand(1), m_APInt(C)) &&
- CTZ >= C->getBitWidth() - C->countLeadingOnes())
- return II->getArgOperand(0);
- break;
- }
- default: {
- // Handle target specific intrinsics
- std::optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic(
- *II, DemandedMask, Known, KnownBitsComputed);
- if (V)
- return *V;
- break;
- }
- }
- }
- if (!KnownBitsComputed)
- computeKnownBits(V, Known, Depth, CxtI);
- break;
- }
- }
- // If the client is only demanding bits that we know, return the known
- // constant.
- if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
- return Constant::getIntegerValue(VTy, Known.One);
- return nullptr;
- }
- /// Helper routine of SimplifyDemandedUseBits. It computes Known
- /// bits. It also tries to handle simplifications that can be done based on
- /// DemandedMask, but without modifying the Instruction.
- Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits(
- Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth,
- Instruction *CxtI) {
- unsigned BitWidth = DemandedMask.getBitWidth();
- Type *ITy = I->getType();
- KnownBits LHSKnown(BitWidth);
- KnownBits RHSKnown(BitWidth);
- // Despite the fact that we can't simplify this instruction in all User's
- // context, we can at least compute the known bits, and we can
- // do simplifications that apply to *just* the one user if we know that
- // this instruction has a simpler value in that context.
- switch (I->getOpcode()) {
- case Instruction::And: {
- computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
- computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
- Known = LHSKnown & RHSKnown;
- // If the client is only demanding bits that we know, return the known
- // constant.
- if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
- return Constant::getIntegerValue(ITy, Known.One);
- // If all of the demanded bits are known 1 on one side, return the other.
- // These bits cannot contribute to the result of the 'and' in this context.
- if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
- return I->getOperand(0);
- if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
- return I->getOperand(1);
- break;
- }
- case Instruction::Or: {
- computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
- computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
- Known = LHSKnown | RHSKnown;
- // If the client is only demanding bits that we know, return the known
- // constant.
- if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
- return Constant::getIntegerValue(ITy, Known.One);
- // We can simplify (X|Y) -> X or Y in the user's context if we know that
- // only bits from X or Y are demanded.
- // If all of the demanded bits are known zero on one side, return the other.
- // These bits cannot contribute to the result of the 'or' in this context.
- if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
- return I->getOperand(0);
- if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
- return I->getOperand(1);
- break;
- }
- case Instruction::Xor: {
- computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
- computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
- Known = LHSKnown ^ RHSKnown;
- // If the client is only demanding bits that we know, return the known
- // constant.
- if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
- return Constant::getIntegerValue(ITy, Known.One);
- // We can simplify (X^Y) -> X or Y in the user's context if we know that
- // only bits from X or Y are demanded.
- // If all of the demanded bits are known zero on one side, return the other.
- if (DemandedMask.isSubsetOf(RHSKnown.Zero))
- return I->getOperand(0);
- if (DemandedMask.isSubsetOf(LHSKnown.Zero))
- return I->getOperand(1);
- break;
- }
- case Instruction::Add: {
- unsigned NLZ = DemandedMask.countLeadingZeros();
- APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
- // If an operand adds zeros to every bit below the highest demanded bit,
- // that operand doesn't change the result. Return the other side.
- computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
- if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
- return I->getOperand(0);
- computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
- if (DemandedFromOps.isSubsetOf(LHSKnown.Zero))
- return I->getOperand(1);
- break;
- }
- case Instruction::Sub: {
- unsigned NLZ = DemandedMask.countLeadingZeros();
- APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
- // If an operand subtracts zeros from every bit below the highest demanded
- // bit, that operand doesn't change the result. Return the other side.
- computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
- if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
- return I->getOperand(0);
- break;
- }
- case Instruction::AShr: {
- // Compute the Known bits to simplify things downstream.
- computeKnownBits(I, Known, Depth, CxtI);
- // If this user is only demanding bits that we know, return the known
- // constant.
- if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
- return Constant::getIntegerValue(ITy, Known.One);
- // If the right shift operand 0 is a result of a left shift by the same
- // amount, this is probably a zero/sign extension, which may be unnecessary,
- // if we do not demand any of the new sign bits. So, return the original
- // operand instead.
- const APInt *ShiftRC;
- const APInt *ShiftLC;
- Value *X;
- unsigned BitWidth = DemandedMask.getBitWidth();
- if (match(I,
- m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) &&
- ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) &&
- DemandedMask.isSubsetOf(APInt::getLowBitsSet(
- BitWidth, BitWidth - ShiftRC->getZExtValue()))) {
- return X;
- }
- break;
- }
- default:
- // Compute the Known bits to simplify things downstream.
- computeKnownBits(I, Known, Depth, CxtI);
- // If this user is only demanding bits that we know, return the known
- // constant.
- if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
- return Constant::getIntegerValue(ITy, Known.One);
- break;
- }
- return nullptr;
- }
- /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
- /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
- /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
- /// of "C2-C1".
- ///
- /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
- /// ..., bn}, without considering the specific value X is holding.
- /// This transformation is legal iff one of following conditions is hold:
- /// 1) All the bit in S are 0, in this case E1 == E2.
- /// 2) We don't care those bits in S, per the input DemandedMask.
- /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
- /// rest bits.
- ///
- /// Currently we only test condition 2).
- ///
- /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
- /// not successful.
- Value *InstCombinerImpl::simplifyShrShlDemandedBits(
- Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
- const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) {
- if (!ShlOp1 || !ShrOp1)
- return nullptr; // No-op.
- Value *VarX = Shr->getOperand(0);
- Type *Ty = VarX->getType();
- unsigned BitWidth = Ty->getScalarSizeInBits();
- if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
- return nullptr; // Undef.
- unsigned ShlAmt = ShlOp1.getZExtValue();
- unsigned ShrAmt = ShrOp1.getZExtValue();
- Known.One.clearAllBits();
- Known.Zero.setLowBits(ShlAmt - 1);
- Known.Zero &= DemandedMask;
- APInt BitMask1(APInt::getAllOnes(BitWidth));
- APInt BitMask2(APInt::getAllOnes(BitWidth));
- bool isLshr = (Shr->getOpcode() == Instruction::LShr);
- BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
- (BitMask1.ashr(ShrAmt) << ShlAmt);
- if (ShrAmt <= ShlAmt) {
- BitMask2 <<= (ShlAmt - ShrAmt);
- } else {
- BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
- BitMask2.ashr(ShrAmt - ShlAmt);
- }
- // Check if condition-2 (see the comment to this function) is satified.
- if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
- if (ShrAmt == ShlAmt)
- return VarX;
- if (!Shr->hasOneUse())
- return nullptr;
- BinaryOperator *New;
- if (ShrAmt < ShlAmt) {
- Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
- New = BinaryOperator::CreateShl(VarX, Amt);
- BinaryOperator *Orig = cast<BinaryOperator>(Shl);
- New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
- New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
- } else {
- Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
- New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
- BinaryOperator::CreateAShr(VarX, Amt);
- if (cast<BinaryOperator>(Shr)->isExact())
- New->setIsExact(true);
- }
- return InsertNewInstWith(New, *Shl);
- }
- return nullptr;
- }
- /// The specified value produces a vector with any number of elements.
- /// This method analyzes which elements of the operand are undef or poison and
- /// returns that information in UndefElts.
- ///
- /// DemandedElts contains the set of elements that are actually used by the
- /// caller, and by default (AllowMultipleUsers equals false) the value is
- /// simplified only if it has a single caller. If AllowMultipleUsers is set
- /// to true, DemandedElts refers to the union of sets of elements that are
- /// used by all callers.
- ///
- /// If the information about demanded elements can be used to simplify the
- /// operation, the operation is simplified, then the resultant value is
- /// returned. This returns null if no change was made.
- Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V,
- APInt DemandedElts,
- APInt &UndefElts,
- unsigned Depth,
- bool AllowMultipleUsers) {
- // Cannot analyze scalable type. The number of vector elements is not a
- // compile-time constant.
- if (isa<ScalableVectorType>(V->getType()))
- return nullptr;
- unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
- APInt EltMask(APInt::getAllOnes(VWidth));
- assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
- if (match(V, m_Undef())) {
- // If the entire vector is undef or poison, just return this info.
- UndefElts = EltMask;
- return nullptr;
- }
- if (DemandedElts.isZero()) { // If nothing is demanded, provide poison.
- UndefElts = EltMask;
- return PoisonValue::get(V->getType());
- }
- UndefElts = 0;
- if (auto *C = dyn_cast<Constant>(V)) {
- // Check if this is identity. If so, return 0 since we are not simplifying
- // anything.
- if (DemandedElts.isAllOnes())
- return nullptr;
- Type *EltTy = cast<VectorType>(V->getType())->getElementType();
- Constant *Poison = PoisonValue::get(EltTy);
- SmallVector<Constant*, 16> Elts;
- for (unsigned i = 0; i != VWidth; ++i) {
- if (!DemandedElts[i]) { // If not demanded, set to poison.
- Elts.push_back(Poison);
- UndefElts.setBit(i);
- continue;
- }
- Constant *Elt = C->getAggregateElement(i);
- if (!Elt) return nullptr;
- Elts.push_back(Elt);
- if (isa<UndefValue>(Elt)) // Already undef or poison.
- UndefElts.setBit(i);
- }
- // If we changed the constant, return it.
- Constant *NewCV = ConstantVector::get(Elts);
- return NewCV != C ? NewCV : nullptr;
- }
- // Limit search depth.
- if (Depth == 10)
- return nullptr;
- if (!AllowMultipleUsers) {
- // If multiple users are using the root value, proceed with
- // simplification conservatively assuming that all elements
- // are needed.
- if (!V->hasOneUse()) {
- // Quit if we find multiple users of a non-root value though.
- // They'll be handled when it's their turn to be visited by
- // the main instcombine process.
- if (Depth != 0)
- // TODO: Just compute the UndefElts information recursively.
- return nullptr;
- // Conservatively assume that all elements are needed.
- DemandedElts = EltMask;
- }
- }
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return nullptr; // Only analyze instructions.
- bool MadeChange = false;
- auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
- APInt Demanded, APInt &Undef) {
- auto *II = dyn_cast<IntrinsicInst>(Inst);
- Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
- if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
- replaceOperand(*Inst, OpNum, V);
- MadeChange = true;
- }
- };
- APInt UndefElts2(VWidth, 0);
- APInt UndefElts3(VWidth, 0);
- switch (I->getOpcode()) {
- default: break;
- case Instruction::GetElementPtr: {
- // The LangRef requires that struct geps have all constant indices. As
- // such, we can't convert any operand to partial undef.
- auto mayIndexStructType = [](GetElementPtrInst &GEP) {
- for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
- I != E; I++)
- if (I.isStruct())
- return true;
- return false;
- };
- if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
- break;
- // Conservatively track the demanded elements back through any vector
- // operands we may have. We know there must be at least one, or we
- // wouldn't have a vector result to get here. Note that we intentionally
- // merge the undef bits here since gepping with either an poison base or
- // index results in poison.
- for (unsigned i = 0; i < I->getNumOperands(); i++) {
- if (i == 0 ? match(I->getOperand(i), m_Undef())
- : match(I->getOperand(i), m_Poison())) {
- // If the entire vector is undefined, just return this info.
- UndefElts = EltMask;
- return nullptr;
- }
- if (I->getOperand(i)->getType()->isVectorTy()) {
- APInt UndefEltsOp(VWidth, 0);
- simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
- // gep(x, undef) is not undef, so skip considering idx ops here
- // Note that we could propagate poison, but we can't distinguish between
- // undef & poison bits ATM
- if (i == 0)
- UndefElts |= UndefEltsOp;
- }
- }
- break;
- }
- case Instruction::InsertElement: {
- // If this is a variable index, we don't know which element it overwrites.
- // demand exactly the same input as we produce.
- ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
- if (!Idx) {
- // Note that we can't propagate undef elt info, because we don't know
- // which elt is getting updated.
- simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
- break;
- }
- // The element inserted overwrites whatever was there, so the input demanded
- // set is simpler than the output set.
- unsigned IdxNo = Idx->getZExtValue();
- APInt PreInsertDemandedElts = DemandedElts;
- if (IdxNo < VWidth)
- PreInsertDemandedElts.clearBit(IdxNo);
- // If we only demand the element that is being inserted and that element
- // was extracted from the same index in another vector with the same type,
- // replace this insert with that other vector.
- // Note: This is attempted before the call to simplifyAndSetOp because that
- // may change UndefElts to a value that does not match with Vec.
- Value *Vec;
- if (PreInsertDemandedElts == 0 &&
- match(I->getOperand(1),
- m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) &&
- Vec->getType() == I->getType()) {
- return Vec;
- }
- simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
- // If this is inserting an element that isn't demanded, remove this
- // insertelement.
- if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
- Worklist.push(I);
- return I->getOperand(0);
- }
- // The inserted element is defined.
- UndefElts.clearBit(IdxNo);
- break;
- }
- case Instruction::ShuffleVector: {
- auto *Shuffle = cast<ShuffleVectorInst>(I);
- assert(Shuffle->getOperand(0)->getType() ==
- Shuffle->getOperand(1)->getType() &&
- "Expected shuffle operands to have same type");
- unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType())
- ->getNumElements();
- // Handle trivial case of a splat. Only check the first element of LHS
- // operand.
- if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) &&
- DemandedElts.isAllOnes()) {
- if (!match(I->getOperand(1), m_Undef())) {
- I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType()));
- MadeChange = true;
- }
- APInt LeftDemanded(OpWidth, 1);
- APInt LHSUndefElts(OpWidth, 0);
- simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
- if (LHSUndefElts[0])
- UndefElts = EltMask;
- else
- UndefElts.clearAllBits();
- break;
- }
- APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
- for (unsigned i = 0; i < VWidth; i++) {
- if (DemandedElts[i]) {
- unsigned MaskVal = Shuffle->getMaskValue(i);
- if (MaskVal != -1u) {
- assert(MaskVal < OpWidth * 2 &&
- "shufflevector mask index out of range!");
- if (MaskVal < OpWidth)
- LeftDemanded.setBit(MaskVal);
- else
- RightDemanded.setBit(MaskVal - OpWidth);
- }
- }
- }
- APInt LHSUndefElts(OpWidth, 0);
- simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
- APInt RHSUndefElts(OpWidth, 0);
- simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
- // If this shuffle does not change the vector length and the elements
- // demanded by this shuffle are an identity mask, then this shuffle is
- // unnecessary.
- //
- // We are assuming canonical form for the mask, so the source vector is
- // operand 0 and operand 1 is not used.
- //
- // Note that if an element is demanded and this shuffle mask is undefined
- // for that element, then the shuffle is not considered an identity
- // operation. The shuffle prevents poison from the operand vector from
- // leaking to the result by replacing poison with an undefined value.
- if (VWidth == OpWidth) {
- bool IsIdentityShuffle = true;
- for (unsigned i = 0; i < VWidth; i++) {
- unsigned MaskVal = Shuffle->getMaskValue(i);
- if (DemandedElts[i] && i != MaskVal) {
- IsIdentityShuffle = false;
- break;
- }
- }
- if (IsIdentityShuffle)
- return Shuffle->getOperand(0);
- }
- bool NewUndefElts = false;
- unsigned LHSIdx = -1u, LHSValIdx = -1u;
- unsigned RHSIdx = -1u, RHSValIdx = -1u;
- bool LHSUniform = true;
- bool RHSUniform = true;
- for (unsigned i = 0; i < VWidth; i++) {
- unsigned MaskVal = Shuffle->getMaskValue(i);
- if (MaskVal == -1u) {
- UndefElts.setBit(i);
- } else if (!DemandedElts[i]) {
- NewUndefElts = true;
- UndefElts.setBit(i);
- } else if (MaskVal < OpWidth) {
- if (LHSUndefElts[MaskVal]) {
- NewUndefElts = true;
- UndefElts.setBit(i);
- } else {
- LHSIdx = LHSIdx == -1u ? i : OpWidth;
- LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
- LHSUniform = LHSUniform && (MaskVal == i);
- }
- } else {
- if (RHSUndefElts[MaskVal - OpWidth]) {
- NewUndefElts = true;
- UndefElts.setBit(i);
- } else {
- RHSIdx = RHSIdx == -1u ? i : OpWidth;
- RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
- RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
- }
- }
- }
- // Try to transform shuffle with constant vector and single element from
- // this constant vector to single insertelement instruction.
- // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
- // insertelement V, C[ci], ci-n
- if (OpWidth ==
- cast<FixedVectorType>(Shuffle->getType())->getNumElements()) {
- Value *Op = nullptr;
- Constant *Value = nullptr;
- unsigned Idx = -1u;
- // Find constant vector with the single element in shuffle (LHS or RHS).
- if (LHSIdx < OpWidth && RHSUniform) {
- if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
- Op = Shuffle->getOperand(1);
- Value = CV->getOperand(LHSValIdx);
- Idx = LHSIdx;
- }
- }
- if (RHSIdx < OpWidth && LHSUniform) {
- if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
- Op = Shuffle->getOperand(0);
- Value = CV->getOperand(RHSValIdx);
- Idx = RHSIdx;
- }
- }
- // Found constant vector with single element - convert to insertelement.
- if (Op && Value) {
- Instruction *New = InsertElementInst::Create(
- Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
- Shuffle->getName());
- InsertNewInstWith(New, *Shuffle);
- return New;
- }
- }
- if (NewUndefElts) {
- // Add additional discovered undefs.
- SmallVector<int, 16> Elts;
- for (unsigned i = 0; i < VWidth; ++i) {
- if (UndefElts[i])
- Elts.push_back(UndefMaskElem);
- else
- Elts.push_back(Shuffle->getMaskValue(i));
- }
- Shuffle->setShuffleMask(Elts);
- MadeChange = true;
- }
- break;
- }
- case Instruction::Select: {
- // If this is a vector select, try to transform the select condition based
- // on the current demanded elements.
- SelectInst *Sel = cast<SelectInst>(I);
- if (Sel->getCondition()->getType()->isVectorTy()) {
- // TODO: We are not doing anything with UndefElts based on this call.
- // It is overwritten below based on the other select operands. If an
- // element of the select condition is known undef, then we are free to
- // choose the output value from either arm of the select. If we know that
- // one of those values is undef, then the output can be undef.
- simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
- }
- // Next, see if we can transform the arms of the select.
- APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
- if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
- for (unsigned i = 0; i < VWidth; i++) {
- // isNullValue() always returns false when called on a ConstantExpr.
- // Skip constant expressions to avoid propagating incorrect information.
- Constant *CElt = CV->getAggregateElement(i);
- if (isa<ConstantExpr>(CElt))
- continue;
- // TODO: If a select condition element is undef, we can demand from
- // either side. If one side is known undef, choosing that side would
- // propagate undef.
- if (CElt->isNullValue())
- DemandedLHS.clearBit(i);
- else
- DemandedRHS.clearBit(i);
- }
- }
- simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
- simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
- // Output elements are undefined if the element from each arm is undefined.
- // TODO: This can be improved. See comment in select condition handling.
- UndefElts = UndefElts2 & UndefElts3;
- break;
- }
- case Instruction::BitCast: {
- // Vector->vector casts only.
- VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
- if (!VTy) break;
- unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements();
- APInt InputDemandedElts(InVWidth, 0);
- UndefElts2 = APInt(InVWidth, 0);
- unsigned Ratio;
- if (VWidth == InVWidth) {
- // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
- // elements as are demanded of us.
- Ratio = 1;
- InputDemandedElts = DemandedElts;
- } else if ((VWidth % InVWidth) == 0) {
- // If the number of elements in the output is a multiple of the number of
- // elements in the input then an input element is live if any of the
- // corresponding output elements are live.
- Ratio = VWidth / InVWidth;
- for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
- if (DemandedElts[OutIdx])
- InputDemandedElts.setBit(OutIdx / Ratio);
- } else if ((InVWidth % VWidth) == 0) {
- // If the number of elements in the input is a multiple of the number of
- // elements in the output then an input element is live if the
- // corresponding output element is live.
- Ratio = InVWidth / VWidth;
- for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
- if (DemandedElts[InIdx / Ratio])
- InputDemandedElts.setBit(InIdx);
- } else {
- // Unsupported so far.
- break;
- }
- simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
- if (VWidth == InVWidth) {
- UndefElts = UndefElts2;
- } else if ((VWidth % InVWidth) == 0) {
- // If the number of elements in the output is a multiple of the number of
- // elements in the input then an output element is undef if the
- // corresponding input element is undef.
- for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
- if (UndefElts2[OutIdx / Ratio])
- UndefElts.setBit(OutIdx);
- } else if ((InVWidth % VWidth) == 0) {
- // If the number of elements in the input is a multiple of the number of
- // elements in the output then an output element is undef if all of the
- // corresponding input elements are undef.
- for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
- APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
- if (SubUndef.countPopulation() == Ratio)
- UndefElts.setBit(OutIdx);
- }
- } else {
- llvm_unreachable("Unimp");
- }
- break;
- }
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
- break;
- case Instruction::Call: {
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
- if (!II) break;
- switch (II->getIntrinsicID()) {
- case Intrinsic::masked_gather: // fallthrough
- case Intrinsic::masked_load: {
- // Subtlety: If we load from a pointer, the pointer must be valid
- // regardless of whether the element is demanded. Doing otherwise risks
- // segfaults which didn't exist in the original program.
- APInt DemandedPtrs(APInt::getAllOnes(VWidth)),
- DemandedPassThrough(DemandedElts);
- if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
- for (unsigned i = 0; i < VWidth; i++) {
- Constant *CElt = CV->getAggregateElement(i);
- if (CElt->isNullValue())
- DemandedPtrs.clearBit(i);
- else if (CElt->isAllOnesValue())
- DemandedPassThrough.clearBit(i);
- }
- if (II->getIntrinsicID() == Intrinsic::masked_gather)
- simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
- simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
- // Output elements are undefined if the element from both sources are.
- // TODO: can strengthen via mask as well.
- UndefElts = UndefElts2 & UndefElts3;
- break;
- }
- default: {
- // Handle target specific intrinsics
- std::optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic(
- *II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
- simplifyAndSetOp);
- if (V)
- return *V;
- break;
- }
- } // switch on IntrinsicID
- break;
- } // case Call
- } // switch on Opcode
- // TODO: We bail completely on integer div/rem and shifts because they have
- // UB/poison potential, but that should be refined.
- BinaryOperator *BO;
- if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
- simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
- simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
- // Output elements are undefined if both are undefined. Consider things
- // like undef & 0. The result is known zero, not undef.
- UndefElts &= UndefElts2;
- }
- // If we've proven all of the lanes undef, return an undef value.
- // TODO: Intersect w/demanded lanes
- if (UndefElts.isAllOnes())
- return UndefValue::get(I->getType());;
- return MadeChange ? I : nullptr;
- }
|