123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896 |
- //===- AggressiveInstCombine.cpp ------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the aggressive expression pattern combiner classes.
- // Currently, it handles expression patterns for:
- // * Truncate instruction
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
- #include "AggressiveInstCombineInternal.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/BasicAliasAnalysis.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Transforms/Utils/BuildLibCalls.h"
- #include "llvm/Transforms/Utils/Local.h"
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "aggressive-instcombine"
- STATISTIC(NumAnyOrAllBitsSet, "Number of any/all-bits-set patterns folded");
- STATISTIC(NumGuardedRotates,
- "Number of guarded rotates transformed into funnel shifts");
- STATISTIC(NumGuardedFunnelShifts,
- "Number of guarded funnel shifts transformed into funnel shifts");
- STATISTIC(NumPopCountRecognized, "Number of popcount idioms recognized");
- static cl::opt<unsigned> MaxInstrsToScan(
- "aggressive-instcombine-max-scan-instrs", cl::init(64), cl::Hidden,
- cl::desc("Max number of instructions to scan for aggressive instcombine."));
- /// Match a pattern for a bitwise funnel/rotate operation that partially guards
- /// against undefined behavior by branching around the funnel-shift/rotation
- /// when the shift amount is 0.
- static bool foldGuardedFunnelShift(Instruction &I, const DominatorTree &DT) {
- if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2)
- return false;
- // As with the one-use checks below, this is not strictly necessary, but we
- // are being cautious to avoid potential perf regressions on targets that
- // do not actually have a funnel/rotate instruction (where the funnel shift
- // would be expanded back into math/shift/logic ops).
- if (!isPowerOf2_32(I.getType()->getScalarSizeInBits()))
- return false;
- // Match V to funnel shift left/right and capture the source operands and
- // shift amount.
- auto matchFunnelShift = [](Value *V, Value *&ShVal0, Value *&ShVal1,
- Value *&ShAmt) {
- Value *SubAmt;
- unsigned Width = V->getType()->getScalarSizeInBits();
- // fshl(ShVal0, ShVal1, ShAmt)
- // == (ShVal0 << ShAmt) | (ShVal1 >> (Width -ShAmt))
- if (match(V, m_OneUse(m_c_Or(
- m_Shl(m_Value(ShVal0), m_Value(ShAmt)),
- m_LShr(m_Value(ShVal1),
- m_Sub(m_SpecificInt(Width), m_Value(SubAmt))))))) {
- if (ShAmt == SubAmt) // TODO: Use m_Specific
- return Intrinsic::fshl;
- }
- // fshr(ShVal0, ShVal1, ShAmt)
- // == (ShVal0 >> ShAmt) | (ShVal1 << (Width - ShAmt))
- if (match(V,
- m_OneUse(m_c_Or(m_Shl(m_Value(ShVal0), m_Sub(m_SpecificInt(Width),
- m_Value(SubAmt))),
- m_LShr(m_Value(ShVal1), m_Value(ShAmt)))))) {
- if (ShAmt == SubAmt) // TODO: Use m_Specific
- return Intrinsic::fshr;
- }
- return Intrinsic::not_intrinsic;
- };
- // One phi operand must be a funnel/rotate operation, and the other phi
- // operand must be the source value of that funnel/rotate operation:
- // phi [ rotate(RotSrc, ShAmt), FunnelBB ], [ RotSrc, GuardBB ]
- // phi [ fshl(ShVal0, ShVal1, ShAmt), FunnelBB ], [ ShVal0, GuardBB ]
- // phi [ fshr(ShVal0, ShVal1, ShAmt), FunnelBB ], [ ShVal1, GuardBB ]
- PHINode &Phi = cast<PHINode>(I);
- unsigned FunnelOp = 0, GuardOp = 1;
- Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1);
- Value *ShVal0, *ShVal1, *ShAmt;
- Intrinsic::ID IID = matchFunnelShift(P0, ShVal0, ShVal1, ShAmt);
- if (IID == Intrinsic::not_intrinsic ||
- (IID == Intrinsic::fshl && ShVal0 != P1) ||
- (IID == Intrinsic::fshr && ShVal1 != P1)) {
- IID = matchFunnelShift(P1, ShVal0, ShVal1, ShAmt);
- if (IID == Intrinsic::not_intrinsic ||
- (IID == Intrinsic::fshl && ShVal0 != P0) ||
- (IID == Intrinsic::fshr && ShVal1 != P0))
- return false;
- assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
- "Pattern must match funnel shift left or right");
- std::swap(FunnelOp, GuardOp);
- }
- // The incoming block with our source operand must be the "guard" block.
- // That must contain a cmp+branch to avoid the funnel/rotate when the shift
- // amount is equal to 0. The other incoming block is the block with the
- // funnel/rotate.
- BasicBlock *GuardBB = Phi.getIncomingBlock(GuardOp);
- BasicBlock *FunnelBB = Phi.getIncomingBlock(FunnelOp);
- Instruction *TermI = GuardBB->getTerminator();
- // Ensure that the shift values dominate each block.
- if (!DT.dominates(ShVal0, TermI) || !DT.dominates(ShVal1, TermI))
- return false;
- ICmpInst::Predicate Pred;
- BasicBlock *PhiBB = Phi.getParent();
- if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()),
- m_SpecificBB(PhiBB), m_SpecificBB(FunnelBB))))
- return false;
- if (Pred != CmpInst::ICMP_EQ)
- return false;
- IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt());
- if (ShVal0 == ShVal1)
- ++NumGuardedRotates;
- else
- ++NumGuardedFunnelShifts;
- // If this is not a rotate then the select was blocking poison from the
- // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
- bool IsFshl = IID == Intrinsic::fshl;
- if (ShVal0 != ShVal1) {
- if (IsFshl && !llvm::isGuaranteedNotToBePoison(ShVal1))
- ShVal1 = Builder.CreateFreeze(ShVal1);
- else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(ShVal0))
- ShVal0 = Builder.CreateFreeze(ShVal0);
- }
- // We matched a variation of this IR pattern:
- // GuardBB:
- // %cmp = icmp eq i32 %ShAmt, 0
- // br i1 %cmp, label %PhiBB, label %FunnelBB
- // FunnelBB:
- // %sub = sub i32 32, %ShAmt
- // %shr = lshr i32 %ShVal1, %sub
- // %shl = shl i32 %ShVal0, %ShAmt
- // %fsh = or i32 %shr, %shl
- // br label %PhiBB
- // PhiBB:
- // %cond = phi i32 [ %fsh, %FunnelBB ], [ %ShVal0, %GuardBB ]
- // -->
- // llvm.fshl.i32(i32 %ShVal0, i32 %ShVal1, i32 %ShAmt)
- Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType());
- Phi.replaceAllUsesWith(Builder.CreateCall(F, {ShVal0, ShVal1, ShAmt}));
- return true;
- }
- /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
- /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
- /// of 'and' ops, then we also need to capture the fact that we saw an
- /// "and X, 1", so that's an extra return value for that case.
- struct MaskOps {
- Value *Root = nullptr;
- APInt Mask;
- bool MatchAndChain;
- bool FoundAnd1 = false;
- MaskOps(unsigned BitWidth, bool MatchAnds)
- : Mask(APInt::getZero(BitWidth)), MatchAndChain(MatchAnds) {}
- };
- /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
- /// chain of 'and' or 'or' instructions looking for shift ops of a common source
- /// value. Examples:
- /// or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
- /// returns { X, 0x129 }
- /// and (and (X >> 1), 1), (X >> 4)
- /// returns { X, 0x12 }
- static bool matchAndOrChain(Value *V, MaskOps &MOps) {
- Value *Op0, *Op1;
- if (MOps.MatchAndChain) {
- // Recurse through a chain of 'and' operands. This requires an extra check
- // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
- // in the chain to know that all of the high bits are cleared.
- if (match(V, m_And(m_Value(Op0), m_One()))) {
- MOps.FoundAnd1 = true;
- return matchAndOrChain(Op0, MOps);
- }
- if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
- return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
- } else {
- // Recurse through a chain of 'or' operands.
- if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
- return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
- }
- // We need a shift-right or a bare value representing a compare of bit 0 of
- // the original source operand.
- Value *Candidate;
- const APInt *BitIndex = nullptr;
- if (!match(V, m_LShr(m_Value(Candidate), m_APInt(BitIndex))))
- Candidate = V;
- // Initialize result source operand.
- if (!MOps.Root)
- MOps.Root = Candidate;
- // The shift constant is out-of-range? This code hasn't been simplified.
- if (BitIndex && BitIndex->uge(MOps.Mask.getBitWidth()))
- return false;
- // Fill in the mask bit derived from the shift constant.
- MOps.Mask.setBit(BitIndex ? BitIndex->getZExtValue() : 0);
- return MOps.Root == Candidate;
- }
- /// Match patterns that correspond to "any-bits-set" and "all-bits-set".
- /// These will include a chain of 'or' or 'and'-shifted bits from a
- /// common source value:
- /// and (or (lshr X, C), ...), 1 --> (X & CMask) != 0
- /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
- /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
- /// that differ only with a final 'not' of the result. We expect that final
- /// 'not' to be folded with the compare that we create here (invert predicate).
- static bool foldAnyOrAllBitsSet(Instruction &I) {
- // The 'any-bits-set' ('or' chain) pattern is simpler to match because the
- // final "and X, 1" instruction must be the final op in the sequence.
- bool MatchAllBitsSet;
- if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
- MatchAllBitsSet = true;
- else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
- MatchAllBitsSet = false;
- else
- return false;
- MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
- if (MatchAllBitsSet) {
- if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
- return false;
- } else {
- if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
- return false;
- }
- // The pattern was found. Create a masked compare that replaces all of the
- // shift and logic ops.
- IRBuilder<> Builder(&I);
- Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
- Value *And = Builder.CreateAnd(MOps.Root, Mask);
- Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask)
- : Builder.CreateIsNotNull(And);
- Value *Zext = Builder.CreateZExt(Cmp, I.getType());
- I.replaceAllUsesWith(Zext);
- ++NumAnyOrAllBitsSet;
- return true;
- }
- // Try to recognize below function as popcount intrinsic.
- // This is the "best" algorithm from
- // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
- // Also used in TargetLowering::expandCTPOP().
- //
- // int popcount(unsigned int i) {
- // i = i - ((i >> 1) & 0x55555555);
- // i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
- // i = ((i + (i >> 4)) & 0x0F0F0F0F);
- // return (i * 0x01010101) >> 24;
- // }
- static bool tryToRecognizePopCount(Instruction &I) {
- if (I.getOpcode() != Instruction::LShr)
- return false;
- Type *Ty = I.getType();
- if (!Ty->isIntOrIntVectorTy())
- return false;
- unsigned Len = Ty->getScalarSizeInBits();
- // FIXME: fix Len == 8 and other irregular type lengths.
- if (!(Len <= 128 && Len > 8 && Len % 8 == 0))
- return false;
- APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55));
- APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33));
- APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F));
- APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01));
- APInt MaskShift = APInt(Len, Len - 8);
- Value *Op0 = I.getOperand(0);
- Value *Op1 = I.getOperand(1);
- Value *MulOp0;
- // Matching "(i * 0x01010101...) >> 24".
- if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) &&
- match(Op1, m_SpecificInt(MaskShift))) {
- Value *ShiftOp0;
- // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)".
- if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)),
- m_Deferred(ShiftOp0)),
- m_SpecificInt(Mask0F)))) {
- Value *AndOp0;
- // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)".
- if (match(ShiftOp0,
- m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)),
- m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)),
- m_SpecificInt(Mask33))))) {
- Value *Root, *SubOp1;
- // Matching "i - ((i >> 1) & 0x55555555...)".
- if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) &&
- match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)),
- m_SpecificInt(Mask55)))) {
- LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n");
- IRBuilder<> Builder(&I);
- Function *Func = Intrinsic::getDeclaration(
- I.getModule(), Intrinsic::ctpop, I.getType());
- I.replaceAllUsesWith(Builder.CreateCall(Func, {Root}));
- ++NumPopCountRecognized;
- return true;
- }
- }
- }
- }
- return false;
- }
- /// Fold smin(smax(fptosi(x), C1), C2) to llvm.fptosi.sat(x), providing C1 and
- /// C2 saturate the value of the fp conversion. The transform is not reversable
- /// as the fptosi.sat is more defined than the input - all values produce a
- /// valid value for the fptosi.sat, where as some produce poison for original
- /// that were out of range of the integer conversion. The reversed pattern may
- /// use fmax and fmin instead. As we cannot directly reverse the transform, and
- /// it is not always profitable, we make it conditional on the cost being
- /// reported as lower by TTI.
- static bool tryToFPToSat(Instruction &I, TargetTransformInfo &TTI) {
- // Look for min(max(fptosi, converting to fptosi_sat.
- Value *In;
- const APInt *MinC, *MaxC;
- if (!match(&I, m_SMax(m_OneUse(m_SMin(m_OneUse(m_FPToSI(m_Value(In))),
- m_APInt(MinC))),
- m_APInt(MaxC))) &&
- !match(&I, m_SMin(m_OneUse(m_SMax(m_OneUse(m_FPToSI(m_Value(In))),
- m_APInt(MaxC))),
- m_APInt(MinC))))
- return false;
- // Check that the constants clamp a saturate.
- if (!(*MinC + 1).isPowerOf2() || -*MaxC != *MinC + 1)
- return false;
- Type *IntTy = I.getType();
- Type *FpTy = In->getType();
- Type *SatTy =
- IntegerType::get(IntTy->getContext(), (*MinC + 1).exactLogBase2() + 1);
- if (auto *VecTy = dyn_cast<VectorType>(IntTy))
- SatTy = VectorType::get(SatTy, VecTy->getElementCount());
- // Get the cost of the intrinsic, and check that against the cost of
- // fptosi+smin+smax
- InstructionCost SatCost = TTI.getIntrinsicInstrCost(
- IntrinsicCostAttributes(Intrinsic::fptosi_sat, SatTy, {In}, {FpTy}),
- TTI::TCK_RecipThroughput);
- SatCost += TTI.getCastInstrCost(Instruction::SExt, SatTy, IntTy,
- TTI::CastContextHint::None,
- TTI::TCK_RecipThroughput);
- InstructionCost MinMaxCost = TTI.getCastInstrCost(
- Instruction::FPToSI, IntTy, FpTy, TTI::CastContextHint::None,
- TTI::TCK_RecipThroughput);
- MinMaxCost += TTI.getIntrinsicInstrCost(
- IntrinsicCostAttributes(Intrinsic::smin, IntTy, {IntTy}),
- TTI::TCK_RecipThroughput);
- MinMaxCost += TTI.getIntrinsicInstrCost(
- IntrinsicCostAttributes(Intrinsic::smax, IntTy, {IntTy}),
- TTI::TCK_RecipThroughput);
- if (SatCost >= MinMaxCost)
- return false;
- IRBuilder<> Builder(&I);
- Function *Fn = Intrinsic::getDeclaration(I.getModule(), Intrinsic::fptosi_sat,
- {SatTy, FpTy});
- Value *Sat = Builder.CreateCall(Fn, In);
- I.replaceAllUsesWith(Builder.CreateSExt(Sat, IntTy));
- return true;
- }
- /// Try to replace a mathlib call to sqrt with the LLVM intrinsic. This avoids
- /// pessimistic codegen that has to account for setting errno and can enable
- /// vectorization.
- static bool
- foldSqrt(Instruction &I, TargetTransformInfo &TTI, TargetLibraryInfo &TLI) {
- // Match a call to sqrt mathlib function.
- auto *Call = dyn_cast<CallInst>(&I);
- if (!Call)
- return false;
- Module *M = Call->getModule();
- LibFunc Func;
- if (!TLI.getLibFunc(*Call, Func) || !isLibFuncEmittable(M, &TLI, Func))
- return false;
- if (Func != LibFunc_sqrt && Func != LibFunc_sqrtf && Func != LibFunc_sqrtl)
- return false;
- // If (1) this is a sqrt libcall, (2) we can assume that NAN is not created
- // (because NNAN or the operand arg must not be less than -0.0) and (2) we
- // would not end up lowering to a libcall anyway (which could change the value
- // of errno), then:
- // (1) errno won't be set.
- // (2) it is safe to convert this to an intrinsic call.
- Type *Ty = Call->getType();
- Value *Arg = Call->getArgOperand(0);
- if (TTI.haveFastSqrt(Ty) &&
- (Call->hasNoNaNs() || CannotBeOrderedLessThanZero(Arg, &TLI))) {
- IRBuilder<> Builder(&I);
- IRBuilderBase::FastMathFlagGuard Guard(Builder);
- Builder.setFastMathFlags(Call->getFastMathFlags());
- Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, Ty);
- Value *NewSqrt = Builder.CreateCall(Sqrt, Arg, "sqrt");
- I.replaceAllUsesWith(NewSqrt);
- // Explicitly erase the old call because a call with side effects is not
- // trivially dead.
- I.eraseFromParent();
- return true;
- }
- return false;
- }
- // Check if this array of constants represents a cttz table.
- // Iterate over the elements from \p Table by trying to find/match all
- // the numbers from 0 to \p InputBits that should represent cttz results.
- static bool isCTTZTable(const ConstantDataArray &Table, uint64_t Mul,
- uint64_t Shift, uint64_t InputBits) {
- unsigned Length = Table.getNumElements();
- if (Length < InputBits || Length > InputBits * 2)
- return false;
- APInt Mask = APInt::getBitsSetFrom(InputBits, Shift);
- unsigned Matched = 0;
- for (unsigned i = 0; i < Length; i++) {
- uint64_t Element = Table.getElementAsInteger(i);
- if (Element >= InputBits)
- continue;
- // Check if \p Element matches a concrete answer. It could fail for some
- // elements that are never accessed, so we keep iterating over each element
- // from the table. The number of matched elements should be equal to the
- // number of potential right answers which is \p InputBits actually.
- if ((((Mul << Element) & Mask.getZExtValue()) >> Shift) == i)
- Matched++;
- }
- return Matched == InputBits;
- }
- // Try to recognize table-based ctz implementation.
- // E.g., an example in C (for more cases please see the llvm/tests):
- // int f(unsigned x) {
- // static const char table[32] =
- // {0, 1, 28, 2, 29, 14, 24, 3, 30,
- // 22, 20, 15, 25, 17, 4, 8, 31, 27,
- // 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9};
- // return table[((unsigned)((x & -x) * 0x077CB531U)) >> 27];
- // }
- // this can be lowered to `cttz` instruction.
- // There is also a special case when the element is 0.
- //
- // Here are some examples or LLVM IR for a 64-bit target:
- //
- // CASE 1:
- // %sub = sub i32 0, %x
- // %and = and i32 %sub, %x
- // %mul = mul i32 %and, 125613361
- // %shr = lshr i32 %mul, 27
- // %idxprom = zext i32 %shr to i64
- // %arrayidx = getelementptr inbounds [32 x i8], [32 x i8]* @ctz1.table, i64 0,
- // i64 %idxprom %0 = load i8, i8* %arrayidx, align 1, !tbaa !8
- //
- // CASE 2:
- // %sub = sub i32 0, %x
- // %and = and i32 %sub, %x
- // %mul = mul i32 %and, 72416175
- // %shr = lshr i32 %mul, 26
- // %idxprom = zext i32 %shr to i64
- // %arrayidx = getelementptr inbounds [64 x i16], [64 x i16]* @ctz2.table, i64
- // 0, i64 %idxprom %0 = load i16, i16* %arrayidx, align 2, !tbaa !8
- //
- // CASE 3:
- // %sub = sub i32 0, %x
- // %and = and i32 %sub, %x
- // %mul = mul i32 %and, 81224991
- // %shr = lshr i32 %mul, 27
- // %idxprom = zext i32 %shr to i64
- // %arrayidx = getelementptr inbounds [32 x i32], [32 x i32]* @ctz3.table, i64
- // 0, i64 %idxprom %0 = load i32, i32* %arrayidx, align 4, !tbaa !8
- //
- // CASE 4:
- // %sub = sub i64 0, %x
- // %and = and i64 %sub, %x
- // %mul = mul i64 %and, 283881067100198605
- // %shr = lshr i64 %mul, 58
- // %arrayidx = getelementptr inbounds [64 x i8], [64 x i8]* @table, i64 0, i64
- // %shr %0 = load i8, i8* %arrayidx, align 1, !tbaa !8
- //
- // All this can be lowered to @llvm.cttz.i32/64 intrinsic.
- static bool tryToRecognizeTableBasedCttz(Instruction &I) {
- LoadInst *LI = dyn_cast<LoadInst>(&I);
- if (!LI)
- return false;
- Type *AccessType = LI->getType();
- if (!AccessType->isIntegerTy())
- return false;
- GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getPointerOperand());
- if (!GEP || !GEP->isInBounds() || GEP->getNumIndices() != 2)
- return false;
- if (!GEP->getSourceElementType()->isArrayTy())
- return false;
- uint64_t ArraySize = GEP->getSourceElementType()->getArrayNumElements();
- if (ArraySize != 32 && ArraySize != 64)
- return false;
- GlobalVariable *GVTable = dyn_cast<GlobalVariable>(GEP->getPointerOperand());
- if (!GVTable || !GVTable->hasInitializer() || !GVTable->isConstant())
- return false;
- ConstantDataArray *ConstData =
- dyn_cast<ConstantDataArray>(GVTable->getInitializer());
- if (!ConstData)
- return false;
- if (!match(GEP->idx_begin()->get(), m_ZeroInt()))
- return false;
- Value *Idx2 = std::next(GEP->idx_begin())->get();
- Value *X1;
- uint64_t MulConst, ShiftConst;
- // FIXME: 64-bit targets have `i64` type for the GEP index, so this match will
- // probably fail for other (e.g. 32-bit) targets.
- if (!match(Idx2, m_ZExtOrSelf(
- m_LShr(m_Mul(m_c_And(m_Neg(m_Value(X1)), m_Deferred(X1)),
- m_ConstantInt(MulConst)),
- m_ConstantInt(ShiftConst)))))
- return false;
- unsigned InputBits = X1->getType()->getScalarSizeInBits();
- if (InputBits != 32 && InputBits != 64)
- return false;
- // Shift should extract top 5..7 bits.
- if (InputBits - Log2_32(InputBits) != ShiftConst &&
- InputBits - Log2_32(InputBits) - 1 != ShiftConst)
- return false;
- if (!isCTTZTable(*ConstData, MulConst, ShiftConst, InputBits))
- return false;
- auto ZeroTableElem = ConstData->getElementAsInteger(0);
- bool DefinedForZero = ZeroTableElem == InputBits;
- IRBuilder<> B(LI);
- ConstantInt *BoolConst = B.getInt1(!DefinedForZero);
- Type *XType = X1->getType();
- auto Cttz = B.CreateIntrinsic(Intrinsic::cttz, {XType}, {X1, BoolConst});
- Value *ZExtOrTrunc = nullptr;
- if (DefinedForZero) {
- ZExtOrTrunc = B.CreateZExtOrTrunc(Cttz, AccessType);
- } else {
- // If the value in elem 0 isn't the same as InputBits, we still want to
- // produce the value from the table.
- auto Cmp = B.CreateICmpEQ(X1, ConstantInt::get(XType, 0));
- auto Select =
- B.CreateSelect(Cmp, ConstantInt::get(XType, ZeroTableElem), Cttz);
- // NOTE: If the table[0] is 0, but the cttz(0) is defined by the Target
- // it should be handled as: `cttz(x) & (typeSize - 1)`.
- ZExtOrTrunc = B.CreateZExtOrTrunc(Select, AccessType);
- }
- LI->replaceAllUsesWith(ZExtOrTrunc);
- return true;
- }
- /// This is used by foldLoadsRecursive() to capture a Root Load node which is
- /// of type or(load, load) and recursively build the wide load. Also capture the
- /// shift amount, zero extend type and loadSize.
- struct LoadOps {
- LoadInst *Root = nullptr;
- LoadInst *RootInsert = nullptr;
- bool FoundRoot = false;
- uint64_t LoadSize = 0;
- Value *Shift = nullptr;
- Type *ZextType;
- AAMDNodes AATags;
- };
- // Identify and Merge consecutive loads recursively which is of the form
- // (ZExt(L1) << shift1) | (ZExt(L2) << shift2) -> ZExt(L3) << shift1
- // (ZExt(L1) << shift1) | ZExt(L2) -> ZExt(L3)
- static bool foldLoadsRecursive(Value *V, LoadOps &LOps, const DataLayout &DL,
- AliasAnalysis &AA) {
- Value *ShAmt2 = nullptr;
- Value *X;
- Instruction *L1, *L2;
- // Go to the last node with loads.
- if (match(V, m_OneUse(m_c_Or(
- m_Value(X),
- m_OneUse(m_Shl(m_OneUse(m_ZExt(m_OneUse(m_Instruction(L2)))),
- m_Value(ShAmt2)))))) ||
- match(V, m_OneUse(m_Or(m_Value(X),
- m_OneUse(m_ZExt(m_OneUse(m_Instruction(L2)))))))) {
- if (!foldLoadsRecursive(X, LOps, DL, AA) && LOps.FoundRoot)
- // Avoid Partial chain merge.
- return false;
- } else
- return false;
- // Check if the pattern has loads
- LoadInst *LI1 = LOps.Root;
- Value *ShAmt1 = LOps.Shift;
- if (LOps.FoundRoot == false &&
- (match(X, m_OneUse(m_ZExt(m_Instruction(L1)))) ||
- match(X, m_OneUse(m_Shl(m_OneUse(m_ZExt(m_OneUse(m_Instruction(L1)))),
- m_Value(ShAmt1)))))) {
- LI1 = dyn_cast<LoadInst>(L1);
- }
- LoadInst *LI2 = dyn_cast<LoadInst>(L2);
- // Check if loads are same, atomic, volatile and having same address space.
- if (LI1 == LI2 || !LI1 || !LI2 || !LI1->isSimple() || !LI2->isSimple() ||
- LI1->getPointerAddressSpace() != LI2->getPointerAddressSpace())
- return false;
- // Check if Loads come from same BB.
- if (LI1->getParent() != LI2->getParent())
- return false;
- // Find the data layout
- bool IsBigEndian = DL.isBigEndian();
- // Check if loads are consecutive and same size.
- Value *Load1Ptr = LI1->getPointerOperand();
- APInt Offset1(DL.getIndexTypeSizeInBits(Load1Ptr->getType()), 0);
- Load1Ptr =
- Load1Ptr->stripAndAccumulateConstantOffsets(DL, Offset1,
- /* AllowNonInbounds */ true);
- Value *Load2Ptr = LI2->getPointerOperand();
- APInt Offset2(DL.getIndexTypeSizeInBits(Load2Ptr->getType()), 0);
- Load2Ptr =
- Load2Ptr->stripAndAccumulateConstantOffsets(DL, Offset2,
- /* AllowNonInbounds */ true);
- // Verify if both loads have same base pointers and load sizes are same.
- uint64_t LoadSize1 = LI1->getType()->getPrimitiveSizeInBits();
- uint64_t LoadSize2 = LI2->getType()->getPrimitiveSizeInBits();
- if (Load1Ptr != Load2Ptr || LoadSize1 != LoadSize2)
- return false;
- // Support Loadsizes greater or equal to 8bits and only power of 2.
- if (LoadSize1 < 8 || !isPowerOf2_64(LoadSize1))
- return false;
- // Alias Analysis to check for stores b/w the loads.
- LoadInst *Start = LOps.FoundRoot ? LOps.RootInsert : LI1, *End = LI2;
- MemoryLocation Loc;
- if (!Start->comesBefore(End)) {
- std::swap(Start, End);
- Loc = MemoryLocation::get(End);
- if (LOps.FoundRoot)
- Loc = Loc.getWithNewSize(LOps.LoadSize);
- } else
- Loc = MemoryLocation::get(End);
- unsigned NumScanned = 0;
- for (Instruction &Inst :
- make_range(Start->getIterator(), End->getIterator())) {
- if (Inst.mayWriteToMemory() && isModSet(AA.getModRefInfo(&Inst, Loc)))
- return false;
- if (++NumScanned > MaxInstrsToScan)
- return false;
- }
- // Make sure Load with lower Offset is at LI1
- bool Reverse = false;
- if (Offset2.slt(Offset1)) {
- std::swap(LI1, LI2);
- std::swap(ShAmt1, ShAmt2);
- std::swap(Offset1, Offset2);
- std::swap(Load1Ptr, Load2Ptr);
- std::swap(LoadSize1, LoadSize2);
- Reverse = true;
- }
- // Big endian swap the shifts
- if (IsBigEndian)
- std::swap(ShAmt1, ShAmt2);
- // Find Shifts values.
- const APInt *Temp;
- uint64_t Shift1 = 0, Shift2 = 0;
- if (ShAmt1 && match(ShAmt1, m_APInt(Temp)))
- Shift1 = Temp->getZExtValue();
- if (ShAmt2 && match(ShAmt2, m_APInt(Temp)))
- Shift2 = Temp->getZExtValue();
- // First load is always LI1. This is where we put the new load.
- // Use the merged load size available from LI1 for forward loads.
- if (LOps.FoundRoot) {
- if (!Reverse)
- LoadSize1 = LOps.LoadSize;
- else
- LoadSize2 = LOps.LoadSize;
- }
- // Verify if shift amount and load index aligns and verifies that loads
- // are consecutive.
- uint64_t ShiftDiff = IsBigEndian ? LoadSize2 : LoadSize1;
- uint64_t PrevSize =
- DL.getTypeStoreSize(IntegerType::get(LI1->getContext(), LoadSize1));
- if ((Shift2 - Shift1) != ShiftDiff || (Offset2 - Offset1) != PrevSize)
- return false;
- // Update LOps
- AAMDNodes AATags1 = LOps.AATags;
- AAMDNodes AATags2 = LI2->getAAMetadata();
- if (LOps.FoundRoot == false) {
- LOps.FoundRoot = true;
- AATags1 = LI1->getAAMetadata();
- }
- LOps.LoadSize = LoadSize1 + LoadSize2;
- LOps.RootInsert = Start;
- // Concatenate the AATags of the Merged Loads.
- LOps.AATags = AATags1.concat(AATags2);
- LOps.Root = LI1;
- LOps.Shift = ShAmt1;
- LOps.ZextType = X->getType();
- return true;
- }
- // For a given BB instruction, evaluate all loads in the chain that form a
- // pattern which suggests that the loads can be combined. The one and only use
- // of the loads is to form a wider load.
- static bool foldConsecutiveLoads(Instruction &I, const DataLayout &DL,
- TargetTransformInfo &TTI, AliasAnalysis &AA) {
- // Only consider load chains of scalar values.
- if (isa<VectorType>(I.getType()))
- return false;
- LoadOps LOps;
- if (!foldLoadsRecursive(&I, LOps, DL, AA) || !LOps.FoundRoot)
- return false;
- IRBuilder<> Builder(&I);
- LoadInst *NewLoad = nullptr, *LI1 = LOps.Root;
- IntegerType *WiderType = IntegerType::get(I.getContext(), LOps.LoadSize);
- // TTI based checks if we want to proceed with wider load
- bool Allowed = TTI.isTypeLegal(WiderType);
- if (!Allowed)
- return false;
- unsigned AS = LI1->getPointerAddressSpace();
- unsigned Fast = 0;
- Allowed = TTI.allowsMisalignedMemoryAccesses(I.getContext(), LOps.LoadSize,
- AS, LI1->getAlign(), &Fast);
- if (!Allowed || !Fast)
- return false;
- // Make sure the Load pointer of type GEP/non-GEP is above insert point
- Instruction *Inst = dyn_cast<Instruction>(LI1->getPointerOperand());
- if (Inst && Inst->getParent() == LI1->getParent() &&
- !Inst->comesBefore(LOps.RootInsert))
- Inst->moveBefore(LOps.RootInsert);
- // New load can be generated
- Value *Load1Ptr = LI1->getPointerOperand();
- Builder.SetInsertPoint(LOps.RootInsert);
- Value *NewPtr = Builder.CreateBitCast(Load1Ptr, WiderType->getPointerTo(AS));
- NewLoad = Builder.CreateAlignedLoad(WiderType, NewPtr, LI1->getAlign(),
- LI1->isVolatile(), "");
- NewLoad->takeName(LI1);
- // Set the New Load AATags Metadata.
- if (LOps.AATags)
- NewLoad->setAAMetadata(LOps.AATags);
- Value *NewOp = NewLoad;
- // Check if zero extend needed.
- if (LOps.ZextType)
- NewOp = Builder.CreateZExt(NewOp, LOps.ZextType);
- // Check if shift needed. We need to shift with the amount of load1
- // shift if not zero.
- if (LOps.Shift)
- NewOp = Builder.CreateShl(NewOp, LOps.Shift);
- I.replaceAllUsesWith(NewOp);
- return true;
- }
- /// This is the entry point for folds that could be implemented in regular
- /// InstCombine, but they are separated because they are not expected to
- /// occur frequently and/or have more than a constant-length pattern match.
- static bool foldUnusualPatterns(Function &F, DominatorTree &DT,
- TargetTransformInfo &TTI,
- TargetLibraryInfo &TLI, AliasAnalysis &AA) {
- bool MadeChange = false;
- for (BasicBlock &BB : F) {
- // Ignore unreachable basic blocks.
- if (!DT.isReachableFromEntry(&BB))
- continue;
- const DataLayout &DL = F.getParent()->getDataLayout();
- // Walk the block backwards for efficiency. We're matching a chain of
- // use->defs, so we're more likely to succeed by starting from the bottom.
- // Also, we want to avoid matching partial patterns.
- // TODO: It would be more efficient if we removed dead instructions
- // iteratively in this loop rather than waiting until the end.
- for (Instruction &I : make_early_inc_range(llvm::reverse(BB))) {
- MadeChange |= foldAnyOrAllBitsSet(I);
- MadeChange |= foldGuardedFunnelShift(I, DT);
- MadeChange |= tryToRecognizePopCount(I);
- MadeChange |= tryToFPToSat(I, TTI);
- MadeChange |= tryToRecognizeTableBasedCttz(I);
- MadeChange |= foldConsecutiveLoads(I, DL, TTI, AA);
- // NOTE: This function introduces erasing of the instruction `I`, so it
- // needs to be called at the end of this sequence, otherwise we may make
- // bugs.
- MadeChange |= foldSqrt(I, TTI, TLI);
- }
- }
- // We're done with transforms, so remove dead instructions.
- if (MadeChange)
- for (BasicBlock &BB : F)
- SimplifyInstructionsInBlock(&BB);
- return MadeChange;
- }
- /// This is the entry point for all transforms. Pass manager differences are
- /// handled in the callers of this function.
- static bool runImpl(Function &F, AssumptionCache &AC, TargetTransformInfo &TTI,
- TargetLibraryInfo &TLI, DominatorTree &DT,
- AliasAnalysis &AA) {
- bool MadeChange = false;
- const DataLayout &DL = F.getParent()->getDataLayout();
- TruncInstCombine TIC(AC, TLI, DL, DT);
- MadeChange |= TIC.run(F);
- MadeChange |= foldUnusualPatterns(F, DT, TTI, TLI, AA);
- return MadeChange;
- }
- PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &TTI = AM.getResult<TargetIRAnalysis>(F);
- auto &AA = AM.getResult<AAManager>(F);
- if (!runImpl(F, AC, TTI, TLI, DT, AA)) {
- // No changes, all analyses are preserved.
- return PreservedAnalyses::all();
- }
- // Mark all the analyses that instcombine updates as preserved.
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- return PA;
- }
|