123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290 |
- //===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the X86SelectionDAGInfo class.
- //
- //===----------------------------------------------------------------------===//
- #include "X86SelectionDAGInfo.h"
- #include "X86ISelLowering.h"
- #include "X86InstrInfo.h"
- #include "X86RegisterInfo.h"
- #include "X86Subtarget.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/IR/DerivedTypes.h"
- using namespace llvm;
- #define DEBUG_TYPE "x86-selectiondag-info"
- static cl::opt<bool>
- UseFSRMForMemcpy("x86-use-fsrm-for-memcpy", cl::Hidden, cl::init(false),
- cl::desc("Use fast short rep mov in memcpy lowering"));
- bool X86SelectionDAGInfo::isBaseRegConflictPossible(
- SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const {
- // We cannot use TRI->hasBasePointer() until *after* we select all basic
- // blocks. Legalization may introduce new stack temporaries with large
- // alignment requirements. Fall back to generic code if there are any
- // dynamic stack adjustments (hopefully rare) and the base pointer would
- // conflict if we had to use it.
- MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
- if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
- return false;
- const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>(
- DAG.getSubtarget().getRegisterInfo());
- return llvm::is_contained(ClobberSet, TRI->getBaseRegister());
- }
- SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
- SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val,
- SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
- MachinePointerInfo DstPtrInfo) const {
- ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
- const X86Subtarget &Subtarget =
- DAG.getMachineFunction().getSubtarget<X86Subtarget>();
- #ifndef NDEBUG
- // If the base register might conflict with our physical registers, bail out.
- const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
- X86::ECX, X86::EAX, X86::EDI};
- assert(!isBaseRegConflictPossible(DAG, ClobberSet));
- #endif
- // If to a segment-relative address space, use the default lowering.
- if (DstPtrInfo.getAddrSpace() >= 256)
- return SDValue();
- // If not DWORD aligned or size is more than the threshold, call the library.
- // The libc version is likely to be faster for these cases. It can use the
- // address value and run time information about the CPU.
- if (Alignment < Align(4) || !ConstantSize ||
- ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold())
- return SDValue();
- uint64_t SizeVal = ConstantSize->getZExtValue();
- SDValue InFlag;
- EVT AVT;
- SDValue Count;
- unsigned BytesLeft = 0;
- if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) {
- unsigned ValReg;
- uint64_t Val = ValC->getZExtValue() & 255;
- // If the value is a constant, then we can potentially use larger sets.
- if (Alignment > Align(2)) {
- // DWORD aligned
- AVT = MVT::i32;
- ValReg = X86::EAX;
- Val = (Val << 8) | Val;
- Val = (Val << 16) | Val;
- if (Subtarget.is64Bit() && Alignment > Align(8)) { // QWORD aligned
- AVT = MVT::i64;
- ValReg = X86::RAX;
- Val = (Val << 32) | Val;
- }
- } else if (Alignment == Align(2)) {
- // WORD aligned
- AVT = MVT::i16;
- ValReg = X86::AX;
- Val = (Val << 8) | Val;
- } else {
- // Byte aligned
- AVT = MVT::i8;
- ValReg = X86::AL;
- Count = DAG.getIntPtrConstant(SizeVal, dl);
- }
- if (AVT.bitsGT(MVT::i8)) {
- unsigned UBytes = AVT.getSizeInBits() / 8;
- Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl);
- BytesLeft = SizeVal % UBytes;
- }
- Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT),
- InFlag);
- InFlag = Chain.getValue(1);
- } else {
- AVT = MVT::i8;
- Count = DAG.getIntPtrConstant(SizeVal, dl);
- Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InFlag);
- InFlag = Chain.getValue(1);
- }
- bool Use64BitRegs = Subtarget.isTarget64BitLP64();
- Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX,
- Count, InFlag);
- InFlag = Chain.getValue(1);
- Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI,
- Dst, InFlag);
- InFlag = Chain.getValue(1);
- SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
- SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
- Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
- if (BytesLeft) {
- // Handle the last 1 - 7 bytes.
- unsigned Offset = SizeVal - BytesLeft;
- EVT AddrVT = Dst.getValueType();
- EVT SizeVT = Size.getValueType();
- Chain =
- DAG.getMemset(Chain, dl,
- DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
- DAG.getConstant(Offset, dl, AddrVT)),
- Val, DAG.getConstant(BytesLeft, dl, SizeVT), Alignment,
- isVolatile, AlwaysInline,
- /* isTailCall */ false, DstPtrInfo.getWithOffset(Offset));
- }
- // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
- return Chain;
- }
- /// Emit a single REP MOVS{B,W,D,Q} instruction.
- static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG,
- const SDLoc &dl, SDValue Chain, SDValue Dst,
- SDValue Src, SDValue Size, MVT AVT) {
- const bool Use64BitRegs = Subtarget.isTarget64BitLP64();
- const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX;
- const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI;
- const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI;
- SDValue InFlag;
- Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InFlag);
- InFlag = Chain.getValue(1);
- Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InFlag);
- InFlag = Chain.getValue(1);
- Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InFlag);
- InFlag = Chain.getValue(1);
- SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
- SDValue Ops[] = {Chain, DAG.getValueType(AVT), InFlag};
- return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
- }
- /// Emit a single REP MOVSB instruction for a particular constant size.
- static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
- const SDLoc &dl, SDValue Chain, SDValue Dst,
- SDValue Src, uint64_t Size) {
- return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
- DAG.getIntPtrConstant(Size, dl), MVT::i8);
- }
- /// Returns the best type to use with repmovs depending on alignment.
- static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget,
- uint64_t Align) {
- assert((Align != 0) && "Align is normalized");
- assert(isPowerOf2_64(Align) && "Align is a power of 2");
- switch (Align) {
- case 1:
- return MVT::i8;
- case 2:
- return MVT::i16;
- case 4:
- return MVT::i32;
- default:
- return Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
- }
- }
- /// Returns a REP MOVS instruction, possibly with a few load/stores to implement
- /// a constant size memory copy. In some cases where we know REP MOVS is
- /// inefficient we return an empty SDValue so the calling code can either
- /// generate a load/store sequence or call the runtime memcpy function.
- static SDValue emitConstantSizeRepmov(
- SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl,
- SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT,
- unsigned Align, bool isVolatile, bool AlwaysInline,
- MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) {
- /// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very
- /// efficient.
- if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold())
- return SDValue();
- /// If we have enhanced repmovs we use it.
- if (Subtarget.hasERMSB())
- return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
- assert(!Subtarget.hasERMSB() && "No efficient RepMovs");
- /// We assume runtime memcpy will do a better job for unaligned copies when
- /// ERMS is not present.
- if (!AlwaysInline && (Align & 3) != 0)
- return SDValue();
- const MVT BlockType = getOptimalRepmovsType(Subtarget, Align);
- const uint64_t BlockBytes = BlockType.getSizeInBits() / 8;
- const uint64_t BlockCount = Size / BlockBytes;
- const uint64_t BytesLeft = Size % BlockBytes;
- SDValue RepMovs =
- emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
- DAG.getIntPtrConstant(BlockCount, dl), BlockType);
- /// RepMov can process the whole length.
- if (BytesLeft == 0)
- return RepMovs;
- assert(BytesLeft && "We have leftover at this point");
- /// In case we optimize for size we use repmovsb even if it's less efficient
- /// so we can save the loads/stores of the leftover.
- if (DAG.getMachineFunction().getFunction().hasMinSize())
- return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
- // Handle the last 1 - 7 bytes.
- SmallVector<SDValue, 4> Results;
- Results.push_back(RepMovs);
- unsigned Offset = Size - BytesLeft;
- EVT DstVT = Dst.getValueType();
- EVT SrcVT = Src.getValueType();
- Results.push_back(DAG.getMemcpy(
- Chain, dl,
- DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)),
- DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)),
- DAG.getConstant(BytesLeft, dl, SizeVT), llvm::Align(Align), isVolatile,
- /*AlwaysInline*/ true, /*isTailCall*/ false,
- DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset)));
- return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
- }
- SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
- SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
- SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
- MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
- // If to a segment-relative address space, use the default lowering.
- if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256)
- return SDValue();
- // If the base registers conflict with our physical registers, use the default
- // lowering.
- const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI,
- X86::ECX, X86::ESI, X86::EDI};
- if (isBaseRegConflictPossible(DAG, ClobberSet))
- return SDValue();
- const X86Subtarget &Subtarget =
- DAG.getMachineFunction().getSubtarget<X86Subtarget>();
- // If enabled and available, use fast short rep mov.
- if (UseFSRMForMemcpy && Subtarget.hasFSRM())
- return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, MVT::i8);
- /// Handle constant sizes,
- if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size))
- return emitConstantSizeRepmov(
- DAG, Subtarget, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
- Size.getValueType(), Alignment.value(), isVolatile, AlwaysInline,
- DstPtrInfo, SrcPtrInfo);
- return SDValue();
- }
|