X86InstrInfo.cpp 352 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736
  1. //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file contains the X86 implementation of the TargetInstrInfo class.
  10. //
  11. //===----------------------------------------------------------------------===//
  12. #include "X86InstrInfo.h"
  13. #include "X86.h"
  14. #include "X86InstrBuilder.h"
  15. #include "X86InstrFoldTables.h"
  16. #include "X86MachineFunctionInfo.h"
  17. #include "X86Subtarget.h"
  18. #include "X86TargetMachine.h"
  19. #include "llvm/ADT/STLExtras.h"
  20. #include "llvm/ADT/Sequence.h"
  21. #include "llvm/CodeGen/LiveIntervals.h"
  22. #include "llvm/CodeGen/LivePhysRegs.h"
  23. #include "llvm/CodeGen/LiveVariables.h"
  24. #include "llvm/CodeGen/MachineConstantPool.h"
  25. #include "llvm/CodeGen/MachineDominators.h"
  26. #include "llvm/CodeGen/MachineFrameInfo.h"
  27. #include "llvm/CodeGen/MachineInstr.h"
  28. #include "llvm/CodeGen/MachineInstrBuilder.h"
  29. #include "llvm/CodeGen/MachineModuleInfo.h"
  30. #include "llvm/CodeGen/MachineOperand.h"
  31. #include "llvm/CodeGen/MachineRegisterInfo.h"
  32. #include "llvm/CodeGen/StackMaps.h"
  33. #include "llvm/IR/DebugInfoMetadata.h"
  34. #include "llvm/IR/DerivedTypes.h"
  35. #include "llvm/IR/Function.h"
  36. #include "llvm/IR/InstrTypes.h"
  37. #include "llvm/MC/MCAsmInfo.h"
  38. #include "llvm/MC/MCExpr.h"
  39. #include "llvm/MC/MCInst.h"
  40. #include "llvm/Support/CommandLine.h"
  41. #include "llvm/Support/Debug.h"
  42. #include "llvm/Support/ErrorHandling.h"
  43. #include "llvm/Support/raw_ostream.h"
  44. #include "llvm/Target/TargetOptions.h"
  45. using namespace llvm;
  46. #define DEBUG_TYPE "x86-instr-info"
  47. #define GET_INSTRINFO_CTOR_DTOR
  48. #include "X86GenInstrInfo.inc"
  49. static cl::opt<bool>
  50. NoFusing("disable-spill-fusing",
  51. cl::desc("Disable fusing of spill code into instructions"),
  52. cl::Hidden);
  53. static cl::opt<bool>
  54. PrintFailedFusing("print-failed-fuse-candidates",
  55. cl::desc("Print instructions that the allocator wants to"
  56. " fuse, but the X86 backend currently can't"),
  57. cl::Hidden);
  58. static cl::opt<bool>
  59. ReMatPICStubLoad("remat-pic-stub-load",
  60. cl::desc("Re-materialize load from stub in PIC mode"),
  61. cl::init(false), cl::Hidden);
  62. static cl::opt<unsigned>
  63. PartialRegUpdateClearance("partial-reg-update-clearance",
  64. cl::desc("Clearance between two register writes "
  65. "for inserting XOR to avoid partial "
  66. "register update"),
  67. cl::init(64), cl::Hidden);
  68. static cl::opt<unsigned>
  69. UndefRegClearance("undef-reg-clearance",
  70. cl::desc("How many idle instructions we would like before "
  71. "certain undef register reads"),
  72. cl::init(128), cl::Hidden);
  73. // Pin the vtable to this file.
  74. void X86InstrInfo::anchor() {}
  75. X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
  76. : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
  77. : X86::ADJCALLSTACKDOWN32),
  78. (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
  79. : X86::ADJCALLSTACKUP32),
  80. X86::CATCHRET,
  81. (STI.is64Bit() ? X86::RET64 : X86::RET32)),
  82. Subtarget(STI), RI(STI.getTargetTriple()) {
  83. }
  84. bool
  85. X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
  86. Register &SrcReg, Register &DstReg,
  87. unsigned &SubIdx) const {
  88. switch (MI.getOpcode()) {
  89. default: break;
  90. case X86::MOVSX16rr8:
  91. case X86::MOVZX16rr8:
  92. case X86::MOVSX32rr8:
  93. case X86::MOVZX32rr8:
  94. case X86::MOVSX64rr8:
  95. if (!Subtarget.is64Bit())
  96. // It's not always legal to reference the low 8-bit of the larger
  97. // register in 32-bit mode.
  98. return false;
  99. [[fallthrough]];
  100. case X86::MOVSX32rr16:
  101. case X86::MOVZX32rr16:
  102. case X86::MOVSX64rr16:
  103. case X86::MOVSX64rr32: {
  104. if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
  105. // Be conservative.
  106. return false;
  107. SrcReg = MI.getOperand(1).getReg();
  108. DstReg = MI.getOperand(0).getReg();
  109. switch (MI.getOpcode()) {
  110. default: llvm_unreachable("Unreachable!");
  111. case X86::MOVSX16rr8:
  112. case X86::MOVZX16rr8:
  113. case X86::MOVSX32rr8:
  114. case X86::MOVZX32rr8:
  115. case X86::MOVSX64rr8:
  116. SubIdx = X86::sub_8bit;
  117. break;
  118. case X86::MOVSX32rr16:
  119. case X86::MOVZX32rr16:
  120. case X86::MOVSX64rr16:
  121. SubIdx = X86::sub_16bit;
  122. break;
  123. case X86::MOVSX64rr32:
  124. SubIdx = X86::sub_32bit;
  125. break;
  126. }
  127. return true;
  128. }
  129. }
  130. return false;
  131. }
  132. bool X86InstrInfo::isDataInvariant(MachineInstr &MI) {
  133. if (MI.mayLoad() || MI.mayStore())
  134. return false;
  135. // Some target-independent operations that trivially lower to data-invariant
  136. // instructions.
  137. if (MI.isCopyLike() || MI.isInsertSubreg())
  138. return true;
  139. unsigned Opcode = MI.getOpcode();
  140. using namespace X86;
  141. // On x86 it is believed that imul is constant time w.r.t. the loaded data.
  142. // However, they set flags and are perhaps the most surprisingly constant
  143. // time operations so we call them out here separately.
  144. if (isIMUL(Opcode))
  145. return true;
  146. // Bit scanning and counting instructions that are somewhat surprisingly
  147. // constant time as they scan across bits and do other fairly complex
  148. // operations like popcnt, but are believed to be constant time on x86.
  149. // However, these set flags.
  150. if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) ||
  151. isTZCNT(Opcode))
  152. return true;
  153. // Bit manipulation instructions are effectively combinations of basic
  154. // arithmetic ops, and should still execute in constant time. These also
  155. // set flags.
  156. if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) ||
  157. isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) ||
  158. isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) ||
  159. isTZMSK(Opcode))
  160. return true;
  161. // Bit extracting and clearing instructions should execute in constant time,
  162. // and set flags.
  163. if (isBEXTR(Opcode) || isBZHI(Opcode))
  164. return true;
  165. // Shift and rotate.
  166. if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) ||
  167. isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode))
  168. return true;
  169. // Basic arithmetic is constant time on the input but does set flags.
  170. if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) ||
  171. isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode))
  172. return true;
  173. // Arithmetic with just 32-bit and 64-bit variants and no immediates.
  174. if (isADCX(Opcode) || isADOX(Opcode) || isANDN(Opcode))
  175. return true;
  176. // Unary arithmetic operations.
  177. if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode))
  178. return true;
  179. // Unlike other arithmetic, NOT doesn't set EFLAGS.
  180. if (isNOT(Opcode))
  181. return true;
  182. // Various move instructions used to zero or sign extend things. Note that we
  183. // intentionally don't support the _NOREX variants as we can't handle that
  184. // register constraint anyways.
  185. if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode))
  186. return true;
  187. // Arithmetic instructions that are both constant time and don't set flags.
  188. if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode))
  189. return true;
  190. // LEA doesn't actually access memory, and its arithmetic is constant time.
  191. if (isLEA(Opcode))
  192. return true;
  193. // By default, assume that the instruction is not data invariant.
  194. return false;
  195. }
  196. bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) {
  197. switch (MI.getOpcode()) {
  198. default:
  199. // By default, assume that the load will immediately leak.
  200. return false;
  201. // On x86 it is believed that imul is constant time w.r.t. the loaded data.
  202. // However, they set flags and are perhaps the most surprisingly constant
  203. // time operations so we call them out here separately.
  204. case X86::IMUL16rm:
  205. case X86::IMUL16rmi8:
  206. case X86::IMUL16rmi:
  207. case X86::IMUL32rm:
  208. case X86::IMUL32rmi8:
  209. case X86::IMUL32rmi:
  210. case X86::IMUL64rm:
  211. case X86::IMUL64rmi32:
  212. case X86::IMUL64rmi8:
  213. // Bit scanning and counting instructions that are somewhat surprisingly
  214. // constant time as they scan across bits and do other fairly complex
  215. // operations like popcnt, but are believed to be constant time on x86.
  216. // However, these set flags.
  217. case X86::BSF16rm:
  218. case X86::BSF32rm:
  219. case X86::BSF64rm:
  220. case X86::BSR16rm:
  221. case X86::BSR32rm:
  222. case X86::BSR64rm:
  223. case X86::LZCNT16rm:
  224. case X86::LZCNT32rm:
  225. case X86::LZCNT64rm:
  226. case X86::POPCNT16rm:
  227. case X86::POPCNT32rm:
  228. case X86::POPCNT64rm:
  229. case X86::TZCNT16rm:
  230. case X86::TZCNT32rm:
  231. case X86::TZCNT64rm:
  232. // Bit manipulation instructions are effectively combinations of basic
  233. // arithmetic ops, and should still execute in constant time. These also
  234. // set flags.
  235. case X86::BLCFILL32rm:
  236. case X86::BLCFILL64rm:
  237. case X86::BLCI32rm:
  238. case X86::BLCI64rm:
  239. case X86::BLCIC32rm:
  240. case X86::BLCIC64rm:
  241. case X86::BLCMSK32rm:
  242. case X86::BLCMSK64rm:
  243. case X86::BLCS32rm:
  244. case X86::BLCS64rm:
  245. case X86::BLSFILL32rm:
  246. case X86::BLSFILL64rm:
  247. case X86::BLSI32rm:
  248. case X86::BLSI64rm:
  249. case X86::BLSIC32rm:
  250. case X86::BLSIC64rm:
  251. case X86::BLSMSK32rm:
  252. case X86::BLSMSK64rm:
  253. case X86::BLSR32rm:
  254. case X86::BLSR64rm:
  255. case X86::TZMSK32rm:
  256. case X86::TZMSK64rm:
  257. // Bit extracting and clearing instructions should execute in constant time,
  258. // and set flags.
  259. case X86::BEXTR32rm:
  260. case X86::BEXTR64rm:
  261. case X86::BEXTRI32mi:
  262. case X86::BEXTRI64mi:
  263. case X86::BZHI32rm:
  264. case X86::BZHI64rm:
  265. // Basic arithmetic is constant time on the input but does set flags.
  266. case X86::ADC8rm:
  267. case X86::ADC16rm:
  268. case X86::ADC32rm:
  269. case X86::ADC64rm:
  270. case X86::ADCX32rm:
  271. case X86::ADCX64rm:
  272. case X86::ADD8rm:
  273. case X86::ADD16rm:
  274. case X86::ADD32rm:
  275. case X86::ADD64rm:
  276. case X86::ADOX32rm:
  277. case X86::ADOX64rm:
  278. case X86::AND8rm:
  279. case X86::AND16rm:
  280. case X86::AND32rm:
  281. case X86::AND64rm:
  282. case X86::ANDN32rm:
  283. case X86::ANDN64rm:
  284. case X86::OR8rm:
  285. case X86::OR16rm:
  286. case X86::OR32rm:
  287. case X86::OR64rm:
  288. case X86::SBB8rm:
  289. case X86::SBB16rm:
  290. case X86::SBB32rm:
  291. case X86::SBB64rm:
  292. case X86::SUB8rm:
  293. case X86::SUB16rm:
  294. case X86::SUB32rm:
  295. case X86::SUB64rm:
  296. case X86::XOR8rm:
  297. case X86::XOR16rm:
  298. case X86::XOR32rm:
  299. case X86::XOR64rm:
  300. // Integer multiply w/o affecting flags is still believed to be constant
  301. // time on x86. Called out separately as this is among the most surprising
  302. // instructions to exhibit that behavior.
  303. case X86::MULX32rm:
  304. case X86::MULX64rm:
  305. // Arithmetic instructions that are both constant time and don't set flags.
  306. case X86::RORX32mi:
  307. case X86::RORX64mi:
  308. case X86::SARX32rm:
  309. case X86::SARX64rm:
  310. case X86::SHLX32rm:
  311. case X86::SHLX64rm:
  312. case X86::SHRX32rm:
  313. case X86::SHRX64rm:
  314. // Conversions are believed to be constant time and don't set flags.
  315. case X86::CVTTSD2SI64rm:
  316. case X86::VCVTTSD2SI64rm:
  317. case X86::VCVTTSD2SI64Zrm:
  318. case X86::CVTTSD2SIrm:
  319. case X86::VCVTTSD2SIrm:
  320. case X86::VCVTTSD2SIZrm:
  321. case X86::CVTTSS2SI64rm:
  322. case X86::VCVTTSS2SI64rm:
  323. case X86::VCVTTSS2SI64Zrm:
  324. case X86::CVTTSS2SIrm:
  325. case X86::VCVTTSS2SIrm:
  326. case X86::VCVTTSS2SIZrm:
  327. case X86::CVTSI2SDrm:
  328. case X86::VCVTSI2SDrm:
  329. case X86::VCVTSI2SDZrm:
  330. case X86::CVTSI2SSrm:
  331. case X86::VCVTSI2SSrm:
  332. case X86::VCVTSI2SSZrm:
  333. case X86::CVTSI642SDrm:
  334. case X86::VCVTSI642SDrm:
  335. case X86::VCVTSI642SDZrm:
  336. case X86::CVTSI642SSrm:
  337. case X86::VCVTSI642SSrm:
  338. case X86::VCVTSI642SSZrm:
  339. case X86::CVTSS2SDrm:
  340. case X86::VCVTSS2SDrm:
  341. case X86::VCVTSS2SDZrm:
  342. case X86::CVTSD2SSrm:
  343. case X86::VCVTSD2SSrm:
  344. case X86::VCVTSD2SSZrm:
  345. // AVX512 added unsigned integer conversions.
  346. case X86::VCVTTSD2USI64Zrm:
  347. case X86::VCVTTSD2USIZrm:
  348. case X86::VCVTTSS2USI64Zrm:
  349. case X86::VCVTTSS2USIZrm:
  350. case X86::VCVTUSI2SDZrm:
  351. case X86::VCVTUSI642SDZrm:
  352. case X86::VCVTUSI2SSZrm:
  353. case X86::VCVTUSI642SSZrm:
  354. // Loads to register don't set flags.
  355. case X86::MOV8rm:
  356. case X86::MOV8rm_NOREX:
  357. case X86::MOV16rm:
  358. case X86::MOV32rm:
  359. case X86::MOV64rm:
  360. case X86::MOVSX16rm8:
  361. case X86::MOVSX32rm16:
  362. case X86::MOVSX32rm8:
  363. case X86::MOVSX32rm8_NOREX:
  364. case X86::MOVSX64rm16:
  365. case X86::MOVSX64rm32:
  366. case X86::MOVSX64rm8:
  367. case X86::MOVZX16rm8:
  368. case X86::MOVZX32rm16:
  369. case X86::MOVZX32rm8:
  370. case X86::MOVZX32rm8_NOREX:
  371. case X86::MOVZX64rm16:
  372. case X86::MOVZX64rm8:
  373. return true;
  374. }
  375. }
  376. int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
  377. const MachineFunction *MF = MI.getParent()->getParent();
  378. const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
  379. if (isFrameInstr(MI)) {
  380. int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
  381. SPAdj -= getFrameAdjustment(MI);
  382. if (!isFrameSetup(MI))
  383. SPAdj = -SPAdj;
  384. return SPAdj;
  385. }
  386. // To know whether a call adjusts the stack, we need information
  387. // that is bound to the following ADJCALLSTACKUP pseudo.
  388. // Look for the next ADJCALLSTACKUP that follows the call.
  389. if (MI.isCall()) {
  390. const MachineBasicBlock *MBB = MI.getParent();
  391. auto I = ++MachineBasicBlock::const_iterator(MI);
  392. for (auto E = MBB->end(); I != E; ++I) {
  393. if (I->getOpcode() == getCallFrameDestroyOpcode() ||
  394. I->isCall())
  395. break;
  396. }
  397. // If we could not find a frame destroy opcode, then it has already
  398. // been simplified, so we don't care.
  399. if (I->getOpcode() != getCallFrameDestroyOpcode())
  400. return 0;
  401. return -(I->getOperand(1).getImm());
  402. }
  403. // Currently handle only PUSHes we can reasonably expect to see
  404. // in call sequences
  405. switch (MI.getOpcode()) {
  406. default:
  407. return 0;
  408. case X86::PUSH32i8:
  409. case X86::PUSH32r:
  410. case X86::PUSH32rmm:
  411. case X86::PUSH32rmr:
  412. case X86::PUSHi32:
  413. return 4;
  414. case X86::PUSH64i8:
  415. case X86::PUSH64r:
  416. case X86::PUSH64rmm:
  417. case X86::PUSH64rmr:
  418. case X86::PUSH64i32:
  419. return 8;
  420. }
  421. }
  422. /// Return true and the FrameIndex if the specified
  423. /// operand and follow operands form a reference to the stack frame.
  424. bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
  425. int &FrameIndex) const {
  426. if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
  427. MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
  428. MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
  429. MI.getOperand(Op + X86::AddrDisp).isImm() &&
  430. MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
  431. MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
  432. MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
  433. FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
  434. return true;
  435. }
  436. return false;
  437. }
  438. static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
  439. switch (Opcode) {
  440. default:
  441. return false;
  442. case X86::MOV8rm:
  443. case X86::KMOVBkm:
  444. MemBytes = 1;
  445. return true;
  446. case X86::MOV16rm:
  447. case X86::KMOVWkm:
  448. case X86::VMOVSHZrm:
  449. case X86::VMOVSHZrm_alt:
  450. MemBytes = 2;
  451. return true;
  452. case X86::MOV32rm:
  453. case X86::MOVSSrm:
  454. case X86::MOVSSrm_alt:
  455. case X86::VMOVSSrm:
  456. case X86::VMOVSSrm_alt:
  457. case X86::VMOVSSZrm:
  458. case X86::VMOVSSZrm_alt:
  459. case X86::KMOVDkm:
  460. MemBytes = 4;
  461. return true;
  462. case X86::MOV64rm:
  463. case X86::LD_Fp64m:
  464. case X86::MOVSDrm:
  465. case X86::MOVSDrm_alt:
  466. case X86::VMOVSDrm:
  467. case X86::VMOVSDrm_alt:
  468. case X86::VMOVSDZrm:
  469. case X86::VMOVSDZrm_alt:
  470. case X86::MMX_MOVD64rm:
  471. case X86::MMX_MOVQ64rm:
  472. case X86::KMOVQkm:
  473. MemBytes = 8;
  474. return true;
  475. case X86::MOVAPSrm:
  476. case X86::MOVUPSrm:
  477. case X86::MOVAPDrm:
  478. case X86::MOVUPDrm:
  479. case X86::MOVDQArm:
  480. case X86::MOVDQUrm:
  481. case X86::VMOVAPSrm:
  482. case X86::VMOVUPSrm:
  483. case X86::VMOVAPDrm:
  484. case X86::VMOVUPDrm:
  485. case X86::VMOVDQArm:
  486. case X86::VMOVDQUrm:
  487. case X86::VMOVAPSZ128rm:
  488. case X86::VMOVUPSZ128rm:
  489. case X86::VMOVAPSZ128rm_NOVLX:
  490. case X86::VMOVUPSZ128rm_NOVLX:
  491. case X86::VMOVAPDZ128rm:
  492. case X86::VMOVUPDZ128rm:
  493. case X86::VMOVDQU8Z128rm:
  494. case X86::VMOVDQU16Z128rm:
  495. case X86::VMOVDQA32Z128rm:
  496. case X86::VMOVDQU32Z128rm:
  497. case X86::VMOVDQA64Z128rm:
  498. case X86::VMOVDQU64Z128rm:
  499. MemBytes = 16;
  500. return true;
  501. case X86::VMOVAPSYrm:
  502. case X86::VMOVUPSYrm:
  503. case X86::VMOVAPDYrm:
  504. case X86::VMOVUPDYrm:
  505. case X86::VMOVDQAYrm:
  506. case X86::VMOVDQUYrm:
  507. case X86::VMOVAPSZ256rm:
  508. case X86::VMOVUPSZ256rm:
  509. case X86::VMOVAPSZ256rm_NOVLX:
  510. case X86::VMOVUPSZ256rm_NOVLX:
  511. case X86::VMOVAPDZ256rm:
  512. case X86::VMOVUPDZ256rm:
  513. case X86::VMOVDQU8Z256rm:
  514. case X86::VMOVDQU16Z256rm:
  515. case X86::VMOVDQA32Z256rm:
  516. case X86::VMOVDQU32Z256rm:
  517. case X86::VMOVDQA64Z256rm:
  518. case X86::VMOVDQU64Z256rm:
  519. MemBytes = 32;
  520. return true;
  521. case X86::VMOVAPSZrm:
  522. case X86::VMOVUPSZrm:
  523. case X86::VMOVAPDZrm:
  524. case X86::VMOVUPDZrm:
  525. case X86::VMOVDQU8Zrm:
  526. case X86::VMOVDQU16Zrm:
  527. case X86::VMOVDQA32Zrm:
  528. case X86::VMOVDQU32Zrm:
  529. case X86::VMOVDQA64Zrm:
  530. case X86::VMOVDQU64Zrm:
  531. MemBytes = 64;
  532. return true;
  533. }
  534. }
  535. static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
  536. switch (Opcode) {
  537. default:
  538. return false;
  539. case X86::MOV8mr:
  540. case X86::KMOVBmk:
  541. MemBytes = 1;
  542. return true;
  543. case X86::MOV16mr:
  544. case X86::KMOVWmk:
  545. case X86::VMOVSHZmr:
  546. MemBytes = 2;
  547. return true;
  548. case X86::MOV32mr:
  549. case X86::MOVSSmr:
  550. case X86::VMOVSSmr:
  551. case X86::VMOVSSZmr:
  552. case X86::KMOVDmk:
  553. MemBytes = 4;
  554. return true;
  555. case X86::MOV64mr:
  556. case X86::ST_FpP64m:
  557. case X86::MOVSDmr:
  558. case X86::VMOVSDmr:
  559. case X86::VMOVSDZmr:
  560. case X86::MMX_MOVD64mr:
  561. case X86::MMX_MOVQ64mr:
  562. case X86::MMX_MOVNTQmr:
  563. case X86::KMOVQmk:
  564. MemBytes = 8;
  565. return true;
  566. case X86::MOVAPSmr:
  567. case X86::MOVUPSmr:
  568. case X86::MOVAPDmr:
  569. case X86::MOVUPDmr:
  570. case X86::MOVDQAmr:
  571. case X86::MOVDQUmr:
  572. case X86::VMOVAPSmr:
  573. case X86::VMOVUPSmr:
  574. case X86::VMOVAPDmr:
  575. case X86::VMOVUPDmr:
  576. case X86::VMOVDQAmr:
  577. case X86::VMOVDQUmr:
  578. case X86::VMOVUPSZ128mr:
  579. case X86::VMOVAPSZ128mr:
  580. case X86::VMOVUPSZ128mr_NOVLX:
  581. case X86::VMOVAPSZ128mr_NOVLX:
  582. case X86::VMOVUPDZ128mr:
  583. case X86::VMOVAPDZ128mr:
  584. case X86::VMOVDQA32Z128mr:
  585. case X86::VMOVDQU32Z128mr:
  586. case X86::VMOVDQA64Z128mr:
  587. case X86::VMOVDQU64Z128mr:
  588. case X86::VMOVDQU8Z128mr:
  589. case X86::VMOVDQU16Z128mr:
  590. MemBytes = 16;
  591. return true;
  592. case X86::VMOVUPSYmr:
  593. case X86::VMOVAPSYmr:
  594. case X86::VMOVUPDYmr:
  595. case X86::VMOVAPDYmr:
  596. case X86::VMOVDQUYmr:
  597. case X86::VMOVDQAYmr:
  598. case X86::VMOVUPSZ256mr:
  599. case X86::VMOVAPSZ256mr:
  600. case X86::VMOVUPSZ256mr_NOVLX:
  601. case X86::VMOVAPSZ256mr_NOVLX:
  602. case X86::VMOVUPDZ256mr:
  603. case X86::VMOVAPDZ256mr:
  604. case X86::VMOVDQU8Z256mr:
  605. case X86::VMOVDQU16Z256mr:
  606. case X86::VMOVDQA32Z256mr:
  607. case X86::VMOVDQU32Z256mr:
  608. case X86::VMOVDQA64Z256mr:
  609. case X86::VMOVDQU64Z256mr:
  610. MemBytes = 32;
  611. return true;
  612. case X86::VMOVUPSZmr:
  613. case X86::VMOVAPSZmr:
  614. case X86::VMOVUPDZmr:
  615. case X86::VMOVAPDZmr:
  616. case X86::VMOVDQU8Zmr:
  617. case X86::VMOVDQU16Zmr:
  618. case X86::VMOVDQA32Zmr:
  619. case X86::VMOVDQU32Zmr:
  620. case X86::VMOVDQA64Zmr:
  621. case X86::VMOVDQU64Zmr:
  622. MemBytes = 64;
  623. return true;
  624. }
  625. return false;
  626. }
  627. unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
  628. int &FrameIndex) const {
  629. unsigned Dummy;
  630. return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
  631. }
  632. unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
  633. int &FrameIndex,
  634. unsigned &MemBytes) const {
  635. if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
  636. if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
  637. return MI.getOperand(0).getReg();
  638. return 0;
  639. }
  640. unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
  641. int &FrameIndex) const {
  642. unsigned Dummy;
  643. if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
  644. unsigned Reg;
  645. if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
  646. return Reg;
  647. // Check for post-frame index elimination operations
  648. SmallVector<const MachineMemOperand *, 1> Accesses;
  649. if (hasLoadFromStackSlot(MI, Accesses)) {
  650. FrameIndex =
  651. cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
  652. ->getFrameIndex();
  653. return MI.getOperand(0).getReg();
  654. }
  655. }
  656. return 0;
  657. }
  658. unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
  659. int &FrameIndex) const {
  660. unsigned Dummy;
  661. return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
  662. }
  663. unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
  664. int &FrameIndex,
  665. unsigned &MemBytes) const {
  666. if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
  667. if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
  668. isFrameOperand(MI, 0, FrameIndex))
  669. return MI.getOperand(X86::AddrNumOperands).getReg();
  670. return 0;
  671. }
  672. unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
  673. int &FrameIndex) const {
  674. unsigned Dummy;
  675. if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
  676. unsigned Reg;
  677. if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
  678. return Reg;
  679. // Check for post-frame index elimination operations
  680. SmallVector<const MachineMemOperand *, 1> Accesses;
  681. if (hasStoreToStackSlot(MI, Accesses)) {
  682. FrameIndex =
  683. cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
  684. ->getFrameIndex();
  685. return MI.getOperand(X86::AddrNumOperands).getReg();
  686. }
  687. }
  688. return 0;
  689. }
  690. /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
  691. static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
  692. // Don't waste compile time scanning use-def chains of physregs.
  693. if (!BaseReg.isVirtual())
  694. return false;
  695. bool isPICBase = false;
  696. for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
  697. E = MRI.def_instr_end(); I != E; ++I) {
  698. MachineInstr *DefMI = &*I;
  699. if (DefMI->getOpcode() != X86::MOVPC32r)
  700. return false;
  701. assert(!isPICBase && "More than one PIC base?");
  702. isPICBase = true;
  703. }
  704. return isPICBase;
  705. }
  706. bool X86InstrInfo::isReallyTriviallyReMaterializable(
  707. const MachineInstr &MI) const {
  708. switch (MI.getOpcode()) {
  709. default:
  710. // This function should only be called for opcodes with the ReMaterializable
  711. // flag set.
  712. llvm_unreachable("Unknown rematerializable operation!");
  713. break;
  714. case X86::LOAD_STACK_GUARD:
  715. case X86::AVX1_SETALLONES:
  716. case X86::AVX2_SETALLONES:
  717. case X86::AVX512_128_SET0:
  718. case X86::AVX512_256_SET0:
  719. case X86::AVX512_512_SET0:
  720. case X86::AVX512_512_SETALLONES:
  721. case X86::AVX512_FsFLD0SD:
  722. case X86::AVX512_FsFLD0SH:
  723. case X86::AVX512_FsFLD0SS:
  724. case X86::AVX512_FsFLD0F128:
  725. case X86::AVX_SET0:
  726. case X86::FsFLD0SD:
  727. case X86::FsFLD0SS:
  728. case X86::FsFLD0SH:
  729. case X86::FsFLD0F128:
  730. case X86::KSET0D:
  731. case X86::KSET0Q:
  732. case X86::KSET0W:
  733. case X86::KSET1D:
  734. case X86::KSET1Q:
  735. case X86::KSET1W:
  736. case X86::MMX_SET0:
  737. case X86::MOV32ImmSExti8:
  738. case X86::MOV32r0:
  739. case X86::MOV32r1:
  740. case X86::MOV32r_1:
  741. case X86::MOV32ri64:
  742. case X86::MOV64ImmSExti8:
  743. case X86::V_SET0:
  744. case X86::V_SETALLONES:
  745. case X86::MOV16ri:
  746. case X86::MOV32ri:
  747. case X86::MOV64ri:
  748. case X86::MOV64ri32:
  749. case X86::MOV8ri:
  750. case X86::PTILEZEROV:
  751. return true;
  752. case X86::MOV8rm:
  753. case X86::MOV8rm_NOREX:
  754. case X86::MOV16rm:
  755. case X86::MOV32rm:
  756. case X86::MOV64rm:
  757. case X86::MOVSSrm:
  758. case X86::MOVSSrm_alt:
  759. case X86::MOVSDrm:
  760. case X86::MOVSDrm_alt:
  761. case X86::MOVAPSrm:
  762. case X86::MOVUPSrm:
  763. case X86::MOVAPDrm:
  764. case X86::MOVUPDrm:
  765. case X86::MOVDQArm:
  766. case X86::MOVDQUrm:
  767. case X86::VMOVSSrm:
  768. case X86::VMOVSSrm_alt:
  769. case X86::VMOVSDrm:
  770. case X86::VMOVSDrm_alt:
  771. case X86::VMOVAPSrm:
  772. case X86::VMOVUPSrm:
  773. case X86::VMOVAPDrm:
  774. case X86::VMOVUPDrm:
  775. case X86::VMOVDQArm:
  776. case X86::VMOVDQUrm:
  777. case X86::VMOVAPSYrm:
  778. case X86::VMOVUPSYrm:
  779. case X86::VMOVAPDYrm:
  780. case X86::VMOVUPDYrm:
  781. case X86::VMOVDQAYrm:
  782. case X86::VMOVDQUYrm:
  783. case X86::MMX_MOVD64rm:
  784. case X86::MMX_MOVQ64rm:
  785. // AVX-512
  786. case X86::VMOVSSZrm:
  787. case X86::VMOVSSZrm_alt:
  788. case X86::VMOVSDZrm:
  789. case X86::VMOVSDZrm_alt:
  790. case X86::VMOVSHZrm:
  791. case X86::VMOVSHZrm_alt:
  792. case X86::VMOVAPDZ128rm:
  793. case X86::VMOVAPDZ256rm:
  794. case X86::VMOVAPDZrm:
  795. case X86::VMOVAPSZ128rm:
  796. case X86::VMOVAPSZ256rm:
  797. case X86::VMOVAPSZ128rm_NOVLX:
  798. case X86::VMOVAPSZ256rm_NOVLX:
  799. case X86::VMOVAPSZrm:
  800. case X86::VMOVDQA32Z128rm:
  801. case X86::VMOVDQA32Z256rm:
  802. case X86::VMOVDQA32Zrm:
  803. case X86::VMOVDQA64Z128rm:
  804. case X86::VMOVDQA64Z256rm:
  805. case X86::VMOVDQA64Zrm:
  806. case X86::VMOVDQU16Z128rm:
  807. case X86::VMOVDQU16Z256rm:
  808. case X86::VMOVDQU16Zrm:
  809. case X86::VMOVDQU32Z128rm:
  810. case X86::VMOVDQU32Z256rm:
  811. case X86::VMOVDQU32Zrm:
  812. case X86::VMOVDQU64Z128rm:
  813. case X86::VMOVDQU64Z256rm:
  814. case X86::VMOVDQU64Zrm:
  815. case X86::VMOVDQU8Z128rm:
  816. case X86::VMOVDQU8Z256rm:
  817. case X86::VMOVDQU8Zrm:
  818. case X86::VMOVUPDZ128rm:
  819. case X86::VMOVUPDZ256rm:
  820. case X86::VMOVUPDZrm:
  821. case X86::VMOVUPSZ128rm:
  822. case X86::VMOVUPSZ256rm:
  823. case X86::VMOVUPSZ128rm_NOVLX:
  824. case X86::VMOVUPSZ256rm_NOVLX:
  825. case X86::VMOVUPSZrm: {
  826. // Loads from constant pools are trivially rematerializable.
  827. if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
  828. MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
  829. MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
  830. MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
  831. MI.isDereferenceableInvariantLoad()) {
  832. Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
  833. if (BaseReg == 0 || BaseReg == X86::RIP)
  834. return true;
  835. // Allow re-materialization of PIC load.
  836. if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
  837. return false;
  838. const MachineFunction &MF = *MI.getParent()->getParent();
  839. const MachineRegisterInfo &MRI = MF.getRegInfo();
  840. return regIsPICBase(BaseReg, MRI);
  841. }
  842. return false;
  843. }
  844. case X86::LEA32r:
  845. case X86::LEA64r: {
  846. if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
  847. MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
  848. MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
  849. !MI.getOperand(1 + X86::AddrDisp).isReg()) {
  850. // lea fi#, lea GV, etc. are all rematerializable.
  851. if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
  852. return true;
  853. Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
  854. if (BaseReg == 0)
  855. return true;
  856. // Allow re-materialization of lea PICBase + x.
  857. const MachineFunction &MF = *MI.getParent()->getParent();
  858. const MachineRegisterInfo &MRI = MF.getRegInfo();
  859. return regIsPICBase(BaseReg, MRI);
  860. }
  861. return false;
  862. }
  863. }
  864. }
  865. void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
  866. MachineBasicBlock::iterator I,
  867. Register DestReg, unsigned SubIdx,
  868. const MachineInstr &Orig,
  869. const TargetRegisterInfo &TRI) const {
  870. bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
  871. if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
  872. MachineBasicBlock::LQR_Dead) {
  873. // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
  874. // effects.
  875. int Value;
  876. switch (Orig.getOpcode()) {
  877. case X86::MOV32r0: Value = 0; break;
  878. case X86::MOV32r1: Value = 1; break;
  879. case X86::MOV32r_1: Value = -1; break;
  880. default:
  881. llvm_unreachable("Unexpected instruction!");
  882. }
  883. const DebugLoc &DL = Orig.getDebugLoc();
  884. BuildMI(MBB, I, DL, get(X86::MOV32ri))
  885. .add(Orig.getOperand(0))
  886. .addImm(Value);
  887. } else {
  888. MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
  889. MBB.insert(I, MI);
  890. }
  891. MachineInstr &NewMI = *std::prev(I);
  892. NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
  893. }
  894. /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
  895. bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
  896. for (const MachineOperand &MO : MI.operands()) {
  897. if (MO.isReg() && MO.isDef() &&
  898. MO.getReg() == X86::EFLAGS && !MO.isDead()) {
  899. return true;
  900. }
  901. }
  902. return false;
  903. }
  904. /// Check whether the shift count for a machine operand is non-zero.
  905. inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
  906. unsigned ShiftAmtOperandIdx) {
  907. // The shift count is six bits with the REX.W prefix and five bits without.
  908. unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
  909. unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
  910. return Imm & ShiftCountMask;
  911. }
  912. /// Check whether the given shift count is appropriate
  913. /// can be represented by a LEA instruction.
  914. inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
  915. // Left shift instructions can be transformed into load-effective-address
  916. // instructions if we can encode them appropriately.
  917. // A LEA instruction utilizes a SIB byte to encode its scale factor.
  918. // The SIB.scale field is two bits wide which means that we can encode any
  919. // shift amount less than 4.
  920. return ShAmt < 4 && ShAmt > 0;
  921. }
  922. static bool findRedundantFlagInstr(MachineInstr &CmpInstr,
  923. MachineInstr &CmpValDefInstr,
  924. const MachineRegisterInfo *MRI,
  925. MachineInstr **AndInstr,
  926. const TargetRegisterInfo *TRI,
  927. bool &NoSignFlag, bool &ClearsOverflowFlag) {
  928. if (CmpValDefInstr.getOpcode() != X86::SUBREG_TO_REG)
  929. return false;
  930. if (CmpInstr.getOpcode() != X86::TEST64rr)
  931. return false;
  932. // CmpInstr is a TEST64rr instruction, and `X86InstrInfo::analyzeCompare`
  933. // guarantees that it's analyzable only if two registers are identical.
  934. assert(
  935. (CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) &&
  936. "CmpInstr is an analyzable TEST64rr, and `X86InstrInfo::analyzeCompare` "
  937. "requires two reg operands are the same.");
  938. // Caller (`X86InstrInfo::optimizeCompareInstr`) guarantees that
  939. // `CmpValDefInstr` defines the value that's used by `CmpInstr`; in this case
  940. // if `CmpValDefInstr` sets the EFLAGS, it is likely that `CmpInstr` is
  941. // redundant.
  942. assert(
  943. (MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) &&
  944. "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG.");
  945. // As seen in X86 td files, CmpValDefInstr.getOperand(1).getImm() is typically
  946. // 0.
  947. if (CmpValDefInstr.getOperand(1).getImm() != 0)
  948. return false;
  949. // As seen in X86 td files, CmpValDefInstr.getOperand(3) is typically
  950. // sub_32bit or sub_xmm.
  951. if (CmpValDefInstr.getOperand(3).getImm() != X86::sub_32bit)
  952. return false;
  953. MachineInstr *VregDefInstr =
  954. MRI->getVRegDef(CmpValDefInstr.getOperand(2).getReg());
  955. assert(VregDefInstr && "Must have a definition (SSA)");
  956. // Requires `CmpValDefInstr` and `VregDefInstr` are from the same MBB
  957. // to simplify the subsequent analysis.
  958. //
  959. // FIXME: If `VregDefInstr->getParent()` is the only predecessor of
  960. // `CmpValDefInstr.getParent()`, this could be handled.
  961. if (VregDefInstr->getParent() != CmpValDefInstr.getParent())
  962. return false;
  963. if (X86::isAND(VregDefInstr->getOpcode())) {
  964. // Get a sequence of instructions like
  965. // %reg = and* ... // Set EFLAGS
  966. // ... // EFLAGS not changed
  967. // %extended_reg = subreg_to_reg 0, %reg, %subreg.sub_32bit
  968. // test64rr %extended_reg, %extended_reg, implicit-def $eflags
  969. //
  970. // If subsequent readers use a subset of bits that don't change
  971. // after `and*` instructions, it's likely that the test64rr could
  972. // be optimized away.
  973. for (const MachineInstr &Instr :
  974. make_range(std::next(MachineBasicBlock::iterator(VregDefInstr)),
  975. MachineBasicBlock::iterator(CmpValDefInstr))) {
  976. // There are instructions between 'VregDefInstr' and
  977. // 'CmpValDefInstr' that modifies EFLAGS.
  978. if (Instr.modifiesRegister(X86::EFLAGS, TRI))
  979. return false;
  980. }
  981. *AndInstr = VregDefInstr;
  982. // AND instruction will essentially update SF and clear OF, so
  983. // NoSignFlag should be false in the sense that SF is modified by `AND`.
  984. //
  985. // However, the implementation artifically sets `NoSignFlag` to true
  986. // to poison the SF bit; that is to say, if SF is looked at later, the
  987. // optimization (to erase TEST64rr) will be disabled.
  988. //
  989. // The reason to poison SF bit is that SF bit value could be different
  990. // in the `AND` and `TEST` operation; signed bit is not known for `AND`,
  991. // and is known to be 0 as a result of `TEST64rr`.
  992. //
  993. // FIXME: As opposed to poisoning the SF bit directly, consider peeking into
  994. // the AND instruction and using the static information to guide peephole
  995. // optimization if possible. For example, it's possible to fold a
  996. // conditional move into a copy if the relevant EFLAG bits could be deduced
  997. // from an immediate operand of and operation.
  998. //
  999. NoSignFlag = true;
  1000. // ClearsOverflowFlag is true for AND operation (no surprise).
  1001. ClearsOverflowFlag = true;
  1002. return true;
  1003. }
  1004. return false;
  1005. }
  1006. bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
  1007. unsigned Opc, bool AllowSP, Register &NewSrc,
  1008. bool &isKill, MachineOperand &ImplicitOp,
  1009. LiveVariables *LV, LiveIntervals *LIS) const {
  1010. MachineFunction &MF = *MI.getParent()->getParent();
  1011. const TargetRegisterClass *RC;
  1012. if (AllowSP) {
  1013. RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
  1014. } else {
  1015. RC = Opc != X86::LEA32r ?
  1016. &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
  1017. }
  1018. Register SrcReg = Src.getReg();
  1019. isKill = MI.killsRegister(SrcReg);
  1020. // For both LEA64 and LEA32 the register already has essentially the right
  1021. // type (32-bit or 64-bit) we may just need to forbid SP.
  1022. if (Opc != X86::LEA64_32r) {
  1023. NewSrc = SrcReg;
  1024. assert(!Src.isUndef() && "Undef op doesn't need optimization");
  1025. if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
  1026. return false;
  1027. return true;
  1028. }
  1029. // This is for an LEA64_32r and incoming registers are 32-bit. One way or
  1030. // another we need to add 64-bit registers to the final MI.
  1031. if (SrcReg.isPhysical()) {
  1032. ImplicitOp = Src;
  1033. ImplicitOp.setImplicit();
  1034. NewSrc = getX86SubSuperRegister(SrcReg, 64);
  1035. assert(!Src.isUndef() && "Undef op doesn't need optimization");
  1036. } else {
  1037. // Virtual register of the wrong class, we have to create a temporary 64-bit
  1038. // vreg to feed into the LEA.
  1039. NewSrc = MF.getRegInfo().createVirtualRegister(RC);
  1040. MachineInstr *Copy =
  1041. BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
  1042. .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
  1043. .addReg(SrcReg, getKillRegState(isKill));
  1044. // Which is obviously going to be dead after we're done with it.
  1045. isKill = true;
  1046. if (LV)
  1047. LV->replaceKillInstruction(SrcReg, MI, *Copy);
  1048. if (LIS) {
  1049. SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy);
  1050. SlotIndex Idx = LIS->getInstructionIndex(MI);
  1051. LiveInterval &LI = LIS->getInterval(SrcReg);
  1052. LiveRange::Segment *S = LI.getSegmentContaining(Idx);
  1053. if (S->end.getBaseIndex() == Idx)
  1054. S->end = CopyIdx.getRegSlot();
  1055. }
  1056. }
  1057. // We've set all the parameters without issue.
  1058. return true;
  1059. }
  1060. MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
  1061. MachineInstr &MI,
  1062. LiveVariables *LV,
  1063. LiveIntervals *LIS,
  1064. bool Is8BitOp) const {
  1065. // We handle 8-bit adds and various 16-bit opcodes in the switch below.
  1066. MachineBasicBlock &MBB = *MI.getParent();
  1067. MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
  1068. assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
  1069. *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
  1070. "Unexpected type for LEA transform");
  1071. // TODO: For a 32-bit target, we need to adjust the LEA variables with
  1072. // something like this:
  1073. // Opcode = X86::LEA32r;
  1074. // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
  1075. // OutRegLEA =
  1076. // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
  1077. // : RegInfo.createVirtualRegister(&X86::GR32RegClass);
  1078. if (!Subtarget.is64Bit())
  1079. return nullptr;
  1080. unsigned Opcode = X86::LEA64_32r;
  1081. Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
  1082. Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
  1083. Register InRegLEA2;
  1084. // Build and insert into an implicit UNDEF value. This is OK because
  1085. // we will be shifting and then extracting the lower 8/16-bits.
  1086. // This has the potential to cause partial register stall. e.g.
  1087. // movw (%rbp,%rcx,2), %dx
  1088. // leal -65(%rdx), %esi
  1089. // But testing has shown this *does* help performance in 64-bit mode (at
  1090. // least on modern x86 machines).
  1091. MachineBasicBlock::iterator MBBI = MI.getIterator();
  1092. Register Dest = MI.getOperand(0).getReg();
  1093. Register Src = MI.getOperand(1).getReg();
  1094. Register Src2;
  1095. bool IsDead = MI.getOperand(0).isDead();
  1096. bool IsKill = MI.getOperand(1).isKill();
  1097. unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
  1098. assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
  1099. MachineInstr *ImpDef =
  1100. BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
  1101. MachineInstr *InsMI =
  1102. BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
  1103. .addReg(InRegLEA, RegState::Define, SubReg)
  1104. .addReg(Src, getKillRegState(IsKill));
  1105. MachineInstr *ImpDef2 = nullptr;
  1106. MachineInstr *InsMI2 = nullptr;
  1107. MachineInstrBuilder MIB =
  1108. BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
  1109. switch (MIOpc) {
  1110. default: llvm_unreachable("Unreachable!");
  1111. case X86::SHL8ri:
  1112. case X86::SHL16ri: {
  1113. unsigned ShAmt = MI.getOperand(2).getImm();
  1114. MIB.addReg(0)
  1115. .addImm(1LL << ShAmt)
  1116. .addReg(InRegLEA, RegState::Kill)
  1117. .addImm(0)
  1118. .addReg(0);
  1119. break;
  1120. }
  1121. case X86::INC8r:
  1122. case X86::INC16r:
  1123. addRegOffset(MIB, InRegLEA, true, 1);
  1124. break;
  1125. case X86::DEC8r:
  1126. case X86::DEC16r:
  1127. addRegOffset(MIB, InRegLEA, true, -1);
  1128. break;
  1129. case X86::ADD8ri:
  1130. case X86::ADD8ri_DB:
  1131. case X86::ADD16ri:
  1132. case X86::ADD16ri8:
  1133. case X86::ADD16ri_DB:
  1134. case X86::ADD16ri8_DB:
  1135. addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
  1136. break;
  1137. case X86::ADD8rr:
  1138. case X86::ADD8rr_DB:
  1139. case X86::ADD16rr:
  1140. case X86::ADD16rr_DB: {
  1141. Src2 = MI.getOperand(2).getReg();
  1142. bool IsKill2 = MI.getOperand(2).isKill();
  1143. assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
  1144. if (Src == Src2) {
  1145. // ADD8rr/ADD16rr killed %reg1028, %reg1028
  1146. // just a single insert_subreg.
  1147. addRegReg(MIB, InRegLEA, true, InRegLEA, false);
  1148. } else {
  1149. if (Subtarget.is64Bit())
  1150. InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
  1151. else
  1152. InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
  1153. // Build and insert into an implicit UNDEF value. This is OK because
  1154. // we will be shifting and then extracting the lower 8/16-bits.
  1155. ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF),
  1156. InRegLEA2);
  1157. InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
  1158. .addReg(InRegLEA2, RegState::Define, SubReg)
  1159. .addReg(Src2, getKillRegState(IsKill2));
  1160. addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
  1161. }
  1162. if (LV && IsKill2 && InsMI2)
  1163. LV->replaceKillInstruction(Src2, MI, *InsMI2);
  1164. break;
  1165. }
  1166. }
  1167. MachineInstr *NewMI = MIB;
  1168. MachineInstr *ExtMI =
  1169. BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
  1170. .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
  1171. .addReg(OutRegLEA, RegState::Kill, SubReg);
  1172. if (LV) {
  1173. // Update live variables.
  1174. LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
  1175. if (InRegLEA2)
  1176. LV->getVarInfo(InRegLEA2).Kills.push_back(NewMI);
  1177. LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
  1178. if (IsKill)
  1179. LV->replaceKillInstruction(Src, MI, *InsMI);
  1180. if (IsDead)
  1181. LV->replaceKillInstruction(Dest, MI, *ExtMI);
  1182. }
  1183. if (LIS) {
  1184. LIS->InsertMachineInstrInMaps(*ImpDef);
  1185. SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI);
  1186. if (ImpDef2)
  1187. LIS->InsertMachineInstrInMaps(*ImpDef2);
  1188. SlotIndex Ins2Idx;
  1189. if (InsMI2)
  1190. Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2);
  1191. SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
  1192. SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI);
  1193. LIS->getInterval(InRegLEA);
  1194. LIS->getInterval(OutRegLEA);
  1195. if (InRegLEA2)
  1196. LIS->getInterval(InRegLEA2);
  1197. // Move the use of Src up to InsMI.
  1198. LiveInterval &SrcLI = LIS->getInterval(Src);
  1199. LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx);
  1200. if (SrcSeg->end == NewIdx.getRegSlot())
  1201. SrcSeg->end = InsIdx.getRegSlot();
  1202. if (InsMI2) {
  1203. // Move the use of Src2 up to InsMI2.
  1204. LiveInterval &Src2LI = LIS->getInterval(Src2);
  1205. LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx);
  1206. if (Src2Seg->end == NewIdx.getRegSlot())
  1207. Src2Seg->end = Ins2Idx.getRegSlot();
  1208. }
  1209. // Move the definition of Dest down to ExtMI.
  1210. LiveInterval &DestLI = LIS->getInterval(Dest);
  1211. LiveRange::Segment *DestSeg =
  1212. DestLI.getSegmentContaining(NewIdx.getRegSlot());
  1213. assert(DestSeg->start == NewIdx.getRegSlot() &&
  1214. DestSeg->valno->def == NewIdx.getRegSlot());
  1215. DestSeg->start = ExtIdx.getRegSlot();
  1216. DestSeg->valno->def = ExtIdx.getRegSlot();
  1217. }
  1218. return ExtMI;
  1219. }
  1220. /// This method must be implemented by targets that
  1221. /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
  1222. /// may be able to convert a two-address instruction into a true
  1223. /// three-address instruction on demand. This allows the X86 target (for
  1224. /// example) to convert ADD and SHL instructions into LEA instructions if they
  1225. /// would require register copies due to two-addressness.
  1226. ///
  1227. /// This method returns a null pointer if the transformation cannot be
  1228. /// performed, otherwise it returns the new instruction.
  1229. ///
  1230. MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI,
  1231. LiveVariables *LV,
  1232. LiveIntervals *LIS) const {
  1233. // The following opcodes also sets the condition code register(s). Only
  1234. // convert them to equivalent lea if the condition code register def's
  1235. // are dead!
  1236. if (hasLiveCondCodeDef(MI))
  1237. return nullptr;
  1238. MachineFunction &MF = *MI.getParent()->getParent();
  1239. // All instructions input are two-addr instructions. Get the known operands.
  1240. const MachineOperand &Dest = MI.getOperand(0);
  1241. const MachineOperand &Src = MI.getOperand(1);
  1242. // Ideally, operations with undef should be folded before we get here, but we
  1243. // can't guarantee it. Bail out because optimizing undefs is a waste of time.
  1244. // Without this, we have to forward undef state to new register operands to
  1245. // avoid machine verifier errors.
  1246. if (Src.isUndef())
  1247. return nullptr;
  1248. if (MI.getNumOperands() > 2)
  1249. if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
  1250. return nullptr;
  1251. MachineInstr *NewMI = nullptr;
  1252. Register SrcReg, SrcReg2;
  1253. bool Is64Bit = Subtarget.is64Bit();
  1254. bool Is8BitOp = false;
  1255. unsigned NumRegOperands = 2;
  1256. unsigned MIOpc = MI.getOpcode();
  1257. switch (MIOpc) {
  1258. default: llvm_unreachable("Unreachable!");
  1259. case X86::SHL64ri: {
  1260. assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
  1261. unsigned ShAmt = getTruncatedShiftCount(MI, 2);
  1262. if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
  1263. // LEA can't handle RSP.
  1264. if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
  1265. Src.getReg(), &X86::GR64_NOSPRegClass))
  1266. return nullptr;
  1267. NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
  1268. .add(Dest)
  1269. .addReg(0)
  1270. .addImm(1LL << ShAmt)
  1271. .add(Src)
  1272. .addImm(0)
  1273. .addReg(0);
  1274. break;
  1275. }
  1276. case X86::SHL32ri: {
  1277. assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
  1278. unsigned ShAmt = getTruncatedShiftCount(MI, 2);
  1279. if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
  1280. unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
  1281. // LEA can't handle ESP.
  1282. bool isKill;
  1283. MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
  1284. if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
  1285. ImplicitOp, LV, LIS))
  1286. return nullptr;
  1287. MachineInstrBuilder MIB =
  1288. BuildMI(MF, MI.getDebugLoc(), get(Opc))
  1289. .add(Dest)
  1290. .addReg(0)
  1291. .addImm(1LL << ShAmt)
  1292. .addReg(SrcReg, getKillRegState(isKill))
  1293. .addImm(0)
  1294. .addReg(0);
  1295. if (ImplicitOp.getReg() != 0)
  1296. MIB.add(ImplicitOp);
  1297. NewMI = MIB;
  1298. // Add kills if classifyLEAReg created a new register.
  1299. if (LV && SrcReg != Src.getReg())
  1300. LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
  1301. break;
  1302. }
  1303. case X86::SHL8ri:
  1304. Is8BitOp = true;
  1305. [[fallthrough]];
  1306. case X86::SHL16ri: {
  1307. assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
  1308. unsigned ShAmt = getTruncatedShiftCount(MI, 2);
  1309. if (!isTruncatedShiftCountForLEA(ShAmt))
  1310. return nullptr;
  1311. return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
  1312. }
  1313. case X86::INC64r:
  1314. case X86::INC32r: {
  1315. assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
  1316. unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
  1317. (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
  1318. bool isKill;
  1319. MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
  1320. if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
  1321. ImplicitOp, LV, LIS))
  1322. return nullptr;
  1323. MachineInstrBuilder MIB =
  1324. BuildMI(MF, MI.getDebugLoc(), get(Opc))
  1325. .add(Dest)
  1326. .addReg(SrcReg, getKillRegState(isKill));
  1327. if (ImplicitOp.getReg() != 0)
  1328. MIB.add(ImplicitOp);
  1329. NewMI = addOffset(MIB, 1);
  1330. // Add kills if classifyLEAReg created a new register.
  1331. if (LV && SrcReg != Src.getReg())
  1332. LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
  1333. break;
  1334. }
  1335. case X86::DEC64r:
  1336. case X86::DEC32r: {
  1337. assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
  1338. unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
  1339. : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
  1340. bool isKill;
  1341. MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
  1342. if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
  1343. ImplicitOp, LV, LIS))
  1344. return nullptr;
  1345. MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
  1346. .add(Dest)
  1347. .addReg(SrcReg, getKillRegState(isKill));
  1348. if (ImplicitOp.getReg() != 0)
  1349. MIB.add(ImplicitOp);
  1350. NewMI = addOffset(MIB, -1);
  1351. // Add kills if classifyLEAReg created a new register.
  1352. if (LV && SrcReg != Src.getReg())
  1353. LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
  1354. break;
  1355. }
  1356. case X86::DEC8r:
  1357. case X86::INC8r:
  1358. Is8BitOp = true;
  1359. [[fallthrough]];
  1360. case X86::DEC16r:
  1361. case X86::INC16r:
  1362. return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
  1363. case X86::ADD64rr:
  1364. case X86::ADD64rr_DB:
  1365. case X86::ADD32rr:
  1366. case X86::ADD32rr_DB: {
  1367. assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
  1368. unsigned Opc;
  1369. if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
  1370. Opc = X86::LEA64r;
  1371. else
  1372. Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
  1373. const MachineOperand &Src2 = MI.getOperand(2);
  1374. bool isKill2;
  1375. MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
  1376. if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, isKill2,
  1377. ImplicitOp2, LV, LIS))
  1378. return nullptr;
  1379. bool isKill;
  1380. MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
  1381. if (Src.getReg() == Src2.getReg()) {
  1382. // Don't call classify LEAReg a second time on the same register, in case
  1383. // the first call inserted a COPY from Src2 and marked it as killed.
  1384. isKill = isKill2;
  1385. SrcReg = SrcReg2;
  1386. } else {
  1387. if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
  1388. ImplicitOp, LV, LIS))
  1389. return nullptr;
  1390. }
  1391. MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
  1392. if (ImplicitOp.getReg() != 0)
  1393. MIB.add(ImplicitOp);
  1394. if (ImplicitOp2.getReg() != 0)
  1395. MIB.add(ImplicitOp2);
  1396. NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
  1397. // Add kills if classifyLEAReg created a new register.
  1398. if (LV) {
  1399. if (SrcReg2 != Src2.getReg())
  1400. LV->getVarInfo(SrcReg2).Kills.push_back(NewMI);
  1401. if (SrcReg != SrcReg2 && SrcReg != Src.getReg())
  1402. LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
  1403. }
  1404. NumRegOperands = 3;
  1405. break;
  1406. }
  1407. case X86::ADD8rr:
  1408. case X86::ADD8rr_DB:
  1409. Is8BitOp = true;
  1410. [[fallthrough]];
  1411. case X86::ADD16rr:
  1412. case X86::ADD16rr_DB:
  1413. return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
  1414. case X86::ADD64ri32:
  1415. case X86::ADD64ri8:
  1416. case X86::ADD64ri32_DB:
  1417. case X86::ADD64ri8_DB:
  1418. assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
  1419. NewMI = addOffset(
  1420. BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
  1421. MI.getOperand(2));
  1422. break;
  1423. case X86::ADD32ri:
  1424. case X86::ADD32ri8:
  1425. case X86::ADD32ri_DB:
  1426. case X86::ADD32ri8_DB: {
  1427. assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
  1428. unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
  1429. bool isKill;
  1430. MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
  1431. if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
  1432. ImplicitOp, LV, LIS))
  1433. return nullptr;
  1434. MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
  1435. .add(Dest)
  1436. .addReg(SrcReg, getKillRegState(isKill));
  1437. if (ImplicitOp.getReg() != 0)
  1438. MIB.add(ImplicitOp);
  1439. NewMI = addOffset(MIB, MI.getOperand(2));
  1440. // Add kills if classifyLEAReg created a new register.
  1441. if (LV && SrcReg != Src.getReg())
  1442. LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
  1443. break;
  1444. }
  1445. case X86::ADD8ri:
  1446. case X86::ADD8ri_DB:
  1447. Is8BitOp = true;
  1448. [[fallthrough]];
  1449. case X86::ADD16ri:
  1450. case X86::ADD16ri8:
  1451. case X86::ADD16ri_DB:
  1452. case X86::ADD16ri8_DB:
  1453. return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
  1454. case X86::SUB8ri:
  1455. case X86::SUB16ri8:
  1456. case X86::SUB16ri:
  1457. /// FIXME: Support these similar to ADD8ri/ADD16ri*.
  1458. return nullptr;
  1459. case X86::SUB32ri8:
  1460. case X86::SUB32ri: {
  1461. if (!MI.getOperand(2).isImm())
  1462. return nullptr;
  1463. int64_t Imm = MI.getOperand(2).getImm();
  1464. if (!isInt<32>(-Imm))
  1465. return nullptr;
  1466. assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
  1467. unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
  1468. bool isKill;
  1469. MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
  1470. if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
  1471. ImplicitOp, LV, LIS))
  1472. return nullptr;
  1473. MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
  1474. .add(Dest)
  1475. .addReg(SrcReg, getKillRegState(isKill));
  1476. if (ImplicitOp.getReg() != 0)
  1477. MIB.add(ImplicitOp);
  1478. NewMI = addOffset(MIB, -Imm);
  1479. // Add kills if classifyLEAReg created a new register.
  1480. if (LV && SrcReg != Src.getReg())
  1481. LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
  1482. break;
  1483. }
  1484. case X86::SUB64ri8:
  1485. case X86::SUB64ri32: {
  1486. if (!MI.getOperand(2).isImm())
  1487. return nullptr;
  1488. int64_t Imm = MI.getOperand(2).getImm();
  1489. if (!isInt<32>(-Imm))
  1490. return nullptr;
  1491. assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
  1492. MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
  1493. get(X86::LEA64r)).add(Dest).add(Src);
  1494. NewMI = addOffset(MIB, -Imm);
  1495. break;
  1496. }
  1497. case X86::VMOVDQU8Z128rmk:
  1498. case X86::VMOVDQU8Z256rmk:
  1499. case X86::VMOVDQU8Zrmk:
  1500. case X86::VMOVDQU16Z128rmk:
  1501. case X86::VMOVDQU16Z256rmk:
  1502. case X86::VMOVDQU16Zrmk:
  1503. case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
  1504. case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
  1505. case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk:
  1506. case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
  1507. case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
  1508. case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk:
  1509. case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk:
  1510. case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk:
  1511. case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk:
  1512. case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk:
  1513. case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk:
  1514. case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk:
  1515. case X86::VBROADCASTSDZ256rmk:
  1516. case X86::VBROADCASTSDZrmk:
  1517. case X86::VBROADCASTSSZ128rmk:
  1518. case X86::VBROADCASTSSZ256rmk:
  1519. case X86::VBROADCASTSSZrmk:
  1520. case X86::VPBROADCASTDZ128rmk:
  1521. case X86::VPBROADCASTDZ256rmk:
  1522. case X86::VPBROADCASTDZrmk:
  1523. case X86::VPBROADCASTQZ128rmk:
  1524. case X86::VPBROADCASTQZ256rmk:
  1525. case X86::VPBROADCASTQZrmk: {
  1526. unsigned Opc;
  1527. switch (MIOpc) {
  1528. default: llvm_unreachable("Unreachable!");
  1529. case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break;
  1530. case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break;
  1531. case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break;
  1532. case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
  1533. case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
  1534. case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break;
  1535. case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
  1536. case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
  1537. case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
  1538. case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
  1539. case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
  1540. case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
  1541. case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
  1542. case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
  1543. case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
  1544. case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
  1545. case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
  1546. case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
  1547. case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
  1548. case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
  1549. case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
  1550. case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
  1551. case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
  1552. case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
  1553. case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
  1554. case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
  1555. case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
  1556. case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
  1557. case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
  1558. case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
  1559. case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break;
  1560. case X86::VBROADCASTSDZrmk: Opc = X86::VBLENDMPDZrmbk; break;
  1561. case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break;
  1562. case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break;
  1563. case X86::VBROADCASTSSZrmk: Opc = X86::VBLENDMPSZrmbk; break;
  1564. case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break;
  1565. case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break;
  1566. case X86::VPBROADCASTDZrmk: Opc = X86::VPBLENDMDZrmbk; break;
  1567. case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break;
  1568. case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break;
  1569. case X86::VPBROADCASTQZrmk: Opc = X86::VPBLENDMQZrmbk; break;
  1570. }
  1571. NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
  1572. .add(Dest)
  1573. .add(MI.getOperand(2))
  1574. .add(Src)
  1575. .add(MI.getOperand(3))
  1576. .add(MI.getOperand(4))
  1577. .add(MI.getOperand(5))
  1578. .add(MI.getOperand(6))
  1579. .add(MI.getOperand(7));
  1580. NumRegOperands = 4;
  1581. break;
  1582. }
  1583. case X86::VMOVDQU8Z128rrk:
  1584. case X86::VMOVDQU8Z256rrk:
  1585. case X86::VMOVDQU8Zrrk:
  1586. case X86::VMOVDQU16Z128rrk:
  1587. case X86::VMOVDQU16Z256rrk:
  1588. case X86::VMOVDQU16Zrrk:
  1589. case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
  1590. case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
  1591. case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk:
  1592. case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
  1593. case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
  1594. case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk:
  1595. case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk:
  1596. case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk:
  1597. case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk:
  1598. case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk:
  1599. case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk:
  1600. case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: {
  1601. unsigned Opc;
  1602. switch (MIOpc) {
  1603. default: llvm_unreachable("Unreachable!");
  1604. case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break;
  1605. case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break;
  1606. case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break;
  1607. case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
  1608. case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
  1609. case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break;
  1610. case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
  1611. case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
  1612. case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
  1613. case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
  1614. case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
  1615. case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
  1616. case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
  1617. case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
  1618. case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
  1619. case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
  1620. case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
  1621. case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
  1622. case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
  1623. case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
  1624. case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
  1625. case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
  1626. case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
  1627. case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
  1628. case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
  1629. case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
  1630. case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
  1631. case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
  1632. case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
  1633. case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
  1634. }
  1635. NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
  1636. .add(Dest)
  1637. .add(MI.getOperand(2))
  1638. .add(Src)
  1639. .add(MI.getOperand(3));
  1640. NumRegOperands = 4;
  1641. break;
  1642. }
  1643. }
  1644. if (!NewMI) return nullptr;
  1645. if (LV) { // Update live variables
  1646. for (unsigned I = 0; I < NumRegOperands; ++I) {
  1647. MachineOperand &Op = MI.getOperand(I);
  1648. if (Op.isReg() && (Op.isDead() || Op.isKill()))
  1649. LV->replaceKillInstruction(Op.getReg(), MI, *NewMI);
  1650. }
  1651. }
  1652. MachineBasicBlock &MBB = *MI.getParent();
  1653. MBB.insert(MI.getIterator(), NewMI); // Insert the new inst
  1654. if (LIS) {
  1655. LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
  1656. if (SrcReg)
  1657. LIS->getInterval(SrcReg);
  1658. if (SrcReg2)
  1659. LIS->getInterval(SrcReg2);
  1660. }
  1661. return NewMI;
  1662. }
  1663. /// This determines which of three possible cases of a three source commute
  1664. /// the source indexes correspond to taking into account any mask operands.
  1665. /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
  1666. /// possible.
  1667. /// Case 0 - Possible to commute the first and second operands.
  1668. /// Case 1 - Possible to commute the first and third operands.
  1669. /// Case 2 - Possible to commute the second and third operands.
  1670. static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
  1671. unsigned SrcOpIdx2) {
  1672. // Put the lowest index to SrcOpIdx1 to simplify the checks below.
  1673. if (SrcOpIdx1 > SrcOpIdx2)
  1674. std::swap(SrcOpIdx1, SrcOpIdx2);
  1675. unsigned Op1 = 1, Op2 = 2, Op3 = 3;
  1676. if (X86II::isKMasked(TSFlags)) {
  1677. Op2++;
  1678. Op3++;
  1679. }
  1680. if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
  1681. return 0;
  1682. if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
  1683. return 1;
  1684. if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
  1685. return 2;
  1686. llvm_unreachable("Unknown three src commute case.");
  1687. }
  1688. unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
  1689. const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
  1690. const X86InstrFMA3Group &FMA3Group) const {
  1691. unsigned Opc = MI.getOpcode();
  1692. // TODO: Commuting the 1st operand of FMA*_Int requires some additional
  1693. // analysis. The commute optimization is legal only if all users of FMA*_Int
  1694. // use only the lowest element of the FMA*_Int instruction. Such analysis are
  1695. // not implemented yet. So, just return 0 in that case.
  1696. // When such analysis are available this place will be the right place for
  1697. // calling it.
  1698. assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
  1699. "Intrinsic instructions can't commute operand 1");
  1700. // Determine which case this commute is or if it can't be done.
  1701. unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
  1702. SrcOpIdx2);
  1703. assert(Case < 3 && "Unexpected case number!");
  1704. // Define the FMA forms mapping array that helps to map input FMA form
  1705. // to output FMA form to preserve the operation semantics after
  1706. // commuting the operands.
  1707. const unsigned Form132Index = 0;
  1708. const unsigned Form213Index = 1;
  1709. const unsigned Form231Index = 2;
  1710. static const unsigned FormMapping[][3] = {
  1711. // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
  1712. // FMA132 A, C, b; ==> FMA231 C, A, b;
  1713. // FMA213 B, A, c; ==> FMA213 A, B, c;
  1714. // FMA231 C, A, b; ==> FMA132 A, C, b;
  1715. { Form231Index, Form213Index, Form132Index },
  1716. // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
  1717. // FMA132 A, c, B; ==> FMA132 B, c, A;
  1718. // FMA213 B, a, C; ==> FMA231 C, a, B;
  1719. // FMA231 C, a, B; ==> FMA213 B, a, C;
  1720. { Form132Index, Form231Index, Form213Index },
  1721. // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
  1722. // FMA132 a, C, B; ==> FMA213 a, B, C;
  1723. // FMA213 b, A, C; ==> FMA132 b, C, A;
  1724. // FMA231 c, A, B; ==> FMA231 c, B, A;
  1725. { Form213Index, Form132Index, Form231Index }
  1726. };
  1727. unsigned FMAForms[3];
  1728. FMAForms[0] = FMA3Group.get132Opcode();
  1729. FMAForms[1] = FMA3Group.get213Opcode();
  1730. FMAForms[2] = FMA3Group.get231Opcode();
  1731. // Everything is ready, just adjust the FMA opcode and return it.
  1732. for (unsigned FormIndex = 0; FormIndex < 3; FormIndex++)
  1733. if (Opc == FMAForms[FormIndex])
  1734. return FMAForms[FormMapping[Case][FormIndex]];
  1735. llvm_unreachable("Illegal FMA3 format");
  1736. }
  1737. static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
  1738. unsigned SrcOpIdx2) {
  1739. // Determine which case this commute is or if it can't be done.
  1740. unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
  1741. SrcOpIdx2);
  1742. assert(Case < 3 && "Unexpected case value!");
  1743. // For each case we need to swap two pairs of bits in the final immediate.
  1744. static const uint8_t SwapMasks[3][4] = {
  1745. { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
  1746. { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
  1747. { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
  1748. };
  1749. uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
  1750. // Clear out the bits we are swapping.
  1751. uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
  1752. SwapMasks[Case][2] | SwapMasks[Case][3]);
  1753. // If the immediate had a bit of the pair set, then set the opposite bit.
  1754. if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
  1755. if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
  1756. if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
  1757. if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
  1758. MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
  1759. }
  1760. // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
  1761. // commuted.
  1762. static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
  1763. #define VPERM_CASES(Suffix) \
  1764. case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \
  1765. case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \
  1766. case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \
  1767. case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \
  1768. case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \
  1769. case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \
  1770. case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \
  1771. case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \
  1772. case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \
  1773. case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \
  1774. case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \
  1775. case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz:
  1776. #define VPERM_CASES_BROADCAST(Suffix) \
  1777. VPERM_CASES(Suffix) \
  1778. case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \
  1779. case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \
  1780. case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \
  1781. case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
  1782. case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
  1783. case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz:
  1784. switch (Opcode) {
  1785. default: return false;
  1786. VPERM_CASES(B)
  1787. VPERM_CASES_BROADCAST(D)
  1788. VPERM_CASES_BROADCAST(PD)
  1789. VPERM_CASES_BROADCAST(PS)
  1790. VPERM_CASES_BROADCAST(Q)
  1791. VPERM_CASES(W)
  1792. return true;
  1793. }
  1794. #undef VPERM_CASES_BROADCAST
  1795. #undef VPERM_CASES
  1796. }
  1797. // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
  1798. // from the I opcode to the T opcode and vice versa.
  1799. static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
  1800. #define VPERM_CASES(Orig, New) \
  1801. case X86::Orig##128rr: return X86::New##128rr; \
  1802. case X86::Orig##128rrkz: return X86::New##128rrkz; \
  1803. case X86::Orig##128rm: return X86::New##128rm; \
  1804. case X86::Orig##128rmkz: return X86::New##128rmkz; \
  1805. case X86::Orig##256rr: return X86::New##256rr; \
  1806. case X86::Orig##256rrkz: return X86::New##256rrkz; \
  1807. case X86::Orig##256rm: return X86::New##256rm; \
  1808. case X86::Orig##256rmkz: return X86::New##256rmkz; \
  1809. case X86::Orig##rr: return X86::New##rr; \
  1810. case X86::Orig##rrkz: return X86::New##rrkz; \
  1811. case X86::Orig##rm: return X86::New##rm; \
  1812. case X86::Orig##rmkz: return X86::New##rmkz;
  1813. #define VPERM_CASES_BROADCAST(Orig, New) \
  1814. VPERM_CASES(Orig, New) \
  1815. case X86::Orig##128rmb: return X86::New##128rmb; \
  1816. case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
  1817. case X86::Orig##256rmb: return X86::New##256rmb; \
  1818. case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
  1819. case X86::Orig##rmb: return X86::New##rmb; \
  1820. case X86::Orig##rmbkz: return X86::New##rmbkz;
  1821. switch (Opcode) {
  1822. VPERM_CASES(VPERMI2B, VPERMT2B)
  1823. VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
  1824. VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
  1825. VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
  1826. VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
  1827. VPERM_CASES(VPERMI2W, VPERMT2W)
  1828. VPERM_CASES(VPERMT2B, VPERMI2B)
  1829. VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
  1830. VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
  1831. VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
  1832. VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
  1833. VPERM_CASES(VPERMT2W, VPERMI2W)
  1834. }
  1835. llvm_unreachable("Unreachable!");
  1836. #undef VPERM_CASES_BROADCAST
  1837. #undef VPERM_CASES
  1838. }
  1839. MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
  1840. unsigned OpIdx1,
  1841. unsigned OpIdx2) const {
  1842. auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
  1843. if (NewMI)
  1844. return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
  1845. return MI;
  1846. };
  1847. switch (MI.getOpcode()) {
  1848. case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
  1849. case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
  1850. case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
  1851. case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
  1852. case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
  1853. case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
  1854. unsigned Opc;
  1855. unsigned Size;
  1856. switch (MI.getOpcode()) {
  1857. default: llvm_unreachable("Unreachable!");
  1858. case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
  1859. case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
  1860. case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
  1861. case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
  1862. case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
  1863. case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
  1864. }
  1865. unsigned Amt = MI.getOperand(3).getImm();
  1866. auto &WorkingMI = cloneIfNew(MI);
  1867. WorkingMI.setDesc(get(Opc));
  1868. WorkingMI.getOperand(3).setImm(Size - Amt);
  1869. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  1870. OpIdx1, OpIdx2);
  1871. }
  1872. case X86::PFSUBrr:
  1873. case X86::PFSUBRrr: {
  1874. // PFSUB x, y: x = x - y
  1875. // PFSUBR x, y: x = y - x
  1876. unsigned Opc =
  1877. (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
  1878. auto &WorkingMI = cloneIfNew(MI);
  1879. WorkingMI.setDesc(get(Opc));
  1880. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  1881. OpIdx1, OpIdx2);
  1882. }
  1883. case X86::BLENDPDrri:
  1884. case X86::BLENDPSrri:
  1885. case X86::VBLENDPDrri:
  1886. case X86::VBLENDPSrri:
  1887. // If we're optimizing for size, try to use MOVSD/MOVSS.
  1888. if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
  1889. unsigned Mask, Opc;
  1890. switch (MI.getOpcode()) {
  1891. default: llvm_unreachable("Unreachable!");
  1892. case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break;
  1893. case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break;
  1894. case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
  1895. case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
  1896. }
  1897. if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
  1898. auto &WorkingMI = cloneIfNew(MI);
  1899. WorkingMI.setDesc(get(Opc));
  1900. WorkingMI.removeOperand(3);
  1901. return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
  1902. /*NewMI=*/false,
  1903. OpIdx1, OpIdx2);
  1904. }
  1905. }
  1906. [[fallthrough]];
  1907. case X86::PBLENDWrri:
  1908. case X86::VBLENDPDYrri:
  1909. case X86::VBLENDPSYrri:
  1910. case X86::VPBLENDDrri:
  1911. case X86::VPBLENDWrri:
  1912. case X86::VPBLENDDYrri:
  1913. case X86::VPBLENDWYrri:{
  1914. int8_t Mask;
  1915. switch (MI.getOpcode()) {
  1916. default: llvm_unreachable("Unreachable!");
  1917. case X86::BLENDPDrri: Mask = (int8_t)0x03; break;
  1918. case X86::BLENDPSrri: Mask = (int8_t)0x0F; break;
  1919. case X86::PBLENDWrri: Mask = (int8_t)0xFF; break;
  1920. case X86::VBLENDPDrri: Mask = (int8_t)0x03; break;
  1921. case X86::VBLENDPSrri: Mask = (int8_t)0x0F; break;
  1922. case X86::VBLENDPDYrri: Mask = (int8_t)0x0F; break;
  1923. case X86::VBLENDPSYrri: Mask = (int8_t)0xFF; break;
  1924. case X86::VPBLENDDrri: Mask = (int8_t)0x0F; break;
  1925. case X86::VPBLENDWrri: Mask = (int8_t)0xFF; break;
  1926. case X86::VPBLENDDYrri: Mask = (int8_t)0xFF; break;
  1927. case X86::VPBLENDWYrri: Mask = (int8_t)0xFF; break;
  1928. }
  1929. // Only the least significant bits of Imm are used.
  1930. // Using int8_t to ensure it will be sign extended to the int64_t that
  1931. // setImm takes in order to match isel behavior.
  1932. int8_t Imm = MI.getOperand(3).getImm() & Mask;
  1933. auto &WorkingMI = cloneIfNew(MI);
  1934. WorkingMI.getOperand(3).setImm(Mask ^ Imm);
  1935. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  1936. OpIdx1, OpIdx2);
  1937. }
  1938. case X86::INSERTPSrr:
  1939. case X86::VINSERTPSrr:
  1940. case X86::VINSERTPSZrr: {
  1941. unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
  1942. unsigned ZMask = Imm & 15;
  1943. unsigned DstIdx = (Imm >> 4) & 3;
  1944. unsigned SrcIdx = (Imm >> 6) & 3;
  1945. // We can commute insertps if we zero 2 of the elements, the insertion is
  1946. // "inline" and we don't override the insertion with a zero.
  1947. if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
  1948. llvm::popcount(ZMask) == 2) {
  1949. unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
  1950. assert(AltIdx < 4 && "Illegal insertion index");
  1951. unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
  1952. auto &WorkingMI = cloneIfNew(MI);
  1953. WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
  1954. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  1955. OpIdx1, OpIdx2);
  1956. }
  1957. return nullptr;
  1958. }
  1959. case X86::MOVSDrr:
  1960. case X86::MOVSSrr:
  1961. case X86::VMOVSDrr:
  1962. case X86::VMOVSSrr:{
  1963. // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
  1964. if (Subtarget.hasSSE41()) {
  1965. unsigned Mask, Opc;
  1966. switch (MI.getOpcode()) {
  1967. default: llvm_unreachable("Unreachable!");
  1968. case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break;
  1969. case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break;
  1970. case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
  1971. case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
  1972. }
  1973. auto &WorkingMI = cloneIfNew(MI);
  1974. WorkingMI.setDesc(get(Opc));
  1975. WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
  1976. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  1977. OpIdx1, OpIdx2);
  1978. }
  1979. // Convert to SHUFPD.
  1980. assert(MI.getOpcode() == X86::MOVSDrr &&
  1981. "Can only commute MOVSDrr without SSE4.1");
  1982. auto &WorkingMI = cloneIfNew(MI);
  1983. WorkingMI.setDesc(get(X86::SHUFPDrri));
  1984. WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
  1985. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  1986. OpIdx1, OpIdx2);
  1987. }
  1988. case X86::SHUFPDrri: {
  1989. // Commute to MOVSD.
  1990. assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
  1991. auto &WorkingMI = cloneIfNew(MI);
  1992. WorkingMI.setDesc(get(X86::MOVSDrr));
  1993. WorkingMI.removeOperand(3);
  1994. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  1995. OpIdx1, OpIdx2);
  1996. }
  1997. case X86::PCLMULQDQrr:
  1998. case X86::VPCLMULQDQrr:
  1999. case X86::VPCLMULQDQYrr:
  2000. case X86::VPCLMULQDQZrr:
  2001. case X86::VPCLMULQDQZ128rr:
  2002. case X86::VPCLMULQDQZ256rr: {
  2003. // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
  2004. // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
  2005. unsigned Imm = MI.getOperand(3).getImm();
  2006. unsigned Src1Hi = Imm & 0x01;
  2007. unsigned Src2Hi = Imm & 0x10;
  2008. auto &WorkingMI = cloneIfNew(MI);
  2009. WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
  2010. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2011. OpIdx1, OpIdx2);
  2012. }
  2013. case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri:
  2014. case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri:
  2015. case X86::VPCMPBZrri: case X86::VPCMPUBZrri:
  2016. case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri:
  2017. case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri:
  2018. case X86::VPCMPDZrri: case X86::VPCMPUDZrri:
  2019. case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri:
  2020. case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri:
  2021. case X86::VPCMPQZrri: case X86::VPCMPUQZrri:
  2022. case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri:
  2023. case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri:
  2024. case X86::VPCMPWZrri: case X86::VPCMPUWZrri:
  2025. case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
  2026. case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
  2027. case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik:
  2028. case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
  2029. case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
  2030. case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik:
  2031. case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
  2032. case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
  2033. case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik:
  2034. case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
  2035. case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
  2036. case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: {
  2037. // Flip comparison mode immediate (if necessary).
  2038. unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
  2039. Imm = X86::getSwappedVPCMPImm(Imm);
  2040. auto &WorkingMI = cloneIfNew(MI);
  2041. WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
  2042. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2043. OpIdx1, OpIdx2);
  2044. }
  2045. case X86::VPCOMBri: case X86::VPCOMUBri:
  2046. case X86::VPCOMDri: case X86::VPCOMUDri:
  2047. case X86::VPCOMQri: case X86::VPCOMUQri:
  2048. case X86::VPCOMWri: case X86::VPCOMUWri: {
  2049. // Flip comparison mode immediate (if necessary).
  2050. unsigned Imm = MI.getOperand(3).getImm() & 0x7;
  2051. Imm = X86::getSwappedVPCOMImm(Imm);
  2052. auto &WorkingMI = cloneIfNew(MI);
  2053. WorkingMI.getOperand(3).setImm(Imm);
  2054. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2055. OpIdx1, OpIdx2);
  2056. }
  2057. case X86::VCMPSDZrr:
  2058. case X86::VCMPSSZrr:
  2059. case X86::VCMPPDZrri:
  2060. case X86::VCMPPSZrri:
  2061. case X86::VCMPSHZrr:
  2062. case X86::VCMPPHZrri:
  2063. case X86::VCMPPHZ128rri:
  2064. case X86::VCMPPHZ256rri:
  2065. case X86::VCMPPDZ128rri:
  2066. case X86::VCMPPSZ128rri:
  2067. case X86::VCMPPDZ256rri:
  2068. case X86::VCMPPSZ256rri:
  2069. case X86::VCMPPDZrrik:
  2070. case X86::VCMPPSZrrik:
  2071. case X86::VCMPPDZ128rrik:
  2072. case X86::VCMPPSZ128rrik:
  2073. case X86::VCMPPDZ256rrik:
  2074. case X86::VCMPPSZ256rrik: {
  2075. unsigned Imm =
  2076. MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
  2077. Imm = X86::getSwappedVCMPImm(Imm);
  2078. auto &WorkingMI = cloneIfNew(MI);
  2079. WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
  2080. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2081. OpIdx1, OpIdx2);
  2082. }
  2083. case X86::VPERM2F128rr:
  2084. case X86::VPERM2I128rr: {
  2085. // Flip permute source immediate.
  2086. // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
  2087. // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
  2088. int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
  2089. auto &WorkingMI = cloneIfNew(MI);
  2090. WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
  2091. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2092. OpIdx1, OpIdx2);
  2093. }
  2094. case X86::MOVHLPSrr:
  2095. case X86::UNPCKHPDrr:
  2096. case X86::VMOVHLPSrr:
  2097. case X86::VUNPCKHPDrr:
  2098. case X86::VMOVHLPSZrr:
  2099. case X86::VUNPCKHPDZ128rr: {
  2100. assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
  2101. unsigned Opc = MI.getOpcode();
  2102. switch (Opc) {
  2103. default: llvm_unreachable("Unreachable!");
  2104. case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break;
  2105. case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break;
  2106. case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break;
  2107. case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break;
  2108. case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break;
  2109. case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break;
  2110. }
  2111. auto &WorkingMI = cloneIfNew(MI);
  2112. WorkingMI.setDesc(get(Opc));
  2113. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2114. OpIdx1, OpIdx2);
  2115. }
  2116. case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: {
  2117. auto &WorkingMI = cloneIfNew(MI);
  2118. unsigned OpNo = MI.getDesc().getNumOperands() - 1;
  2119. X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
  2120. WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
  2121. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2122. OpIdx1, OpIdx2);
  2123. }
  2124. case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
  2125. case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
  2126. case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
  2127. case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
  2128. case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
  2129. case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
  2130. case X86::VPTERNLOGDZrrik:
  2131. case X86::VPTERNLOGDZ128rrik:
  2132. case X86::VPTERNLOGDZ256rrik:
  2133. case X86::VPTERNLOGQZrrik:
  2134. case X86::VPTERNLOGQZ128rrik:
  2135. case X86::VPTERNLOGQZ256rrik:
  2136. case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
  2137. case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
  2138. case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
  2139. case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
  2140. case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
  2141. case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
  2142. case X86::VPTERNLOGDZ128rmbi:
  2143. case X86::VPTERNLOGDZ256rmbi:
  2144. case X86::VPTERNLOGDZrmbi:
  2145. case X86::VPTERNLOGQZ128rmbi:
  2146. case X86::VPTERNLOGQZ256rmbi:
  2147. case X86::VPTERNLOGQZrmbi:
  2148. case X86::VPTERNLOGDZ128rmbikz:
  2149. case X86::VPTERNLOGDZ256rmbikz:
  2150. case X86::VPTERNLOGDZrmbikz:
  2151. case X86::VPTERNLOGQZ128rmbikz:
  2152. case X86::VPTERNLOGQZ256rmbikz:
  2153. case X86::VPTERNLOGQZrmbikz: {
  2154. auto &WorkingMI = cloneIfNew(MI);
  2155. commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
  2156. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2157. OpIdx1, OpIdx2);
  2158. }
  2159. default: {
  2160. if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
  2161. unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
  2162. auto &WorkingMI = cloneIfNew(MI);
  2163. WorkingMI.setDesc(get(Opc));
  2164. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2165. OpIdx1, OpIdx2);
  2166. }
  2167. const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
  2168. MI.getDesc().TSFlags);
  2169. if (FMA3Group) {
  2170. unsigned Opc =
  2171. getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
  2172. auto &WorkingMI = cloneIfNew(MI);
  2173. WorkingMI.setDesc(get(Opc));
  2174. return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
  2175. OpIdx1, OpIdx2);
  2176. }
  2177. return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
  2178. }
  2179. }
  2180. }
  2181. bool
  2182. X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
  2183. unsigned &SrcOpIdx1,
  2184. unsigned &SrcOpIdx2,
  2185. bool IsIntrinsic) const {
  2186. uint64_t TSFlags = MI.getDesc().TSFlags;
  2187. unsigned FirstCommutableVecOp = 1;
  2188. unsigned LastCommutableVecOp = 3;
  2189. unsigned KMaskOp = -1U;
  2190. if (X86II::isKMasked(TSFlags)) {
  2191. // For k-zero-masked operations it is Ok to commute the first vector
  2192. // operand. Unless this is an intrinsic instruction.
  2193. // For regular k-masked operations a conservative choice is done as the
  2194. // elements of the first vector operand, for which the corresponding bit
  2195. // in the k-mask operand is set to 0, are copied to the result of the
  2196. // instruction.
  2197. // TODO/FIXME: The commute still may be legal if it is known that the
  2198. // k-mask operand is set to either all ones or all zeroes.
  2199. // It is also Ok to commute the 1st operand if all users of MI use only
  2200. // the elements enabled by the k-mask operand. For example,
  2201. // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
  2202. // : v1[i];
  2203. // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
  2204. // // Ok, to commute v1 in FMADD213PSZrk.
  2205. // The k-mask operand has index = 2 for masked and zero-masked operations.
  2206. KMaskOp = 2;
  2207. // The operand with index = 1 is used as a source for those elements for
  2208. // which the corresponding bit in the k-mask is set to 0.
  2209. if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
  2210. FirstCommutableVecOp = 3;
  2211. LastCommutableVecOp++;
  2212. } else if (IsIntrinsic) {
  2213. // Commuting the first operand of an intrinsic instruction isn't possible
  2214. // unless we can prove that only the lowest element of the result is used.
  2215. FirstCommutableVecOp = 2;
  2216. }
  2217. if (isMem(MI, LastCommutableVecOp))
  2218. LastCommutableVecOp--;
  2219. // Only the first RegOpsNum operands are commutable.
  2220. // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
  2221. // that the operand is not specified/fixed.
  2222. if (SrcOpIdx1 != CommuteAnyOperandIndex &&
  2223. (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
  2224. SrcOpIdx1 == KMaskOp))
  2225. return false;
  2226. if (SrcOpIdx2 != CommuteAnyOperandIndex &&
  2227. (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
  2228. SrcOpIdx2 == KMaskOp))
  2229. return false;
  2230. // Look for two different register operands assumed to be commutable
  2231. // regardless of the FMA opcode. The FMA opcode is adjusted later.
  2232. if (SrcOpIdx1 == CommuteAnyOperandIndex ||
  2233. SrcOpIdx2 == CommuteAnyOperandIndex) {
  2234. unsigned CommutableOpIdx2 = SrcOpIdx2;
  2235. // At least one of operands to be commuted is not specified and
  2236. // this method is free to choose appropriate commutable operands.
  2237. if (SrcOpIdx1 == SrcOpIdx2)
  2238. // Both of operands are not fixed. By default set one of commutable
  2239. // operands to the last register operand of the instruction.
  2240. CommutableOpIdx2 = LastCommutableVecOp;
  2241. else if (SrcOpIdx2 == CommuteAnyOperandIndex)
  2242. // Only one of operands is not fixed.
  2243. CommutableOpIdx2 = SrcOpIdx1;
  2244. // CommutableOpIdx2 is well defined now. Let's choose another commutable
  2245. // operand and assign its index to CommutableOpIdx1.
  2246. Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
  2247. unsigned CommutableOpIdx1;
  2248. for (CommutableOpIdx1 = LastCommutableVecOp;
  2249. CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
  2250. // Just ignore and skip the k-mask operand.
  2251. if (CommutableOpIdx1 == KMaskOp)
  2252. continue;
  2253. // The commuted operands must have different registers.
  2254. // Otherwise, the commute transformation does not change anything and
  2255. // is useless then.
  2256. if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
  2257. break;
  2258. }
  2259. // No appropriate commutable operands were found.
  2260. if (CommutableOpIdx1 < FirstCommutableVecOp)
  2261. return false;
  2262. // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
  2263. // to return those values.
  2264. if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
  2265. CommutableOpIdx1, CommutableOpIdx2))
  2266. return false;
  2267. }
  2268. return true;
  2269. }
  2270. bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
  2271. unsigned &SrcOpIdx1,
  2272. unsigned &SrcOpIdx2) const {
  2273. const MCInstrDesc &Desc = MI.getDesc();
  2274. if (!Desc.isCommutable())
  2275. return false;
  2276. switch (MI.getOpcode()) {
  2277. case X86::CMPSDrr:
  2278. case X86::CMPSSrr:
  2279. case X86::CMPPDrri:
  2280. case X86::CMPPSrri:
  2281. case X86::VCMPSDrr:
  2282. case X86::VCMPSSrr:
  2283. case X86::VCMPPDrri:
  2284. case X86::VCMPPSrri:
  2285. case X86::VCMPPDYrri:
  2286. case X86::VCMPPSYrri:
  2287. case X86::VCMPSDZrr:
  2288. case X86::VCMPSSZrr:
  2289. case X86::VCMPPDZrri:
  2290. case X86::VCMPPSZrri:
  2291. case X86::VCMPSHZrr:
  2292. case X86::VCMPPHZrri:
  2293. case X86::VCMPPHZ128rri:
  2294. case X86::VCMPPHZ256rri:
  2295. case X86::VCMPPDZ128rri:
  2296. case X86::VCMPPSZ128rri:
  2297. case X86::VCMPPDZ256rri:
  2298. case X86::VCMPPSZ256rri:
  2299. case X86::VCMPPDZrrik:
  2300. case X86::VCMPPSZrrik:
  2301. case X86::VCMPPDZ128rrik:
  2302. case X86::VCMPPSZ128rrik:
  2303. case X86::VCMPPDZ256rrik:
  2304. case X86::VCMPPSZ256rrik: {
  2305. unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
  2306. // Float comparison can be safely commuted for
  2307. // Ordered/Unordered/Equal/NotEqual tests
  2308. unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
  2309. switch (Imm) {
  2310. default:
  2311. // EVEX versions can be commuted.
  2312. if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
  2313. break;
  2314. return false;
  2315. case 0x00: // EQUAL
  2316. case 0x03: // UNORDERED
  2317. case 0x04: // NOT EQUAL
  2318. case 0x07: // ORDERED
  2319. break;
  2320. }
  2321. // The indices of the commutable operands are 1 and 2 (or 2 and 3
  2322. // when masked).
  2323. // Assign them to the returned operand indices here.
  2324. return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
  2325. 2 + OpOffset);
  2326. }
  2327. case X86::MOVSSrr:
  2328. // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
  2329. // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
  2330. // AVX implies sse4.1.
  2331. if (Subtarget.hasSSE41())
  2332. return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
  2333. return false;
  2334. case X86::SHUFPDrri:
  2335. // We can commute this to MOVSD.
  2336. if (MI.getOperand(3).getImm() == 0x02)
  2337. return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
  2338. return false;
  2339. case X86::MOVHLPSrr:
  2340. case X86::UNPCKHPDrr:
  2341. case X86::VMOVHLPSrr:
  2342. case X86::VUNPCKHPDrr:
  2343. case X86::VMOVHLPSZrr:
  2344. case X86::VUNPCKHPDZ128rr:
  2345. if (Subtarget.hasSSE2())
  2346. return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
  2347. return false;
  2348. case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
  2349. case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
  2350. case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
  2351. case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
  2352. case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
  2353. case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
  2354. case X86::VPTERNLOGDZrrik:
  2355. case X86::VPTERNLOGDZ128rrik:
  2356. case X86::VPTERNLOGDZ256rrik:
  2357. case X86::VPTERNLOGQZrrik:
  2358. case X86::VPTERNLOGQZ128rrik:
  2359. case X86::VPTERNLOGQZ256rrik:
  2360. case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
  2361. case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
  2362. case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
  2363. case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
  2364. case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
  2365. case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
  2366. case X86::VPTERNLOGDZ128rmbi:
  2367. case X86::VPTERNLOGDZ256rmbi:
  2368. case X86::VPTERNLOGDZrmbi:
  2369. case X86::VPTERNLOGQZ128rmbi:
  2370. case X86::VPTERNLOGQZ256rmbi:
  2371. case X86::VPTERNLOGQZrmbi:
  2372. case X86::VPTERNLOGDZ128rmbikz:
  2373. case X86::VPTERNLOGDZ256rmbikz:
  2374. case X86::VPTERNLOGDZrmbikz:
  2375. case X86::VPTERNLOGQZ128rmbikz:
  2376. case X86::VPTERNLOGQZ256rmbikz:
  2377. case X86::VPTERNLOGQZrmbikz:
  2378. return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
  2379. case X86::VPDPWSSDYrr:
  2380. case X86::VPDPWSSDrr:
  2381. case X86::VPDPWSSDSYrr:
  2382. case X86::VPDPWSSDSrr:
  2383. case X86::VPDPBSSDSrr:
  2384. case X86::VPDPBSSDSYrr:
  2385. case X86::VPDPBSSDrr:
  2386. case X86::VPDPBSSDYrr:
  2387. case X86::VPDPBUUDSrr:
  2388. case X86::VPDPBUUDSYrr:
  2389. case X86::VPDPBUUDrr:
  2390. case X86::VPDPBUUDYrr:
  2391. case X86::VPDPWSSDZ128r:
  2392. case X86::VPDPWSSDZ128rk:
  2393. case X86::VPDPWSSDZ128rkz:
  2394. case X86::VPDPWSSDZ256r:
  2395. case X86::VPDPWSSDZ256rk:
  2396. case X86::VPDPWSSDZ256rkz:
  2397. case X86::VPDPWSSDZr:
  2398. case X86::VPDPWSSDZrk:
  2399. case X86::VPDPWSSDZrkz:
  2400. case X86::VPDPWSSDSZ128r:
  2401. case X86::VPDPWSSDSZ128rk:
  2402. case X86::VPDPWSSDSZ128rkz:
  2403. case X86::VPDPWSSDSZ256r:
  2404. case X86::VPDPWSSDSZ256rk:
  2405. case X86::VPDPWSSDSZ256rkz:
  2406. case X86::VPDPWSSDSZr:
  2407. case X86::VPDPWSSDSZrk:
  2408. case X86::VPDPWSSDSZrkz:
  2409. case X86::VPMADD52HUQrr:
  2410. case X86::VPMADD52HUQYrr:
  2411. case X86::VPMADD52HUQZ128r:
  2412. case X86::VPMADD52HUQZ128rk:
  2413. case X86::VPMADD52HUQZ128rkz:
  2414. case X86::VPMADD52HUQZ256r:
  2415. case X86::VPMADD52HUQZ256rk:
  2416. case X86::VPMADD52HUQZ256rkz:
  2417. case X86::VPMADD52HUQZr:
  2418. case X86::VPMADD52HUQZrk:
  2419. case X86::VPMADD52HUQZrkz:
  2420. case X86::VPMADD52LUQrr:
  2421. case X86::VPMADD52LUQYrr:
  2422. case X86::VPMADD52LUQZ128r:
  2423. case X86::VPMADD52LUQZ128rk:
  2424. case X86::VPMADD52LUQZ128rkz:
  2425. case X86::VPMADD52LUQZ256r:
  2426. case X86::VPMADD52LUQZ256rk:
  2427. case X86::VPMADD52LUQZ256rkz:
  2428. case X86::VPMADD52LUQZr:
  2429. case X86::VPMADD52LUQZrk:
  2430. case X86::VPMADD52LUQZrkz:
  2431. case X86::VFMADDCPHZr:
  2432. case X86::VFMADDCPHZrk:
  2433. case X86::VFMADDCPHZrkz:
  2434. case X86::VFMADDCPHZ128r:
  2435. case X86::VFMADDCPHZ128rk:
  2436. case X86::VFMADDCPHZ128rkz:
  2437. case X86::VFMADDCPHZ256r:
  2438. case X86::VFMADDCPHZ256rk:
  2439. case X86::VFMADDCPHZ256rkz:
  2440. case X86::VFMADDCSHZr:
  2441. case X86::VFMADDCSHZrk:
  2442. case X86::VFMADDCSHZrkz: {
  2443. unsigned CommutableOpIdx1 = 2;
  2444. unsigned CommutableOpIdx2 = 3;
  2445. if (X86II::isKMasked(Desc.TSFlags)) {
  2446. // Skip the mask register.
  2447. ++CommutableOpIdx1;
  2448. ++CommutableOpIdx2;
  2449. }
  2450. if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
  2451. CommutableOpIdx1, CommutableOpIdx2))
  2452. return false;
  2453. if (!MI.getOperand(SrcOpIdx1).isReg() ||
  2454. !MI.getOperand(SrcOpIdx2).isReg())
  2455. // No idea.
  2456. return false;
  2457. return true;
  2458. }
  2459. default:
  2460. const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
  2461. MI.getDesc().TSFlags);
  2462. if (FMA3Group)
  2463. return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
  2464. FMA3Group->isIntrinsic());
  2465. // Handled masked instructions since we need to skip over the mask input
  2466. // and the preserved input.
  2467. if (X86II::isKMasked(Desc.TSFlags)) {
  2468. // First assume that the first input is the mask operand and skip past it.
  2469. unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
  2470. unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
  2471. // Check if the first input is tied. If there isn't one then we only
  2472. // need to skip the mask operand which we did above.
  2473. if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
  2474. MCOI::TIED_TO) != -1)) {
  2475. // If this is zero masking instruction with a tied operand, we need to
  2476. // move the first index back to the first input since this must
  2477. // be a 3 input instruction and we want the first two non-mask inputs.
  2478. // Otherwise this is a 2 input instruction with a preserved input and
  2479. // mask, so we need to move the indices to skip one more input.
  2480. if (X86II::isKMergeMasked(Desc.TSFlags)) {
  2481. ++CommutableOpIdx1;
  2482. ++CommutableOpIdx2;
  2483. } else {
  2484. --CommutableOpIdx1;
  2485. }
  2486. }
  2487. if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
  2488. CommutableOpIdx1, CommutableOpIdx2))
  2489. return false;
  2490. if (!MI.getOperand(SrcOpIdx1).isReg() ||
  2491. !MI.getOperand(SrcOpIdx2).isReg())
  2492. // No idea.
  2493. return false;
  2494. return true;
  2495. }
  2496. return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
  2497. }
  2498. return false;
  2499. }
  2500. static bool isConvertibleLEA(MachineInstr *MI) {
  2501. unsigned Opcode = MI->getOpcode();
  2502. if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
  2503. Opcode != X86::LEA64_32r)
  2504. return false;
  2505. const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt);
  2506. const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp);
  2507. const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg);
  2508. if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 ||
  2509. Scale.getImm() > 1)
  2510. return false;
  2511. return true;
  2512. }
  2513. bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const {
  2514. // Currently we're interested in following sequence only.
  2515. // r3 = lea r1, r2
  2516. // r5 = add r3, r4
  2517. // Both r3 and r4 are killed in add, we hope the add instruction has the
  2518. // operand order
  2519. // r5 = add r4, r3
  2520. // So later in X86FixupLEAs the lea instruction can be rewritten as add.
  2521. unsigned Opcode = MI.getOpcode();
  2522. if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
  2523. return false;
  2524. const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
  2525. Register Reg1 = MI.getOperand(1).getReg();
  2526. Register Reg2 = MI.getOperand(2).getReg();
  2527. // Check if Reg1 comes from LEA in the same MBB.
  2528. if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) {
  2529. if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
  2530. Commute = true;
  2531. return true;
  2532. }
  2533. }
  2534. // Check if Reg2 comes from LEA in the same MBB.
  2535. if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) {
  2536. if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
  2537. Commute = false;
  2538. return true;
  2539. }
  2540. }
  2541. return false;
  2542. }
  2543. int X86::getCondSrcNoFromDesc(const MCInstrDesc &MCID) {
  2544. unsigned Opcode = MCID.getOpcode();
  2545. if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isCMOVCC(Opcode)))
  2546. return -1;
  2547. // Assume that condition code is always the last use operand.
  2548. unsigned NumUses = MCID.getNumOperands() - MCID.getNumDefs();
  2549. return NumUses - 1;
  2550. }
  2551. X86::CondCode X86::getCondFromMI(const MachineInstr &MI) {
  2552. const MCInstrDesc &MCID = MI.getDesc();
  2553. int CondNo = getCondSrcNoFromDesc(MCID);
  2554. if (CondNo < 0)
  2555. return X86::COND_INVALID;
  2556. CondNo += MCID.getNumDefs();
  2557. return static_cast<X86::CondCode>(MI.getOperand(CondNo).getImm());
  2558. }
  2559. X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
  2560. return X86::isJCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
  2561. : X86::COND_INVALID;
  2562. }
  2563. X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
  2564. return X86::isSETCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
  2565. : X86::COND_INVALID;
  2566. }
  2567. X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
  2568. return X86::isCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
  2569. : X86::COND_INVALID;
  2570. }
  2571. /// Return the inverse of the specified condition,
  2572. /// e.g. turning COND_E to COND_NE.
  2573. X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
  2574. switch (CC) {
  2575. default: llvm_unreachable("Illegal condition code!");
  2576. case X86::COND_E: return X86::COND_NE;
  2577. case X86::COND_NE: return X86::COND_E;
  2578. case X86::COND_L: return X86::COND_GE;
  2579. case X86::COND_LE: return X86::COND_G;
  2580. case X86::COND_G: return X86::COND_LE;
  2581. case X86::COND_GE: return X86::COND_L;
  2582. case X86::COND_B: return X86::COND_AE;
  2583. case X86::COND_BE: return X86::COND_A;
  2584. case X86::COND_A: return X86::COND_BE;
  2585. case X86::COND_AE: return X86::COND_B;
  2586. case X86::COND_S: return X86::COND_NS;
  2587. case X86::COND_NS: return X86::COND_S;
  2588. case X86::COND_P: return X86::COND_NP;
  2589. case X86::COND_NP: return X86::COND_P;
  2590. case X86::COND_O: return X86::COND_NO;
  2591. case X86::COND_NO: return X86::COND_O;
  2592. case X86::COND_NE_OR_P: return X86::COND_E_AND_NP;
  2593. case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
  2594. }
  2595. }
  2596. /// Assuming the flags are set by MI(a,b), return the condition code if we
  2597. /// modify the instructions such that flags are set by MI(b,a).
  2598. static X86::CondCode getSwappedCondition(X86::CondCode CC) {
  2599. switch (CC) {
  2600. default: return X86::COND_INVALID;
  2601. case X86::COND_E: return X86::COND_E;
  2602. case X86::COND_NE: return X86::COND_NE;
  2603. case X86::COND_L: return X86::COND_G;
  2604. case X86::COND_LE: return X86::COND_GE;
  2605. case X86::COND_G: return X86::COND_L;
  2606. case X86::COND_GE: return X86::COND_LE;
  2607. case X86::COND_B: return X86::COND_A;
  2608. case X86::COND_BE: return X86::COND_AE;
  2609. case X86::COND_A: return X86::COND_B;
  2610. case X86::COND_AE: return X86::COND_BE;
  2611. }
  2612. }
  2613. std::pair<X86::CondCode, bool>
  2614. X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
  2615. X86::CondCode CC = X86::COND_INVALID;
  2616. bool NeedSwap = false;
  2617. switch (Predicate) {
  2618. default: break;
  2619. // Floating-point Predicates
  2620. case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
  2621. case CmpInst::FCMP_OLT: NeedSwap = true; [[fallthrough]];
  2622. case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
  2623. case CmpInst::FCMP_OLE: NeedSwap = true; [[fallthrough]];
  2624. case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
  2625. case CmpInst::FCMP_UGT: NeedSwap = true; [[fallthrough]];
  2626. case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
  2627. case CmpInst::FCMP_UGE: NeedSwap = true; [[fallthrough]];
  2628. case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
  2629. case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
  2630. case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
  2631. case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
  2632. case CmpInst::FCMP_OEQ: [[fallthrough]];
  2633. case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
  2634. // Integer Predicates
  2635. case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
  2636. case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
  2637. case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
  2638. case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
  2639. case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
  2640. case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
  2641. case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
  2642. case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
  2643. case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
  2644. case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
  2645. }
  2646. return std::make_pair(CC, NeedSwap);
  2647. }
  2648. /// Return a cmov opcode for the given register size in bytes, and operand type.
  2649. unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
  2650. switch(RegBytes) {
  2651. default: llvm_unreachable("Illegal register size!");
  2652. case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
  2653. case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
  2654. case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
  2655. }
  2656. }
  2657. /// Get the VPCMP immediate for the given condition.
  2658. unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
  2659. switch (CC) {
  2660. default: llvm_unreachable("Unexpected SETCC condition");
  2661. case ISD::SETNE: return 4;
  2662. case ISD::SETEQ: return 0;
  2663. case ISD::SETULT:
  2664. case ISD::SETLT: return 1;
  2665. case ISD::SETUGT:
  2666. case ISD::SETGT: return 6;
  2667. case ISD::SETUGE:
  2668. case ISD::SETGE: return 5;
  2669. case ISD::SETULE:
  2670. case ISD::SETLE: return 2;
  2671. }
  2672. }
  2673. /// Get the VPCMP immediate if the operands are swapped.
  2674. unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
  2675. switch (Imm) {
  2676. default: llvm_unreachable("Unreachable!");
  2677. case 0x01: Imm = 0x06; break; // LT -> NLE
  2678. case 0x02: Imm = 0x05; break; // LE -> NLT
  2679. case 0x05: Imm = 0x02; break; // NLT -> LE
  2680. case 0x06: Imm = 0x01; break; // NLE -> LT
  2681. case 0x00: // EQ
  2682. case 0x03: // FALSE
  2683. case 0x04: // NE
  2684. case 0x07: // TRUE
  2685. break;
  2686. }
  2687. return Imm;
  2688. }
  2689. /// Get the VPCOM immediate if the operands are swapped.
  2690. unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
  2691. switch (Imm) {
  2692. default: llvm_unreachable("Unreachable!");
  2693. case 0x00: Imm = 0x02; break; // LT -> GT
  2694. case 0x01: Imm = 0x03; break; // LE -> GE
  2695. case 0x02: Imm = 0x00; break; // GT -> LT
  2696. case 0x03: Imm = 0x01; break; // GE -> LE
  2697. case 0x04: // EQ
  2698. case 0x05: // NE
  2699. case 0x06: // FALSE
  2700. case 0x07: // TRUE
  2701. break;
  2702. }
  2703. return Imm;
  2704. }
  2705. /// Get the VCMP immediate if the operands are swapped.
  2706. unsigned X86::getSwappedVCMPImm(unsigned Imm) {
  2707. // Only need the lower 2 bits to distinquish.
  2708. switch (Imm & 0x3) {
  2709. default: llvm_unreachable("Unreachable!");
  2710. case 0x00: case 0x03:
  2711. // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
  2712. break;
  2713. case 0x01: case 0x02:
  2714. // Need to toggle bits 3:0. Bit 4 stays the same.
  2715. Imm ^= 0xf;
  2716. break;
  2717. }
  2718. return Imm;
  2719. }
  2720. /// Return true if the Reg is X87 register.
  2721. static bool isX87Reg(unsigned Reg) {
  2722. return (Reg == X86::FPCW || Reg == X86::FPSW ||
  2723. (Reg >= X86::ST0 && Reg <= X86::ST7));
  2724. }
  2725. /// check if the instruction is X87 instruction
  2726. bool X86::isX87Instruction(MachineInstr &MI) {
  2727. for (const MachineOperand &MO : MI.operands()) {
  2728. if (!MO.isReg())
  2729. continue;
  2730. if (isX87Reg(MO.getReg()))
  2731. return true;
  2732. }
  2733. return false;
  2734. }
  2735. bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
  2736. switch (MI.getOpcode()) {
  2737. case X86::TCRETURNdi:
  2738. case X86::TCRETURNri:
  2739. case X86::TCRETURNmi:
  2740. case X86::TCRETURNdi64:
  2741. case X86::TCRETURNri64:
  2742. case X86::TCRETURNmi64:
  2743. return true;
  2744. default:
  2745. return false;
  2746. }
  2747. }
  2748. bool X86InstrInfo::canMakeTailCallConditional(
  2749. SmallVectorImpl<MachineOperand> &BranchCond,
  2750. const MachineInstr &TailCall) const {
  2751. const MachineFunction *MF = TailCall.getMF();
  2752. if (MF->getTarget().getCodeModel() == CodeModel::Kernel) {
  2753. // Kernel patches thunk calls in runtime, these should never be conditional.
  2754. const MachineOperand &Target = TailCall.getOperand(0);
  2755. if (Target.isSymbol()) {
  2756. StringRef Symbol(Target.getSymbolName());
  2757. // this is currently only relevant to r11/kernel indirect thunk.
  2758. if (Symbol.equals("__x86_indirect_thunk_r11"))
  2759. return false;
  2760. }
  2761. }
  2762. if (TailCall.getOpcode() != X86::TCRETURNdi &&
  2763. TailCall.getOpcode() != X86::TCRETURNdi64) {
  2764. // Only direct calls can be done with a conditional branch.
  2765. return false;
  2766. }
  2767. if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
  2768. // Conditional tail calls confuse the Win64 unwinder.
  2769. return false;
  2770. }
  2771. assert(BranchCond.size() == 1);
  2772. if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
  2773. // Can't make a conditional tail call with this condition.
  2774. return false;
  2775. }
  2776. const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
  2777. if (X86FI->getTCReturnAddrDelta() != 0 ||
  2778. TailCall.getOperand(1).getImm() != 0) {
  2779. // A conditional tail call cannot do any stack adjustment.
  2780. return false;
  2781. }
  2782. return true;
  2783. }
  2784. void X86InstrInfo::replaceBranchWithTailCall(
  2785. MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
  2786. const MachineInstr &TailCall) const {
  2787. assert(canMakeTailCallConditional(BranchCond, TailCall));
  2788. MachineBasicBlock::iterator I = MBB.end();
  2789. while (I != MBB.begin()) {
  2790. --I;
  2791. if (I->isDebugInstr())
  2792. continue;
  2793. if (!I->isBranch())
  2794. assert(0 && "Can't find the branch to replace!");
  2795. X86::CondCode CC = X86::getCondFromBranch(*I);
  2796. assert(BranchCond.size() == 1);
  2797. if (CC != BranchCond[0].getImm())
  2798. continue;
  2799. break;
  2800. }
  2801. unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
  2802. : X86::TCRETURNdi64cc;
  2803. auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
  2804. MIB->addOperand(TailCall.getOperand(0)); // Destination.
  2805. MIB.addImm(0); // Stack offset (not used).
  2806. MIB->addOperand(BranchCond[0]); // Condition.
  2807. MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
  2808. // Add implicit uses and defs of all live regs potentially clobbered by the
  2809. // call. This way they still appear live across the call.
  2810. LivePhysRegs LiveRegs(getRegisterInfo());
  2811. LiveRegs.addLiveOuts(MBB);
  2812. SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
  2813. LiveRegs.stepForward(*MIB, Clobbers);
  2814. for (const auto &C : Clobbers) {
  2815. MIB.addReg(C.first, RegState::Implicit);
  2816. MIB.addReg(C.first, RegState::Implicit | RegState::Define);
  2817. }
  2818. I->eraseFromParent();
  2819. }
  2820. // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
  2821. // not be a fallthrough MBB now due to layout changes). Return nullptr if the
  2822. // fallthrough MBB cannot be identified.
  2823. static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
  2824. MachineBasicBlock *TBB) {
  2825. // Look for non-EHPad successors other than TBB. If we find exactly one, it
  2826. // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
  2827. // and fallthrough MBB. If we find more than one, we cannot identify the
  2828. // fallthrough MBB and should return nullptr.
  2829. MachineBasicBlock *FallthroughBB = nullptr;
  2830. for (MachineBasicBlock *Succ : MBB->successors()) {
  2831. if (Succ->isEHPad() || (Succ == TBB && FallthroughBB))
  2832. continue;
  2833. // Return a nullptr if we found more than one fallthrough successor.
  2834. if (FallthroughBB && FallthroughBB != TBB)
  2835. return nullptr;
  2836. FallthroughBB = Succ;
  2837. }
  2838. return FallthroughBB;
  2839. }
  2840. bool X86InstrInfo::AnalyzeBranchImpl(
  2841. MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
  2842. SmallVectorImpl<MachineOperand> &Cond,
  2843. SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
  2844. // Start from the bottom of the block and work up, examining the
  2845. // terminator instructions.
  2846. MachineBasicBlock::iterator I = MBB.end();
  2847. MachineBasicBlock::iterator UnCondBrIter = MBB.end();
  2848. while (I != MBB.begin()) {
  2849. --I;
  2850. if (I->isDebugInstr())
  2851. continue;
  2852. // Working from the bottom, when we see a non-terminator instruction, we're
  2853. // done.
  2854. if (!isUnpredicatedTerminator(*I))
  2855. break;
  2856. // A terminator that isn't a branch can't easily be handled by this
  2857. // analysis.
  2858. if (!I->isBranch())
  2859. return true;
  2860. // Handle unconditional branches.
  2861. if (I->getOpcode() == X86::JMP_1) {
  2862. UnCondBrIter = I;
  2863. if (!AllowModify) {
  2864. TBB = I->getOperand(0).getMBB();
  2865. continue;
  2866. }
  2867. // If the block has any instructions after a JMP, delete them.
  2868. MBB.erase(std::next(I), MBB.end());
  2869. Cond.clear();
  2870. FBB = nullptr;
  2871. // Delete the JMP if it's equivalent to a fall-through.
  2872. if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
  2873. TBB = nullptr;
  2874. I->eraseFromParent();
  2875. I = MBB.end();
  2876. UnCondBrIter = MBB.end();
  2877. continue;
  2878. }
  2879. // TBB is used to indicate the unconditional destination.
  2880. TBB = I->getOperand(0).getMBB();
  2881. continue;
  2882. }
  2883. // Handle conditional branches.
  2884. X86::CondCode BranchCode = X86::getCondFromBranch(*I);
  2885. if (BranchCode == X86::COND_INVALID)
  2886. return true; // Can't handle indirect branch.
  2887. // In practice we should never have an undef eflags operand, if we do
  2888. // abort here as we are not prepared to preserve the flag.
  2889. if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
  2890. return true;
  2891. // Working from the bottom, handle the first conditional branch.
  2892. if (Cond.empty()) {
  2893. FBB = TBB;
  2894. TBB = I->getOperand(0).getMBB();
  2895. Cond.push_back(MachineOperand::CreateImm(BranchCode));
  2896. CondBranches.push_back(&*I);
  2897. continue;
  2898. }
  2899. // Handle subsequent conditional branches. Only handle the case where all
  2900. // conditional branches branch to the same destination and their condition
  2901. // opcodes fit one of the special multi-branch idioms.
  2902. assert(Cond.size() == 1);
  2903. assert(TBB);
  2904. // If the conditions are the same, we can leave them alone.
  2905. X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
  2906. auto NewTBB = I->getOperand(0).getMBB();
  2907. if (OldBranchCode == BranchCode && TBB == NewTBB)
  2908. continue;
  2909. // If they differ, see if they fit one of the known patterns. Theoretically,
  2910. // we could handle more patterns here, but we shouldn't expect to see them
  2911. // if instruction selection has done a reasonable job.
  2912. if (TBB == NewTBB &&
  2913. ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
  2914. (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
  2915. BranchCode = X86::COND_NE_OR_P;
  2916. } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
  2917. (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
  2918. if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
  2919. return true;
  2920. // X86::COND_E_AND_NP usually has two different branch destinations.
  2921. //
  2922. // JP B1
  2923. // JE B2
  2924. // JMP B1
  2925. // B1:
  2926. // B2:
  2927. //
  2928. // Here this condition branches to B2 only if NP && E. It has another
  2929. // equivalent form:
  2930. //
  2931. // JNE B1
  2932. // JNP B2
  2933. // JMP B1
  2934. // B1:
  2935. // B2:
  2936. //
  2937. // Similarly it branches to B2 only if E && NP. That is why this condition
  2938. // is named with COND_E_AND_NP.
  2939. BranchCode = X86::COND_E_AND_NP;
  2940. } else
  2941. return true;
  2942. // Update the MachineOperand.
  2943. Cond[0].setImm(BranchCode);
  2944. CondBranches.push_back(&*I);
  2945. }
  2946. return false;
  2947. }
  2948. bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
  2949. MachineBasicBlock *&TBB,
  2950. MachineBasicBlock *&FBB,
  2951. SmallVectorImpl<MachineOperand> &Cond,
  2952. bool AllowModify) const {
  2953. SmallVector<MachineInstr *, 4> CondBranches;
  2954. return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
  2955. }
  2956. bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
  2957. MachineBranchPredicate &MBP,
  2958. bool AllowModify) const {
  2959. using namespace std::placeholders;
  2960. SmallVector<MachineOperand, 4> Cond;
  2961. SmallVector<MachineInstr *, 4> CondBranches;
  2962. if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
  2963. AllowModify))
  2964. return true;
  2965. if (Cond.size() != 1)
  2966. return true;
  2967. assert(MBP.TrueDest && "expected!");
  2968. if (!MBP.FalseDest)
  2969. MBP.FalseDest = MBB.getNextNode();
  2970. const TargetRegisterInfo *TRI = &getRegisterInfo();
  2971. MachineInstr *ConditionDef = nullptr;
  2972. bool SingleUseCondition = true;
  2973. for (MachineInstr &MI : llvm::drop_begin(llvm::reverse(MBB))) {
  2974. if (MI.modifiesRegister(X86::EFLAGS, TRI)) {
  2975. ConditionDef = &MI;
  2976. break;
  2977. }
  2978. if (MI.readsRegister(X86::EFLAGS, TRI))
  2979. SingleUseCondition = false;
  2980. }
  2981. if (!ConditionDef)
  2982. return true;
  2983. if (SingleUseCondition) {
  2984. for (auto *Succ : MBB.successors())
  2985. if (Succ->isLiveIn(X86::EFLAGS))
  2986. SingleUseCondition = false;
  2987. }
  2988. MBP.ConditionDef = ConditionDef;
  2989. MBP.SingleUseCondition = SingleUseCondition;
  2990. // Currently we only recognize the simple pattern:
  2991. //
  2992. // test %reg, %reg
  2993. // je %label
  2994. //
  2995. const unsigned TestOpcode =
  2996. Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
  2997. if (ConditionDef->getOpcode() == TestOpcode &&
  2998. ConditionDef->getNumOperands() == 3 &&
  2999. ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
  3000. (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
  3001. MBP.LHS = ConditionDef->getOperand(0);
  3002. MBP.RHS = MachineOperand::CreateImm(0);
  3003. MBP.Predicate = Cond[0].getImm() == X86::COND_NE
  3004. ? MachineBranchPredicate::PRED_NE
  3005. : MachineBranchPredicate::PRED_EQ;
  3006. return false;
  3007. }
  3008. return true;
  3009. }
  3010. unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
  3011. int *BytesRemoved) const {
  3012. assert(!BytesRemoved && "code size not handled");
  3013. MachineBasicBlock::iterator I = MBB.end();
  3014. unsigned Count = 0;
  3015. while (I != MBB.begin()) {
  3016. --I;
  3017. if (I->isDebugInstr())
  3018. continue;
  3019. if (I->getOpcode() != X86::JMP_1 &&
  3020. X86::getCondFromBranch(*I) == X86::COND_INVALID)
  3021. break;
  3022. // Remove the branch.
  3023. I->eraseFromParent();
  3024. I = MBB.end();
  3025. ++Count;
  3026. }
  3027. return Count;
  3028. }
  3029. unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
  3030. MachineBasicBlock *TBB,
  3031. MachineBasicBlock *FBB,
  3032. ArrayRef<MachineOperand> Cond,
  3033. const DebugLoc &DL,
  3034. int *BytesAdded) const {
  3035. // Shouldn't be a fall through.
  3036. assert(TBB && "insertBranch must not be told to insert a fallthrough");
  3037. assert((Cond.size() == 1 || Cond.size() == 0) &&
  3038. "X86 branch conditions have one component!");
  3039. assert(!BytesAdded && "code size not handled");
  3040. if (Cond.empty()) {
  3041. // Unconditional branch?
  3042. assert(!FBB && "Unconditional branch with multiple successors!");
  3043. BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
  3044. return 1;
  3045. }
  3046. // If FBB is null, it is implied to be a fall-through block.
  3047. bool FallThru = FBB == nullptr;
  3048. // Conditional branch.
  3049. unsigned Count = 0;
  3050. X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
  3051. switch (CC) {
  3052. case X86::COND_NE_OR_P:
  3053. // Synthesize NE_OR_P with two branches.
  3054. BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
  3055. ++Count;
  3056. BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
  3057. ++Count;
  3058. break;
  3059. case X86::COND_E_AND_NP:
  3060. // Use the next block of MBB as FBB if it is null.
  3061. if (FBB == nullptr) {
  3062. FBB = getFallThroughMBB(&MBB, TBB);
  3063. assert(FBB && "MBB cannot be the last block in function when the false "
  3064. "body is a fall-through.");
  3065. }
  3066. // Synthesize COND_E_AND_NP with two branches.
  3067. BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
  3068. ++Count;
  3069. BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
  3070. ++Count;
  3071. break;
  3072. default: {
  3073. BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
  3074. ++Count;
  3075. }
  3076. }
  3077. if (!FallThru) {
  3078. // Two-way Conditional branch. Insert the second branch.
  3079. BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
  3080. ++Count;
  3081. }
  3082. return Count;
  3083. }
  3084. bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
  3085. ArrayRef<MachineOperand> Cond,
  3086. Register DstReg, Register TrueReg,
  3087. Register FalseReg, int &CondCycles,
  3088. int &TrueCycles, int &FalseCycles) const {
  3089. // Not all subtargets have cmov instructions.
  3090. if (!Subtarget.canUseCMOV())
  3091. return false;
  3092. if (Cond.size() != 1)
  3093. return false;
  3094. // We cannot do the composite conditions, at least not in SSA form.
  3095. if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
  3096. return false;
  3097. // Check register classes.
  3098. const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
  3099. const TargetRegisterClass *RC =
  3100. RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
  3101. if (!RC)
  3102. return false;
  3103. // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
  3104. if (X86::GR16RegClass.hasSubClassEq(RC) ||
  3105. X86::GR32RegClass.hasSubClassEq(RC) ||
  3106. X86::GR64RegClass.hasSubClassEq(RC)) {
  3107. // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
  3108. // Bridge. Probably Ivy Bridge as well.
  3109. CondCycles = 2;
  3110. TrueCycles = 2;
  3111. FalseCycles = 2;
  3112. return true;
  3113. }
  3114. // Can't do vectors.
  3115. return false;
  3116. }
  3117. void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
  3118. MachineBasicBlock::iterator I,
  3119. const DebugLoc &DL, Register DstReg,
  3120. ArrayRef<MachineOperand> Cond, Register TrueReg,
  3121. Register FalseReg) const {
  3122. MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
  3123. const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
  3124. const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
  3125. assert(Cond.size() == 1 && "Invalid Cond array");
  3126. unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
  3127. false /*HasMemoryOperand*/);
  3128. BuildMI(MBB, I, DL, get(Opc), DstReg)
  3129. .addReg(FalseReg)
  3130. .addReg(TrueReg)
  3131. .addImm(Cond[0].getImm());
  3132. }
  3133. /// Test if the given register is a physical h register.
  3134. static bool isHReg(unsigned Reg) {
  3135. return X86::GR8_ABCD_HRegClass.contains(Reg);
  3136. }
  3137. // Try and copy between VR128/VR64 and GR64 registers.
  3138. static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
  3139. const X86Subtarget &Subtarget) {
  3140. bool HasAVX = Subtarget.hasAVX();
  3141. bool HasAVX512 = Subtarget.hasAVX512();
  3142. // SrcReg(MaskReg) -> DestReg(GR64)
  3143. // SrcReg(MaskReg) -> DestReg(GR32)
  3144. // All KMASK RegClasses hold the same k registers, can be tested against anyone.
  3145. if (X86::VK16RegClass.contains(SrcReg)) {
  3146. if (X86::GR64RegClass.contains(DestReg)) {
  3147. assert(Subtarget.hasBWI());
  3148. return X86::KMOVQrk;
  3149. }
  3150. if (X86::GR32RegClass.contains(DestReg))
  3151. return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
  3152. }
  3153. // SrcReg(GR64) -> DestReg(MaskReg)
  3154. // SrcReg(GR32) -> DestReg(MaskReg)
  3155. // All KMASK RegClasses hold the same k registers, can be tested against anyone.
  3156. if (X86::VK16RegClass.contains(DestReg)) {
  3157. if (X86::GR64RegClass.contains(SrcReg)) {
  3158. assert(Subtarget.hasBWI());
  3159. return X86::KMOVQkr;
  3160. }
  3161. if (X86::GR32RegClass.contains(SrcReg))
  3162. return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
  3163. }
  3164. // SrcReg(VR128) -> DestReg(GR64)
  3165. // SrcReg(VR64) -> DestReg(GR64)
  3166. // SrcReg(GR64) -> DestReg(VR128)
  3167. // SrcReg(GR64) -> DestReg(VR64)
  3168. if (X86::GR64RegClass.contains(DestReg)) {
  3169. if (X86::VR128XRegClass.contains(SrcReg))
  3170. // Copy from a VR128 register to a GR64 register.
  3171. return HasAVX512 ? X86::VMOVPQIto64Zrr :
  3172. HasAVX ? X86::VMOVPQIto64rr :
  3173. X86::MOVPQIto64rr;
  3174. if (X86::VR64RegClass.contains(SrcReg))
  3175. // Copy from a VR64 register to a GR64 register.
  3176. return X86::MMX_MOVD64from64rr;
  3177. } else if (X86::GR64RegClass.contains(SrcReg)) {
  3178. // Copy from a GR64 register to a VR128 register.
  3179. if (X86::VR128XRegClass.contains(DestReg))
  3180. return HasAVX512 ? X86::VMOV64toPQIZrr :
  3181. HasAVX ? X86::VMOV64toPQIrr :
  3182. X86::MOV64toPQIrr;
  3183. // Copy from a GR64 register to a VR64 register.
  3184. if (X86::VR64RegClass.contains(DestReg))
  3185. return X86::MMX_MOVD64to64rr;
  3186. }
  3187. // SrcReg(VR128) -> DestReg(GR32)
  3188. // SrcReg(GR32) -> DestReg(VR128)
  3189. if (X86::GR32RegClass.contains(DestReg) &&
  3190. X86::VR128XRegClass.contains(SrcReg))
  3191. // Copy from a VR128 register to a GR32 register.
  3192. return HasAVX512 ? X86::VMOVPDI2DIZrr :
  3193. HasAVX ? X86::VMOVPDI2DIrr :
  3194. X86::MOVPDI2DIrr;
  3195. if (X86::VR128XRegClass.contains(DestReg) &&
  3196. X86::GR32RegClass.contains(SrcReg))
  3197. // Copy from a VR128 register to a VR128 register.
  3198. return HasAVX512 ? X86::VMOVDI2PDIZrr :
  3199. HasAVX ? X86::VMOVDI2PDIrr :
  3200. X86::MOVDI2PDIrr;
  3201. return 0;
  3202. }
  3203. void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
  3204. MachineBasicBlock::iterator MI,
  3205. const DebugLoc &DL, MCRegister DestReg,
  3206. MCRegister SrcReg, bool KillSrc) const {
  3207. // First deal with the normal symmetric copies.
  3208. bool HasAVX = Subtarget.hasAVX();
  3209. bool HasVLX = Subtarget.hasVLX();
  3210. unsigned Opc = 0;
  3211. if (X86::GR64RegClass.contains(DestReg, SrcReg))
  3212. Opc = X86::MOV64rr;
  3213. else if (X86::GR32RegClass.contains(DestReg, SrcReg))
  3214. Opc = X86::MOV32rr;
  3215. else if (X86::GR16RegClass.contains(DestReg, SrcReg))
  3216. Opc = X86::MOV16rr;
  3217. else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
  3218. // Copying to or from a physical H register on x86-64 requires a NOREX
  3219. // move. Otherwise use a normal move.
  3220. if ((isHReg(DestReg) || isHReg(SrcReg)) &&
  3221. Subtarget.is64Bit()) {
  3222. Opc = X86::MOV8rr_NOREX;
  3223. // Both operands must be encodable without an REX prefix.
  3224. assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
  3225. "8-bit H register can not be copied outside GR8_NOREX");
  3226. } else
  3227. Opc = X86::MOV8rr;
  3228. }
  3229. else if (X86::VR64RegClass.contains(DestReg, SrcReg))
  3230. Opc = X86::MMX_MOVQ64rr;
  3231. else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
  3232. if (HasVLX)
  3233. Opc = X86::VMOVAPSZ128rr;
  3234. else if (X86::VR128RegClass.contains(DestReg, SrcReg))
  3235. Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
  3236. else {
  3237. // If this an extended register and we don't have VLX we need to use a
  3238. // 512-bit move.
  3239. Opc = X86::VMOVAPSZrr;
  3240. const TargetRegisterInfo *TRI = &getRegisterInfo();
  3241. DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
  3242. &X86::VR512RegClass);
  3243. SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
  3244. &X86::VR512RegClass);
  3245. }
  3246. } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
  3247. if (HasVLX)
  3248. Opc = X86::VMOVAPSZ256rr;
  3249. else if (X86::VR256RegClass.contains(DestReg, SrcReg))
  3250. Opc = X86::VMOVAPSYrr;
  3251. else {
  3252. // If this an extended register and we don't have VLX we need to use a
  3253. // 512-bit move.
  3254. Opc = X86::VMOVAPSZrr;
  3255. const TargetRegisterInfo *TRI = &getRegisterInfo();
  3256. DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
  3257. &X86::VR512RegClass);
  3258. SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
  3259. &X86::VR512RegClass);
  3260. }
  3261. } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
  3262. Opc = X86::VMOVAPSZrr;
  3263. // All KMASK RegClasses hold the same k registers, can be tested against anyone.
  3264. else if (X86::VK16RegClass.contains(DestReg, SrcReg))
  3265. Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
  3266. if (!Opc)
  3267. Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
  3268. if (Opc) {
  3269. BuildMI(MBB, MI, DL, get(Opc), DestReg)
  3270. .addReg(SrcReg, getKillRegState(KillSrc));
  3271. return;
  3272. }
  3273. if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
  3274. // FIXME: We use a fatal error here because historically LLVM has tried
  3275. // lower some of these physreg copies and we want to ensure we get
  3276. // reasonable bug reports if someone encounters a case no other testing
  3277. // found. This path should be removed after the LLVM 7 release.
  3278. report_fatal_error("Unable to copy EFLAGS physical register!");
  3279. }
  3280. LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
  3281. << RI.getName(DestReg) << '\n');
  3282. report_fatal_error("Cannot emit physreg copy instruction");
  3283. }
  3284. std::optional<DestSourcePair>
  3285. X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
  3286. if (MI.isMoveReg())
  3287. return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
  3288. return std::nullopt;
  3289. }
  3290. static unsigned getLoadStoreOpcodeForFP16(bool Load, const X86Subtarget &STI) {
  3291. if (STI.hasFP16())
  3292. return Load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr;
  3293. if (Load)
  3294. return STI.hasAVX512() ? X86::VMOVSSZrm
  3295. : STI.hasAVX() ? X86::VMOVSSrm
  3296. : X86::MOVSSrm;
  3297. else
  3298. return STI.hasAVX512() ? X86::VMOVSSZmr
  3299. : STI.hasAVX() ? X86::VMOVSSmr
  3300. : X86::MOVSSmr;
  3301. }
  3302. static unsigned getLoadStoreRegOpcode(Register Reg,
  3303. const TargetRegisterClass *RC,
  3304. bool IsStackAligned,
  3305. const X86Subtarget &STI, bool Load) {
  3306. bool HasAVX = STI.hasAVX();
  3307. bool HasAVX512 = STI.hasAVX512();
  3308. bool HasVLX = STI.hasVLX();
  3309. switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
  3310. default:
  3311. llvm_unreachable("Unknown spill size");
  3312. case 1:
  3313. assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
  3314. if (STI.is64Bit())
  3315. // Copying to or from a physical H register on x86-64 requires a NOREX
  3316. // move. Otherwise use a normal move.
  3317. if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
  3318. return Load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
  3319. return Load ? X86::MOV8rm : X86::MOV8mr;
  3320. case 2:
  3321. if (X86::VK16RegClass.hasSubClassEq(RC))
  3322. return Load ? X86::KMOVWkm : X86::KMOVWmk;
  3323. assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
  3324. return Load ? X86::MOV16rm : X86::MOV16mr;
  3325. case 4:
  3326. if (X86::GR32RegClass.hasSubClassEq(RC))
  3327. return Load ? X86::MOV32rm : X86::MOV32mr;
  3328. if (X86::FR32XRegClass.hasSubClassEq(RC))
  3329. return Load ?
  3330. (HasAVX512 ? X86::VMOVSSZrm_alt :
  3331. HasAVX ? X86::VMOVSSrm_alt :
  3332. X86::MOVSSrm_alt) :
  3333. (HasAVX512 ? X86::VMOVSSZmr :
  3334. HasAVX ? X86::VMOVSSmr :
  3335. X86::MOVSSmr);
  3336. if (X86::RFP32RegClass.hasSubClassEq(RC))
  3337. return Load ? X86::LD_Fp32m : X86::ST_Fp32m;
  3338. if (X86::VK32RegClass.hasSubClassEq(RC)) {
  3339. assert(STI.hasBWI() && "KMOVD requires BWI");
  3340. return Load ? X86::KMOVDkm : X86::KMOVDmk;
  3341. }
  3342. // All of these mask pair classes have the same spill size, the same kind
  3343. // of kmov instructions can be used with all of them.
  3344. if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
  3345. X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
  3346. X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
  3347. X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
  3348. X86::VK16PAIRRegClass.hasSubClassEq(RC))
  3349. return Load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
  3350. if (X86::FR16RegClass.hasSubClassEq(RC) ||
  3351. X86::FR16XRegClass.hasSubClassEq(RC))
  3352. return getLoadStoreOpcodeForFP16(Load, STI);
  3353. llvm_unreachable("Unknown 4-byte regclass");
  3354. case 8:
  3355. if (X86::GR64RegClass.hasSubClassEq(RC))
  3356. return Load ? X86::MOV64rm : X86::MOV64mr;
  3357. if (X86::FR64XRegClass.hasSubClassEq(RC))
  3358. return Load ?
  3359. (HasAVX512 ? X86::VMOVSDZrm_alt :
  3360. HasAVX ? X86::VMOVSDrm_alt :
  3361. X86::MOVSDrm_alt) :
  3362. (HasAVX512 ? X86::VMOVSDZmr :
  3363. HasAVX ? X86::VMOVSDmr :
  3364. X86::MOVSDmr);
  3365. if (X86::VR64RegClass.hasSubClassEq(RC))
  3366. return Load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
  3367. if (X86::RFP64RegClass.hasSubClassEq(RC))
  3368. return Load ? X86::LD_Fp64m : X86::ST_Fp64m;
  3369. if (X86::VK64RegClass.hasSubClassEq(RC)) {
  3370. assert(STI.hasBWI() && "KMOVQ requires BWI");
  3371. return Load ? X86::KMOVQkm : X86::KMOVQmk;
  3372. }
  3373. llvm_unreachable("Unknown 8-byte regclass");
  3374. case 10:
  3375. assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
  3376. return Load ? X86::LD_Fp80m : X86::ST_FpP80m;
  3377. case 16: {
  3378. if (X86::VR128XRegClass.hasSubClassEq(RC)) {
  3379. // If stack is realigned we can use aligned stores.
  3380. if (IsStackAligned)
  3381. return Load ?
  3382. (HasVLX ? X86::VMOVAPSZ128rm :
  3383. HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
  3384. HasAVX ? X86::VMOVAPSrm :
  3385. X86::MOVAPSrm):
  3386. (HasVLX ? X86::VMOVAPSZ128mr :
  3387. HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
  3388. HasAVX ? X86::VMOVAPSmr :
  3389. X86::MOVAPSmr);
  3390. else
  3391. return Load ?
  3392. (HasVLX ? X86::VMOVUPSZ128rm :
  3393. HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
  3394. HasAVX ? X86::VMOVUPSrm :
  3395. X86::MOVUPSrm):
  3396. (HasVLX ? X86::VMOVUPSZ128mr :
  3397. HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
  3398. HasAVX ? X86::VMOVUPSmr :
  3399. X86::MOVUPSmr);
  3400. }
  3401. llvm_unreachable("Unknown 16-byte regclass");
  3402. }
  3403. case 32:
  3404. assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
  3405. // If stack is realigned we can use aligned stores.
  3406. if (IsStackAligned)
  3407. return Load ?
  3408. (HasVLX ? X86::VMOVAPSZ256rm :
  3409. HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
  3410. X86::VMOVAPSYrm) :
  3411. (HasVLX ? X86::VMOVAPSZ256mr :
  3412. HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
  3413. X86::VMOVAPSYmr);
  3414. else
  3415. return Load ?
  3416. (HasVLX ? X86::VMOVUPSZ256rm :
  3417. HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
  3418. X86::VMOVUPSYrm) :
  3419. (HasVLX ? X86::VMOVUPSZ256mr :
  3420. HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
  3421. X86::VMOVUPSYmr);
  3422. case 64:
  3423. assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
  3424. assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
  3425. if (IsStackAligned)
  3426. return Load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
  3427. else
  3428. return Load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
  3429. case 1024:
  3430. assert(X86::TILERegClass.hasSubClassEq(RC) && "Unknown 1024-byte regclass");
  3431. assert(STI.hasAMXTILE() && "Using 8*1024-bit register requires AMX-TILE");
  3432. return Load ? X86::TILELOADD : X86::TILESTORED;
  3433. }
  3434. }
  3435. std::optional<ExtAddrMode>
  3436. X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
  3437. const TargetRegisterInfo *TRI) const {
  3438. const MCInstrDesc &Desc = MemI.getDesc();
  3439. int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
  3440. if (MemRefBegin < 0)
  3441. return std::nullopt;
  3442. MemRefBegin += X86II::getOperandBias(Desc);
  3443. auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
  3444. if (!BaseOp.isReg()) // Can be an MO_FrameIndex
  3445. return std::nullopt;
  3446. const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
  3447. // Displacement can be symbolic
  3448. if (!DispMO.isImm())
  3449. return std::nullopt;
  3450. ExtAddrMode AM;
  3451. AM.BaseReg = BaseOp.getReg();
  3452. AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
  3453. AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
  3454. AM.Displacement = DispMO.getImm();
  3455. return AM;
  3456. }
  3457. bool X86InstrInfo::verifyInstruction(const MachineInstr &MI,
  3458. StringRef &ErrInfo) const {
  3459. std::optional<ExtAddrMode> AMOrNone = getAddrModeFromMemoryOp(MI, nullptr);
  3460. if (!AMOrNone)
  3461. return true;
  3462. ExtAddrMode AM = *AMOrNone;
  3463. if (AM.ScaledReg != X86::NoRegister) {
  3464. switch (AM.Scale) {
  3465. case 1:
  3466. case 2:
  3467. case 4:
  3468. case 8:
  3469. break;
  3470. default:
  3471. ErrInfo = "Scale factor in address must be 1, 2, 4 or 8";
  3472. return false;
  3473. }
  3474. }
  3475. if (!isInt<32>(AM.Displacement)) {
  3476. ErrInfo = "Displacement in address must fit into 32-bit signed "
  3477. "integer";
  3478. return false;
  3479. }
  3480. return true;
  3481. }
  3482. bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI,
  3483. const Register Reg,
  3484. int64_t &ImmVal) const {
  3485. if (MI.getOpcode() != X86::MOV32ri && MI.getOpcode() != X86::MOV64ri)
  3486. return false;
  3487. // Mov Src can be a global address.
  3488. if (!MI.getOperand(1).isImm() || MI.getOperand(0).getReg() != Reg)
  3489. return false;
  3490. ImmVal = MI.getOperand(1).getImm();
  3491. return true;
  3492. }
  3493. bool X86InstrInfo::preservesZeroValueInReg(
  3494. const MachineInstr *MI, const Register NullValueReg,
  3495. const TargetRegisterInfo *TRI) const {
  3496. if (!MI->modifiesRegister(NullValueReg, TRI))
  3497. return true;
  3498. switch (MI->getOpcode()) {
  3499. // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
  3500. // X.
  3501. case X86::SHR64ri:
  3502. case X86::SHR32ri:
  3503. case X86::SHL64ri:
  3504. case X86::SHL32ri:
  3505. assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&
  3506. "expected for shift opcode!");
  3507. return MI->getOperand(0).getReg() == NullValueReg &&
  3508. MI->getOperand(1).getReg() == NullValueReg;
  3509. // Zero extend of a sub-reg of NullValueReg into itself does not change the
  3510. // null value.
  3511. case X86::MOV32rr:
  3512. return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
  3513. return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
  3514. });
  3515. default:
  3516. return false;
  3517. }
  3518. llvm_unreachable("Should be handled above!");
  3519. }
  3520. bool X86InstrInfo::getMemOperandsWithOffsetWidth(
  3521. const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps,
  3522. int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
  3523. const TargetRegisterInfo *TRI) const {
  3524. const MCInstrDesc &Desc = MemOp.getDesc();
  3525. int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
  3526. if (MemRefBegin < 0)
  3527. return false;
  3528. MemRefBegin += X86II::getOperandBias(Desc);
  3529. const MachineOperand *BaseOp =
  3530. &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
  3531. if (!BaseOp->isReg()) // Can be an MO_FrameIndex
  3532. return false;
  3533. if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
  3534. return false;
  3535. if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
  3536. X86::NoRegister)
  3537. return false;
  3538. const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
  3539. // Displacement can be symbolic
  3540. if (!DispMO.isImm())
  3541. return false;
  3542. Offset = DispMO.getImm();
  3543. if (!BaseOp->isReg())
  3544. return false;
  3545. OffsetIsScalable = false;
  3546. // FIXME: Relying on memoperands() may not be right thing to do here. Check
  3547. // with X86 maintainers, and fix it accordingly. For now, it is ok, since
  3548. // there is no use of `Width` for X86 back-end at the moment.
  3549. Width =
  3550. !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
  3551. BaseOps.push_back(BaseOp);
  3552. return true;
  3553. }
  3554. static unsigned getStoreRegOpcode(Register SrcReg,
  3555. const TargetRegisterClass *RC,
  3556. bool IsStackAligned,
  3557. const X86Subtarget &STI) {
  3558. return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
  3559. }
  3560. static unsigned getLoadRegOpcode(Register DestReg,
  3561. const TargetRegisterClass *RC,
  3562. bool IsStackAligned, const X86Subtarget &STI) {
  3563. return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
  3564. }
  3565. static bool isAMXOpcode(unsigned Opc) {
  3566. switch (Opc) {
  3567. default:
  3568. return false;
  3569. case X86::TILELOADD:
  3570. case X86::TILESTORED:
  3571. return true;
  3572. }
  3573. }
  3574. void X86InstrInfo::loadStoreTileReg(MachineBasicBlock &MBB,
  3575. MachineBasicBlock::iterator MI,
  3576. unsigned Opc, Register Reg, int FrameIdx,
  3577. bool isKill) const {
  3578. switch (Opc) {
  3579. default:
  3580. llvm_unreachable("Unexpected special opcode!");
  3581. case X86::TILESTORED: {
  3582. // tilestored %tmm, (%sp, %idx)
  3583. MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
  3584. Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
  3585. BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
  3586. MachineInstr *NewMI =
  3587. addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
  3588. .addReg(Reg, getKillRegState(isKill));
  3589. MachineOperand &MO = NewMI->getOperand(X86::AddrIndexReg);
  3590. MO.setReg(VirtReg);
  3591. MO.setIsKill(true);
  3592. break;
  3593. }
  3594. case X86::TILELOADD: {
  3595. // tileloadd (%sp, %idx), %tmm
  3596. MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
  3597. Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
  3598. BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
  3599. MachineInstr *NewMI = addFrameReference(
  3600. BuildMI(MBB, MI, DebugLoc(), get(Opc), Reg), FrameIdx);
  3601. MachineOperand &MO = NewMI->getOperand(1 + X86::AddrIndexReg);
  3602. MO.setReg(VirtReg);
  3603. MO.setIsKill(true);
  3604. break;
  3605. }
  3606. }
  3607. }
  3608. void X86InstrInfo::storeRegToStackSlot(
  3609. MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg,
  3610. bool isKill, int FrameIdx, const TargetRegisterClass *RC,
  3611. const TargetRegisterInfo *TRI, Register VReg) const {
  3612. const MachineFunction &MF = *MBB.getParent();
  3613. const MachineFrameInfo &MFI = MF.getFrameInfo();
  3614. assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
  3615. "Stack slot too small for store");
  3616. unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
  3617. bool isAligned =
  3618. (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
  3619. (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
  3620. unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
  3621. if (isAMXOpcode(Opc))
  3622. loadStoreTileReg(MBB, MI, Opc, SrcReg, FrameIdx, isKill);
  3623. else
  3624. addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
  3625. .addReg(SrcReg, getKillRegState(isKill));
  3626. }
  3627. void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
  3628. MachineBasicBlock::iterator MI,
  3629. Register DestReg, int FrameIdx,
  3630. const TargetRegisterClass *RC,
  3631. const TargetRegisterInfo *TRI,
  3632. Register VReg) const {
  3633. const MachineFunction &MF = *MBB.getParent();
  3634. const MachineFrameInfo &MFI = MF.getFrameInfo();
  3635. assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
  3636. "Load size exceeds stack slot");
  3637. unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
  3638. bool isAligned =
  3639. (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
  3640. (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
  3641. unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
  3642. if (isAMXOpcode(Opc))
  3643. loadStoreTileReg(MBB, MI, Opc, DestReg, FrameIdx);
  3644. else
  3645. addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
  3646. FrameIdx);
  3647. }
  3648. bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
  3649. Register &SrcReg2, int64_t &CmpMask,
  3650. int64_t &CmpValue) const {
  3651. switch (MI.getOpcode()) {
  3652. default: break;
  3653. case X86::CMP64ri32:
  3654. case X86::CMP64ri8:
  3655. case X86::CMP32ri:
  3656. case X86::CMP32ri8:
  3657. case X86::CMP16ri:
  3658. case X86::CMP16ri8:
  3659. case X86::CMP8ri:
  3660. SrcReg = MI.getOperand(0).getReg();
  3661. SrcReg2 = 0;
  3662. if (MI.getOperand(1).isImm()) {
  3663. CmpMask = ~0;
  3664. CmpValue = MI.getOperand(1).getImm();
  3665. } else {
  3666. CmpMask = CmpValue = 0;
  3667. }
  3668. return true;
  3669. // A SUB can be used to perform comparison.
  3670. case X86::SUB64rm:
  3671. case X86::SUB32rm:
  3672. case X86::SUB16rm:
  3673. case X86::SUB8rm:
  3674. SrcReg = MI.getOperand(1).getReg();
  3675. SrcReg2 = 0;
  3676. CmpMask = 0;
  3677. CmpValue = 0;
  3678. return true;
  3679. case X86::SUB64rr:
  3680. case X86::SUB32rr:
  3681. case X86::SUB16rr:
  3682. case X86::SUB8rr:
  3683. SrcReg = MI.getOperand(1).getReg();
  3684. SrcReg2 = MI.getOperand(2).getReg();
  3685. CmpMask = 0;
  3686. CmpValue = 0;
  3687. return true;
  3688. case X86::SUB64ri32:
  3689. case X86::SUB64ri8:
  3690. case X86::SUB32ri:
  3691. case X86::SUB32ri8:
  3692. case X86::SUB16ri:
  3693. case X86::SUB16ri8:
  3694. case X86::SUB8ri:
  3695. SrcReg = MI.getOperand(1).getReg();
  3696. SrcReg2 = 0;
  3697. if (MI.getOperand(2).isImm()) {
  3698. CmpMask = ~0;
  3699. CmpValue = MI.getOperand(2).getImm();
  3700. } else {
  3701. CmpMask = CmpValue = 0;
  3702. }
  3703. return true;
  3704. case X86::CMP64rr:
  3705. case X86::CMP32rr:
  3706. case X86::CMP16rr:
  3707. case X86::CMP8rr:
  3708. SrcReg = MI.getOperand(0).getReg();
  3709. SrcReg2 = MI.getOperand(1).getReg();
  3710. CmpMask = 0;
  3711. CmpValue = 0;
  3712. return true;
  3713. case X86::TEST8rr:
  3714. case X86::TEST16rr:
  3715. case X86::TEST32rr:
  3716. case X86::TEST64rr:
  3717. SrcReg = MI.getOperand(0).getReg();
  3718. if (MI.getOperand(1).getReg() != SrcReg)
  3719. return false;
  3720. // Compare against zero.
  3721. SrcReg2 = 0;
  3722. CmpMask = ~0;
  3723. CmpValue = 0;
  3724. return true;
  3725. }
  3726. return false;
  3727. }
  3728. bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI,
  3729. Register SrcReg, Register SrcReg2,
  3730. int64_t ImmMask, int64_t ImmValue,
  3731. const MachineInstr &OI, bool *IsSwapped,
  3732. int64_t *ImmDelta) const {
  3733. switch (OI.getOpcode()) {
  3734. case X86::CMP64rr:
  3735. case X86::CMP32rr:
  3736. case X86::CMP16rr:
  3737. case X86::CMP8rr:
  3738. case X86::SUB64rr:
  3739. case X86::SUB32rr:
  3740. case X86::SUB16rr:
  3741. case X86::SUB8rr: {
  3742. Register OISrcReg;
  3743. Register OISrcReg2;
  3744. int64_t OIMask;
  3745. int64_t OIValue;
  3746. if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) ||
  3747. OIMask != ImmMask || OIValue != ImmValue)
  3748. return false;
  3749. if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) {
  3750. *IsSwapped = false;
  3751. return true;
  3752. }
  3753. if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) {
  3754. *IsSwapped = true;
  3755. return true;
  3756. }
  3757. return false;
  3758. }
  3759. case X86::CMP64ri32:
  3760. case X86::CMP64ri8:
  3761. case X86::CMP32ri:
  3762. case X86::CMP32ri8:
  3763. case X86::CMP16ri:
  3764. case X86::CMP16ri8:
  3765. case X86::CMP8ri:
  3766. case X86::SUB64ri32:
  3767. case X86::SUB64ri8:
  3768. case X86::SUB32ri:
  3769. case X86::SUB32ri8:
  3770. case X86::SUB16ri:
  3771. case X86::SUB16ri8:
  3772. case X86::SUB8ri:
  3773. case X86::TEST64rr:
  3774. case X86::TEST32rr:
  3775. case X86::TEST16rr:
  3776. case X86::TEST8rr: {
  3777. if (ImmMask != 0) {
  3778. Register OISrcReg;
  3779. Register OISrcReg2;
  3780. int64_t OIMask;
  3781. int64_t OIValue;
  3782. if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) &&
  3783. SrcReg == OISrcReg && ImmMask == OIMask) {
  3784. if (OIValue == ImmValue) {
  3785. *ImmDelta = 0;
  3786. return true;
  3787. } else if (static_cast<uint64_t>(ImmValue) ==
  3788. static_cast<uint64_t>(OIValue) - 1) {
  3789. *ImmDelta = -1;
  3790. return true;
  3791. } else if (static_cast<uint64_t>(ImmValue) ==
  3792. static_cast<uint64_t>(OIValue) + 1) {
  3793. *ImmDelta = 1;
  3794. return true;
  3795. } else {
  3796. return false;
  3797. }
  3798. }
  3799. }
  3800. return FlagI.isIdenticalTo(OI);
  3801. }
  3802. default:
  3803. return false;
  3804. }
  3805. }
  3806. /// Check whether the definition can be converted
  3807. /// to remove a comparison against zero.
  3808. inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
  3809. bool &ClearsOverflowFlag) {
  3810. NoSignFlag = false;
  3811. ClearsOverflowFlag = false;
  3812. // "ELF Handling for Thread-Local Storage" specifies that x86-64 GOTTPOFF, and
  3813. // i386 GOTNTPOFF/INDNTPOFF relocations can convert an ADD to a LEA during
  3814. // Initial Exec to Local Exec relaxation. In these cases, we must not depend
  3815. // on the EFLAGS modification of ADD actually happening in the final binary.
  3816. if (MI.getOpcode() == X86::ADD64rm || MI.getOpcode() == X86::ADD32rm) {
  3817. unsigned Flags = MI.getOperand(5).getTargetFlags();
  3818. if (Flags == X86II::MO_GOTTPOFF || Flags == X86II::MO_INDNTPOFF ||
  3819. Flags == X86II::MO_GOTNTPOFF)
  3820. return false;
  3821. }
  3822. switch (MI.getOpcode()) {
  3823. default: return false;
  3824. // The shift instructions only modify ZF if their shift count is non-zero.
  3825. // N.B.: The processor truncates the shift count depending on the encoding.
  3826. case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
  3827. case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
  3828. return getTruncatedShiftCount(MI, 2) != 0;
  3829. // Some left shift instructions can be turned into LEA instructions but only
  3830. // if their flags aren't used. Avoid transforming such instructions.
  3831. case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
  3832. unsigned ShAmt = getTruncatedShiftCount(MI, 2);
  3833. if (isTruncatedShiftCountForLEA(ShAmt)) return false;
  3834. return ShAmt != 0;
  3835. }
  3836. case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
  3837. case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
  3838. return getTruncatedShiftCount(MI, 3) != 0;
  3839. case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
  3840. case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
  3841. case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
  3842. case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
  3843. case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
  3844. case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
  3845. case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
  3846. case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
  3847. case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
  3848. case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
  3849. case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
  3850. case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
  3851. case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
  3852. case X86::ADC32ri8: case X86::ADC16ri: case X86::ADC16ri8:
  3853. case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr:
  3854. case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm:
  3855. case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm:
  3856. case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
  3857. case X86::SBB32ri8: case X86::SBB16ri: case X86::SBB16ri8:
  3858. case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr:
  3859. case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm:
  3860. case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm:
  3861. case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
  3862. case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
  3863. case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
  3864. case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
  3865. case X86::LZCNT16rr: case X86::LZCNT16rm:
  3866. case X86::LZCNT32rr: case X86::LZCNT32rm:
  3867. case X86::LZCNT64rr: case X86::LZCNT64rm:
  3868. case X86::POPCNT16rr:case X86::POPCNT16rm:
  3869. case X86::POPCNT32rr:case X86::POPCNT32rm:
  3870. case X86::POPCNT64rr:case X86::POPCNT64rm:
  3871. case X86::TZCNT16rr: case X86::TZCNT16rm:
  3872. case X86::TZCNT32rr: case X86::TZCNT32rm:
  3873. case X86::TZCNT64rr: case X86::TZCNT64rm:
  3874. return true;
  3875. case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
  3876. case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
  3877. case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
  3878. case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
  3879. case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
  3880. case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
  3881. case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
  3882. case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
  3883. case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
  3884. case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
  3885. case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
  3886. case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
  3887. case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
  3888. case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
  3889. case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
  3890. case X86::ANDN32rr: case X86::ANDN32rm:
  3891. case X86::ANDN64rr: case X86::ANDN64rm:
  3892. case X86::BLSI32rr: case X86::BLSI32rm:
  3893. case X86::BLSI64rr: case X86::BLSI64rm:
  3894. case X86::BLSMSK32rr: case X86::BLSMSK32rm:
  3895. case X86::BLSMSK64rr: case X86::BLSMSK64rm:
  3896. case X86::BLSR32rr: case X86::BLSR32rm:
  3897. case X86::BLSR64rr: case X86::BLSR64rm:
  3898. case X86::BLCFILL32rr: case X86::BLCFILL32rm:
  3899. case X86::BLCFILL64rr: case X86::BLCFILL64rm:
  3900. case X86::BLCI32rr: case X86::BLCI32rm:
  3901. case X86::BLCI64rr: case X86::BLCI64rm:
  3902. case X86::BLCIC32rr: case X86::BLCIC32rm:
  3903. case X86::BLCIC64rr: case X86::BLCIC64rm:
  3904. case X86::BLCMSK32rr: case X86::BLCMSK32rm:
  3905. case X86::BLCMSK64rr: case X86::BLCMSK64rm:
  3906. case X86::BLCS32rr: case X86::BLCS32rm:
  3907. case X86::BLCS64rr: case X86::BLCS64rm:
  3908. case X86::BLSFILL32rr: case X86::BLSFILL32rm:
  3909. case X86::BLSFILL64rr: case X86::BLSFILL64rm:
  3910. case X86::BLSIC32rr: case X86::BLSIC32rm:
  3911. case X86::BLSIC64rr: case X86::BLSIC64rm:
  3912. case X86::BZHI32rr: case X86::BZHI32rm:
  3913. case X86::BZHI64rr: case X86::BZHI64rm:
  3914. case X86::T1MSKC32rr: case X86::T1MSKC32rm:
  3915. case X86::T1MSKC64rr: case X86::T1MSKC64rm:
  3916. case X86::TZMSK32rr: case X86::TZMSK32rm:
  3917. case X86::TZMSK64rr: case X86::TZMSK64rm:
  3918. // These instructions clear the overflow flag just like TEST.
  3919. // FIXME: These are not the only instructions in this switch that clear the
  3920. // overflow flag.
  3921. ClearsOverflowFlag = true;
  3922. return true;
  3923. case X86::BEXTR32rr: case X86::BEXTR64rr:
  3924. case X86::BEXTR32rm: case X86::BEXTR64rm:
  3925. case X86::BEXTRI32ri: case X86::BEXTRI32mi:
  3926. case X86::BEXTRI64ri: case X86::BEXTRI64mi:
  3927. // BEXTR doesn't update the sign flag so we can't use it. It does clear
  3928. // the overflow flag, but that's not useful without the sign flag.
  3929. NoSignFlag = true;
  3930. return true;
  3931. }
  3932. }
  3933. /// Check whether the use can be converted to remove a comparison against zero.
  3934. static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
  3935. switch (MI.getOpcode()) {
  3936. default: return X86::COND_INVALID;
  3937. case X86::NEG8r:
  3938. case X86::NEG16r:
  3939. case X86::NEG32r:
  3940. case X86::NEG64r:
  3941. return X86::COND_AE;
  3942. case X86::LZCNT16rr:
  3943. case X86::LZCNT32rr:
  3944. case X86::LZCNT64rr:
  3945. return X86::COND_B;
  3946. case X86::POPCNT16rr:
  3947. case X86::POPCNT32rr:
  3948. case X86::POPCNT64rr:
  3949. return X86::COND_E;
  3950. case X86::TZCNT16rr:
  3951. case X86::TZCNT32rr:
  3952. case X86::TZCNT64rr:
  3953. return X86::COND_B;
  3954. case X86::BSF16rr:
  3955. case X86::BSF32rr:
  3956. case X86::BSF64rr:
  3957. case X86::BSR16rr:
  3958. case X86::BSR32rr:
  3959. case X86::BSR64rr:
  3960. return X86::COND_E;
  3961. case X86::BLSI32rr:
  3962. case X86::BLSI64rr:
  3963. return X86::COND_AE;
  3964. case X86::BLSR32rr:
  3965. case X86::BLSR64rr:
  3966. case X86::BLSMSK32rr:
  3967. case X86::BLSMSK64rr:
  3968. return X86::COND_B;
  3969. // TODO: TBM instructions.
  3970. }
  3971. }
  3972. /// Check if there exists an earlier instruction that
  3973. /// operates on the same source operands and sets flags in the same way as
  3974. /// Compare; remove Compare if possible.
  3975. bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
  3976. Register SrcReg2, int64_t CmpMask,
  3977. int64_t CmpValue,
  3978. const MachineRegisterInfo *MRI) const {
  3979. // Check whether we can replace SUB with CMP.
  3980. switch (CmpInstr.getOpcode()) {
  3981. default: break;
  3982. case X86::SUB64ri32:
  3983. case X86::SUB64ri8:
  3984. case X86::SUB32ri:
  3985. case X86::SUB32ri8:
  3986. case X86::SUB16ri:
  3987. case X86::SUB16ri8:
  3988. case X86::SUB8ri:
  3989. case X86::SUB64rm:
  3990. case X86::SUB32rm:
  3991. case X86::SUB16rm:
  3992. case X86::SUB8rm:
  3993. case X86::SUB64rr:
  3994. case X86::SUB32rr:
  3995. case X86::SUB16rr:
  3996. case X86::SUB8rr: {
  3997. if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
  3998. return false;
  3999. // There is no use of the destination register, we can replace SUB with CMP.
  4000. unsigned NewOpcode = 0;
  4001. switch (CmpInstr.getOpcode()) {
  4002. default: llvm_unreachable("Unreachable!");
  4003. case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
  4004. case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
  4005. case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
  4006. case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
  4007. case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
  4008. case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
  4009. case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
  4010. case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
  4011. case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
  4012. case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
  4013. case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
  4014. case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
  4015. case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
  4016. case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
  4017. case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
  4018. }
  4019. CmpInstr.setDesc(get(NewOpcode));
  4020. CmpInstr.removeOperand(0);
  4021. // Mutating this instruction invalidates any debug data associated with it.
  4022. CmpInstr.dropDebugNumber();
  4023. // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
  4024. if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
  4025. NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
  4026. return false;
  4027. }
  4028. }
  4029. // The following code tries to remove the comparison by re-using EFLAGS
  4030. // from earlier instructions.
  4031. bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
  4032. // Transformation currently requires SSA values.
  4033. if (SrcReg2.isPhysical())
  4034. return false;
  4035. MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
  4036. assert(SrcRegDef && "Must have a definition (SSA)");
  4037. MachineInstr *MI = nullptr;
  4038. MachineInstr *Sub = nullptr;
  4039. MachineInstr *Movr0Inst = nullptr;
  4040. bool NoSignFlag = false;
  4041. bool ClearsOverflowFlag = false;
  4042. bool ShouldUpdateCC = false;
  4043. bool IsSwapped = false;
  4044. X86::CondCode NewCC = X86::COND_INVALID;
  4045. int64_t ImmDelta = 0;
  4046. // Search backward from CmpInstr for the next instruction defining EFLAGS.
  4047. const TargetRegisterInfo *TRI = &getRegisterInfo();
  4048. MachineBasicBlock &CmpMBB = *CmpInstr.getParent();
  4049. MachineBasicBlock::reverse_iterator From =
  4050. std::next(MachineBasicBlock::reverse_iterator(CmpInstr));
  4051. for (MachineBasicBlock *MBB = &CmpMBB;;) {
  4052. for (MachineInstr &Inst : make_range(From, MBB->rend())) {
  4053. // Try to use EFLAGS from the instruction defining %SrcReg. Example:
  4054. // %eax = addl ...
  4055. // ... // EFLAGS not changed
  4056. // testl %eax, %eax // <-- can be removed
  4057. if (&Inst == SrcRegDef) {
  4058. if (IsCmpZero &&
  4059. isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) {
  4060. MI = &Inst;
  4061. break;
  4062. }
  4063. // Look back for the following pattern, in which case the test64rr
  4064. // instruction could be erased.
  4065. //
  4066. // Example:
  4067. // %reg = and32ri %in_reg, 5
  4068. // ... // EFLAGS not changed.
  4069. // %src_reg = subreg_to_reg 0, %reg, %subreg.sub_index
  4070. // test64rr %src_reg, %src_reg, implicit-def $eflags
  4071. MachineInstr *AndInstr = nullptr;
  4072. if (IsCmpZero &&
  4073. findRedundantFlagInstr(CmpInstr, Inst, MRI, &AndInstr, TRI,
  4074. NoSignFlag, ClearsOverflowFlag)) {
  4075. assert(AndInstr != nullptr && X86::isAND(AndInstr->getOpcode()));
  4076. MI = AndInstr;
  4077. break;
  4078. }
  4079. // Cannot find other candidates before definition of SrcReg.
  4080. return false;
  4081. }
  4082. if (Inst.modifiesRegister(X86::EFLAGS, TRI)) {
  4083. // Try to use EFLAGS produced by an instruction reading %SrcReg.
  4084. // Example:
  4085. // %eax = ...
  4086. // ...
  4087. // popcntl %eax
  4088. // ... // EFLAGS not changed
  4089. // testl %eax, %eax // <-- can be removed
  4090. if (IsCmpZero) {
  4091. NewCC = isUseDefConvertible(Inst);
  4092. if (NewCC != X86::COND_INVALID && Inst.getOperand(1).isReg() &&
  4093. Inst.getOperand(1).getReg() == SrcReg) {
  4094. ShouldUpdateCC = true;
  4095. MI = &Inst;
  4096. break;
  4097. }
  4098. }
  4099. // Try to use EFLAGS from an instruction with similar flag results.
  4100. // Example:
  4101. // sub x, y or cmp x, y
  4102. // ... // EFLAGS not changed
  4103. // cmp x, y // <-- can be removed
  4104. if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue,
  4105. Inst, &IsSwapped, &ImmDelta)) {
  4106. Sub = &Inst;
  4107. break;
  4108. }
  4109. // MOV32r0 is implemented with xor which clobbers condition code. It is
  4110. // safe to move up, if the definition to EFLAGS is dead and earlier
  4111. // instructions do not read or write EFLAGS.
  4112. if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 &&
  4113. Inst.registerDefIsDead(X86::EFLAGS, TRI)) {
  4114. Movr0Inst = &Inst;
  4115. continue;
  4116. }
  4117. // Cannot do anything for any other EFLAG changes.
  4118. return false;
  4119. }
  4120. }
  4121. if (MI || Sub)
  4122. break;
  4123. // Reached begin of basic block. Continue in predecessor if there is
  4124. // exactly one.
  4125. if (MBB->pred_size() != 1)
  4126. return false;
  4127. MBB = *MBB->pred_begin();
  4128. From = MBB->rbegin();
  4129. }
  4130. // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
  4131. // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
  4132. // If we are done with the basic block, we need to check whether EFLAGS is
  4133. // live-out.
  4134. bool FlagsMayLiveOut = true;
  4135. SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
  4136. MachineBasicBlock::iterator AfterCmpInstr =
  4137. std::next(MachineBasicBlock::iterator(CmpInstr));
  4138. for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) {
  4139. bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
  4140. bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
  4141. // We should check the usage if this instruction uses and updates EFLAGS.
  4142. if (!UseEFLAGS && ModifyEFLAGS) {
  4143. // It is safe to remove CmpInstr if EFLAGS is updated again.
  4144. FlagsMayLiveOut = false;
  4145. break;
  4146. }
  4147. if (!UseEFLAGS && !ModifyEFLAGS)
  4148. continue;
  4149. // EFLAGS is used by this instruction.
  4150. X86::CondCode OldCC = X86::getCondFromMI(Instr);
  4151. if ((MI || IsSwapped || ImmDelta != 0) && OldCC == X86::COND_INVALID)
  4152. return false;
  4153. X86::CondCode ReplacementCC = X86::COND_INVALID;
  4154. if (MI) {
  4155. switch (OldCC) {
  4156. default: break;
  4157. case X86::COND_A: case X86::COND_AE:
  4158. case X86::COND_B: case X86::COND_BE:
  4159. // CF is used, we can't perform this optimization.
  4160. return false;
  4161. case X86::COND_G: case X86::COND_GE:
  4162. case X86::COND_L: case X86::COND_LE:
  4163. // If SF is used, but the instruction doesn't update the SF, then we
  4164. // can't do the optimization.
  4165. if (NoSignFlag)
  4166. return false;
  4167. [[fallthrough]];
  4168. case X86::COND_O: case X86::COND_NO:
  4169. // If OF is used, the instruction needs to clear it like CmpZero does.
  4170. if (!ClearsOverflowFlag)
  4171. return false;
  4172. break;
  4173. case X86::COND_S: case X86::COND_NS:
  4174. // If SF is used, but the instruction doesn't update the SF, then we
  4175. // can't do the optimization.
  4176. if (NoSignFlag)
  4177. return false;
  4178. break;
  4179. }
  4180. // If we're updating the condition code check if we have to reverse the
  4181. // condition.
  4182. if (ShouldUpdateCC)
  4183. switch (OldCC) {
  4184. default:
  4185. return false;
  4186. case X86::COND_E:
  4187. ReplacementCC = NewCC;
  4188. break;
  4189. case X86::COND_NE:
  4190. ReplacementCC = GetOppositeBranchCondition(NewCC);
  4191. break;
  4192. }
  4193. } else if (IsSwapped) {
  4194. // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
  4195. // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
  4196. // We swap the condition code and synthesize the new opcode.
  4197. ReplacementCC = getSwappedCondition(OldCC);
  4198. if (ReplacementCC == X86::COND_INVALID)
  4199. return false;
  4200. ShouldUpdateCC = true;
  4201. } else if (ImmDelta != 0) {
  4202. unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg));
  4203. // Shift amount for min/max constants to adjust for 8/16/32 instruction
  4204. // sizes.
  4205. switch (OldCC) {
  4206. case X86::COND_L: // x <s (C + 1) --> x <=s C
  4207. if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
  4208. return false;
  4209. ReplacementCC = X86::COND_LE;
  4210. break;
  4211. case X86::COND_B: // x <u (C + 1) --> x <=u C
  4212. if (ImmDelta != 1 || CmpValue == 0)
  4213. return false;
  4214. ReplacementCC = X86::COND_BE;
  4215. break;
  4216. case X86::COND_GE: // x >=s (C + 1) --> x >s C
  4217. if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
  4218. return false;
  4219. ReplacementCC = X86::COND_G;
  4220. break;
  4221. case X86::COND_AE: // x >=u (C + 1) --> x >u C
  4222. if (ImmDelta != 1 || CmpValue == 0)
  4223. return false;
  4224. ReplacementCC = X86::COND_A;
  4225. break;
  4226. case X86::COND_G: // x >s (C - 1) --> x >=s C
  4227. if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
  4228. return false;
  4229. ReplacementCC = X86::COND_GE;
  4230. break;
  4231. case X86::COND_A: // x >u (C - 1) --> x >=u C
  4232. if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
  4233. return false;
  4234. ReplacementCC = X86::COND_AE;
  4235. break;
  4236. case X86::COND_LE: // x <=s (C - 1) --> x <s C
  4237. if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
  4238. return false;
  4239. ReplacementCC = X86::COND_L;
  4240. break;
  4241. case X86::COND_BE: // x <=u (C - 1) --> x <u C
  4242. if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
  4243. return false;
  4244. ReplacementCC = X86::COND_B;
  4245. break;
  4246. default:
  4247. return false;
  4248. }
  4249. ShouldUpdateCC = true;
  4250. }
  4251. if (ShouldUpdateCC && ReplacementCC != OldCC) {
  4252. // Push the MachineInstr to OpsToUpdate.
  4253. // If it is safe to remove CmpInstr, the condition code of these
  4254. // instructions will be modified.
  4255. OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC));
  4256. }
  4257. if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
  4258. // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
  4259. FlagsMayLiveOut = false;
  4260. break;
  4261. }
  4262. }
  4263. // If we have to update users but EFLAGS is live-out abort, since we cannot
  4264. // easily find all of the users.
  4265. if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) {
  4266. for (MachineBasicBlock *Successor : CmpMBB.successors())
  4267. if (Successor->isLiveIn(X86::EFLAGS))
  4268. return false;
  4269. }
  4270. // The instruction to be updated is either Sub or MI.
  4271. assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set");
  4272. Sub = MI != nullptr ? MI : Sub;
  4273. MachineBasicBlock *SubBB = Sub->getParent();
  4274. // Move Movr0Inst to the appropriate place before Sub.
  4275. if (Movr0Inst) {
  4276. // Only move within the same block so we don't accidentally move to a
  4277. // block with higher execution frequency.
  4278. if (&CmpMBB != SubBB)
  4279. return false;
  4280. // Look backwards until we find a def that doesn't use the current EFLAGS.
  4281. MachineBasicBlock::reverse_iterator InsertI = Sub,
  4282. InsertE = Sub->getParent()->rend();
  4283. for (; InsertI != InsertE; ++InsertI) {
  4284. MachineInstr *Instr = &*InsertI;
  4285. if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
  4286. Instr->modifiesRegister(X86::EFLAGS, TRI)) {
  4287. Movr0Inst->getParent()->remove(Movr0Inst);
  4288. Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
  4289. Movr0Inst);
  4290. break;
  4291. }
  4292. }
  4293. if (InsertI == InsertE)
  4294. return false;
  4295. }
  4296. // Make sure Sub instruction defines EFLAGS and mark the def live.
  4297. MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
  4298. assert(FlagDef && "Unable to locate a def EFLAGS operand");
  4299. FlagDef->setIsDead(false);
  4300. CmpInstr.eraseFromParent();
  4301. // Modify the condition code of instructions in OpsToUpdate.
  4302. for (auto &Op : OpsToUpdate) {
  4303. Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
  4304. .setImm(Op.second);
  4305. }
  4306. // Add EFLAGS to block live-ins between CmpBB and block of flags producer.
  4307. for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB;
  4308. MBB = *MBB->pred_begin()) {
  4309. assert(MBB->pred_size() == 1 && "Expected exactly one predecessor");
  4310. if (!MBB->isLiveIn(X86::EFLAGS))
  4311. MBB->addLiveIn(X86::EFLAGS);
  4312. }
  4313. return true;
  4314. }
  4315. /// Try to remove the load by folding it to a register
  4316. /// operand at the use. We fold the load instructions if load defines a virtual
  4317. /// register, the virtual register is used once in the same BB, and the
  4318. /// instructions in-between do not load or store, and have no side effects.
  4319. MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
  4320. const MachineRegisterInfo *MRI,
  4321. Register &FoldAsLoadDefReg,
  4322. MachineInstr *&DefMI) const {
  4323. // Check whether we can move DefMI here.
  4324. DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
  4325. assert(DefMI);
  4326. bool SawStore = false;
  4327. if (!DefMI->isSafeToMove(nullptr, SawStore))
  4328. return nullptr;
  4329. // Collect information about virtual register operands of MI.
  4330. SmallVector<unsigned, 1> SrcOperandIds;
  4331. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
  4332. MachineOperand &MO = MI.getOperand(i);
  4333. if (!MO.isReg())
  4334. continue;
  4335. Register Reg = MO.getReg();
  4336. if (Reg != FoldAsLoadDefReg)
  4337. continue;
  4338. // Do not fold if we have a subreg use or a def.
  4339. if (MO.getSubReg() || MO.isDef())
  4340. return nullptr;
  4341. SrcOperandIds.push_back(i);
  4342. }
  4343. if (SrcOperandIds.empty())
  4344. return nullptr;
  4345. // Check whether we can fold the def into SrcOperandId.
  4346. if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
  4347. FoldAsLoadDefReg = 0;
  4348. return FoldMI;
  4349. }
  4350. return nullptr;
  4351. }
  4352. /// Expand a single-def pseudo instruction to a two-addr
  4353. /// instruction with two undef reads of the register being defined.
  4354. /// This is used for mapping:
  4355. /// %xmm4 = V_SET0
  4356. /// to:
  4357. /// %xmm4 = PXORrr undef %xmm4, undef %xmm4
  4358. ///
  4359. static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
  4360. const MCInstrDesc &Desc) {
  4361. assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
  4362. Register Reg = MIB.getReg(0);
  4363. MIB->setDesc(Desc);
  4364. // MachineInstr::addOperand() will insert explicit operands before any
  4365. // implicit operands.
  4366. MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
  4367. // But we don't trust that.
  4368. assert(MIB.getReg(1) == Reg &&
  4369. MIB.getReg(2) == Reg && "Misplaced operand");
  4370. return true;
  4371. }
  4372. /// Expand a single-def pseudo instruction to a two-addr
  4373. /// instruction with two %k0 reads.
  4374. /// This is used for mapping:
  4375. /// %k4 = K_SET1
  4376. /// to:
  4377. /// %k4 = KXNORrr %k0, %k0
  4378. static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc,
  4379. Register Reg) {
  4380. assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
  4381. MIB->setDesc(Desc);
  4382. MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
  4383. return true;
  4384. }
  4385. static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
  4386. bool MinusOne) {
  4387. MachineBasicBlock &MBB = *MIB->getParent();
  4388. const DebugLoc &DL = MIB->getDebugLoc();
  4389. Register Reg = MIB.getReg(0);
  4390. // Insert the XOR.
  4391. BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
  4392. .addReg(Reg, RegState::Undef)
  4393. .addReg(Reg, RegState::Undef);
  4394. // Turn the pseudo into an INC or DEC.
  4395. MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
  4396. MIB.addReg(Reg);
  4397. return true;
  4398. }
  4399. static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
  4400. const TargetInstrInfo &TII,
  4401. const X86Subtarget &Subtarget) {
  4402. MachineBasicBlock &MBB = *MIB->getParent();
  4403. const DebugLoc &DL = MIB->getDebugLoc();
  4404. int64_t Imm = MIB->getOperand(1).getImm();
  4405. assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
  4406. MachineBasicBlock::iterator I = MIB.getInstr();
  4407. int StackAdjustment;
  4408. if (Subtarget.is64Bit()) {
  4409. assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
  4410. MIB->getOpcode() == X86::MOV32ImmSExti8);
  4411. // Can't use push/pop lowering if the function might write to the red zone.
  4412. X86MachineFunctionInfo *X86FI =
  4413. MBB.getParent()->getInfo<X86MachineFunctionInfo>();
  4414. if (X86FI->getUsesRedZone()) {
  4415. MIB->setDesc(TII.get(MIB->getOpcode() ==
  4416. X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
  4417. return true;
  4418. }
  4419. // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
  4420. // widen the register if necessary.
  4421. StackAdjustment = 8;
  4422. BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
  4423. MIB->setDesc(TII.get(X86::POP64r));
  4424. MIB->getOperand(0)
  4425. .setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
  4426. } else {
  4427. assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
  4428. StackAdjustment = 4;
  4429. BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
  4430. MIB->setDesc(TII.get(X86::POP32r));
  4431. }
  4432. MIB->removeOperand(1);
  4433. MIB->addImplicitDefUseOperands(*MBB.getParent());
  4434. // Build CFI if necessary.
  4435. MachineFunction &MF = *MBB.getParent();
  4436. const X86FrameLowering *TFL = Subtarget.getFrameLowering();
  4437. bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
  4438. bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
  4439. bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
  4440. if (EmitCFI) {
  4441. TFL->BuildCFI(MBB, I, DL,
  4442. MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
  4443. TFL->BuildCFI(MBB, std::next(I), DL,
  4444. MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
  4445. }
  4446. return true;
  4447. }
  4448. // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
  4449. // code sequence is needed for other targets.
  4450. static void expandLoadStackGuard(MachineInstrBuilder &MIB,
  4451. const TargetInstrInfo &TII) {
  4452. MachineBasicBlock &MBB = *MIB->getParent();
  4453. const DebugLoc &DL = MIB->getDebugLoc();
  4454. Register Reg = MIB.getReg(0);
  4455. const GlobalValue *GV =
  4456. cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
  4457. auto Flags = MachineMemOperand::MOLoad |
  4458. MachineMemOperand::MODereferenceable |
  4459. MachineMemOperand::MOInvariant;
  4460. MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
  4461. MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
  4462. MachineBasicBlock::iterator I = MIB.getInstr();
  4463. BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
  4464. .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
  4465. .addMemOperand(MMO);
  4466. MIB->setDebugLoc(DL);
  4467. MIB->setDesc(TII.get(X86::MOV64rm));
  4468. MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
  4469. }
  4470. static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
  4471. MachineBasicBlock &MBB = *MIB->getParent();
  4472. MachineFunction &MF = *MBB.getParent();
  4473. const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
  4474. const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
  4475. unsigned XorOp =
  4476. MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
  4477. MIB->setDesc(TII.get(XorOp));
  4478. MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
  4479. return true;
  4480. }
  4481. // This is used to handle spills for 128/256-bit registers when we have AVX512,
  4482. // but not VLX. If it uses an extended register we need to use an instruction
  4483. // that loads the lower 128/256-bit, but is available with only AVX512F.
  4484. static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
  4485. const TargetRegisterInfo *TRI,
  4486. const MCInstrDesc &LoadDesc,
  4487. const MCInstrDesc &BroadcastDesc,
  4488. unsigned SubIdx) {
  4489. Register DestReg = MIB.getReg(0);
  4490. // Check if DestReg is XMM16-31 or YMM16-31.
  4491. if (TRI->getEncodingValue(DestReg) < 16) {
  4492. // We can use a normal VEX encoded load.
  4493. MIB->setDesc(LoadDesc);
  4494. } else {
  4495. // Use a 128/256-bit VBROADCAST instruction.
  4496. MIB->setDesc(BroadcastDesc);
  4497. // Change the destination to a 512-bit register.
  4498. DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
  4499. MIB->getOperand(0).setReg(DestReg);
  4500. }
  4501. return true;
  4502. }
  4503. // This is used to handle spills for 128/256-bit registers when we have AVX512,
  4504. // but not VLX. If it uses an extended register we need to use an instruction
  4505. // that stores the lower 128/256-bit, but is available with only AVX512F.
  4506. static bool expandNOVLXStore(MachineInstrBuilder &MIB,
  4507. const TargetRegisterInfo *TRI,
  4508. const MCInstrDesc &StoreDesc,
  4509. const MCInstrDesc &ExtractDesc,
  4510. unsigned SubIdx) {
  4511. Register SrcReg = MIB.getReg(X86::AddrNumOperands);
  4512. // Check if DestReg is XMM16-31 or YMM16-31.
  4513. if (TRI->getEncodingValue(SrcReg) < 16) {
  4514. // We can use a normal VEX encoded store.
  4515. MIB->setDesc(StoreDesc);
  4516. } else {
  4517. // Use a VEXTRACTF instruction.
  4518. MIB->setDesc(ExtractDesc);
  4519. // Change the destination to a 512-bit register.
  4520. SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
  4521. MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
  4522. MIB.addImm(0x0); // Append immediate to extract from the lower bits.
  4523. }
  4524. return true;
  4525. }
  4526. static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
  4527. MIB->setDesc(Desc);
  4528. int64_t ShiftAmt = MIB->getOperand(2).getImm();
  4529. // Temporarily remove the immediate so we can add another source register.
  4530. MIB->removeOperand(2);
  4531. // Add the register. Don't copy the kill flag if there is one.
  4532. MIB.addReg(MIB.getReg(1),
  4533. getUndefRegState(MIB->getOperand(1).isUndef()));
  4534. // Add back the immediate.
  4535. MIB.addImm(ShiftAmt);
  4536. return true;
  4537. }
  4538. bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
  4539. bool HasAVX = Subtarget.hasAVX();
  4540. MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
  4541. switch (MI.getOpcode()) {
  4542. case X86::MOV32r0:
  4543. return Expand2AddrUndef(MIB, get(X86::XOR32rr));
  4544. case X86::MOV32r1:
  4545. return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
  4546. case X86::MOV32r_1:
  4547. return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
  4548. case X86::MOV32ImmSExti8:
  4549. case X86::MOV64ImmSExti8:
  4550. return ExpandMOVImmSExti8(MIB, *this, Subtarget);
  4551. case X86::SETB_C32r:
  4552. return Expand2AddrUndef(MIB, get(X86::SBB32rr));
  4553. case X86::SETB_C64r:
  4554. return Expand2AddrUndef(MIB, get(X86::SBB64rr));
  4555. case X86::MMX_SET0:
  4556. return Expand2AddrUndef(MIB, get(X86::MMX_PXORrr));
  4557. case X86::V_SET0:
  4558. case X86::FsFLD0SS:
  4559. case X86::FsFLD0SD:
  4560. case X86::FsFLD0SH:
  4561. case X86::FsFLD0F128:
  4562. return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
  4563. case X86::AVX_SET0: {
  4564. assert(HasAVX && "AVX not supported");
  4565. const TargetRegisterInfo *TRI = &getRegisterInfo();
  4566. Register SrcReg = MIB.getReg(0);
  4567. Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
  4568. MIB->getOperand(0).setReg(XReg);
  4569. Expand2AddrUndef(MIB, get(X86::VXORPSrr));
  4570. MIB.addReg(SrcReg, RegState::ImplicitDefine);
  4571. return true;
  4572. }
  4573. case X86::AVX512_128_SET0:
  4574. case X86::AVX512_FsFLD0SH:
  4575. case X86::AVX512_FsFLD0SS:
  4576. case X86::AVX512_FsFLD0SD:
  4577. case X86::AVX512_FsFLD0F128: {
  4578. bool HasVLX = Subtarget.hasVLX();
  4579. Register SrcReg = MIB.getReg(0);
  4580. const TargetRegisterInfo *TRI = &getRegisterInfo();
  4581. if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
  4582. return Expand2AddrUndef(MIB,
  4583. get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
  4584. // Extended register without VLX. Use a larger XOR.
  4585. SrcReg =
  4586. TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
  4587. MIB->getOperand(0).setReg(SrcReg);
  4588. return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
  4589. }
  4590. case X86::AVX512_256_SET0:
  4591. case X86::AVX512_512_SET0: {
  4592. bool HasVLX = Subtarget.hasVLX();
  4593. Register SrcReg = MIB.getReg(0);
  4594. const TargetRegisterInfo *TRI = &getRegisterInfo();
  4595. if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
  4596. Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
  4597. MIB->getOperand(0).setReg(XReg);
  4598. Expand2AddrUndef(MIB,
  4599. get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
  4600. MIB.addReg(SrcReg, RegState::ImplicitDefine);
  4601. return true;
  4602. }
  4603. if (MI.getOpcode() == X86::AVX512_256_SET0) {
  4604. // No VLX so we must reference a zmm.
  4605. unsigned ZReg =
  4606. TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
  4607. MIB->getOperand(0).setReg(ZReg);
  4608. }
  4609. return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
  4610. }
  4611. case X86::V_SETALLONES:
  4612. return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
  4613. case X86::AVX2_SETALLONES:
  4614. return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
  4615. case X86::AVX1_SETALLONES: {
  4616. Register Reg = MIB.getReg(0);
  4617. // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
  4618. MIB->setDesc(get(X86::VCMPPSYrri));
  4619. MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
  4620. return true;
  4621. }
  4622. case X86::AVX512_512_SETALLONES: {
  4623. Register Reg = MIB.getReg(0);
  4624. MIB->setDesc(get(X86::VPTERNLOGDZrri));
  4625. // VPTERNLOGD needs 3 register inputs and an immediate.
  4626. // 0xff will return 1s for any input.
  4627. MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
  4628. .addReg(Reg, RegState::Undef).addImm(0xff);
  4629. return true;
  4630. }
  4631. case X86::AVX512_512_SEXT_MASK_32:
  4632. case X86::AVX512_512_SEXT_MASK_64: {
  4633. Register Reg = MIB.getReg(0);
  4634. Register MaskReg = MIB.getReg(1);
  4635. unsigned MaskState = getRegState(MIB->getOperand(1));
  4636. unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
  4637. X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
  4638. MI.removeOperand(1);
  4639. MIB->setDesc(get(Opc));
  4640. // VPTERNLOG needs 3 register inputs and an immediate.
  4641. // 0xff will return 1s for any input.
  4642. MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
  4643. .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
  4644. return true;
  4645. }
  4646. case X86::VMOVAPSZ128rm_NOVLX:
  4647. return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
  4648. get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
  4649. case X86::VMOVUPSZ128rm_NOVLX:
  4650. return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
  4651. get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
  4652. case X86::VMOVAPSZ256rm_NOVLX:
  4653. return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
  4654. get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
  4655. case X86::VMOVUPSZ256rm_NOVLX:
  4656. return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
  4657. get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
  4658. case X86::VMOVAPSZ128mr_NOVLX:
  4659. return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
  4660. get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
  4661. case X86::VMOVUPSZ128mr_NOVLX:
  4662. return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
  4663. get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
  4664. case X86::VMOVAPSZ256mr_NOVLX:
  4665. return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
  4666. get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
  4667. case X86::VMOVUPSZ256mr_NOVLX:
  4668. return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
  4669. get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
  4670. case X86::MOV32ri64: {
  4671. Register Reg = MIB.getReg(0);
  4672. Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
  4673. MI.setDesc(get(X86::MOV32ri));
  4674. MIB->getOperand(0).setReg(Reg32);
  4675. MIB.addReg(Reg, RegState::ImplicitDefine);
  4676. return true;
  4677. }
  4678. // KNL does not recognize dependency-breaking idioms for mask registers,
  4679. // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
  4680. // Using %k0 as the undef input register is a performance heuristic based
  4681. // on the assumption that %k0 is used less frequently than the other mask
  4682. // registers, since it is not usable as a write mask.
  4683. // FIXME: A more advanced approach would be to choose the best input mask
  4684. // register based on context.
  4685. case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
  4686. case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
  4687. case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
  4688. case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
  4689. case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
  4690. case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
  4691. case TargetOpcode::LOAD_STACK_GUARD:
  4692. expandLoadStackGuard(MIB, *this);
  4693. return true;
  4694. case X86::XOR64_FP:
  4695. case X86::XOR32_FP:
  4696. return expandXorFP(MIB, *this);
  4697. case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
  4698. case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
  4699. case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
  4700. case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
  4701. case X86::ADD8rr_DB: MIB->setDesc(get(X86::OR8rr)); break;
  4702. case X86::ADD16rr_DB: MIB->setDesc(get(X86::OR16rr)); break;
  4703. case X86::ADD32rr_DB: MIB->setDesc(get(X86::OR32rr)); break;
  4704. case X86::ADD64rr_DB: MIB->setDesc(get(X86::OR64rr)); break;
  4705. case X86::ADD8ri_DB: MIB->setDesc(get(X86::OR8ri)); break;
  4706. case X86::ADD16ri_DB: MIB->setDesc(get(X86::OR16ri)); break;
  4707. case X86::ADD32ri_DB: MIB->setDesc(get(X86::OR32ri)); break;
  4708. case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
  4709. case X86::ADD16ri8_DB: MIB->setDesc(get(X86::OR16ri8)); break;
  4710. case X86::ADD32ri8_DB: MIB->setDesc(get(X86::OR32ri8)); break;
  4711. case X86::ADD64ri8_DB: MIB->setDesc(get(X86::OR64ri8)); break;
  4712. }
  4713. return false;
  4714. }
  4715. /// Return true for all instructions that only update
  4716. /// the first 32 or 64-bits of the destination register and leave the rest
  4717. /// unmodified. This can be used to avoid folding loads if the instructions
  4718. /// only update part of the destination register, and the non-updated part is
  4719. /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
  4720. /// instructions breaks the partial register dependency and it can improve
  4721. /// performance. e.g.:
  4722. ///
  4723. /// movss (%rdi), %xmm0
  4724. /// cvtss2sd %xmm0, %xmm0
  4725. ///
  4726. /// Instead of
  4727. /// cvtss2sd (%rdi), %xmm0
  4728. ///
  4729. /// FIXME: This should be turned into a TSFlags.
  4730. ///
  4731. static bool hasPartialRegUpdate(unsigned Opcode,
  4732. const X86Subtarget &Subtarget,
  4733. bool ForLoadFold = false) {
  4734. switch (Opcode) {
  4735. case X86::CVTSI2SSrr:
  4736. case X86::CVTSI2SSrm:
  4737. case X86::CVTSI642SSrr:
  4738. case X86::CVTSI642SSrm:
  4739. case X86::CVTSI2SDrr:
  4740. case X86::CVTSI2SDrm:
  4741. case X86::CVTSI642SDrr:
  4742. case X86::CVTSI642SDrm:
  4743. // Load folding won't effect the undef register update since the input is
  4744. // a GPR.
  4745. return !ForLoadFold;
  4746. case X86::CVTSD2SSrr:
  4747. case X86::CVTSD2SSrm:
  4748. case X86::CVTSS2SDrr:
  4749. case X86::CVTSS2SDrm:
  4750. case X86::MOVHPDrm:
  4751. case X86::MOVHPSrm:
  4752. case X86::MOVLPDrm:
  4753. case X86::MOVLPSrm:
  4754. case X86::RCPSSr:
  4755. case X86::RCPSSm:
  4756. case X86::RCPSSr_Int:
  4757. case X86::RCPSSm_Int:
  4758. case X86::ROUNDSDr:
  4759. case X86::ROUNDSDm:
  4760. case X86::ROUNDSSr:
  4761. case X86::ROUNDSSm:
  4762. case X86::RSQRTSSr:
  4763. case X86::RSQRTSSm:
  4764. case X86::RSQRTSSr_Int:
  4765. case X86::RSQRTSSm_Int:
  4766. case X86::SQRTSSr:
  4767. case X86::SQRTSSm:
  4768. case X86::SQRTSSr_Int:
  4769. case X86::SQRTSSm_Int:
  4770. case X86::SQRTSDr:
  4771. case X86::SQRTSDm:
  4772. case X86::SQRTSDr_Int:
  4773. case X86::SQRTSDm_Int:
  4774. return true;
  4775. case X86::VFCMULCPHZ128rm:
  4776. case X86::VFCMULCPHZ128rmb:
  4777. case X86::VFCMULCPHZ128rmbkz:
  4778. case X86::VFCMULCPHZ128rmkz:
  4779. case X86::VFCMULCPHZ128rr:
  4780. case X86::VFCMULCPHZ128rrkz:
  4781. case X86::VFCMULCPHZ256rm:
  4782. case X86::VFCMULCPHZ256rmb:
  4783. case X86::VFCMULCPHZ256rmbkz:
  4784. case X86::VFCMULCPHZ256rmkz:
  4785. case X86::VFCMULCPHZ256rr:
  4786. case X86::VFCMULCPHZ256rrkz:
  4787. case X86::VFCMULCPHZrm:
  4788. case X86::VFCMULCPHZrmb:
  4789. case X86::VFCMULCPHZrmbkz:
  4790. case X86::VFCMULCPHZrmkz:
  4791. case X86::VFCMULCPHZrr:
  4792. case X86::VFCMULCPHZrrb:
  4793. case X86::VFCMULCPHZrrbkz:
  4794. case X86::VFCMULCPHZrrkz:
  4795. case X86::VFMULCPHZ128rm:
  4796. case X86::VFMULCPHZ128rmb:
  4797. case X86::VFMULCPHZ128rmbkz:
  4798. case X86::VFMULCPHZ128rmkz:
  4799. case X86::VFMULCPHZ128rr:
  4800. case X86::VFMULCPHZ128rrkz:
  4801. case X86::VFMULCPHZ256rm:
  4802. case X86::VFMULCPHZ256rmb:
  4803. case X86::VFMULCPHZ256rmbkz:
  4804. case X86::VFMULCPHZ256rmkz:
  4805. case X86::VFMULCPHZ256rr:
  4806. case X86::VFMULCPHZ256rrkz:
  4807. case X86::VFMULCPHZrm:
  4808. case X86::VFMULCPHZrmb:
  4809. case X86::VFMULCPHZrmbkz:
  4810. case X86::VFMULCPHZrmkz:
  4811. case X86::VFMULCPHZrr:
  4812. case X86::VFMULCPHZrrb:
  4813. case X86::VFMULCPHZrrbkz:
  4814. case X86::VFMULCPHZrrkz:
  4815. case X86::VFCMULCSHZrm:
  4816. case X86::VFCMULCSHZrmkz:
  4817. case X86::VFCMULCSHZrr:
  4818. case X86::VFCMULCSHZrrb:
  4819. case X86::VFCMULCSHZrrbkz:
  4820. case X86::VFCMULCSHZrrkz:
  4821. case X86::VFMULCSHZrm:
  4822. case X86::VFMULCSHZrmkz:
  4823. case X86::VFMULCSHZrr:
  4824. case X86::VFMULCSHZrrb:
  4825. case X86::VFMULCSHZrrbkz:
  4826. case X86::VFMULCSHZrrkz:
  4827. return Subtarget.hasMULCFalseDeps();
  4828. case X86::VPERMDYrm:
  4829. case X86::VPERMDYrr:
  4830. case X86::VPERMQYmi:
  4831. case X86::VPERMQYri:
  4832. case X86::VPERMPSYrm:
  4833. case X86::VPERMPSYrr:
  4834. case X86::VPERMPDYmi:
  4835. case X86::VPERMPDYri:
  4836. case X86::VPERMDZ256rm:
  4837. case X86::VPERMDZ256rmb:
  4838. case X86::VPERMDZ256rmbkz:
  4839. case X86::VPERMDZ256rmkz:
  4840. case X86::VPERMDZ256rr:
  4841. case X86::VPERMDZ256rrkz:
  4842. case X86::VPERMDZrm:
  4843. case X86::VPERMDZrmb:
  4844. case X86::VPERMDZrmbkz:
  4845. case X86::VPERMDZrmkz:
  4846. case X86::VPERMDZrr:
  4847. case X86::VPERMDZrrkz:
  4848. case X86::VPERMQZ256mbi:
  4849. case X86::VPERMQZ256mbikz:
  4850. case X86::VPERMQZ256mi:
  4851. case X86::VPERMQZ256mikz:
  4852. case X86::VPERMQZ256ri:
  4853. case X86::VPERMQZ256rikz:
  4854. case X86::VPERMQZ256rm:
  4855. case X86::VPERMQZ256rmb:
  4856. case X86::VPERMQZ256rmbkz:
  4857. case X86::VPERMQZ256rmkz:
  4858. case X86::VPERMQZ256rr:
  4859. case X86::VPERMQZ256rrkz:
  4860. case X86::VPERMQZmbi:
  4861. case X86::VPERMQZmbikz:
  4862. case X86::VPERMQZmi:
  4863. case X86::VPERMQZmikz:
  4864. case X86::VPERMQZri:
  4865. case X86::VPERMQZrikz:
  4866. case X86::VPERMQZrm:
  4867. case X86::VPERMQZrmb:
  4868. case X86::VPERMQZrmbkz:
  4869. case X86::VPERMQZrmkz:
  4870. case X86::VPERMQZrr:
  4871. case X86::VPERMQZrrkz:
  4872. case X86::VPERMPSZ256rm:
  4873. case X86::VPERMPSZ256rmb:
  4874. case X86::VPERMPSZ256rmbkz:
  4875. case X86::VPERMPSZ256rmkz:
  4876. case X86::VPERMPSZ256rr:
  4877. case X86::VPERMPSZ256rrkz:
  4878. case X86::VPERMPSZrm:
  4879. case X86::VPERMPSZrmb:
  4880. case X86::VPERMPSZrmbkz:
  4881. case X86::VPERMPSZrmkz:
  4882. case X86::VPERMPSZrr:
  4883. case X86::VPERMPSZrrkz:
  4884. case X86::VPERMPDZ256mbi:
  4885. case X86::VPERMPDZ256mbikz:
  4886. case X86::VPERMPDZ256mi:
  4887. case X86::VPERMPDZ256mikz:
  4888. case X86::VPERMPDZ256ri:
  4889. case X86::VPERMPDZ256rikz:
  4890. case X86::VPERMPDZ256rm:
  4891. case X86::VPERMPDZ256rmb:
  4892. case X86::VPERMPDZ256rmbkz:
  4893. case X86::VPERMPDZ256rmkz:
  4894. case X86::VPERMPDZ256rr:
  4895. case X86::VPERMPDZ256rrkz:
  4896. case X86::VPERMPDZmbi:
  4897. case X86::VPERMPDZmbikz:
  4898. case X86::VPERMPDZmi:
  4899. case X86::VPERMPDZmikz:
  4900. case X86::VPERMPDZri:
  4901. case X86::VPERMPDZrikz:
  4902. case X86::VPERMPDZrm:
  4903. case X86::VPERMPDZrmb:
  4904. case X86::VPERMPDZrmbkz:
  4905. case X86::VPERMPDZrmkz:
  4906. case X86::VPERMPDZrr:
  4907. case X86::VPERMPDZrrkz:
  4908. return Subtarget.hasPERMFalseDeps();
  4909. case X86::VRANGEPDZ128rmbi:
  4910. case X86::VRANGEPDZ128rmbikz:
  4911. case X86::VRANGEPDZ128rmi:
  4912. case X86::VRANGEPDZ128rmikz:
  4913. case X86::VRANGEPDZ128rri:
  4914. case X86::VRANGEPDZ128rrikz:
  4915. case X86::VRANGEPDZ256rmbi:
  4916. case X86::VRANGEPDZ256rmbikz:
  4917. case X86::VRANGEPDZ256rmi:
  4918. case X86::VRANGEPDZ256rmikz:
  4919. case X86::VRANGEPDZ256rri:
  4920. case X86::VRANGEPDZ256rrikz:
  4921. case X86::VRANGEPDZrmbi:
  4922. case X86::VRANGEPDZrmbikz:
  4923. case X86::VRANGEPDZrmi:
  4924. case X86::VRANGEPDZrmikz:
  4925. case X86::VRANGEPDZrri:
  4926. case X86::VRANGEPDZrrib:
  4927. case X86::VRANGEPDZrribkz:
  4928. case X86::VRANGEPDZrrikz:
  4929. case X86::VRANGEPSZ128rmbi:
  4930. case X86::VRANGEPSZ128rmbikz:
  4931. case X86::VRANGEPSZ128rmi:
  4932. case X86::VRANGEPSZ128rmikz:
  4933. case X86::VRANGEPSZ128rri:
  4934. case X86::VRANGEPSZ128rrikz:
  4935. case X86::VRANGEPSZ256rmbi:
  4936. case X86::VRANGEPSZ256rmbikz:
  4937. case X86::VRANGEPSZ256rmi:
  4938. case X86::VRANGEPSZ256rmikz:
  4939. case X86::VRANGEPSZ256rri:
  4940. case X86::VRANGEPSZ256rrikz:
  4941. case X86::VRANGEPSZrmbi:
  4942. case X86::VRANGEPSZrmbikz:
  4943. case X86::VRANGEPSZrmi:
  4944. case X86::VRANGEPSZrmikz:
  4945. case X86::VRANGEPSZrri:
  4946. case X86::VRANGEPSZrrib:
  4947. case X86::VRANGEPSZrribkz:
  4948. case X86::VRANGEPSZrrikz:
  4949. case X86::VRANGESDZrmi:
  4950. case X86::VRANGESDZrmikz:
  4951. case X86::VRANGESDZrri:
  4952. case X86::VRANGESDZrrib:
  4953. case X86::VRANGESDZrribkz:
  4954. case X86::VRANGESDZrrikz:
  4955. case X86::VRANGESSZrmi:
  4956. case X86::VRANGESSZrmikz:
  4957. case X86::VRANGESSZrri:
  4958. case X86::VRANGESSZrrib:
  4959. case X86::VRANGESSZrribkz:
  4960. case X86::VRANGESSZrrikz:
  4961. return Subtarget.hasRANGEFalseDeps();
  4962. case X86::VGETMANTSSZrmi:
  4963. case X86::VGETMANTSSZrmikz:
  4964. case X86::VGETMANTSSZrri:
  4965. case X86::VGETMANTSSZrrib:
  4966. case X86::VGETMANTSSZrribkz:
  4967. case X86::VGETMANTSSZrrikz:
  4968. case X86::VGETMANTSDZrmi:
  4969. case X86::VGETMANTSDZrmikz:
  4970. case X86::VGETMANTSDZrri:
  4971. case X86::VGETMANTSDZrrib:
  4972. case X86::VGETMANTSDZrribkz:
  4973. case X86::VGETMANTSDZrrikz:
  4974. case X86::VGETMANTSHZrmi:
  4975. case X86::VGETMANTSHZrmikz:
  4976. case X86::VGETMANTSHZrri:
  4977. case X86::VGETMANTSHZrrib:
  4978. case X86::VGETMANTSHZrribkz:
  4979. case X86::VGETMANTSHZrrikz:
  4980. case X86::VGETMANTPSZ128rmbi:
  4981. case X86::VGETMANTPSZ128rmbikz:
  4982. case X86::VGETMANTPSZ128rmi:
  4983. case X86::VGETMANTPSZ128rmikz:
  4984. case X86::VGETMANTPSZ256rmbi:
  4985. case X86::VGETMANTPSZ256rmbikz:
  4986. case X86::VGETMANTPSZ256rmi:
  4987. case X86::VGETMANTPSZ256rmikz:
  4988. case X86::VGETMANTPSZrmbi:
  4989. case X86::VGETMANTPSZrmbikz:
  4990. case X86::VGETMANTPSZrmi:
  4991. case X86::VGETMANTPSZrmikz:
  4992. case X86::VGETMANTPDZ128rmbi:
  4993. case X86::VGETMANTPDZ128rmbikz:
  4994. case X86::VGETMANTPDZ128rmi:
  4995. case X86::VGETMANTPDZ128rmikz:
  4996. case X86::VGETMANTPDZ256rmbi:
  4997. case X86::VGETMANTPDZ256rmbikz:
  4998. case X86::VGETMANTPDZ256rmi:
  4999. case X86::VGETMANTPDZ256rmikz:
  5000. case X86::VGETMANTPDZrmbi:
  5001. case X86::VGETMANTPDZrmbikz:
  5002. case X86::VGETMANTPDZrmi:
  5003. case X86::VGETMANTPDZrmikz:
  5004. return Subtarget.hasGETMANTFalseDeps();
  5005. case X86::VPMULLQZ128rm:
  5006. case X86::VPMULLQZ128rmb:
  5007. case X86::VPMULLQZ128rmbkz:
  5008. case X86::VPMULLQZ128rmkz:
  5009. case X86::VPMULLQZ128rr:
  5010. case X86::VPMULLQZ128rrkz:
  5011. case X86::VPMULLQZ256rm:
  5012. case X86::VPMULLQZ256rmb:
  5013. case X86::VPMULLQZ256rmbkz:
  5014. case X86::VPMULLQZ256rmkz:
  5015. case X86::VPMULLQZ256rr:
  5016. case X86::VPMULLQZ256rrkz:
  5017. case X86::VPMULLQZrm:
  5018. case X86::VPMULLQZrmb:
  5019. case X86::VPMULLQZrmbkz:
  5020. case X86::VPMULLQZrmkz:
  5021. case X86::VPMULLQZrr:
  5022. case X86::VPMULLQZrrkz:
  5023. return Subtarget.hasMULLQFalseDeps();
  5024. // GPR
  5025. case X86::POPCNT32rm:
  5026. case X86::POPCNT32rr:
  5027. case X86::POPCNT64rm:
  5028. case X86::POPCNT64rr:
  5029. return Subtarget.hasPOPCNTFalseDeps();
  5030. case X86::LZCNT32rm:
  5031. case X86::LZCNT32rr:
  5032. case X86::LZCNT64rm:
  5033. case X86::LZCNT64rr:
  5034. case X86::TZCNT32rm:
  5035. case X86::TZCNT32rr:
  5036. case X86::TZCNT64rm:
  5037. case X86::TZCNT64rr:
  5038. return Subtarget.hasLZCNTFalseDeps();
  5039. }
  5040. return false;
  5041. }
  5042. /// Inform the BreakFalseDeps pass how many idle
  5043. /// instructions we would like before a partial register update.
  5044. unsigned X86InstrInfo::getPartialRegUpdateClearance(
  5045. const MachineInstr &MI, unsigned OpNum,
  5046. const TargetRegisterInfo *TRI) const {
  5047. if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
  5048. return 0;
  5049. // If MI is marked as reading Reg, the partial register update is wanted.
  5050. const MachineOperand &MO = MI.getOperand(0);
  5051. Register Reg = MO.getReg();
  5052. if (Reg.isVirtual()) {
  5053. if (MO.readsReg() || MI.readsVirtualRegister(Reg))
  5054. return 0;
  5055. } else {
  5056. if (MI.readsRegister(Reg, TRI))
  5057. return 0;
  5058. }
  5059. // If any instructions in the clearance range are reading Reg, insert a
  5060. // dependency breaking instruction, which is inexpensive and is likely to
  5061. // be hidden in other instruction's cycles.
  5062. return PartialRegUpdateClearance;
  5063. }
  5064. // Return true for any instruction the copies the high bits of the first source
  5065. // operand into the unused high bits of the destination operand.
  5066. // Also returns true for instructions that have two inputs where one may
  5067. // be undef and we want it to use the same register as the other input.
  5068. static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
  5069. bool ForLoadFold = false) {
  5070. // Set the OpNum parameter to the first source operand.
  5071. switch (Opcode) {
  5072. case X86::MMX_PUNPCKHBWrr:
  5073. case X86::MMX_PUNPCKHWDrr:
  5074. case X86::MMX_PUNPCKHDQrr:
  5075. case X86::MMX_PUNPCKLBWrr:
  5076. case X86::MMX_PUNPCKLWDrr:
  5077. case X86::MMX_PUNPCKLDQrr:
  5078. case X86::MOVHLPSrr:
  5079. case X86::PACKSSWBrr:
  5080. case X86::PACKUSWBrr:
  5081. case X86::PACKSSDWrr:
  5082. case X86::PACKUSDWrr:
  5083. case X86::PUNPCKHBWrr:
  5084. case X86::PUNPCKLBWrr:
  5085. case X86::PUNPCKHWDrr:
  5086. case X86::PUNPCKLWDrr:
  5087. case X86::PUNPCKHDQrr:
  5088. case X86::PUNPCKLDQrr:
  5089. case X86::PUNPCKHQDQrr:
  5090. case X86::PUNPCKLQDQrr:
  5091. case X86::SHUFPDrri:
  5092. case X86::SHUFPSrri:
  5093. // These instructions are sometimes used with an undef first or second
  5094. // source. Return true here so BreakFalseDeps will assign this source to the
  5095. // same register as the first source to avoid a false dependency.
  5096. // Operand 1 of these instructions is tied so they're separate from their
  5097. // VEX counterparts.
  5098. return OpNum == 2 && !ForLoadFold;
  5099. case X86::VMOVLHPSrr:
  5100. case X86::VMOVLHPSZrr:
  5101. case X86::VPACKSSWBrr:
  5102. case X86::VPACKUSWBrr:
  5103. case X86::VPACKSSDWrr:
  5104. case X86::VPACKUSDWrr:
  5105. case X86::VPACKSSWBZ128rr:
  5106. case X86::VPACKUSWBZ128rr:
  5107. case X86::VPACKSSDWZ128rr:
  5108. case X86::VPACKUSDWZ128rr:
  5109. case X86::VPERM2F128rr:
  5110. case X86::VPERM2I128rr:
  5111. case X86::VSHUFF32X4Z256rri:
  5112. case X86::VSHUFF32X4Zrri:
  5113. case X86::VSHUFF64X2Z256rri:
  5114. case X86::VSHUFF64X2Zrri:
  5115. case X86::VSHUFI32X4Z256rri:
  5116. case X86::VSHUFI32X4Zrri:
  5117. case X86::VSHUFI64X2Z256rri:
  5118. case X86::VSHUFI64X2Zrri:
  5119. case X86::VPUNPCKHBWrr:
  5120. case X86::VPUNPCKLBWrr:
  5121. case X86::VPUNPCKHBWYrr:
  5122. case X86::VPUNPCKLBWYrr:
  5123. case X86::VPUNPCKHBWZ128rr:
  5124. case X86::VPUNPCKLBWZ128rr:
  5125. case X86::VPUNPCKHBWZ256rr:
  5126. case X86::VPUNPCKLBWZ256rr:
  5127. case X86::VPUNPCKHBWZrr:
  5128. case X86::VPUNPCKLBWZrr:
  5129. case X86::VPUNPCKHWDrr:
  5130. case X86::VPUNPCKLWDrr:
  5131. case X86::VPUNPCKHWDYrr:
  5132. case X86::VPUNPCKLWDYrr:
  5133. case X86::VPUNPCKHWDZ128rr:
  5134. case X86::VPUNPCKLWDZ128rr:
  5135. case X86::VPUNPCKHWDZ256rr:
  5136. case X86::VPUNPCKLWDZ256rr:
  5137. case X86::VPUNPCKHWDZrr:
  5138. case X86::VPUNPCKLWDZrr:
  5139. case X86::VPUNPCKHDQrr:
  5140. case X86::VPUNPCKLDQrr:
  5141. case X86::VPUNPCKHDQYrr:
  5142. case X86::VPUNPCKLDQYrr:
  5143. case X86::VPUNPCKHDQZ128rr:
  5144. case X86::VPUNPCKLDQZ128rr:
  5145. case X86::VPUNPCKHDQZ256rr:
  5146. case X86::VPUNPCKLDQZ256rr:
  5147. case X86::VPUNPCKHDQZrr:
  5148. case X86::VPUNPCKLDQZrr:
  5149. case X86::VPUNPCKHQDQrr:
  5150. case X86::VPUNPCKLQDQrr:
  5151. case X86::VPUNPCKHQDQYrr:
  5152. case X86::VPUNPCKLQDQYrr:
  5153. case X86::VPUNPCKHQDQZ128rr:
  5154. case X86::VPUNPCKLQDQZ128rr:
  5155. case X86::VPUNPCKHQDQZ256rr:
  5156. case X86::VPUNPCKLQDQZ256rr:
  5157. case X86::VPUNPCKHQDQZrr:
  5158. case X86::VPUNPCKLQDQZrr:
  5159. // These instructions are sometimes used with an undef first or second
  5160. // source. Return true here so BreakFalseDeps will assign this source to the
  5161. // same register as the first source to avoid a false dependency.
  5162. return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
  5163. case X86::VCVTSI2SSrr:
  5164. case X86::VCVTSI2SSrm:
  5165. case X86::VCVTSI2SSrr_Int:
  5166. case X86::VCVTSI2SSrm_Int:
  5167. case X86::VCVTSI642SSrr:
  5168. case X86::VCVTSI642SSrm:
  5169. case X86::VCVTSI642SSrr_Int:
  5170. case X86::VCVTSI642SSrm_Int:
  5171. case X86::VCVTSI2SDrr:
  5172. case X86::VCVTSI2SDrm:
  5173. case X86::VCVTSI2SDrr_Int:
  5174. case X86::VCVTSI2SDrm_Int:
  5175. case X86::VCVTSI642SDrr:
  5176. case X86::VCVTSI642SDrm:
  5177. case X86::VCVTSI642SDrr_Int:
  5178. case X86::VCVTSI642SDrm_Int:
  5179. // AVX-512
  5180. case X86::VCVTSI2SSZrr:
  5181. case X86::VCVTSI2SSZrm:
  5182. case X86::VCVTSI2SSZrr_Int:
  5183. case X86::VCVTSI2SSZrrb_Int:
  5184. case X86::VCVTSI2SSZrm_Int:
  5185. case X86::VCVTSI642SSZrr:
  5186. case X86::VCVTSI642SSZrm:
  5187. case X86::VCVTSI642SSZrr_Int:
  5188. case X86::VCVTSI642SSZrrb_Int:
  5189. case X86::VCVTSI642SSZrm_Int:
  5190. case X86::VCVTSI2SDZrr:
  5191. case X86::VCVTSI2SDZrm:
  5192. case X86::VCVTSI2SDZrr_Int:
  5193. case X86::VCVTSI2SDZrm_Int:
  5194. case X86::VCVTSI642SDZrr:
  5195. case X86::VCVTSI642SDZrm:
  5196. case X86::VCVTSI642SDZrr_Int:
  5197. case X86::VCVTSI642SDZrrb_Int:
  5198. case X86::VCVTSI642SDZrm_Int:
  5199. case X86::VCVTUSI2SSZrr:
  5200. case X86::VCVTUSI2SSZrm:
  5201. case X86::VCVTUSI2SSZrr_Int:
  5202. case X86::VCVTUSI2SSZrrb_Int:
  5203. case X86::VCVTUSI2SSZrm_Int:
  5204. case X86::VCVTUSI642SSZrr:
  5205. case X86::VCVTUSI642SSZrm:
  5206. case X86::VCVTUSI642SSZrr_Int:
  5207. case X86::VCVTUSI642SSZrrb_Int:
  5208. case X86::VCVTUSI642SSZrm_Int:
  5209. case X86::VCVTUSI2SDZrr:
  5210. case X86::VCVTUSI2SDZrm:
  5211. case X86::VCVTUSI2SDZrr_Int:
  5212. case X86::VCVTUSI2SDZrm_Int:
  5213. case X86::VCVTUSI642SDZrr:
  5214. case X86::VCVTUSI642SDZrm:
  5215. case X86::VCVTUSI642SDZrr_Int:
  5216. case X86::VCVTUSI642SDZrrb_Int:
  5217. case X86::VCVTUSI642SDZrm_Int:
  5218. case X86::VCVTSI2SHZrr:
  5219. case X86::VCVTSI2SHZrm:
  5220. case X86::VCVTSI2SHZrr_Int:
  5221. case X86::VCVTSI2SHZrrb_Int:
  5222. case X86::VCVTSI2SHZrm_Int:
  5223. case X86::VCVTSI642SHZrr:
  5224. case X86::VCVTSI642SHZrm:
  5225. case X86::VCVTSI642SHZrr_Int:
  5226. case X86::VCVTSI642SHZrrb_Int:
  5227. case X86::VCVTSI642SHZrm_Int:
  5228. case X86::VCVTUSI2SHZrr:
  5229. case X86::VCVTUSI2SHZrm:
  5230. case X86::VCVTUSI2SHZrr_Int:
  5231. case X86::VCVTUSI2SHZrrb_Int:
  5232. case X86::VCVTUSI2SHZrm_Int:
  5233. case X86::VCVTUSI642SHZrr:
  5234. case X86::VCVTUSI642SHZrm:
  5235. case X86::VCVTUSI642SHZrr_Int:
  5236. case X86::VCVTUSI642SHZrrb_Int:
  5237. case X86::VCVTUSI642SHZrm_Int:
  5238. // Load folding won't effect the undef register update since the input is
  5239. // a GPR.
  5240. return OpNum == 1 && !ForLoadFold;
  5241. case X86::VCVTSD2SSrr:
  5242. case X86::VCVTSD2SSrm:
  5243. case X86::VCVTSD2SSrr_Int:
  5244. case X86::VCVTSD2SSrm_Int:
  5245. case X86::VCVTSS2SDrr:
  5246. case X86::VCVTSS2SDrm:
  5247. case X86::VCVTSS2SDrr_Int:
  5248. case X86::VCVTSS2SDrm_Int:
  5249. case X86::VRCPSSr:
  5250. case X86::VRCPSSr_Int:
  5251. case X86::VRCPSSm:
  5252. case X86::VRCPSSm_Int:
  5253. case X86::VROUNDSDr:
  5254. case X86::VROUNDSDm:
  5255. case X86::VROUNDSDr_Int:
  5256. case X86::VROUNDSDm_Int:
  5257. case X86::VROUNDSSr:
  5258. case X86::VROUNDSSm:
  5259. case X86::VROUNDSSr_Int:
  5260. case X86::VROUNDSSm_Int:
  5261. case X86::VRSQRTSSr:
  5262. case X86::VRSQRTSSr_Int:
  5263. case X86::VRSQRTSSm:
  5264. case X86::VRSQRTSSm_Int:
  5265. case X86::VSQRTSSr:
  5266. case X86::VSQRTSSr_Int:
  5267. case X86::VSQRTSSm:
  5268. case X86::VSQRTSSm_Int:
  5269. case X86::VSQRTSDr:
  5270. case X86::VSQRTSDr_Int:
  5271. case X86::VSQRTSDm:
  5272. case X86::VSQRTSDm_Int:
  5273. // AVX-512
  5274. case X86::VCVTSD2SSZrr:
  5275. case X86::VCVTSD2SSZrr_Int:
  5276. case X86::VCVTSD2SSZrrb_Int:
  5277. case X86::VCVTSD2SSZrm:
  5278. case X86::VCVTSD2SSZrm_Int:
  5279. case X86::VCVTSS2SDZrr:
  5280. case X86::VCVTSS2SDZrr_Int:
  5281. case X86::VCVTSS2SDZrrb_Int:
  5282. case X86::VCVTSS2SDZrm:
  5283. case X86::VCVTSS2SDZrm_Int:
  5284. case X86::VGETEXPSDZr:
  5285. case X86::VGETEXPSDZrb:
  5286. case X86::VGETEXPSDZm:
  5287. case X86::VGETEXPSSZr:
  5288. case X86::VGETEXPSSZrb:
  5289. case X86::VGETEXPSSZm:
  5290. case X86::VGETMANTSDZrri:
  5291. case X86::VGETMANTSDZrrib:
  5292. case X86::VGETMANTSDZrmi:
  5293. case X86::VGETMANTSSZrri:
  5294. case X86::VGETMANTSSZrrib:
  5295. case X86::VGETMANTSSZrmi:
  5296. case X86::VRNDSCALESDZr:
  5297. case X86::VRNDSCALESDZr_Int:
  5298. case X86::VRNDSCALESDZrb_Int:
  5299. case X86::VRNDSCALESDZm:
  5300. case X86::VRNDSCALESDZm_Int:
  5301. case X86::VRNDSCALESSZr:
  5302. case X86::VRNDSCALESSZr_Int:
  5303. case X86::VRNDSCALESSZrb_Int:
  5304. case X86::VRNDSCALESSZm:
  5305. case X86::VRNDSCALESSZm_Int:
  5306. case X86::VRCP14SDZrr:
  5307. case X86::VRCP14SDZrm:
  5308. case X86::VRCP14SSZrr:
  5309. case X86::VRCP14SSZrm:
  5310. case X86::VRCPSHZrr:
  5311. case X86::VRCPSHZrm:
  5312. case X86::VRSQRTSHZrr:
  5313. case X86::VRSQRTSHZrm:
  5314. case X86::VREDUCESHZrmi:
  5315. case X86::VREDUCESHZrri:
  5316. case X86::VREDUCESHZrrib:
  5317. case X86::VGETEXPSHZr:
  5318. case X86::VGETEXPSHZrb:
  5319. case X86::VGETEXPSHZm:
  5320. case X86::VGETMANTSHZrri:
  5321. case X86::VGETMANTSHZrrib:
  5322. case X86::VGETMANTSHZrmi:
  5323. case X86::VRNDSCALESHZr:
  5324. case X86::VRNDSCALESHZr_Int:
  5325. case X86::VRNDSCALESHZrb_Int:
  5326. case X86::VRNDSCALESHZm:
  5327. case X86::VRNDSCALESHZm_Int:
  5328. case X86::VSQRTSHZr:
  5329. case X86::VSQRTSHZr_Int:
  5330. case X86::VSQRTSHZrb_Int:
  5331. case X86::VSQRTSHZm:
  5332. case X86::VSQRTSHZm_Int:
  5333. case X86::VRCP28SDZr:
  5334. case X86::VRCP28SDZrb:
  5335. case X86::VRCP28SDZm:
  5336. case X86::VRCP28SSZr:
  5337. case X86::VRCP28SSZrb:
  5338. case X86::VRCP28SSZm:
  5339. case X86::VREDUCESSZrmi:
  5340. case X86::VREDUCESSZrri:
  5341. case X86::VREDUCESSZrrib:
  5342. case X86::VRSQRT14SDZrr:
  5343. case X86::VRSQRT14SDZrm:
  5344. case X86::VRSQRT14SSZrr:
  5345. case X86::VRSQRT14SSZrm:
  5346. case X86::VRSQRT28SDZr:
  5347. case X86::VRSQRT28SDZrb:
  5348. case X86::VRSQRT28SDZm:
  5349. case X86::VRSQRT28SSZr:
  5350. case X86::VRSQRT28SSZrb:
  5351. case X86::VRSQRT28SSZm:
  5352. case X86::VSQRTSSZr:
  5353. case X86::VSQRTSSZr_Int:
  5354. case X86::VSQRTSSZrb_Int:
  5355. case X86::VSQRTSSZm:
  5356. case X86::VSQRTSSZm_Int:
  5357. case X86::VSQRTSDZr:
  5358. case X86::VSQRTSDZr_Int:
  5359. case X86::VSQRTSDZrb_Int:
  5360. case X86::VSQRTSDZm:
  5361. case X86::VSQRTSDZm_Int:
  5362. case X86::VCVTSD2SHZrr:
  5363. case X86::VCVTSD2SHZrr_Int:
  5364. case X86::VCVTSD2SHZrrb_Int:
  5365. case X86::VCVTSD2SHZrm:
  5366. case X86::VCVTSD2SHZrm_Int:
  5367. case X86::VCVTSS2SHZrr:
  5368. case X86::VCVTSS2SHZrr_Int:
  5369. case X86::VCVTSS2SHZrrb_Int:
  5370. case X86::VCVTSS2SHZrm:
  5371. case X86::VCVTSS2SHZrm_Int:
  5372. case X86::VCVTSH2SDZrr:
  5373. case X86::VCVTSH2SDZrr_Int:
  5374. case X86::VCVTSH2SDZrrb_Int:
  5375. case X86::VCVTSH2SDZrm:
  5376. case X86::VCVTSH2SDZrm_Int:
  5377. case X86::VCVTSH2SSZrr:
  5378. case X86::VCVTSH2SSZrr_Int:
  5379. case X86::VCVTSH2SSZrrb_Int:
  5380. case X86::VCVTSH2SSZrm:
  5381. case X86::VCVTSH2SSZrm_Int:
  5382. return OpNum == 1;
  5383. case X86::VMOVSSZrrk:
  5384. case X86::VMOVSDZrrk:
  5385. return OpNum == 3 && !ForLoadFold;
  5386. case X86::VMOVSSZrrkz:
  5387. case X86::VMOVSDZrrkz:
  5388. return OpNum == 2 && !ForLoadFold;
  5389. }
  5390. return false;
  5391. }
  5392. /// Inform the BreakFalseDeps pass how many idle instructions we would like
  5393. /// before certain undef register reads.
  5394. ///
  5395. /// This catches the VCVTSI2SD family of instructions:
  5396. ///
  5397. /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
  5398. ///
  5399. /// We should to be careful *not* to catch VXOR idioms which are presumably
  5400. /// handled specially in the pipeline:
  5401. ///
  5402. /// vxorps undef %xmm1, undef %xmm1, %xmm1
  5403. ///
  5404. /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
  5405. /// high bits that are passed-through are not live.
  5406. unsigned
  5407. X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
  5408. const TargetRegisterInfo *TRI) const {
  5409. const MachineOperand &MO = MI.getOperand(OpNum);
  5410. if (MO.getReg().isPhysical() && hasUndefRegUpdate(MI.getOpcode(), OpNum))
  5411. return UndefRegClearance;
  5412. return 0;
  5413. }
  5414. void X86InstrInfo::breakPartialRegDependency(
  5415. MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
  5416. Register Reg = MI.getOperand(OpNum).getReg();
  5417. // If MI kills this register, the false dependence is already broken.
  5418. if (MI.killsRegister(Reg, TRI))
  5419. return;
  5420. if (X86::VR128RegClass.contains(Reg)) {
  5421. // These instructions are all floating point domain, so xorps is the best
  5422. // choice.
  5423. unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
  5424. BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
  5425. .addReg(Reg, RegState::Undef)
  5426. .addReg(Reg, RegState::Undef);
  5427. MI.addRegisterKilled(Reg, TRI, true);
  5428. } else if (X86::VR256RegClass.contains(Reg)) {
  5429. // Use vxorps to clear the full ymm register.
  5430. // It wants to read and write the xmm sub-register.
  5431. Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
  5432. BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
  5433. .addReg(XReg, RegState::Undef)
  5434. .addReg(XReg, RegState::Undef)
  5435. .addReg(Reg, RegState::ImplicitDefine);
  5436. MI.addRegisterKilled(Reg, TRI, true);
  5437. } else if (X86::VR128XRegClass.contains(Reg)) {
  5438. // Only handle VLX targets.
  5439. if (!Subtarget.hasVLX())
  5440. return;
  5441. // Since vxorps requires AVX512DQ, vpxord should be the best choice.
  5442. BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), Reg)
  5443. .addReg(Reg, RegState::Undef)
  5444. .addReg(Reg, RegState::Undef);
  5445. MI.addRegisterKilled(Reg, TRI, true);
  5446. } else if (X86::VR256XRegClass.contains(Reg) ||
  5447. X86::VR512RegClass.contains(Reg)) {
  5448. // Only handle VLX targets.
  5449. if (!Subtarget.hasVLX())
  5450. return;
  5451. // Use vpxord to clear the full ymm/zmm register.
  5452. // It wants to read and write the xmm sub-register.
  5453. Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
  5454. BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), XReg)
  5455. .addReg(XReg, RegState::Undef)
  5456. .addReg(XReg, RegState::Undef)
  5457. .addReg(Reg, RegState::ImplicitDefine);
  5458. MI.addRegisterKilled(Reg, TRI, true);
  5459. } else if (X86::GR64RegClass.contains(Reg)) {
  5460. // Using XOR32rr because it has shorter encoding and zeros up the upper bits
  5461. // as well.
  5462. Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
  5463. BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
  5464. .addReg(XReg, RegState::Undef)
  5465. .addReg(XReg, RegState::Undef)
  5466. .addReg(Reg, RegState::ImplicitDefine);
  5467. MI.addRegisterKilled(Reg, TRI, true);
  5468. } else if (X86::GR32RegClass.contains(Reg)) {
  5469. BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
  5470. .addReg(Reg, RegState::Undef)
  5471. .addReg(Reg, RegState::Undef);
  5472. MI.addRegisterKilled(Reg, TRI, true);
  5473. }
  5474. }
  5475. static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
  5476. int PtrOffset = 0) {
  5477. unsigned NumAddrOps = MOs.size();
  5478. if (NumAddrOps < 4) {
  5479. // FrameIndex only - add an immediate offset (whether its zero or not).
  5480. for (unsigned i = 0; i != NumAddrOps; ++i)
  5481. MIB.add(MOs[i]);
  5482. addOffset(MIB, PtrOffset);
  5483. } else {
  5484. // General Memory Addressing - we need to add any offset to an existing
  5485. // offset.
  5486. assert(MOs.size() == 5 && "Unexpected memory operand list length");
  5487. for (unsigned i = 0; i != NumAddrOps; ++i) {
  5488. const MachineOperand &MO = MOs[i];
  5489. if (i == 3 && PtrOffset != 0) {
  5490. MIB.addDisp(MO, PtrOffset);
  5491. } else {
  5492. MIB.add(MO);
  5493. }
  5494. }
  5495. }
  5496. }
  5497. static void updateOperandRegConstraints(MachineFunction &MF,
  5498. MachineInstr &NewMI,
  5499. const TargetInstrInfo &TII) {
  5500. MachineRegisterInfo &MRI = MF.getRegInfo();
  5501. const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
  5502. for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
  5503. MachineOperand &MO = NewMI.getOperand(Idx);
  5504. // We only need to update constraints on virtual register operands.
  5505. if (!MO.isReg())
  5506. continue;
  5507. Register Reg = MO.getReg();
  5508. if (!Reg.isVirtual())
  5509. continue;
  5510. auto *NewRC = MRI.constrainRegClass(
  5511. Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
  5512. if (!NewRC) {
  5513. LLVM_DEBUG(
  5514. dbgs() << "WARNING: Unable to update register constraint for operand "
  5515. << Idx << " of instruction:\n";
  5516. NewMI.dump(); dbgs() << "\n");
  5517. }
  5518. }
  5519. }
  5520. static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
  5521. ArrayRef<MachineOperand> MOs,
  5522. MachineBasicBlock::iterator InsertPt,
  5523. MachineInstr &MI,
  5524. const TargetInstrInfo &TII) {
  5525. // Create the base instruction with the memory operand as the first part.
  5526. // Omit the implicit operands, something BuildMI can't do.
  5527. MachineInstr *NewMI =
  5528. MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
  5529. MachineInstrBuilder MIB(MF, NewMI);
  5530. addOperands(MIB, MOs);
  5531. // Loop over the rest of the ri operands, converting them over.
  5532. unsigned NumOps = MI.getDesc().getNumOperands() - 2;
  5533. for (unsigned i = 0; i != NumOps; ++i) {
  5534. MachineOperand &MO = MI.getOperand(i + 2);
  5535. MIB.add(MO);
  5536. }
  5537. for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), NumOps + 2))
  5538. MIB.add(MO);
  5539. updateOperandRegConstraints(MF, *NewMI, TII);
  5540. MachineBasicBlock *MBB = InsertPt->getParent();
  5541. MBB->insert(InsertPt, NewMI);
  5542. return MIB;
  5543. }
  5544. static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
  5545. unsigned OpNo, ArrayRef<MachineOperand> MOs,
  5546. MachineBasicBlock::iterator InsertPt,
  5547. MachineInstr &MI, const TargetInstrInfo &TII,
  5548. int PtrOffset = 0) {
  5549. // Omit the implicit operands, something BuildMI can't do.
  5550. MachineInstr *NewMI =
  5551. MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
  5552. MachineInstrBuilder MIB(MF, NewMI);
  5553. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
  5554. MachineOperand &MO = MI.getOperand(i);
  5555. if (i == OpNo) {
  5556. assert(MO.isReg() && "Expected to fold into reg operand!");
  5557. addOperands(MIB, MOs, PtrOffset);
  5558. } else {
  5559. MIB.add(MO);
  5560. }
  5561. }
  5562. updateOperandRegConstraints(MF, *NewMI, TII);
  5563. // Copy the NoFPExcept flag from the instruction we're fusing.
  5564. if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
  5565. NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
  5566. MachineBasicBlock *MBB = InsertPt->getParent();
  5567. MBB->insert(InsertPt, NewMI);
  5568. return MIB;
  5569. }
  5570. static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
  5571. ArrayRef<MachineOperand> MOs,
  5572. MachineBasicBlock::iterator InsertPt,
  5573. MachineInstr &MI) {
  5574. MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
  5575. MI.getDebugLoc(), TII.get(Opcode));
  5576. addOperands(MIB, MOs);
  5577. return MIB.addImm(0);
  5578. }
  5579. MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
  5580. MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
  5581. ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
  5582. unsigned Size, Align Alignment) const {
  5583. switch (MI.getOpcode()) {
  5584. case X86::INSERTPSrr:
  5585. case X86::VINSERTPSrr:
  5586. case X86::VINSERTPSZrr:
  5587. // Attempt to convert the load of inserted vector into a fold load
  5588. // of a single float.
  5589. if (OpNum == 2) {
  5590. unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
  5591. unsigned ZMask = Imm & 15;
  5592. unsigned DstIdx = (Imm >> 4) & 3;
  5593. unsigned SrcIdx = (Imm >> 6) & 3;
  5594. const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
  5595. const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
  5596. unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
  5597. if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(4)) {
  5598. int PtrOffset = SrcIdx * 4;
  5599. unsigned NewImm = (DstIdx << 4) | ZMask;
  5600. unsigned NewOpCode =
  5601. (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
  5602. (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm :
  5603. X86::INSERTPSrm;
  5604. MachineInstr *NewMI =
  5605. FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
  5606. NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
  5607. return NewMI;
  5608. }
  5609. }
  5610. break;
  5611. case X86::MOVHLPSrr:
  5612. case X86::VMOVHLPSrr:
  5613. case X86::VMOVHLPSZrr:
  5614. // Move the upper 64-bits of the second operand to the lower 64-bits.
  5615. // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
  5616. // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
  5617. if (OpNum == 2) {
  5618. const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
  5619. const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
  5620. unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
  5621. if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
  5622. unsigned NewOpCode =
  5623. (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
  5624. (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm :
  5625. X86::MOVLPSrm;
  5626. MachineInstr *NewMI =
  5627. FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
  5628. return NewMI;
  5629. }
  5630. }
  5631. break;
  5632. case X86::UNPCKLPDrr:
  5633. // If we won't be able to fold this to the memory form of UNPCKL, use
  5634. // MOVHPD instead. Done as custom because we can't have this in the load
  5635. // table twice.
  5636. if (OpNum == 2) {
  5637. const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
  5638. const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
  5639. unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
  5640. if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
  5641. MachineInstr *NewMI =
  5642. FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
  5643. return NewMI;
  5644. }
  5645. }
  5646. break;
  5647. }
  5648. return nullptr;
  5649. }
  5650. static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
  5651. MachineInstr &MI) {
  5652. if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/true) ||
  5653. !MI.getOperand(1).isReg())
  5654. return false;
  5655. // The are two cases we need to handle depending on where in the pipeline
  5656. // the folding attempt is being made.
  5657. // -Register has the undef flag set.
  5658. // -Register is produced by the IMPLICIT_DEF instruction.
  5659. if (MI.getOperand(1).isUndef())
  5660. return true;
  5661. MachineRegisterInfo &RegInfo = MF.getRegInfo();
  5662. MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
  5663. return VRegDef && VRegDef->isImplicitDef();
  5664. }
  5665. MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
  5666. MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
  5667. ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
  5668. unsigned Size, Align Alignment, bool AllowCommute) const {
  5669. bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
  5670. bool isTwoAddrFold = false;
  5671. // For CPUs that favor the register form of a call or push,
  5672. // do not fold loads into calls or pushes, unless optimizing for size
  5673. // aggressively.
  5674. if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
  5675. (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
  5676. MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
  5677. MI.getOpcode() == X86::PUSH64r))
  5678. return nullptr;
  5679. // Avoid partial and undef register update stalls unless optimizing for size.
  5680. if (!MF.getFunction().hasOptSize() &&
  5681. (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
  5682. shouldPreventUndefRegUpdateMemFold(MF, MI)))
  5683. return nullptr;
  5684. unsigned NumOps = MI.getDesc().getNumOperands();
  5685. bool isTwoAddr =
  5686. NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
  5687. // FIXME: AsmPrinter doesn't know how to handle
  5688. // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
  5689. if (MI.getOpcode() == X86::ADD32ri &&
  5690. MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
  5691. return nullptr;
  5692. // GOTTPOFF relocation loads can only be folded into add instructions.
  5693. // FIXME: Need to exclude other relocations that only support specific
  5694. // instructions.
  5695. if (MOs.size() == X86::AddrNumOperands &&
  5696. MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
  5697. MI.getOpcode() != X86::ADD64rr)
  5698. return nullptr;
  5699. // Don't fold loads into indirect calls that need a KCFI check as we'll
  5700. // have to unfold these in X86KCFIPass anyway.
  5701. if (MI.isCall() && MI.getCFIType())
  5702. return nullptr;
  5703. MachineInstr *NewMI = nullptr;
  5704. // Attempt to fold any custom cases we have.
  5705. if (MachineInstr *CustomMI = foldMemoryOperandCustom(
  5706. MF, MI, OpNum, MOs, InsertPt, Size, Alignment))
  5707. return CustomMI;
  5708. const X86MemoryFoldTableEntry *I = nullptr;
  5709. // Folding a memory location into the two-address part of a two-address
  5710. // instruction is different than folding it other places. It requires
  5711. // replacing the *two* registers with the memory location.
  5712. if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
  5713. MI.getOperand(1).isReg() &&
  5714. MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
  5715. I = lookupTwoAddrFoldTable(MI.getOpcode());
  5716. isTwoAddrFold = true;
  5717. } else {
  5718. if (OpNum == 0) {
  5719. if (MI.getOpcode() == X86::MOV32r0) {
  5720. NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
  5721. if (NewMI)
  5722. return NewMI;
  5723. }
  5724. }
  5725. I = lookupFoldTable(MI.getOpcode(), OpNum);
  5726. }
  5727. if (I != nullptr) {
  5728. unsigned Opcode = I->DstOp;
  5729. bool FoldedLoad =
  5730. isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_LOAD) || OpNum > 0;
  5731. bool FoldedStore =
  5732. isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_STORE);
  5733. MaybeAlign MinAlign =
  5734. decodeMaybeAlign((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT);
  5735. if (MinAlign && Alignment < *MinAlign)
  5736. return nullptr;
  5737. bool NarrowToMOV32rm = false;
  5738. if (Size) {
  5739. const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
  5740. const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
  5741. &RI, MF);
  5742. unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
  5743. // Check if it's safe to fold the load. If the size of the object is
  5744. // narrower than the load width, then it's not.
  5745. // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
  5746. if (FoldedLoad && Size < RCSize) {
  5747. // If this is a 64-bit load, but the spill slot is 32, then we can do
  5748. // a 32-bit load which is implicitly zero-extended. This likely is
  5749. // due to live interval analysis remat'ing a load from stack slot.
  5750. if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
  5751. return nullptr;
  5752. if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
  5753. return nullptr;
  5754. Opcode = X86::MOV32rm;
  5755. NarrowToMOV32rm = true;
  5756. }
  5757. // For stores, make sure the size of the object is equal to the size of
  5758. // the store. If the object is larger, the extra bits would be garbage. If
  5759. // the object is smaller we might overwrite another object or fault.
  5760. if (FoldedStore && Size != RCSize)
  5761. return nullptr;
  5762. }
  5763. if (isTwoAddrFold)
  5764. NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
  5765. else
  5766. NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
  5767. if (NarrowToMOV32rm) {
  5768. // If this is the special case where we use a MOV32rm to load a 32-bit
  5769. // value and zero-extend the top bits. Change the destination register
  5770. // to a 32-bit one.
  5771. Register DstReg = NewMI->getOperand(0).getReg();
  5772. if (DstReg.isPhysical())
  5773. NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
  5774. else
  5775. NewMI->getOperand(0).setSubReg(X86::sub_32bit);
  5776. }
  5777. return NewMI;
  5778. }
  5779. // If the instruction and target operand are commutable, commute the
  5780. // instruction and try again.
  5781. if (AllowCommute) {
  5782. unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
  5783. if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
  5784. bool HasDef = MI.getDesc().getNumDefs();
  5785. Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
  5786. Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
  5787. Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
  5788. bool Tied1 =
  5789. 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
  5790. bool Tied2 =
  5791. 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
  5792. // If either of the commutable operands are tied to the destination
  5793. // then we can not commute + fold.
  5794. if ((HasDef && Reg0 == Reg1 && Tied1) ||
  5795. (HasDef && Reg0 == Reg2 && Tied2))
  5796. return nullptr;
  5797. MachineInstr *CommutedMI =
  5798. commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
  5799. if (!CommutedMI) {
  5800. // Unable to commute.
  5801. return nullptr;
  5802. }
  5803. if (CommutedMI != &MI) {
  5804. // New instruction. We can't fold from this.
  5805. CommutedMI->eraseFromParent();
  5806. return nullptr;
  5807. }
  5808. // Attempt to fold with the commuted version of the instruction.
  5809. NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size,
  5810. Alignment, /*AllowCommute=*/false);
  5811. if (NewMI)
  5812. return NewMI;
  5813. // Folding failed again - undo the commute before returning.
  5814. MachineInstr *UncommutedMI =
  5815. commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
  5816. if (!UncommutedMI) {
  5817. // Unable to commute.
  5818. return nullptr;
  5819. }
  5820. if (UncommutedMI != &MI) {
  5821. // New instruction. It doesn't need to be kept.
  5822. UncommutedMI->eraseFromParent();
  5823. return nullptr;
  5824. }
  5825. // Return here to prevent duplicate fuse failure report.
  5826. return nullptr;
  5827. }
  5828. }
  5829. // No fusion
  5830. if (PrintFailedFusing && !MI.isCopy())
  5831. dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
  5832. return nullptr;
  5833. }
  5834. MachineInstr *
  5835. X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
  5836. ArrayRef<unsigned> Ops,
  5837. MachineBasicBlock::iterator InsertPt,
  5838. int FrameIndex, LiveIntervals *LIS,
  5839. VirtRegMap *VRM) const {
  5840. // Check switch flag
  5841. if (NoFusing)
  5842. return nullptr;
  5843. // Avoid partial and undef register update stalls unless optimizing for size.
  5844. if (!MF.getFunction().hasOptSize() &&
  5845. (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
  5846. shouldPreventUndefRegUpdateMemFold(MF, MI)))
  5847. return nullptr;
  5848. // Don't fold subreg spills, or reloads that use a high subreg.
  5849. for (auto Op : Ops) {
  5850. MachineOperand &MO = MI.getOperand(Op);
  5851. auto SubReg = MO.getSubReg();
  5852. if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
  5853. return nullptr;
  5854. }
  5855. const MachineFrameInfo &MFI = MF.getFrameInfo();
  5856. unsigned Size = MFI.getObjectSize(FrameIndex);
  5857. Align Alignment = MFI.getObjectAlign(FrameIndex);
  5858. // If the function stack isn't realigned we don't want to fold instructions
  5859. // that need increased alignment.
  5860. if (!RI.hasStackRealignment(MF))
  5861. Alignment =
  5862. std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign());
  5863. if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
  5864. unsigned NewOpc = 0;
  5865. unsigned RCSize = 0;
  5866. switch (MI.getOpcode()) {
  5867. default: return nullptr;
  5868. case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
  5869. case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
  5870. case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
  5871. case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
  5872. }
  5873. // Check if it's safe to fold the load. If the size of the object is
  5874. // narrower than the load width, then it's not.
  5875. if (Size < RCSize)
  5876. return nullptr;
  5877. // Change to CMPXXri r, 0 first.
  5878. MI.setDesc(get(NewOpc));
  5879. MI.getOperand(1).ChangeToImmediate(0);
  5880. } else if (Ops.size() != 1)
  5881. return nullptr;
  5882. return foldMemoryOperandImpl(MF, MI, Ops[0],
  5883. MachineOperand::CreateFI(FrameIndex), InsertPt,
  5884. Size, Alignment, /*AllowCommute=*/true);
  5885. }
  5886. /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
  5887. /// because the latter uses contents that wouldn't be defined in the folded
  5888. /// version. For instance, this transformation isn't legal:
  5889. /// movss (%rdi), %xmm0
  5890. /// addps %xmm0, %xmm0
  5891. /// ->
  5892. /// addps (%rdi), %xmm0
  5893. ///
  5894. /// But this one is:
  5895. /// movss (%rdi), %xmm0
  5896. /// addss %xmm0, %xmm0
  5897. /// ->
  5898. /// addss (%rdi), %xmm0
  5899. ///
  5900. static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
  5901. const MachineInstr &UserMI,
  5902. const MachineFunction &MF) {
  5903. unsigned Opc = LoadMI.getOpcode();
  5904. unsigned UserOpc = UserMI.getOpcode();
  5905. const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
  5906. const TargetRegisterClass *RC =
  5907. MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
  5908. unsigned RegSize = TRI.getRegSizeInBits(*RC);
  5909. if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
  5910. Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
  5911. Opc == X86::VMOVSSZrm_alt) &&
  5912. RegSize > 32) {
  5913. // These instructions only load 32 bits, we can't fold them if the
  5914. // destination register is wider than 32 bits (4 bytes), and its user
  5915. // instruction isn't scalar (SS).
  5916. switch (UserOpc) {
  5917. case X86::CVTSS2SDrr_Int:
  5918. case X86::VCVTSS2SDrr_Int:
  5919. case X86::VCVTSS2SDZrr_Int:
  5920. case X86::VCVTSS2SDZrr_Intk:
  5921. case X86::VCVTSS2SDZrr_Intkz:
  5922. case X86::CVTSS2SIrr_Int: case X86::CVTSS2SI64rr_Int:
  5923. case X86::VCVTSS2SIrr_Int: case X86::VCVTSS2SI64rr_Int:
  5924. case X86::VCVTSS2SIZrr_Int: case X86::VCVTSS2SI64Zrr_Int:
  5925. case X86::CVTTSS2SIrr_Int: case X86::CVTTSS2SI64rr_Int:
  5926. case X86::VCVTTSS2SIrr_Int: case X86::VCVTTSS2SI64rr_Int:
  5927. case X86::VCVTTSS2SIZrr_Int: case X86::VCVTTSS2SI64Zrr_Int:
  5928. case X86::VCVTSS2USIZrr_Int: case X86::VCVTSS2USI64Zrr_Int:
  5929. case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int:
  5930. case X86::RCPSSr_Int: case X86::VRCPSSr_Int:
  5931. case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int:
  5932. case X86::ROUNDSSr_Int: case X86::VROUNDSSr_Int:
  5933. case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int:
  5934. case X86::UCOMISSrr_Int:case X86::VUCOMISSrr_Int:case X86::VUCOMISSZrr_Int:
  5935. case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
  5936. case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
  5937. case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
  5938. case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
  5939. case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
  5940. case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
  5941. case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int:
  5942. case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
  5943. case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
  5944. case X86::VCMPSSZrr_Intk:
  5945. case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
  5946. case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
  5947. case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
  5948. case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
  5949. case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz:
  5950. case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
  5951. case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int:
  5952. case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int:
  5953. case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int:
  5954. case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int:
  5955. case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int:
  5956. case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int:
  5957. case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int:
  5958. case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int:
  5959. case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
  5960. case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
  5961. case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
  5962. case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
  5963. case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
  5964. case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
  5965. case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
  5966. case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
  5967. case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
  5968. case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
  5969. case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
  5970. case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
  5971. case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
  5972. case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
  5973. case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
  5974. case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
  5975. case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
  5976. case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
  5977. case X86::VFIXUPIMMSSZrri:
  5978. case X86::VFIXUPIMMSSZrrik:
  5979. case X86::VFIXUPIMMSSZrrikz:
  5980. case X86::VFPCLASSSSZrr:
  5981. case X86::VFPCLASSSSZrrk:
  5982. case X86::VGETEXPSSZr:
  5983. case X86::VGETEXPSSZrk:
  5984. case X86::VGETEXPSSZrkz:
  5985. case X86::VGETMANTSSZrri:
  5986. case X86::VGETMANTSSZrrik:
  5987. case X86::VGETMANTSSZrrikz:
  5988. case X86::VRANGESSZrri:
  5989. case X86::VRANGESSZrrik:
  5990. case X86::VRANGESSZrrikz:
  5991. case X86::VRCP14SSZrr:
  5992. case X86::VRCP14SSZrrk:
  5993. case X86::VRCP14SSZrrkz:
  5994. case X86::VRCP28SSZr:
  5995. case X86::VRCP28SSZrk:
  5996. case X86::VRCP28SSZrkz:
  5997. case X86::VREDUCESSZrri:
  5998. case X86::VREDUCESSZrrik:
  5999. case X86::VREDUCESSZrrikz:
  6000. case X86::VRNDSCALESSZr_Int:
  6001. case X86::VRNDSCALESSZr_Intk:
  6002. case X86::VRNDSCALESSZr_Intkz:
  6003. case X86::VRSQRT14SSZrr:
  6004. case X86::VRSQRT14SSZrrk:
  6005. case X86::VRSQRT14SSZrrkz:
  6006. case X86::VRSQRT28SSZr:
  6007. case X86::VRSQRT28SSZrk:
  6008. case X86::VRSQRT28SSZrkz:
  6009. case X86::VSCALEFSSZrr:
  6010. case X86::VSCALEFSSZrrk:
  6011. case X86::VSCALEFSSZrrkz:
  6012. return false;
  6013. default:
  6014. return true;
  6015. }
  6016. }
  6017. if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
  6018. Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
  6019. Opc == X86::VMOVSDZrm_alt) &&
  6020. RegSize > 64) {
  6021. // These instructions only load 64 bits, we can't fold them if the
  6022. // destination register is wider than 64 bits (8 bytes), and its user
  6023. // instruction isn't scalar (SD).
  6024. switch (UserOpc) {
  6025. case X86::CVTSD2SSrr_Int:
  6026. case X86::VCVTSD2SSrr_Int:
  6027. case X86::VCVTSD2SSZrr_Int:
  6028. case X86::VCVTSD2SSZrr_Intk:
  6029. case X86::VCVTSD2SSZrr_Intkz:
  6030. case X86::CVTSD2SIrr_Int: case X86::CVTSD2SI64rr_Int:
  6031. case X86::VCVTSD2SIrr_Int: case X86::VCVTSD2SI64rr_Int:
  6032. case X86::VCVTSD2SIZrr_Int: case X86::VCVTSD2SI64Zrr_Int:
  6033. case X86::CVTTSD2SIrr_Int: case X86::CVTTSD2SI64rr_Int:
  6034. case X86::VCVTTSD2SIrr_Int: case X86::VCVTTSD2SI64rr_Int:
  6035. case X86::VCVTTSD2SIZrr_Int: case X86::VCVTTSD2SI64Zrr_Int:
  6036. case X86::VCVTSD2USIZrr_Int: case X86::VCVTSD2USI64Zrr_Int:
  6037. case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int:
  6038. case X86::ROUNDSDr_Int: case X86::VROUNDSDr_Int:
  6039. case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int:
  6040. case X86::UCOMISDrr_Int:case X86::VUCOMISDrr_Int:case X86::VUCOMISDZrr_Int:
  6041. case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
  6042. case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
  6043. case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
  6044. case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
  6045. case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
  6046. case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
  6047. case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int:
  6048. case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
  6049. case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
  6050. case X86::VCMPSDZrr_Intk:
  6051. case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
  6052. case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
  6053. case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
  6054. case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
  6055. case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz:
  6056. case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
  6057. case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int:
  6058. case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int:
  6059. case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int:
  6060. case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int:
  6061. case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int:
  6062. case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int:
  6063. case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int:
  6064. case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int:
  6065. case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
  6066. case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
  6067. case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
  6068. case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
  6069. case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
  6070. case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
  6071. case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
  6072. case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
  6073. case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
  6074. case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
  6075. case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
  6076. case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
  6077. case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
  6078. case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
  6079. case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
  6080. case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
  6081. case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
  6082. case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
  6083. case X86::VFIXUPIMMSDZrri:
  6084. case X86::VFIXUPIMMSDZrrik:
  6085. case X86::VFIXUPIMMSDZrrikz:
  6086. case X86::VFPCLASSSDZrr:
  6087. case X86::VFPCLASSSDZrrk:
  6088. case X86::VGETEXPSDZr:
  6089. case X86::VGETEXPSDZrk:
  6090. case X86::VGETEXPSDZrkz:
  6091. case X86::VGETMANTSDZrri:
  6092. case X86::VGETMANTSDZrrik:
  6093. case X86::VGETMANTSDZrrikz:
  6094. case X86::VRANGESDZrri:
  6095. case X86::VRANGESDZrrik:
  6096. case X86::VRANGESDZrrikz:
  6097. case X86::VRCP14SDZrr:
  6098. case X86::VRCP14SDZrrk:
  6099. case X86::VRCP14SDZrrkz:
  6100. case X86::VRCP28SDZr:
  6101. case X86::VRCP28SDZrk:
  6102. case X86::VRCP28SDZrkz:
  6103. case X86::VREDUCESDZrri:
  6104. case X86::VREDUCESDZrrik:
  6105. case X86::VREDUCESDZrrikz:
  6106. case X86::VRNDSCALESDZr_Int:
  6107. case X86::VRNDSCALESDZr_Intk:
  6108. case X86::VRNDSCALESDZr_Intkz:
  6109. case X86::VRSQRT14SDZrr:
  6110. case X86::VRSQRT14SDZrrk:
  6111. case X86::VRSQRT14SDZrrkz:
  6112. case X86::VRSQRT28SDZr:
  6113. case X86::VRSQRT28SDZrk:
  6114. case X86::VRSQRT28SDZrkz:
  6115. case X86::VSCALEFSDZrr:
  6116. case X86::VSCALEFSDZrrk:
  6117. case X86::VSCALEFSDZrrkz:
  6118. return false;
  6119. default:
  6120. return true;
  6121. }
  6122. }
  6123. if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) {
  6124. // These instructions only load 16 bits, we can't fold them if the
  6125. // destination register is wider than 16 bits (2 bytes), and its user
  6126. // instruction isn't scalar (SH).
  6127. switch (UserOpc) {
  6128. case X86::VADDSHZrr_Int:
  6129. case X86::VCMPSHZrr_Int:
  6130. case X86::VDIVSHZrr_Int:
  6131. case X86::VMAXSHZrr_Int:
  6132. case X86::VMINSHZrr_Int:
  6133. case X86::VMULSHZrr_Int:
  6134. case X86::VSUBSHZrr_Int:
  6135. case X86::VADDSHZrr_Intk: case X86::VADDSHZrr_Intkz:
  6136. case X86::VCMPSHZrr_Intk:
  6137. case X86::VDIVSHZrr_Intk: case X86::VDIVSHZrr_Intkz:
  6138. case X86::VMAXSHZrr_Intk: case X86::VMAXSHZrr_Intkz:
  6139. case X86::VMINSHZrr_Intk: case X86::VMINSHZrr_Intkz:
  6140. case X86::VMULSHZrr_Intk: case X86::VMULSHZrr_Intkz:
  6141. case X86::VSUBSHZrr_Intk: case X86::VSUBSHZrr_Intkz:
  6142. case X86::VFMADD132SHZr_Int: case X86::VFNMADD132SHZr_Int:
  6143. case X86::VFMADD213SHZr_Int: case X86::VFNMADD213SHZr_Int:
  6144. case X86::VFMADD231SHZr_Int: case X86::VFNMADD231SHZr_Int:
  6145. case X86::VFMSUB132SHZr_Int: case X86::VFNMSUB132SHZr_Int:
  6146. case X86::VFMSUB213SHZr_Int: case X86::VFNMSUB213SHZr_Int:
  6147. case X86::VFMSUB231SHZr_Int: case X86::VFNMSUB231SHZr_Int:
  6148. case X86::VFMADD132SHZr_Intk: case X86::VFNMADD132SHZr_Intk:
  6149. case X86::VFMADD213SHZr_Intk: case X86::VFNMADD213SHZr_Intk:
  6150. case X86::VFMADD231SHZr_Intk: case X86::VFNMADD231SHZr_Intk:
  6151. case X86::VFMSUB132SHZr_Intk: case X86::VFNMSUB132SHZr_Intk:
  6152. case X86::VFMSUB213SHZr_Intk: case X86::VFNMSUB213SHZr_Intk:
  6153. case X86::VFMSUB231SHZr_Intk: case X86::VFNMSUB231SHZr_Intk:
  6154. case X86::VFMADD132SHZr_Intkz: case X86::VFNMADD132SHZr_Intkz:
  6155. case X86::VFMADD213SHZr_Intkz: case X86::VFNMADD213SHZr_Intkz:
  6156. case X86::VFMADD231SHZr_Intkz: case X86::VFNMADD231SHZr_Intkz:
  6157. case X86::VFMSUB132SHZr_Intkz: case X86::VFNMSUB132SHZr_Intkz:
  6158. case X86::VFMSUB213SHZr_Intkz: case X86::VFNMSUB213SHZr_Intkz:
  6159. case X86::VFMSUB231SHZr_Intkz: case X86::VFNMSUB231SHZr_Intkz:
  6160. return false;
  6161. default:
  6162. return true;
  6163. }
  6164. }
  6165. return false;
  6166. }
  6167. MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
  6168. MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
  6169. MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
  6170. LiveIntervals *LIS) const {
  6171. // TODO: Support the case where LoadMI loads a wide register, but MI
  6172. // only uses a subreg.
  6173. for (auto Op : Ops) {
  6174. if (MI.getOperand(Op).getSubReg())
  6175. return nullptr;
  6176. }
  6177. // If loading from a FrameIndex, fold directly from the FrameIndex.
  6178. unsigned NumOps = LoadMI.getDesc().getNumOperands();
  6179. int FrameIndex;
  6180. if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
  6181. if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
  6182. return nullptr;
  6183. return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
  6184. }
  6185. // Check switch flag
  6186. if (NoFusing) return nullptr;
  6187. // Avoid partial and undef register update stalls unless optimizing for size.
  6188. if (!MF.getFunction().hasOptSize() &&
  6189. (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
  6190. shouldPreventUndefRegUpdateMemFold(MF, MI)))
  6191. return nullptr;
  6192. // Determine the alignment of the load.
  6193. Align Alignment;
  6194. if (LoadMI.hasOneMemOperand())
  6195. Alignment = (*LoadMI.memoperands_begin())->getAlign();
  6196. else
  6197. switch (LoadMI.getOpcode()) {
  6198. case X86::AVX512_512_SET0:
  6199. case X86::AVX512_512_SETALLONES:
  6200. Alignment = Align(64);
  6201. break;
  6202. case X86::AVX2_SETALLONES:
  6203. case X86::AVX1_SETALLONES:
  6204. case X86::AVX_SET0:
  6205. case X86::AVX512_256_SET0:
  6206. Alignment = Align(32);
  6207. break;
  6208. case X86::V_SET0:
  6209. case X86::V_SETALLONES:
  6210. case X86::AVX512_128_SET0:
  6211. case X86::FsFLD0F128:
  6212. case X86::AVX512_FsFLD0F128:
  6213. Alignment = Align(16);
  6214. break;
  6215. case X86::MMX_SET0:
  6216. case X86::FsFLD0SD:
  6217. case X86::AVX512_FsFLD0SD:
  6218. Alignment = Align(8);
  6219. break;
  6220. case X86::FsFLD0SS:
  6221. case X86::AVX512_FsFLD0SS:
  6222. Alignment = Align(4);
  6223. break;
  6224. case X86::FsFLD0SH:
  6225. case X86::AVX512_FsFLD0SH:
  6226. Alignment = Align(2);
  6227. break;
  6228. default:
  6229. return nullptr;
  6230. }
  6231. if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
  6232. unsigned NewOpc = 0;
  6233. switch (MI.getOpcode()) {
  6234. default: return nullptr;
  6235. case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
  6236. case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
  6237. case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
  6238. case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
  6239. }
  6240. // Change to CMPXXri r, 0 first.
  6241. MI.setDesc(get(NewOpc));
  6242. MI.getOperand(1).ChangeToImmediate(0);
  6243. } else if (Ops.size() != 1)
  6244. return nullptr;
  6245. // Make sure the subregisters match.
  6246. // Otherwise we risk changing the size of the load.
  6247. if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
  6248. return nullptr;
  6249. SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
  6250. switch (LoadMI.getOpcode()) {
  6251. case X86::MMX_SET0:
  6252. case X86::V_SET0:
  6253. case X86::V_SETALLONES:
  6254. case X86::AVX2_SETALLONES:
  6255. case X86::AVX1_SETALLONES:
  6256. case X86::AVX_SET0:
  6257. case X86::AVX512_128_SET0:
  6258. case X86::AVX512_256_SET0:
  6259. case X86::AVX512_512_SET0:
  6260. case X86::AVX512_512_SETALLONES:
  6261. case X86::FsFLD0SH:
  6262. case X86::AVX512_FsFLD0SH:
  6263. case X86::FsFLD0SD:
  6264. case X86::AVX512_FsFLD0SD:
  6265. case X86::FsFLD0SS:
  6266. case X86::AVX512_FsFLD0SS:
  6267. case X86::FsFLD0F128:
  6268. case X86::AVX512_FsFLD0F128: {
  6269. // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
  6270. // Create a constant-pool entry and operands to load from it.
  6271. // Medium and large mode can't fold loads this way.
  6272. if (MF.getTarget().getCodeModel() != CodeModel::Small &&
  6273. MF.getTarget().getCodeModel() != CodeModel::Kernel)
  6274. return nullptr;
  6275. // x86-32 PIC requires a PIC base register for constant pools.
  6276. unsigned PICBase = 0;
  6277. // Since we're using Small or Kernel code model, we can always use
  6278. // RIP-relative addressing for a smaller encoding.
  6279. if (Subtarget.is64Bit()) {
  6280. PICBase = X86::RIP;
  6281. } else if (MF.getTarget().isPositionIndependent()) {
  6282. // FIXME: PICBase = getGlobalBaseReg(&MF);
  6283. // This doesn't work for several reasons.
  6284. // 1. GlobalBaseReg may have been spilled.
  6285. // 2. It may not be live at MI.
  6286. return nullptr;
  6287. }
  6288. // Create a constant-pool entry.
  6289. MachineConstantPool &MCP = *MF.getConstantPool();
  6290. Type *Ty;
  6291. unsigned Opc = LoadMI.getOpcode();
  6292. if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
  6293. Ty = Type::getFloatTy(MF.getFunction().getContext());
  6294. else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
  6295. Ty = Type::getDoubleTy(MF.getFunction().getContext());
  6296. else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
  6297. Ty = Type::getFP128Ty(MF.getFunction().getContext());
  6298. else if (Opc == X86::FsFLD0SH || Opc == X86::AVX512_FsFLD0SH)
  6299. Ty = Type::getHalfTy(MF.getFunction().getContext());
  6300. else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
  6301. Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
  6302. 16);
  6303. else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
  6304. Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
  6305. Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
  6306. 8);
  6307. else if (Opc == X86::MMX_SET0)
  6308. Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
  6309. 2);
  6310. else
  6311. Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
  6312. 4);
  6313. bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
  6314. Opc == X86::AVX512_512_SETALLONES ||
  6315. Opc == X86::AVX1_SETALLONES);
  6316. const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
  6317. Constant::getNullValue(Ty);
  6318. unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
  6319. // Create operands to load from the constant pool entry.
  6320. MOs.push_back(MachineOperand::CreateReg(PICBase, false));
  6321. MOs.push_back(MachineOperand::CreateImm(1));
  6322. MOs.push_back(MachineOperand::CreateReg(0, false));
  6323. MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
  6324. MOs.push_back(MachineOperand::CreateReg(0, false));
  6325. break;
  6326. }
  6327. default: {
  6328. if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
  6329. return nullptr;
  6330. // Folding a normal load. Just copy the load's address operands.
  6331. MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
  6332. LoadMI.operands_begin() + NumOps);
  6333. break;
  6334. }
  6335. }
  6336. return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
  6337. /*Size=*/0, Alignment, /*AllowCommute=*/true);
  6338. }
  6339. static SmallVector<MachineMemOperand *, 2>
  6340. extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
  6341. SmallVector<MachineMemOperand *, 2> LoadMMOs;
  6342. for (MachineMemOperand *MMO : MMOs) {
  6343. if (!MMO->isLoad())
  6344. continue;
  6345. if (!MMO->isStore()) {
  6346. // Reuse the MMO.
  6347. LoadMMOs.push_back(MMO);
  6348. } else {
  6349. // Clone the MMO and unset the store flag.
  6350. LoadMMOs.push_back(MF.getMachineMemOperand(
  6351. MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
  6352. }
  6353. }
  6354. return LoadMMOs;
  6355. }
  6356. static SmallVector<MachineMemOperand *, 2>
  6357. extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
  6358. SmallVector<MachineMemOperand *, 2> StoreMMOs;
  6359. for (MachineMemOperand *MMO : MMOs) {
  6360. if (!MMO->isStore())
  6361. continue;
  6362. if (!MMO->isLoad()) {
  6363. // Reuse the MMO.
  6364. StoreMMOs.push_back(MMO);
  6365. } else {
  6366. // Clone the MMO and unset the load flag.
  6367. StoreMMOs.push_back(MF.getMachineMemOperand(
  6368. MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
  6369. }
  6370. }
  6371. return StoreMMOs;
  6372. }
  6373. static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I,
  6374. const TargetRegisterClass *RC,
  6375. const X86Subtarget &STI) {
  6376. assert(STI.hasAVX512() && "Expected at least AVX512!");
  6377. unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
  6378. assert((SpillSize == 64 || STI.hasVLX()) &&
  6379. "Can't broadcast less than 64 bytes without AVX512VL!");
  6380. switch (I->Flags & TB_BCAST_MASK) {
  6381. default: llvm_unreachable("Unexpected broadcast type!");
  6382. case TB_BCAST_D:
  6383. switch (SpillSize) {
  6384. default: llvm_unreachable("Unknown spill size");
  6385. case 16: return X86::VPBROADCASTDZ128rm;
  6386. case 32: return X86::VPBROADCASTDZ256rm;
  6387. case 64: return X86::VPBROADCASTDZrm;
  6388. }
  6389. break;
  6390. case TB_BCAST_Q:
  6391. switch (SpillSize) {
  6392. default: llvm_unreachable("Unknown spill size");
  6393. case 16: return X86::VPBROADCASTQZ128rm;
  6394. case 32: return X86::VPBROADCASTQZ256rm;
  6395. case 64: return X86::VPBROADCASTQZrm;
  6396. }
  6397. break;
  6398. case TB_BCAST_SS:
  6399. switch (SpillSize) {
  6400. default: llvm_unreachable("Unknown spill size");
  6401. case 16: return X86::VBROADCASTSSZ128rm;
  6402. case 32: return X86::VBROADCASTSSZ256rm;
  6403. case 64: return X86::VBROADCASTSSZrm;
  6404. }
  6405. break;
  6406. case TB_BCAST_SD:
  6407. switch (SpillSize) {
  6408. default: llvm_unreachable("Unknown spill size");
  6409. case 16: return X86::VMOVDDUPZ128rm;
  6410. case 32: return X86::VBROADCASTSDZ256rm;
  6411. case 64: return X86::VBROADCASTSDZrm;
  6412. }
  6413. break;
  6414. }
  6415. }
  6416. bool X86InstrInfo::unfoldMemoryOperand(
  6417. MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
  6418. bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
  6419. const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
  6420. if (I == nullptr)
  6421. return false;
  6422. unsigned Opc = I->DstOp;
  6423. unsigned Index = I->Flags & TB_INDEX_MASK;
  6424. bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
  6425. bool FoldedStore = I->Flags & TB_FOLDED_STORE;
  6426. bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
  6427. if (UnfoldLoad && !FoldedLoad)
  6428. return false;
  6429. UnfoldLoad &= FoldedLoad;
  6430. if (UnfoldStore && !FoldedStore)
  6431. return false;
  6432. UnfoldStore &= FoldedStore;
  6433. const MCInstrDesc &MCID = get(Opc);
  6434. const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
  6435. const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
  6436. // TODO: Check if 32-byte or greater accesses are slow too?
  6437. if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
  6438. Subtarget.isUnalignedMem16Slow())
  6439. // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
  6440. // conservatively assume the address is unaligned. That's bad for
  6441. // performance.
  6442. return false;
  6443. SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
  6444. SmallVector<MachineOperand,2> BeforeOps;
  6445. SmallVector<MachineOperand,2> AfterOps;
  6446. SmallVector<MachineOperand,4> ImpOps;
  6447. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
  6448. MachineOperand &Op = MI.getOperand(i);
  6449. if (i >= Index && i < Index + X86::AddrNumOperands)
  6450. AddrOps.push_back(Op);
  6451. else if (Op.isReg() && Op.isImplicit())
  6452. ImpOps.push_back(Op);
  6453. else if (i < Index)
  6454. BeforeOps.push_back(Op);
  6455. else if (i > Index)
  6456. AfterOps.push_back(Op);
  6457. }
  6458. // Emit the load or broadcast instruction.
  6459. if (UnfoldLoad) {
  6460. auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
  6461. unsigned Opc;
  6462. if (FoldedBCast) {
  6463. Opc = getBroadcastOpcode(I, RC, Subtarget);
  6464. } else {
  6465. unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
  6466. bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
  6467. Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
  6468. }
  6469. DebugLoc DL;
  6470. MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
  6471. for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
  6472. MIB.add(AddrOps[i]);
  6473. MIB.setMemRefs(MMOs);
  6474. NewMIs.push_back(MIB);
  6475. if (UnfoldStore) {
  6476. // Address operands cannot be marked isKill.
  6477. for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
  6478. MachineOperand &MO = NewMIs[0]->getOperand(i);
  6479. if (MO.isReg())
  6480. MO.setIsKill(false);
  6481. }
  6482. }
  6483. }
  6484. // Emit the data processing instruction.
  6485. MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
  6486. MachineInstrBuilder MIB(MF, DataMI);
  6487. if (FoldedStore)
  6488. MIB.addReg(Reg, RegState::Define);
  6489. for (MachineOperand &BeforeOp : BeforeOps)
  6490. MIB.add(BeforeOp);
  6491. if (FoldedLoad)
  6492. MIB.addReg(Reg);
  6493. for (MachineOperand &AfterOp : AfterOps)
  6494. MIB.add(AfterOp);
  6495. for (MachineOperand &ImpOp : ImpOps) {
  6496. MIB.addReg(ImpOp.getReg(),
  6497. getDefRegState(ImpOp.isDef()) |
  6498. RegState::Implicit |
  6499. getKillRegState(ImpOp.isKill()) |
  6500. getDeadRegState(ImpOp.isDead()) |
  6501. getUndefRegState(ImpOp.isUndef()));
  6502. }
  6503. // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
  6504. switch (DataMI->getOpcode()) {
  6505. default: break;
  6506. case X86::CMP64ri32:
  6507. case X86::CMP64ri8:
  6508. case X86::CMP32ri:
  6509. case X86::CMP32ri8:
  6510. case X86::CMP16ri:
  6511. case X86::CMP16ri8:
  6512. case X86::CMP8ri: {
  6513. MachineOperand &MO0 = DataMI->getOperand(0);
  6514. MachineOperand &MO1 = DataMI->getOperand(1);
  6515. if (MO1.isImm() && MO1.getImm() == 0) {
  6516. unsigned NewOpc;
  6517. switch (DataMI->getOpcode()) {
  6518. default: llvm_unreachable("Unreachable!");
  6519. case X86::CMP64ri8:
  6520. case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
  6521. case X86::CMP32ri8:
  6522. case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
  6523. case X86::CMP16ri8:
  6524. case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
  6525. case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
  6526. }
  6527. DataMI->setDesc(get(NewOpc));
  6528. MO1.ChangeToRegister(MO0.getReg(), false);
  6529. }
  6530. }
  6531. }
  6532. NewMIs.push_back(DataMI);
  6533. // Emit the store instruction.
  6534. if (UnfoldStore) {
  6535. const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
  6536. auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
  6537. unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
  6538. bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
  6539. unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
  6540. DebugLoc DL;
  6541. MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
  6542. for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
  6543. MIB.add(AddrOps[i]);
  6544. MIB.addReg(Reg, RegState::Kill);
  6545. MIB.setMemRefs(MMOs);
  6546. NewMIs.push_back(MIB);
  6547. }
  6548. return true;
  6549. }
  6550. bool
  6551. X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
  6552. SmallVectorImpl<SDNode*> &NewNodes) const {
  6553. if (!N->isMachineOpcode())
  6554. return false;
  6555. const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
  6556. if (I == nullptr)
  6557. return false;
  6558. unsigned Opc = I->DstOp;
  6559. unsigned Index = I->Flags & TB_INDEX_MASK;
  6560. bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
  6561. bool FoldedStore = I->Flags & TB_FOLDED_STORE;
  6562. bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
  6563. const MCInstrDesc &MCID = get(Opc);
  6564. MachineFunction &MF = DAG.getMachineFunction();
  6565. const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
  6566. const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
  6567. unsigned NumDefs = MCID.NumDefs;
  6568. std::vector<SDValue> AddrOps;
  6569. std::vector<SDValue> BeforeOps;
  6570. std::vector<SDValue> AfterOps;
  6571. SDLoc dl(N);
  6572. unsigned NumOps = N->getNumOperands();
  6573. for (unsigned i = 0; i != NumOps-1; ++i) {
  6574. SDValue Op = N->getOperand(i);
  6575. if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
  6576. AddrOps.push_back(Op);
  6577. else if (i < Index-NumDefs)
  6578. BeforeOps.push_back(Op);
  6579. else if (i > Index-NumDefs)
  6580. AfterOps.push_back(Op);
  6581. }
  6582. SDValue Chain = N->getOperand(NumOps-1);
  6583. AddrOps.push_back(Chain);
  6584. // Emit the load instruction.
  6585. SDNode *Load = nullptr;
  6586. if (FoldedLoad) {
  6587. EVT VT = *TRI.legalclasstypes_begin(*RC);
  6588. auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
  6589. if (MMOs.empty() && RC == &X86::VR128RegClass &&
  6590. Subtarget.isUnalignedMem16Slow())
  6591. // Do not introduce a slow unaligned load.
  6592. return false;
  6593. // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
  6594. // memory access is slow above.
  6595. unsigned Opc;
  6596. if (FoldedBCast) {
  6597. Opc = getBroadcastOpcode(I, RC, Subtarget);
  6598. } else {
  6599. unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
  6600. bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
  6601. Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
  6602. }
  6603. Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
  6604. NewNodes.push_back(Load);
  6605. // Preserve memory reference information.
  6606. DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
  6607. }
  6608. // Emit the data processing instruction.
  6609. std::vector<EVT> VTs;
  6610. const TargetRegisterClass *DstRC = nullptr;
  6611. if (MCID.getNumDefs() > 0) {
  6612. DstRC = getRegClass(MCID, 0, &RI, MF);
  6613. VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
  6614. }
  6615. for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
  6616. EVT VT = N->getValueType(i);
  6617. if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
  6618. VTs.push_back(VT);
  6619. }
  6620. if (Load)
  6621. BeforeOps.push_back(SDValue(Load, 0));
  6622. llvm::append_range(BeforeOps, AfterOps);
  6623. // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
  6624. switch (Opc) {
  6625. default: break;
  6626. case X86::CMP64ri32:
  6627. case X86::CMP64ri8:
  6628. case X86::CMP32ri:
  6629. case X86::CMP32ri8:
  6630. case X86::CMP16ri:
  6631. case X86::CMP16ri8:
  6632. case X86::CMP8ri:
  6633. if (isNullConstant(BeforeOps[1])) {
  6634. switch (Opc) {
  6635. default: llvm_unreachable("Unreachable!");
  6636. case X86::CMP64ri8:
  6637. case X86::CMP64ri32: Opc = X86::TEST64rr; break;
  6638. case X86::CMP32ri8:
  6639. case X86::CMP32ri: Opc = X86::TEST32rr; break;
  6640. case X86::CMP16ri8:
  6641. case X86::CMP16ri: Opc = X86::TEST16rr; break;
  6642. case X86::CMP8ri: Opc = X86::TEST8rr; break;
  6643. }
  6644. BeforeOps[1] = BeforeOps[0];
  6645. }
  6646. }
  6647. SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
  6648. NewNodes.push_back(NewNode);
  6649. // Emit the store instruction.
  6650. if (FoldedStore) {
  6651. AddrOps.pop_back();
  6652. AddrOps.push_back(SDValue(NewNode, 0));
  6653. AddrOps.push_back(Chain);
  6654. auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
  6655. if (MMOs.empty() && RC == &X86::VR128RegClass &&
  6656. Subtarget.isUnalignedMem16Slow())
  6657. // Do not introduce a slow unaligned store.
  6658. return false;
  6659. // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
  6660. // memory access is slow above.
  6661. unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
  6662. bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
  6663. SDNode *Store =
  6664. DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
  6665. dl, MVT::Other, AddrOps);
  6666. NewNodes.push_back(Store);
  6667. // Preserve memory reference information.
  6668. DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
  6669. }
  6670. return true;
  6671. }
  6672. unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
  6673. bool UnfoldLoad, bool UnfoldStore,
  6674. unsigned *LoadRegIndex) const {
  6675. const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
  6676. if (I == nullptr)
  6677. return 0;
  6678. bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
  6679. bool FoldedStore = I->Flags & TB_FOLDED_STORE;
  6680. if (UnfoldLoad && !FoldedLoad)
  6681. return 0;
  6682. if (UnfoldStore && !FoldedStore)
  6683. return 0;
  6684. if (LoadRegIndex)
  6685. *LoadRegIndex = I->Flags & TB_INDEX_MASK;
  6686. return I->DstOp;
  6687. }
  6688. bool
  6689. X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
  6690. int64_t &Offset1, int64_t &Offset2) const {
  6691. if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
  6692. return false;
  6693. unsigned Opc1 = Load1->getMachineOpcode();
  6694. unsigned Opc2 = Load2->getMachineOpcode();
  6695. switch (Opc1) {
  6696. default: return false;
  6697. case X86::MOV8rm:
  6698. case X86::MOV16rm:
  6699. case X86::MOV32rm:
  6700. case X86::MOV64rm:
  6701. case X86::LD_Fp32m:
  6702. case X86::LD_Fp64m:
  6703. case X86::LD_Fp80m:
  6704. case X86::MOVSSrm:
  6705. case X86::MOVSSrm_alt:
  6706. case X86::MOVSDrm:
  6707. case X86::MOVSDrm_alt:
  6708. case X86::MMX_MOVD64rm:
  6709. case X86::MMX_MOVQ64rm:
  6710. case X86::MOVAPSrm:
  6711. case X86::MOVUPSrm:
  6712. case X86::MOVAPDrm:
  6713. case X86::MOVUPDrm:
  6714. case X86::MOVDQArm:
  6715. case X86::MOVDQUrm:
  6716. // AVX load instructions
  6717. case X86::VMOVSSrm:
  6718. case X86::VMOVSSrm_alt:
  6719. case X86::VMOVSDrm:
  6720. case X86::VMOVSDrm_alt:
  6721. case X86::VMOVAPSrm:
  6722. case X86::VMOVUPSrm:
  6723. case X86::VMOVAPDrm:
  6724. case X86::VMOVUPDrm:
  6725. case X86::VMOVDQArm:
  6726. case X86::VMOVDQUrm:
  6727. case X86::VMOVAPSYrm:
  6728. case X86::VMOVUPSYrm:
  6729. case X86::VMOVAPDYrm:
  6730. case X86::VMOVUPDYrm:
  6731. case X86::VMOVDQAYrm:
  6732. case X86::VMOVDQUYrm:
  6733. // AVX512 load instructions
  6734. case X86::VMOVSSZrm:
  6735. case X86::VMOVSSZrm_alt:
  6736. case X86::VMOVSDZrm:
  6737. case X86::VMOVSDZrm_alt:
  6738. case X86::VMOVAPSZ128rm:
  6739. case X86::VMOVUPSZ128rm:
  6740. case X86::VMOVAPSZ128rm_NOVLX:
  6741. case X86::VMOVUPSZ128rm_NOVLX:
  6742. case X86::VMOVAPDZ128rm:
  6743. case X86::VMOVUPDZ128rm:
  6744. case X86::VMOVDQU8Z128rm:
  6745. case X86::VMOVDQU16Z128rm:
  6746. case X86::VMOVDQA32Z128rm:
  6747. case X86::VMOVDQU32Z128rm:
  6748. case X86::VMOVDQA64Z128rm:
  6749. case X86::VMOVDQU64Z128rm:
  6750. case X86::VMOVAPSZ256rm:
  6751. case X86::VMOVUPSZ256rm:
  6752. case X86::VMOVAPSZ256rm_NOVLX:
  6753. case X86::VMOVUPSZ256rm_NOVLX:
  6754. case X86::VMOVAPDZ256rm:
  6755. case X86::VMOVUPDZ256rm:
  6756. case X86::VMOVDQU8Z256rm:
  6757. case X86::VMOVDQU16Z256rm:
  6758. case X86::VMOVDQA32Z256rm:
  6759. case X86::VMOVDQU32Z256rm:
  6760. case X86::VMOVDQA64Z256rm:
  6761. case X86::VMOVDQU64Z256rm:
  6762. case X86::VMOVAPSZrm:
  6763. case X86::VMOVUPSZrm:
  6764. case X86::VMOVAPDZrm:
  6765. case X86::VMOVUPDZrm:
  6766. case X86::VMOVDQU8Zrm:
  6767. case X86::VMOVDQU16Zrm:
  6768. case X86::VMOVDQA32Zrm:
  6769. case X86::VMOVDQU32Zrm:
  6770. case X86::VMOVDQA64Zrm:
  6771. case X86::VMOVDQU64Zrm:
  6772. case X86::KMOVBkm:
  6773. case X86::KMOVWkm:
  6774. case X86::KMOVDkm:
  6775. case X86::KMOVQkm:
  6776. break;
  6777. }
  6778. switch (Opc2) {
  6779. default: return false;
  6780. case X86::MOV8rm:
  6781. case X86::MOV16rm:
  6782. case X86::MOV32rm:
  6783. case X86::MOV64rm:
  6784. case X86::LD_Fp32m:
  6785. case X86::LD_Fp64m:
  6786. case X86::LD_Fp80m:
  6787. case X86::MOVSSrm:
  6788. case X86::MOVSSrm_alt:
  6789. case X86::MOVSDrm:
  6790. case X86::MOVSDrm_alt:
  6791. case X86::MMX_MOVD64rm:
  6792. case X86::MMX_MOVQ64rm:
  6793. case X86::MOVAPSrm:
  6794. case X86::MOVUPSrm:
  6795. case X86::MOVAPDrm:
  6796. case X86::MOVUPDrm:
  6797. case X86::MOVDQArm:
  6798. case X86::MOVDQUrm:
  6799. // AVX load instructions
  6800. case X86::VMOVSSrm:
  6801. case X86::VMOVSSrm_alt:
  6802. case X86::VMOVSDrm:
  6803. case X86::VMOVSDrm_alt:
  6804. case X86::VMOVAPSrm:
  6805. case X86::VMOVUPSrm:
  6806. case X86::VMOVAPDrm:
  6807. case X86::VMOVUPDrm:
  6808. case X86::VMOVDQArm:
  6809. case X86::VMOVDQUrm:
  6810. case X86::VMOVAPSYrm:
  6811. case X86::VMOVUPSYrm:
  6812. case X86::VMOVAPDYrm:
  6813. case X86::VMOVUPDYrm:
  6814. case X86::VMOVDQAYrm:
  6815. case X86::VMOVDQUYrm:
  6816. // AVX512 load instructions
  6817. case X86::VMOVSSZrm:
  6818. case X86::VMOVSSZrm_alt:
  6819. case X86::VMOVSDZrm:
  6820. case X86::VMOVSDZrm_alt:
  6821. case X86::VMOVAPSZ128rm:
  6822. case X86::VMOVUPSZ128rm:
  6823. case X86::VMOVAPSZ128rm_NOVLX:
  6824. case X86::VMOVUPSZ128rm_NOVLX:
  6825. case X86::VMOVAPDZ128rm:
  6826. case X86::VMOVUPDZ128rm:
  6827. case X86::VMOVDQU8Z128rm:
  6828. case X86::VMOVDQU16Z128rm:
  6829. case X86::VMOVDQA32Z128rm:
  6830. case X86::VMOVDQU32Z128rm:
  6831. case X86::VMOVDQA64Z128rm:
  6832. case X86::VMOVDQU64Z128rm:
  6833. case X86::VMOVAPSZ256rm:
  6834. case X86::VMOVUPSZ256rm:
  6835. case X86::VMOVAPSZ256rm_NOVLX:
  6836. case X86::VMOVUPSZ256rm_NOVLX:
  6837. case X86::VMOVAPDZ256rm:
  6838. case X86::VMOVUPDZ256rm:
  6839. case X86::VMOVDQU8Z256rm:
  6840. case X86::VMOVDQU16Z256rm:
  6841. case X86::VMOVDQA32Z256rm:
  6842. case X86::VMOVDQU32Z256rm:
  6843. case X86::VMOVDQA64Z256rm:
  6844. case X86::VMOVDQU64Z256rm:
  6845. case X86::VMOVAPSZrm:
  6846. case X86::VMOVUPSZrm:
  6847. case X86::VMOVAPDZrm:
  6848. case X86::VMOVUPDZrm:
  6849. case X86::VMOVDQU8Zrm:
  6850. case X86::VMOVDQU16Zrm:
  6851. case X86::VMOVDQA32Zrm:
  6852. case X86::VMOVDQU32Zrm:
  6853. case X86::VMOVDQA64Zrm:
  6854. case X86::VMOVDQU64Zrm:
  6855. case X86::KMOVBkm:
  6856. case X86::KMOVWkm:
  6857. case X86::KMOVDkm:
  6858. case X86::KMOVQkm:
  6859. break;
  6860. }
  6861. // Lambda to check if both the loads have the same value for an operand index.
  6862. auto HasSameOp = [&](int I) {
  6863. return Load1->getOperand(I) == Load2->getOperand(I);
  6864. };
  6865. // All operands except the displacement should match.
  6866. if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
  6867. !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
  6868. return false;
  6869. // Chain Operand must be the same.
  6870. if (!HasSameOp(5))
  6871. return false;
  6872. // Now let's examine if the displacements are constants.
  6873. auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
  6874. auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
  6875. if (!Disp1 || !Disp2)
  6876. return false;
  6877. Offset1 = Disp1->getSExtValue();
  6878. Offset2 = Disp2->getSExtValue();
  6879. return true;
  6880. }
  6881. bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
  6882. int64_t Offset1, int64_t Offset2,
  6883. unsigned NumLoads) const {
  6884. assert(Offset2 > Offset1);
  6885. if ((Offset2 - Offset1) / 8 > 64)
  6886. return false;
  6887. unsigned Opc1 = Load1->getMachineOpcode();
  6888. unsigned Opc2 = Load2->getMachineOpcode();
  6889. if (Opc1 != Opc2)
  6890. return false; // FIXME: overly conservative?
  6891. switch (Opc1) {
  6892. default: break;
  6893. case X86::LD_Fp32m:
  6894. case X86::LD_Fp64m:
  6895. case X86::LD_Fp80m:
  6896. case X86::MMX_MOVD64rm:
  6897. case X86::MMX_MOVQ64rm:
  6898. return false;
  6899. }
  6900. EVT VT = Load1->getValueType(0);
  6901. switch (VT.getSimpleVT().SimpleTy) {
  6902. default:
  6903. // XMM registers. In 64-bit mode we can be a bit more aggressive since we
  6904. // have 16 of them to play with.
  6905. if (Subtarget.is64Bit()) {
  6906. if (NumLoads >= 3)
  6907. return false;
  6908. } else if (NumLoads) {
  6909. return false;
  6910. }
  6911. break;
  6912. case MVT::i8:
  6913. case MVT::i16:
  6914. case MVT::i32:
  6915. case MVT::i64:
  6916. case MVT::f32:
  6917. case MVT::f64:
  6918. if (NumLoads)
  6919. return false;
  6920. break;
  6921. }
  6922. return true;
  6923. }
  6924. bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
  6925. const MachineBasicBlock *MBB,
  6926. const MachineFunction &MF) const {
  6927. // ENDBR instructions should not be scheduled around.
  6928. unsigned Opcode = MI.getOpcode();
  6929. if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
  6930. Opcode == X86::PLDTILECFGV)
  6931. return true;
  6932. return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
  6933. }
  6934. bool X86InstrInfo::
  6935. reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
  6936. assert(Cond.size() == 1 && "Invalid X86 branch condition!");
  6937. X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
  6938. Cond[0].setImm(GetOppositeBranchCondition(CC));
  6939. return false;
  6940. }
  6941. bool X86InstrInfo::
  6942. isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
  6943. // FIXME: Return false for x87 stack register classes for now. We can't
  6944. // allow any loads of these registers before FpGet_ST0_80.
  6945. return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
  6946. RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
  6947. RC == &X86::RFP80RegClass);
  6948. }
  6949. /// Return a virtual register initialized with the
  6950. /// the global base register value. Output instructions required to
  6951. /// initialize the register in the function entry block, if necessary.
  6952. ///
  6953. /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
  6954. ///
  6955. unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
  6956. assert((!Subtarget.is64Bit() ||
  6957. MF->getTarget().getCodeModel() == CodeModel::Medium ||
  6958. MF->getTarget().getCodeModel() == CodeModel::Large) &&
  6959. "X86-64 PIC uses RIP relative addressing");
  6960. X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
  6961. Register GlobalBaseReg = X86FI->getGlobalBaseReg();
  6962. if (GlobalBaseReg != 0)
  6963. return GlobalBaseReg;
  6964. // Create the register. The code to initialize it is inserted
  6965. // later, by the CGBR pass (below).
  6966. MachineRegisterInfo &RegInfo = MF->getRegInfo();
  6967. GlobalBaseReg = RegInfo.createVirtualRegister(
  6968. Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
  6969. X86FI->setGlobalBaseReg(GlobalBaseReg);
  6970. return GlobalBaseReg;
  6971. }
  6972. // These are the replaceable SSE instructions. Some of these have Int variants
  6973. // that we don't include here. We don't want to replace instructions selected
  6974. // by intrinsics.
  6975. static const uint16_t ReplaceableInstrs[][3] = {
  6976. //PackedSingle PackedDouble PackedInt
  6977. { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
  6978. { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
  6979. { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
  6980. { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
  6981. { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
  6982. { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr },
  6983. { X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr },
  6984. { X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr },
  6985. { X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm },
  6986. { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
  6987. { X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm },
  6988. { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
  6989. { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
  6990. { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
  6991. { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
  6992. { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
  6993. { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
  6994. { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
  6995. { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
  6996. { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
  6997. { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
  6998. { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
  6999. { X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
  7000. { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
  7001. { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
  7002. { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
  7003. { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
  7004. { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
  7005. { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
  7006. { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
  7007. { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
  7008. // AVX 128-bit support
  7009. { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
  7010. { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
  7011. { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
  7012. { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
  7013. { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
  7014. { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr },
  7015. { X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr },
  7016. { X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr },
  7017. { X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm },
  7018. { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
  7019. { X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm },
  7020. { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
  7021. { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
  7022. { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
  7023. { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
  7024. { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
  7025. { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
  7026. { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
  7027. { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
  7028. { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
  7029. { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
  7030. { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
  7031. { X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
  7032. { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
  7033. { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
  7034. { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
  7035. { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
  7036. { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
  7037. { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
  7038. { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
  7039. { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
  7040. // AVX 256-bit support
  7041. { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
  7042. { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
  7043. { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
  7044. { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
  7045. { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
  7046. { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr },
  7047. { X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm },
  7048. { X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr },
  7049. { X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi },
  7050. { X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri },
  7051. // AVX512 support
  7052. { X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr },
  7053. { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
  7054. { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
  7055. { X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr },
  7056. { X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr },
  7057. { X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr },
  7058. { X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm },
  7059. { X86::VMOVSDZrm_alt, X86::VMOVSDZrm_alt, X86::VMOVQI2PQIZrm },
  7060. { X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm },
  7061. { X86::VMOVSSZrm_alt, X86::VMOVSSZrm_alt, X86::VMOVDI2PDIZrm },
  7062. { X86::VBROADCASTSSZ128rr,X86::VBROADCASTSSZ128rr,X86::VPBROADCASTDZ128rr },
  7063. { X86::VBROADCASTSSZ128rm,X86::VBROADCASTSSZ128rm,X86::VPBROADCASTDZ128rm },
  7064. { X86::VBROADCASTSSZ256rr,X86::VBROADCASTSSZ256rr,X86::VPBROADCASTDZ256rr },
  7065. { X86::VBROADCASTSSZ256rm,X86::VBROADCASTSSZ256rm,X86::VPBROADCASTDZ256rm },
  7066. { X86::VBROADCASTSSZrr, X86::VBROADCASTSSZrr, X86::VPBROADCASTDZrr },
  7067. { X86::VBROADCASTSSZrm, X86::VBROADCASTSSZrm, X86::VPBROADCASTDZrm },
  7068. { X86::VMOVDDUPZ128rr, X86::VMOVDDUPZ128rr, X86::VPBROADCASTQZ128rr },
  7069. { X86::VMOVDDUPZ128rm, X86::VMOVDDUPZ128rm, X86::VPBROADCASTQZ128rm },
  7070. { X86::VBROADCASTSDZ256rr,X86::VBROADCASTSDZ256rr,X86::VPBROADCASTQZ256rr },
  7071. { X86::VBROADCASTSDZ256rm,X86::VBROADCASTSDZ256rm,X86::VPBROADCASTQZ256rm },
  7072. { X86::VBROADCASTSDZrr, X86::VBROADCASTSDZrr, X86::VPBROADCASTQZrr },
  7073. { X86::VBROADCASTSDZrm, X86::VBROADCASTSDZrm, X86::VPBROADCASTQZrm },
  7074. { X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr },
  7075. { X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm },
  7076. { X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr },
  7077. { X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm },
  7078. { X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr },
  7079. { X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm },
  7080. { X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr },
  7081. { X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm },
  7082. { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
  7083. { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
  7084. { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
  7085. { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
  7086. { X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr },
  7087. { X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr },
  7088. { X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr },
  7089. { X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr },
  7090. { X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr },
  7091. { X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr },
  7092. { X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr },
  7093. { X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr },
  7094. { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
  7095. { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
  7096. { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
  7097. { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
  7098. { X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi },
  7099. { X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri },
  7100. { X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi },
  7101. { X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri },
  7102. { X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi },
  7103. { X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri },
  7104. { X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi },
  7105. { X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri },
  7106. { X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm },
  7107. { X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr },
  7108. { X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi },
  7109. { X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri },
  7110. { X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm },
  7111. { X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr },
  7112. { X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm },
  7113. { X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr },
  7114. { X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi },
  7115. { X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri },
  7116. { X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm },
  7117. { X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr },
  7118. { X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm },
  7119. { X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr },
  7120. { X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm },
  7121. { X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr },
  7122. { X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm },
  7123. { X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr },
  7124. { X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm },
  7125. { X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr },
  7126. { X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm },
  7127. { X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr },
  7128. { X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm },
  7129. { X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr },
  7130. { X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm },
  7131. { X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr },
  7132. { X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm },
  7133. { X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr },
  7134. { X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm },
  7135. { X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr },
  7136. { X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm },
  7137. { X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr },
  7138. { X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm },
  7139. { X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr },
  7140. { X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm },
  7141. { X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr },
  7142. { X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr },
  7143. { X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr },
  7144. };
  7145. static const uint16_t ReplaceableInstrsAVX2[][3] = {
  7146. //PackedSingle PackedDouble PackedInt
  7147. { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
  7148. { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
  7149. { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
  7150. { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
  7151. { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
  7152. { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
  7153. { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
  7154. { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
  7155. { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
  7156. { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
  7157. { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
  7158. { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
  7159. { X86::VMOVDDUPrm, X86::VMOVDDUPrm, X86::VPBROADCASTQrm},
  7160. { X86::VMOVDDUPrr, X86::VMOVDDUPrr, X86::VPBROADCASTQrr},
  7161. { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
  7162. { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
  7163. { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
  7164. { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
  7165. { X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 },
  7166. { X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri },
  7167. { X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi },
  7168. { X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi },
  7169. { X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri },
  7170. { X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm },
  7171. { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr },
  7172. { X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm },
  7173. { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr },
  7174. { X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm },
  7175. { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr },
  7176. { X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm },
  7177. { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr },
  7178. };
  7179. static const uint16_t ReplaceableInstrsFP[][3] = {
  7180. //PackedSingle PackedDouble
  7181. { X86::MOVLPSrm, X86::MOVLPDrm, X86::INSTRUCTION_LIST_END },
  7182. { X86::MOVHPSrm, X86::MOVHPDrm, X86::INSTRUCTION_LIST_END },
  7183. { X86::MOVHPSmr, X86::MOVHPDmr, X86::INSTRUCTION_LIST_END },
  7184. { X86::VMOVLPSrm, X86::VMOVLPDrm, X86::INSTRUCTION_LIST_END },
  7185. { X86::VMOVHPSrm, X86::VMOVHPDrm, X86::INSTRUCTION_LIST_END },
  7186. { X86::VMOVHPSmr, X86::VMOVHPDmr, X86::INSTRUCTION_LIST_END },
  7187. { X86::VMOVLPSZ128rm, X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
  7188. { X86::VMOVHPSZ128rm, X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
  7189. { X86::VMOVHPSZ128mr, X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
  7190. };
  7191. static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
  7192. //PackedSingle PackedDouble PackedInt
  7193. { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
  7194. { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
  7195. { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
  7196. { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
  7197. };
  7198. static const uint16_t ReplaceableInstrsAVX512[][4] = {
  7199. // Two integer columns for 64-bit and 32-bit elements.
  7200. //PackedSingle PackedDouble PackedInt PackedInt
  7201. { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr },
  7202. { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm },
  7203. { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr },
  7204. { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr },
  7205. { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm },
  7206. { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr },
  7207. { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm },
  7208. { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr },
  7209. { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr },
  7210. { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm },
  7211. { X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr },
  7212. { X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm },
  7213. { X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr },
  7214. { X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr },
  7215. { X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm },
  7216. };
  7217. static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
  7218. // Two integer columns for 64-bit and 32-bit elements.
  7219. //PackedSingle PackedDouble PackedInt PackedInt
  7220. { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
  7221. { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
  7222. { X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
  7223. { X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
  7224. { X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm },
  7225. { X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr },
  7226. { X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
  7227. { X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
  7228. { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
  7229. { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
  7230. { X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
  7231. { X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
  7232. { X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm },
  7233. { X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr },
  7234. { X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
  7235. { X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
  7236. { X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm },
  7237. { X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr },
  7238. { X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm },
  7239. { X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr },
  7240. { X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm },
  7241. { X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr },
  7242. { X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm },
  7243. { X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr },
  7244. };
  7245. static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
  7246. // Two integer columns for 64-bit and 32-bit elements.
  7247. //PackedSingle PackedDouble
  7248. //PackedInt PackedInt
  7249. { X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk,
  7250. X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk },
  7251. { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
  7252. X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
  7253. { X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk,
  7254. X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk },
  7255. { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
  7256. X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
  7257. { X86::VANDPSZ128rmk, X86::VANDPDZ128rmk,
  7258. X86::VPANDQZ128rmk, X86::VPANDDZ128rmk },
  7259. { X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz,
  7260. X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz },
  7261. { X86::VANDPSZ128rrk, X86::VANDPDZ128rrk,
  7262. X86::VPANDQZ128rrk, X86::VPANDDZ128rrk },
  7263. { X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz,
  7264. X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz },
  7265. { X86::VORPSZ128rmk, X86::VORPDZ128rmk,
  7266. X86::VPORQZ128rmk, X86::VPORDZ128rmk },
  7267. { X86::VORPSZ128rmkz, X86::VORPDZ128rmkz,
  7268. X86::VPORQZ128rmkz, X86::VPORDZ128rmkz },
  7269. { X86::VORPSZ128rrk, X86::VORPDZ128rrk,
  7270. X86::VPORQZ128rrk, X86::VPORDZ128rrk },
  7271. { X86::VORPSZ128rrkz, X86::VORPDZ128rrkz,
  7272. X86::VPORQZ128rrkz, X86::VPORDZ128rrkz },
  7273. { X86::VXORPSZ128rmk, X86::VXORPDZ128rmk,
  7274. X86::VPXORQZ128rmk, X86::VPXORDZ128rmk },
  7275. { X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz,
  7276. X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz },
  7277. { X86::VXORPSZ128rrk, X86::VXORPDZ128rrk,
  7278. X86::VPXORQZ128rrk, X86::VPXORDZ128rrk },
  7279. { X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz,
  7280. X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz },
  7281. { X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk,
  7282. X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk },
  7283. { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
  7284. X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
  7285. { X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk,
  7286. X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk },
  7287. { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
  7288. X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
  7289. { X86::VANDPSZ256rmk, X86::VANDPDZ256rmk,
  7290. X86::VPANDQZ256rmk, X86::VPANDDZ256rmk },
  7291. { X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz,
  7292. X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz },
  7293. { X86::VANDPSZ256rrk, X86::VANDPDZ256rrk,
  7294. X86::VPANDQZ256rrk, X86::VPANDDZ256rrk },
  7295. { X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz,
  7296. X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz },
  7297. { X86::VORPSZ256rmk, X86::VORPDZ256rmk,
  7298. X86::VPORQZ256rmk, X86::VPORDZ256rmk },
  7299. { X86::VORPSZ256rmkz, X86::VORPDZ256rmkz,
  7300. X86::VPORQZ256rmkz, X86::VPORDZ256rmkz },
  7301. { X86::VORPSZ256rrk, X86::VORPDZ256rrk,
  7302. X86::VPORQZ256rrk, X86::VPORDZ256rrk },
  7303. { X86::VORPSZ256rrkz, X86::VORPDZ256rrkz,
  7304. X86::VPORQZ256rrkz, X86::VPORDZ256rrkz },
  7305. { X86::VXORPSZ256rmk, X86::VXORPDZ256rmk,
  7306. X86::VPXORQZ256rmk, X86::VPXORDZ256rmk },
  7307. { X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz,
  7308. X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz },
  7309. { X86::VXORPSZ256rrk, X86::VXORPDZ256rrk,
  7310. X86::VPXORQZ256rrk, X86::VPXORDZ256rrk },
  7311. { X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz,
  7312. X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz },
  7313. { X86::VANDNPSZrmk, X86::VANDNPDZrmk,
  7314. X86::VPANDNQZrmk, X86::VPANDNDZrmk },
  7315. { X86::VANDNPSZrmkz, X86::VANDNPDZrmkz,
  7316. X86::VPANDNQZrmkz, X86::VPANDNDZrmkz },
  7317. { X86::VANDNPSZrrk, X86::VANDNPDZrrk,
  7318. X86::VPANDNQZrrk, X86::VPANDNDZrrk },
  7319. { X86::VANDNPSZrrkz, X86::VANDNPDZrrkz,
  7320. X86::VPANDNQZrrkz, X86::VPANDNDZrrkz },
  7321. { X86::VANDPSZrmk, X86::VANDPDZrmk,
  7322. X86::VPANDQZrmk, X86::VPANDDZrmk },
  7323. { X86::VANDPSZrmkz, X86::VANDPDZrmkz,
  7324. X86::VPANDQZrmkz, X86::VPANDDZrmkz },
  7325. { X86::VANDPSZrrk, X86::VANDPDZrrk,
  7326. X86::VPANDQZrrk, X86::VPANDDZrrk },
  7327. { X86::VANDPSZrrkz, X86::VANDPDZrrkz,
  7328. X86::VPANDQZrrkz, X86::VPANDDZrrkz },
  7329. { X86::VORPSZrmk, X86::VORPDZrmk,
  7330. X86::VPORQZrmk, X86::VPORDZrmk },
  7331. { X86::VORPSZrmkz, X86::VORPDZrmkz,
  7332. X86::VPORQZrmkz, X86::VPORDZrmkz },
  7333. { X86::VORPSZrrk, X86::VORPDZrrk,
  7334. X86::VPORQZrrk, X86::VPORDZrrk },
  7335. { X86::VORPSZrrkz, X86::VORPDZrrkz,
  7336. X86::VPORQZrrkz, X86::VPORDZrrkz },
  7337. { X86::VXORPSZrmk, X86::VXORPDZrmk,
  7338. X86::VPXORQZrmk, X86::VPXORDZrmk },
  7339. { X86::VXORPSZrmkz, X86::VXORPDZrmkz,
  7340. X86::VPXORQZrmkz, X86::VPXORDZrmkz },
  7341. { X86::VXORPSZrrk, X86::VXORPDZrrk,
  7342. X86::VPXORQZrrk, X86::VPXORDZrrk },
  7343. { X86::VXORPSZrrkz, X86::VXORPDZrrkz,
  7344. X86::VPXORQZrrkz, X86::VPXORDZrrkz },
  7345. // Broadcast loads can be handled the same as masked operations to avoid
  7346. // changing element size.
  7347. { X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb,
  7348. X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb },
  7349. { X86::VANDPSZ128rmb, X86::VANDPDZ128rmb,
  7350. X86::VPANDQZ128rmb, X86::VPANDDZ128rmb },
  7351. { X86::VORPSZ128rmb, X86::VORPDZ128rmb,
  7352. X86::VPORQZ128rmb, X86::VPORDZ128rmb },
  7353. { X86::VXORPSZ128rmb, X86::VXORPDZ128rmb,
  7354. X86::VPXORQZ128rmb, X86::VPXORDZ128rmb },
  7355. { X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb,
  7356. X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb },
  7357. { X86::VANDPSZ256rmb, X86::VANDPDZ256rmb,
  7358. X86::VPANDQZ256rmb, X86::VPANDDZ256rmb },
  7359. { X86::VORPSZ256rmb, X86::VORPDZ256rmb,
  7360. X86::VPORQZ256rmb, X86::VPORDZ256rmb },
  7361. { X86::VXORPSZ256rmb, X86::VXORPDZ256rmb,
  7362. X86::VPXORQZ256rmb, X86::VPXORDZ256rmb },
  7363. { X86::VANDNPSZrmb, X86::VANDNPDZrmb,
  7364. X86::VPANDNQZrmb, X86::VPANDNDZrmb },
  7365. { X86::VANDPSZrmb, X86::VANDPDZrmb,
  7366. X86::VPANDQZrmb, X86::VPANDDZrmb },
  7367. { X86::VANDPSZrmb, X86::VANDPDZrmb,
  7368. X86::VPANDQZrmb, X86::VPANDDZrmb },
  7369. { X86::VORPSZrmb, X86::VORPDZrmb,
  7370. X86::VPORQZrmb, X86::VPORDZrmb },
  7371. { X86::VXORPSZrmb, X86::VXORPDZrmb,
  7372. X86::VPXORQZrmb, X86::VPXORDZrmb },
  7373. { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
  7374. X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
  7375. { X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk,
  7376. X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk },
  7377. { X86::VORPSZ128rmbk, X86::VORPDZ128rmbk,
  7378. X86::VPORQZ128rmbk, X86::VPORDZ128rmbk },
  7379. { X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk,
  7380. X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk },
  7381. { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
  7382. X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
  7383. { X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk,
  7384. X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk },
  7385. { X86::VORPSZ256rmbk, X86::VORPDZ256rmbk,
  7386. X86::VPORQZ256rmbk, X86::VPORDZ256rmbk },
  7387. { X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk,
  7388. X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk },
  7389. { X86::VANDNPSZrmbk, X86::VANDNPDZrmbk,
  7390. X86::VPANDNQZrmbk, X86::VPANDNDZrmbk },
  7391. { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
  7392. X86::VPANDQZrmbk, X86::VPANDDZrmbk },
  7393. { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
  7394. X86::VPANDQZrmbk, X86::VPANDDZrmbk },
  7395. { X86::VORPSZrmbk, X86::VORPDZrmbk,
  7396. X86::VPORQZrmbk, X86::VPORDZrmbk },
  7397. { X86::VXORPSZrmbk, X86::VXORPDZrmbk,
  7398. X86::VPXORQZrmbk, X86::VPXORDZrmbk },
  7399. { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
  7400. X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
  7401. { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
  7402. X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
  7403. { X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz,
  7404. X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz },
  7405. { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
  7406. X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
  7407. { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
  7408. X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
  7409. { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
  7410. X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
  7411. { X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz,
  7412. X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz },
  7413. { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
  7414. X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
  7415. { X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz,
  7416. X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz },
  7417. { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
  7418. X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
  7419. { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
  7420. X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
  7421. { X86::VORPSZrmbkz, X86::VORPDZrmbkz,
  7422. X86::VPORQZrmbkz, X86::VPORDZrmbkz },
  7423. { X86::VXORPSZrmbkz, X86::VXORPDZrmbkz,
  7424. X86::VPXORQZrmbkz, X86::VPXORDZrmbkz },
  7425. };
  7426. // NOTE: These should only be used by the custom domain methods.
  7427. static const uint16_t ReplaceableBlendInstrs[][3] = {
  7428. //PackedSingle PackedDouble PackedInt
  7429. { X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi },
  7430. { X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri },
  7431. { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi },
  7432. { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri },
  7433. { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi },
  7434. { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri },
  7435. };
  7436. static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
  7437. //PackedSingle PackedDouble PackedInt
  7438. { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi },
  7439. { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri },
  7440. { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi },
  7441. { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri },
  7442. };
  7443. // Special table for changing EVEX logic instructions to VEX.
  7444. // TODO: Should we run EVEX->VEX earlier?
  7445. static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
  7446. // Two integer columns for 64-bit and 32-bit elements.
  7447. //PackedSingle PackedDouble PackedInt PackedInt
  7448. { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
  7449. { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
  7450. { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
  7451. { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
  7452. { X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm },
  7453. { X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr },
  7454. { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
  7455. { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
  7456. { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
  7457. { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
  7458. { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
  7459. { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
  7460. { X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm },
  7461. { X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr },
  7462. { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
  7463. { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
  7464. };
  7465. // FIXME: Some shuffle and unpack instructions have equivalents in different
  7466. // domains, but they require a bit more work than just switching opcodes.
  7467. static const uint16_t *lookup(unsigned opcode, unsigned domain,
  7468. ArrayRef<uint16_t[3]> Table) {
  7469. for (const uint16_t (&Row)[3] : Table)
  7470. if (Row[domain-1] == opcode)
  7471. return Row;
  7472. return nullptr;
  7473. }
  7474. static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
  7475. ArrayRef<uint16_t[4]> Table) {
  7476. // If this is the integer domain make sure to check both integer columns.
  7477. for (const uint16_t (&Row)[4] : Table)
  7478. if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
  7479. return Row;
  7480. return nullptr;
  7481. }
  7482. // Helper to attempt to widen/narrow blend masks.
  7483. static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
  7484. unsigned NewWidth, unsigned *pNewMask = nullptr) {
  7485. assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
  7486. "Illegal blend mask scale");
  7487. unsigned NewMask = 0;
  7488. if ((OldWidth % NewWidth) == 0) {
  7489. unsigned Scale = OldWidth / NewWidth;
  7490. unsigned SubMask = (1u << Scale) - 1;
  7491. for (unsigned i = 0; i != NewWidth; ++i) {
  7492. unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
  7493. if (Sub == SubMask)
  7494. NewMask |= (1u << i);
  7495. else if (Sub != 0x0)
  7496. return false;
  7497. }
  7498. } else {
  7499. unsigned Scale = NewWidth / OldWidth;
  7500. unsigned SubMask = (1u << Scale) - 1;
  7501. for (unsigned i = 0; i != OldWidth; ++i) {
  7502. if (OldMask & (1 << i)) {
  7503. NewMask |= (SubMask << (i * Scale));
  7504. }
  7505. }
  7506. }
  7507. if (pNewMask)
  7508. *pNewMask = NewMask;
  7509. return true;
  7510. }
  7511. uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
  7512. unsigned Opcode = MI.getOpcode();
  7513. unsigned NumOperands = MI.getDesc().getNumOperands();
  7514. auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
  7515. uint16_t validDomains = 0;
  7516. if (MI.getOperand(NumOperands - 1).isImm()) {
  7517. unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
  7518. if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
  7519. validDomains |= 0x2; // PackedSingle
  7520. if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
  7521. validDomains |= 0x4; // PackedDouble
  7522. if (!Is256 || Subtarget.hasAVX2())
  7523. validDomains |= 0x8; // PackedInt
  7524. }
  7525. return validDomains;
  7526. };
  7527. switch (Opcode) {
  7528. case X86::BLENDPDrmi:
  7529. case X86::BLENDPDrri:
  7530. case X86::VBLENDPDrmi:
  7531. case X86::VBLENDPDrri:
  7532. return GetBlendDomains(2, false);
  7533. case X86::VBLENDPDYrmi:
  7534. case X86::VBLENDPDYrri:
  7535. return GetBlendDomains(4, true);
  7536. case X86::BLENDPSrmi:
  7537. case X86::BLENDPSrri:
  7538. case X86::VBLENDPSrmi:
  7539. case X86::VBLENDPSrri:
  7540. case X86::VPBLENDDrmi:
  7541. case X86::VPBLENDDrri:
  7542. return GetBlendDomains(4, false);
  7543. case X86::VBLENDPSYrmi:
  7544. case X86::VBLENDPSYrri:
  7545. case X86::VPBLENDDYrmi:
  7546. case X86::VPBLENDDYrri:
  7547. return GetBlendDomains(8, true);
  7548. case X86::PBLENDWrmi:
  7549. case X86::PBLENDWrri:
  7550. case X86::VPBLENDWrmi:
  7551. case X86::VPBLENDWrri:
  7552. // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
  7553. case X86::VPBLENDWYrmi:
  7554. case X86::VPBLENDWYrri:
  7555. return GetBlendDomains(8, false);
  7556. case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
  7557. case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
  7558. case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
  7559. case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
  7560. case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
  7561. case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
  7562. case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
  7563. case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
  7564. case X86::VPORDZ128rr: case X86::VPORDZ128rm:
  7565. case X86::VPORDZ256rr: case X86::VPORDZ256rm:
  7566. case X86::VPORQZ128rr: case X86::VPORQZ128rm:
  7567. case X86::VPORQZ256rr: case X86::VPORQZ256rm:
  7568. case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
  7569. case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
  7570. case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
  7571. case X86::VPXORQZ256rr: case X86::VPXORQZ256rm:
  7572. // If we don't have DQI see if we can still switch from an EVEX integer
  7573. // instruction to a VEX floating point instruction.
  7574. if (Subtarget.hasDQI())
  7575. return 0;
  7576. if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
  7577. return 0;
  7578. if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
  7579. return 0;
  7580. // Register forms will have 3 operands. Memory form will have more.
  7581. if (NumOperands == 3 &&
  7582. RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
  7583. return 0;
  7584. // All domains are valid.
  7585. return 0xe;
  7586. case X86::MOVHLPSrr:
  7587. // We can swap domains when both inputs are the same register.
  7588. // FIXME: This doesn't catch all the cases we would like. If the input
  7589. // register isn't KILLed by the instruction, the two address instruction
  7590. // pass puts a COPY on one input. The other input uses the original
  7591. // register. This prevents the same physical register from being used by
  7592. // both inputs.
  7593. if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
  7594. MI.getOperand(0).getSubReg() == 0 &&
  7595. MI.getOperand(1).getSubReg() == 0 &&
  7596. MI.getOperand(2).getSubReg() == 0)
  7597. return 0x6;
  7598. return 0;
  7599. case X86::SHUFPDrri:
  7600. return 0x6;
  7601. }
  7602. return 0;
  7603. }
  7604. bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
  7605. unsigned Domain) const {
  7606. assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
  7607. uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
  7608. assert(dom && "Not an SSE instruction");
  7609. unsigned Opcode = MI.getOpcode();
  7610. unsigned NumOperands = MI.getDesc().getNumOperands();
  7611. auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
  7612. if (MI.getOperand(NumOperands - 1).isImm()) {
  7613. unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
  7614. Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
  7615. unsigned NewImm = Imm;
  7616. const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
  7617. if (!table)
  7618. table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
  7619. if (Domain == 1) { // PackedSingle
  7620. AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
  7621. } else if (Domain == 2) { // PackedDouble
  7622. AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
  7623. } else if (Domain == 3) { // PackedInt
  7624. if (Subtarget.hasAVX2()) {
  7625. // If we are already VPBLENDW use that, else use VPBLENDD.
  7626. if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
  7627. table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
  7628. AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
  7629. }
  7630. } else {
  7631. assert(!Is256 && "128-bit vector expected");
  7632. AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
  7633. }
  7634. }
  7635. assert(table && table[Domain - 1] && "Unknown domain op");
  7636. MI.setDesc(get(table[Domain - 1]));
  7637. MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
  7638. }
  7639. return true;
  7640. };
  7641. switch (Opcode) {
  7642. case X86::BLENDPDrmi:
  7643. case X86::BLENDPDrri:
  7644. case X86::VBLENDPDrmi:
  7645. case X86::VBLENDPDrri:
  7646. return SetBlendDomain(2, false);
  7647. case X86::VBLENDPDYrmi:
  7648. case X86::VBLENDPDYrri:
  7649. return SetBlendDomain(4, true);
  7650. case X86::BLENDPSrmi:
  7651. case X86::BLENDPSrri:
  7652. case X86::VBLENDPSrmi:
  7653. case X86::VBLENDPSrri:
  7654. case X86::VPBLENDDrmi:
  7655. case X86::VPBLENDDrri:
  7656. return SetBlendDomain(4, false);
  7657. case X86::VBLENDPSYrmi:
  7658. case X86::VBLENDPSYrri:
  7659. case X86::VPBLENDDYrmi:
  7660. case X86::VPBLENDDYrri:
  7661. return SetBlendDomain(8, true);
  7662. case X86::PBLENDWrmi:
  7663. case X86::PBLENDWrri:
  7664. case X86::VPBLENDWrmi:
  7665. case X86::VPBLENDWrri:
  7666. return SetBlendDomain(8, false);
  7667. case X86::VPBLENDWYrmi:
  7668. case X86::VPBLENDWYrri:
  7669. return SetBlendDomain(16, true);
  7670. case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
  7671. case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
  7672. case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
  7673. case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
  7674. case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
  7675. case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
  7676. case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
  7677. case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
  7678. case X86::VPORDZ128rr: case X86::VPORDZ128rm:
  7679. case X86::VPORDZ256rr: case X86::VPORDZ256rm:
  7680. case X86::VPORQZ128rr: case X86::VPORQZ128rm:
  7681. case X86::VPORQZ256rr: case X86::VPORQZ256rm:
  7682. case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
  7683. case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
  7684. case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
  7685. case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: {
  7686. // Without DQI, convert EVEX instructions to VEX instructions.
  7687. if (Subtarget.hasDQI())
  7688. return false;
  7689. const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
  7690. ReplaceableCustomAVX512LogicInstrs);
  7691. assert(table && "Instruction not found in table?");
  7692. // Don't change integer Q instructions to D instructions and
  7693. // use D intructions if we started with a PS instruction.
  7694. if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
  7695. Domain = 4;
  7696. MI.setDesc(get(table[Domain - 1]));
  7697. return true;
  7698. }
  7699. case X86::UNPCKHPDrr:
  7700. case X86::MOVHLPSrr:
  7701. // We just need to commute the instruction which will switch the domains.
  7702. if (Domain != dom && Domain != 3 &&
  7703. MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
  7704. MI.getOperand(0).getSubReg() == 0 &&
  7705. MI.getOperand(1).getSubReg() == 0 &&
  7706. MI.getOperand(2).getSubReg() == 0) {
  7707. commuteInstruction(MI, false);
  7708. return true;
  7709. }
  7710. // We must always return true for MOVHLPSrr.
  7711. if (Opcode == X86::MOVHLPSrr)
  7712. return true;
  7713. break;
  7714. case X86::SHUFPDrri: {
  7715. if (Domain == 1) {
  7716. unsigned Imm = MI.getOperand(3).getImm();
  7717. unsigned NewImm = 0x44;
  7718. if (Imm & 1) NewImm |= 0x0a;
  7719. if (Imm & 2) NewImm |= 0xa0;
  7720. MI.getOperand(3).setImm(NewImm);
  7721. MI.setDesc(get(X86::SHUFPSrri));
  7722. }
  7723. return true;
  7724. }
  7725. }
  7726. return false;
  7727. }
  7728. std::pair<uint16_t, uint16_t>
  7729. X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
  7730. uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
  7731. unsigned opcode = MI.getOpcode();
  7732. uint16_t validDomains = 0;
  7733. if (domain) {
  7734. // Attempt to match for custom instructions.
  7735. validDomains = getExecutionDomainCustom(MI);
  7736. if (validDomains)
  7737. return std::make_pair(domain, validDomains);
  7738. if (lookup(opcode, domain, ReplaceableInstrs)) {
  7739. validDomains = 0xe;
  7740. } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
  7741. validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
  7742. } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
  7743. validDomains = 0x6;
  7744. } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
  7745. // Insert/extract instructions should only effect domain if AVX2
  7746. // is enabled.
  7747. if (!Subtarget.hasAVX2())
  7748. return std::make_pair(0, 0);
  7749. validDomains = 0xe;
  7750. } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
  7751. validDomains = 0xe;
  7752. } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
  7753. ReplaceableInstrsAVX512DQ)) {
  7754. validDomains = 0xe;
  7755. } else if (Subtarget.hasDQI()) {
  7756. if (const uint16_t *table = lookupAVX512(opcode, domain,
  7757. ReplaceableInstrsAVX512DQMasked)) {
  7758. if (domain == 1 || (domain == 3 && table[3] == opcode))
  7759. validDomains = 0xa;
  7760. else
  7761. validDomains = 0xc;
  7762. }
  7763. }
  7764. }
  7765. return std::make_pair(domain, validDomains);
  7766. }
  7767. void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
  7768. assert(Domain>0 && Domain<4 && "Invalid execution domain");
  7769. uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
  7770. assert(dom && "Not an SSE instruction");
  7771. // Attempt to match for custom instructions.
  7772. if (setExecutionDomainCustom(MI, Domain))
  7773. return;
  7774. const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
  7775. if (!table) { // try the other table
  7776. assert((Subtarget.hasAVX2() || Domain < 3) &&
  7777. "256-bit vector operations only available in AVX2");
  7778. table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
  7779. }
  7780. if (!table) { // try the FP table
  7781. table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
  7782. assert((!table || Domain < 3) &&
  7783. "Can only select PackedSingle or PackedDouble");
  7784. }
  7785. if (!table) { // try the other table
  7786. assert(Subtarget.hasAVX2() &&
  7787. "256-bit insert/extract only available in AVX2");
  7788. table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
  7789. }
  7790. if (!table) { // try the AVX512 table
  7791. assert(Subtarget.hasAVX512() && "Requires AVX-512");
  7792. table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
  7793. // Don't change integer Q instructions to D instructions.
  7794. if (table && Domain == 3 && table[3] == MI.getOpcode())
  7795. Domain = 4;
  7796. }
  7797. if (!table) { // try the AVX512DQ table
  7798. assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
  7799. table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
  7800. // Don't change integer Q instructions to D instructions and
  7801. // use D instructions if we started with a PS instruction.
  7802. if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
  7803. Domain = 4;
  7804. }
  7805. if (!table) { // try the AVX512DQMasked table
  7806. assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
  7807. table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
  7808. if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
  7809. Domain = 4;
  7810. }
  7811. assert(table && "Cannot change domain");
  7812. MI.setDesc(get(table[Domain - 1]));
  7813. }
  7814. /// Return the noop instruction to use for a noop.
  7815. MCInst X86InstrInfo::getNop() const {
  7816. MCInst Nop;
  7817. Nop.setOpcode(X86::NOOP);
  7818. return Nop;
  7819. }
  7820. bool X86InstrInfo::isHighLatencyDef(int opc) const {
  7821. switch (opc) {
  7822. default: return false;
  7823. case X86::DIVPDrm:
  7824. case X86::DIVPDrr:
  7825. case X86::DIVPSrm:
  7826. case X86::DIVPSrr:
  7827. case X86::DIVSDrm:
  7828. case X86::DIVSDrm_Int:
  7829. case X86::DIVSDrr:
  7830. case X86::DIVSDrr_Int:
  7831. case X86::DIVSSrm:
  7832. case X86::DIVSSrm_Int:
  7833. case X86::DIVSSrr:
  7834. case X86::DIVSSrr_Int:
  7835. case X86::SQRTPDm:
  7836. case X86::SQRTPDr:
  7837. case X86::SQRTPSm:
  7838. case X86::SQRTPSr:
  7839. case X86::SQRTSDm:
  7840. case X86::SQRTSDm_Int:
  7841. case X86::SQRTSDr:
  7842. case X86::SQRTSDr_Int:
  7843. case X86::SQRTSSm:
  7844. case X86::SQRTSSm_Int:
  7845. case X86::SQRTSSr:
  7846. case X86::SQRTSSr_Int:
  7847. // AVX instructions with high latency
  7848. case X86::VDIVPDrm:
  7849. case X86::VDIVPDrr:
  7850. case X86::VDIVPDYrm:
  7851. case X86::VDIVPDYrr:
  7852. case X86::VDIVPSrm:
  7853. case X86::VDIVPSrr:
  7854. case X86::VDIVPSYrm:
  7855. case X86::VDIVPSYrr:
  7856. case X86::VDIVSDrm:
  7857. case X86::VDIVSDrm_Int:
  7858. case X86::VDIVSDrr:
  7859. case X86::VDIVSDrr_Int:
  7860. case X86::VDIVSSrm:
  7861. case X86::VDIVSSrm_Int:
  7862. case X86::VDIVSSrr:
  7863. case X86::VDIVSSrr_Int:
  7864. case X86::VSQRTPDm:
  7865. case X86::VSQRTPDr:
  7866. case X86::VSQRTPDYm:
  7867. case X86::VSQRTPDYr:
  7868. case X86::VSQRTPSm:
  7869. case X86::VSQRTPSr:
  7870. case X86::VSQRTPSYm:
  7871. case X86::VSQRTPSYr:
  7872. case X86::VSQRTSDm:
  7873. case X86::VSQRTSDm_Int:
  7874. case X86::VSQRTSDr:
  7875. case X86::VSQRTSDr_Int:
  7876. case X86::VSQRTSSm:
  7877. case X86::VSQRTSSm_Int:
  7878. case X86::VSQRTSSr:
  7879. case X86::VSQRTSSr_Int:
  7880. // AVX512 instructions with high latency
  7881. case X86::VDIVPDZ128rm:
  7882. case X86::VDIVPDZ128rmb:
  7883. case X86::VDIVPDZ128rmbk:
  7884. case X86::VDIVPDZ128rmbkz:
  7885. case X86::VDIVPDZ128rmk:
  7886. case X86::VDIVPDZ128rmkz:
  7887. case X86::VDIVPDZ128rr:
  7888. case X86::VDIVPDZ128rrk:
  7889. case X86::VDIVPDZ128rrkz:
  7890. case X86::VDIVPDZ256rm:
  7891. case X86::VDIVPDZ256rmb:
  7892. case X86::VDIVPDZ256rmbk:
  7893. case X86::VDIVPDZ256rmbkz:
  7894. case X86::VDIVPDZ256rmk:
  7895. case X86::VDIVPDZ256rmkz:
  7896. case X86::VDIVPDZ256rr:
  7897. case X86::VDIVPDZ256rrk:
  7898. case X86::VDIVPDZ256rrkz:
  7899. case X86::VDIVPDZrrb:
  7900. case X86::VDIVPDZrrbk:
  7901. case X86::VDIVPDZrrbkz:
  7902. case X86::VDIVPDZrm:
  7903. case X86::VDIVPDZrmb:
  7904. case X86::VDIVPDZrmbk:
  7905. case X86::VDIVPDZrmbkz:
  7906. case X86::VDIVPDZrmk:
  7907. case X86::VDIVPDZrmkz:
  7908. case X86::VDIVPDZrr:
  7909. case X86::VDIVPDZrrk:
  7910. case X86::VDIVPDZrrkz:
  7911. case X86::VDIVPSZ128rm:
  7912. case X86::VDIVPSZ128rmb:
  7913. case X86::VDIVPSZ128rmbk:
  7914. case X86::VDIVPSZ128rmbkz:
  7915. case X86::VDIVPSZ128rmk:
  7916. case X86::VDIVPSZ128rmkz:
  7917. case X86::VDIVPSZ128rr:
  7918. case X86::VDIVPSZ128rrk:
  7919. case X86::VDIVPSZ128rrkz:
  7920. case X86::VDIVPSZ256rm:
  7921. case X86::VDIVPSZ256rmb:
  7922. case X86::VDIVPSZ256rmbk:
  7923. case X86::VDIVPSZ256rmbkz:
  7924. case X86::VDIVPSZ256rmk:
  7925. case X86::VDIVPSZ256rmkz:
  7926. case X86::VDIVPSZ256rr:
  7927. case X86::VDIVPSZ256rrk:
  7928. case X86::VDIVPSZ256rrkz:
  7929. case X86::VDIVPSZrrb:
  7930. case X86::VDIVPSZrrbk:
  7931. case X86::VDIVPSZrrbkz:
  7932. case X86::VDIVPSZrm:
  7933. case X86::VDIVPSZrmb:
  7934. case X86::VDIVPSZrmbk:
  7935. case X86::VDIVPSZrmbkz:
  7936. case X86::VDIVPSZrmk:
  7937. case X86::VDIVPSZrmkz:
  7938. case X86::VDIVPSZrr:
  7939. case X86::VDIVPSZrrk:
  7940. case X86::VDIVPSZrrkz:
  7941. case X86::VDIVSDZrm:
  7942. case X86::VDIVSDZrr:
  7943. case X86::VDIVSDZrm_Int:
  7944. case X86::VDIVSDZrm_Intk:
  7945. case X86::VDIVSDZrm_Intkz:
  7946. case X86::VDIVSDZrr_Int:
  7947. case X86::VDIVSDZrr_Intk:
  7948. case X86::VDIVSDZrr_Intkz:
  7949. case X86::VDIVSDZrrb_Int:
  7950. case X86::VDIVSDZrrb_Intk:
  7951. case X86::VDIVSDZrrb_Intkz:
  7952. case X86::VDIVSSZrm:
  7953. case X86::VDIVSSZrr:
  7954. case X86::VDIVSSZrm_Int:
  7955. case X86::VDIVSSZrm_Intk:
  7956. case X86::VDIVSSZrm_Intkz:
  7957. case X86::VDIVSSZrr_Int:
  7958. case X86::VDIVSSZrr_Intk:
  7959. case X86::VDIVSSZrr_Intkz:
  7960. case X86::VDIVSSZrrb_Int:
  7961. case X86::VDIVSSZrrb_Intk:
  7962. case X86::VDIVSSZrrb_Intkz:
  7963. case X86::VSQRTPDZ128m:
  7964. case X86::VSQRTPDZ128mb:
  7965. case X86::VSQRTPDZ128mbk:
  7966. case X86::VSQRTPDZ128mbkz:
  7967. case X86::VSQRTPDZ128mk:
  7968. case X86::VSQRTPDZ128mkz:
  7969. case X86::VSQRTPDZ128r:
  7970. case X86::VSQRTPDZ128rk:
  7971. case X86::VSQRTPDZ128rkz:
  7972. case X86::VSQRTPDZ256m:
  7973. case X86::VSQRTPDZ256mb:
  7974. case X86::VSQRTPDZ256mbk:
  7975. case X86::VSQRTPDZ256mbkz:
  7976. case X86::VSQRTPDZ256mk:
  7977. case X86::VSQRTPDZ256mkz:
  7978. case X86::VSQRTPDZ256r:
  7979. case X86::VSQRTPDZ256rk:
  7980. case X86::VSQRTPDZ256rkz:
  7981. case X86::VSQRTPDZm:
  7982. case X86::VSQRTPDZmb:
  7983. case X86::VSQRTPDZmbk:
  7984. case X86::VSQRTPDZmbkz:
  7985. case X86::VSQRTPDZmk:
  7986. case X86::VSQRTPDZmkz:
  7987. case X86::VSQRTPDZr:
  7988. case X86::VSQRTPDZrb:
  7989. case X86::VSQRTPDZrbk:
  7990. case X86::VSQRTPDZrbkz:
  7991. case X86::VSQRTPDZrk:
  7992. case X86::VSQRTPDZrkz:
  7993. case X86::VSQRTPSZ128m:
  7994. case X86::VSQRTPSZ128mb:
  7995. case X86::VSQRTPSZ128mbk:
  7996. case X86::VSQRTPSZ128mbkz:
  7997. case X86::VSQRTPSZ128mk:
  7998. case X86::VSQRTPSZ128mkz:
  7999. case X86::VSQRTPSZ128r:
  8000. case X86::VSQRTPSZ128rk:
  8001. case X86::VSQRTPSZ128rkz:
  8002. case X86::VSQRTPSZ256m:
  8003. case X86::VSQRTPSZ256mb:
  8004. case X86::VSQRTPSZ256mbk:
  8005. case X86::VSQRTPSZ256mbkz:
  8006. case X86::VSQRTPSZ256mk:
  8007. case X86::VSQRTPSZ256mkz:
  8008. case X86::VSQRTPSZ256r:
  8009. case X86::VSQRTPSZ256rk:
  8010. case X86::VSQRTPSZ256rkz:
  8011. case X86::VSQRTPSZm:
  8012. case X86::VSQRTPSZmb:
  8013. case X86::VSQRTPSZmbk:
  8014. case X86::VSQRTPSZmbkz:
  8015. case X86::VSQRTPSZmk:
  8016. case X86::VSQRTPSZmkz:
  8017. case X86::VSQRTPSZr:
  8018. case X86::VSQRTPSZrb:
  8019. case X86::VSQRTPSZrbk:
  8020. case X86::VSQRTPSZrbkz:
  8021. case X86::VSQRTPSZrk:
  8022. case X86::VSQRTPSZrkz:
  8023. case X86::VSQRTSDZm:
  8024. case X86::VSQRTSDZm_Int:
  8025. case X86::VSQRTSDZm_Intk:
  8026. case X86::VSQRTSDZm_Intkz:
  8027. case X86::VSQRTSDZr:
  8028. case X86::VSQRTSDZr_Int:
  8029. case X86::VSQRTSDZr_Intk:
  8030. case X86::VSQRTSDZr_Intkz:
  8031. case X86::VSQRTSDZrb_Int:
  8032. case X86::VSQRTSDZrb_Intk:
  8033. case X86::VSQRTSDZrb_Intkz:
  8034. case X86::VSQRTSSZm:
  8035. case X86::VSQRTSSZm_Int:
  8036. case X86::VSQRTSSZm_Intk:
  8037. case X86::VSQRTSSZm_Intkz:
  8038. case X86::VSQRTSSZr:
  8039. case X86::VSQRTSSZr_Int:
  8040. case X86::VSQRTSSZr_Intk:
  8041. case X86::VSQRTSSZr_Intkz:
  8042. case X86::VSQRTSSZrb_Int:
  8043. case X86::VSQRTSSZrb_Intk:
  8044. case X86::VSQRTSSZrb_Intkz:
  8045. case X86::VGATHERDPDYrm:
  8046. case X86::VGATHERDPDZ128rm:
  8047. case X86::VGATHERDPDZ256rm:
  8048. case X86::VGATHERDPDZrm:
  8049. case X86::VGATHERDPDrm:
  8050. case X86::VGATHERDPSYrm:
  8051. case X86::VGATHERDPSZ128rm:
  8052. case X86::VGATHERDPSZ256rm:
  8053. case X86::VGATHERDPSZrm:
  8054. case X86::VGATHERDPSrm:
  8055. case X86::VGATHERPF0DPDm:
  8056. case X86::VGATHERPF0DPSm:
  8057. case X86::VGATHERPF0QPDm:
  8058. case X86::VGATHERPF0QPSm:
  8059. case X86::VGATHERPF1DPDm:
  8060. case X86::VGATHERPF1DPSm:
  8061. case X86::VGATHERPF1QPDm:
  8062. case X86::VGATHERPF1QPSm:
  8063. case X86::VGATHERQPDYrm:
  8064. case X86::VGATHERQPDZ128rm:
  8065. case X86::VGATHERQPDZ256rm:
  8066. case X86::VGATHERQPDZrm:
  8067. case X86::VGATHERQPDrm:
  8068. case X86::VGATHERQPSYrm:
  8069. case X86::VGATHERQPSZ128rm:
  8070. case X86::VGATHERQPSZ256rm:
  8071. case X86::VGATHERQPSZrm:
  8072. case X86::VGATHERQPSrm:
  8073. case X86::VPGATHERDDYrm:
  8074. case X86::VPGATHERDDZ128rm:
  8075. case X86::VPGATHERDDZ256rm:
  8076. case X86::VPGATHERDDZrm:
  8077. case X86::VPGATHERDDrm:
  8078. case X86::VPGATHERDQYrm:
  8079. case X86::VPGATHERDQZ128rm:
  8080. case X86::VPGATHERDQZ256rm:
  8081. case X86::VPGATHERDQZrm:
  8082. case X86::VPGATHERDQrm:
  8083. case X86::VPGATHERQDYrm:
  8084. case X86::VPGATHERQDZ128rm:
  8085. case X86::VPGATHERQDZ256rm:
  8086. case X86::VPGATHERQDZrm:
  8087. case X86::VPGATHERQDrm:
  8088. case X86::VPGATHERQQYrm:
  8089. case X86::VPGATHERQQZ128rm:
  8090. case X86::VPGATHERQQZ256rm:
  8091. case X86::VPGATHERQQZrm:
  8092. case X86::VPGATHERQQrm:
  8093. case X86::VSCATTERDPDZ128mr:
  8094. case X86::VSCATTERDPDZ256mr:
  8095. case X86::VSCATTERDPDZmr:
  8096. case X86::VSCATTERDPSZ128mr:
  8097. case X86::VSCATTERDPSZ256mr:
  8098. case X86::VSCATTERDPSZmr:
  8099. case X86::VSCATTERPF0DPDm:
  8100. case X86::VSCATTERPF0DPSm:
  8101. case X86::VSCATTERPF0QPDm:
  8102. case X86::VSCATTERPF0QPSm:
  8103. case X86::VSCATTERPF1DPDm:
  8104. case X86::VSCATTERPF1DPSm:
  8105. case X86::VSCATTERPF1QPDm:
  8106. case X86::VSCATTERPF1QPSm:
  8107. case X86::VSCATTERQPDZ128mr:
  8108. case X86::VSCATTERQPDZ256mr:
  8109. case X86::VSCATTERQPDZmr:
  8110. case X86::VSCATTERQPSZ128mr:
  8111. case X86::VSCATTERQPSZ256mr:
  8112. case X86::VSCATTERQPSZmr:
  8113. case X86::VPSCATTERDDZ128mr:
  8114. case X86::VPSCATTERDDZ256mr:
  8115. case X86::VPSCATTERDDZmr:
  8116. case X86::VPSCATTERDQZ128mr:
  8117. case X86::VPSCATTERDQZ256mr:
  8118. case X86::VPSCATTERDQZmr:
  8119. case X86::VPSCATTERQDZ128mr:
  8120. case X86::VPSCATTERQDZ256mr:
  8121. case X86::VPSCATTERQDZmr:
  8122. case X86::VPSCATTERQQZ128mr:
  8123. case X86::VPSCATTERQQZ256mr:
  8124. case X86::VPSCATTERQQZmr:
  8125. return true;
  8126. }
  8127. }
  8128. bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
  8129. const MachineRegisterInfo *MRI,
  8130. const MachineInstr &DefMI,
  8131. unsigned DefIdx,
  8132. const MachineInstr &UseMI,
  8133. unsigned UseIdx) const {
  8134. return isHighLatencyDef(DefMI.getOpcode());
  8135. }
  8136. bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
  8137. const MachineBasicBlock *MBB) const {
  8138. assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
  8139. Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
  8140. // Integer binary math/logic instructions have a third source operand:
  8141. // the EFLAGS register. That operand must be both defined here and never
  8142. // used; ie, it must be dead. If the EFLAGS operand is live, then we can
  8143. // not change anything because rearranging the operands could affect other
  8144. // instructions that depend on the exact status flags (zero, sign, etc.)
  8145. // that are set by using these particular operands with this operation.
  8146. const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
  8147. assert((Inst.getNumDefs() == 1 || FlagDef) &&
  8148. "Implicit def isn't flags?");
  8149. if (FlagDef && !FlagDef->isDead())
  8150. return false;
  8151. return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
  8152. }
  8153. // TODO: There are many more machine instruction opcodes to match:
  8154. // 1. Other data types (integer, vectors)
  8155. // 2. Other math / logic operations (xor, or)
  8156. // 3. Other forms of the same operation (intrinsics and other variants)
  8157. bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst,
  8158. bool Invert) const {
  8159. if (Invert)
  8160. return false;
  8161. switch (Inst.getOpcode()) {
  8162. case X86::ADD8rr:
  8163. case X86::ADD16rr:
  8164. case X86::ADD32rr:
  8165. case X86::ADD64rr:
  8166. case X86::AND8rr:
  8167. case X86::AND16rr:
  8168. case X86::AND32rr:
  8169. case X86::AND64rr:
  8170. case X86::OR8rr:
  8171. case X86::OR16rr:
  8172. case X86::OR32rr:
  8173. case X86::OR64rr:
  8174. case X86::XOR8rr:
  8175. case X86::XOR16rr:
  8176. case X86::XOR32rr:
  8177. case X86::XOR64rr:
  8178. case X86::IMUL16rr:
  8179. case X86::IMUL32rr:
  8180. case X86::IMUL64rr:
  8181. case X86::PANDrr:
  8182. case X86::PORrr:
  8183. case X86::PXORrr:
  8184. case X86::ANDPDrr:
  8185. case X86::ANDPSrr:
  8186. case X86::ORPDrr:
  8187. case X86::ORPSrr:
  8188. case X86::XORPDrr:
  8189. case X86::XORPSrr:
  8190. case X86::PADDBrr:
  8191. case X86::PADDWrr:
  8192. case X86::PADDDrr:
  8193. case X86::PADDQrr:
  8194. case X86::PMULLWrr:
  8195. case X86::PMULLDrr:
  8196. case X86::PMAXSBrr:
  8197. case X86::PMAXSDrr:
  8198. case X86::PMAXSWrr:
  8199. case X86::PMAXUBrr:
  8200. case X86::PMAXUDrr:
  8201. case X86::PMAXUWrr:
  8202. case X86::PMINSBrr:
  8203. case X86::PMINSDrr:
  8204. case X86::PMINSWrr:
  8205. case X86::PMINUBrr:
  8206. case X86::PMINUDrr:
  8207. case X86::PMINUWrr:
  8208. case X86::VPANDrr:
  8209. case X86::VPANDYrr:
  8210. case X86::VPANDDZ128rr:
  8211. case X86::VPANDDZ256rr:
  8212. case X86::VPANDDZrr:
  8213. case X86::VPANDQZ128rr:
  8214. case X86::VPANDQZ256rr:
  8215. case X86::VPANDQZrr:
  8216. case X86::VPORrr:
  8217. case X86::VPORYrr:
  8218. case X86::VPORDZ128rr:
  8219. case X86::VPORDZ256rr:
  8220. case X86::VPORDZrr:
  8221. case X86::VPORQZ128rr:
  8222. case X86::VPORQZ256rr:
  8223. case X86::VPORQZrr:
  8224. case X86::VPXORrr:
  8225. case X86::VPXORYrr:
  8226. case X86::VPXORDZ128rr:
  8227. case X86::VPXORDZ256rr:
  8228. case X86::VPXORDZrr:
  8229. case X86::VPXORQZ128rr:
  8230. case X86::VPXORQZ256rr:
  8231. case X86::VPXORQZrr:
  8232. case X86::VANDPDrr:
  8233. case X86::VANDPSrr:
  8234. case X86::VANDPDYrr:
  8235. case X86::VANDPSYrr:
  8236. case X86::VANDPDZ128rr:
  8237. case X86::VANDPSZ128rr:
  8238. case X86::VANDPDZ256rr:
  8239. case X86::VANDPSZ256rr:
  8240. case X86::VANDPDZrr:
  8241. case X86::VANDPSZrr:
  8242. case X86::VORPDrr:
  8243. case X86::VORPSrr:
  8244. case X86::VORPDYrr:
  8245. case X86::VORPSYrr:
  8246. case X86::VORPDZ128rr:
  8247. case X86::VORPSZ128rr:
  8248. case X86::VORPDZ256rr:
  8249. case X86::VORPSZ256rr:
  8250. case X86::VORPDZrr:
  8251. case X86::VORPSZrr:
  8252. case X86::VXORPDrr:
  8253. case X86::VXORPSrr:
  8254. case X86::VXORPDYrr:
  8255. case X86::VXORPSYrr:
  8256. case X86::VXORPDZ128rr:
  8257. case X86::VXORPSZ128rr:
  8258. case X86::VXORPDZ256rr:
  8259. case X86::VXORPSZ256rr:
  8260. case X86::VXORPDZrr:
  8261. case X86::VXORPSZrr:
  8262. case X86::KADDBrr:
  8263. case X86::KADDWrr:
  8264. case X86::KADDDrr:
  8265. case X86::KADDQrr:
  8266. case X86::KANDBrr:
  8267. case X86::KANDWrr:
  8268. case X86::KANDDrr:
  8269. case X86::KANDQrr:
  8270. case X86::KORBrr:
  8271. case X86::KORWrr:
  8272. case X86::KORDrr:
  8273. case X86::KORQrr:
  8274. case X86::KXORBrr:
  8275. case X86::KXORWrr:
  8276. case X86::KXORDrr:
  8277. case X86::KXORQrr:
  8278. case X86::VPADDBrr:
  8279. case X86::VPADDWrr:
  8280. case X86::VPADDDrr:
  8281. case X86::VPADDQrr:
  8282. case X86::VPADDBYrr:
  8283. case X86::VPADDWYrr:
  8284. case X86::VPADDDYrr:
  8285. case X86::VPADDQYrr:
  8286. case X86::VPADDBZ128rr:
  8287. case X86::VPADDWZ128rr:
  8288. case X86::VPADDDZ128rr:
  8289. case X86::VPADDQZ128rr:
  8290. case X86::VPADDBZ256rr:
  8291. case X86::VPADDWZ256rr:
  8292. case X86::VPADDDZ256rr:
  8293. case X86::VPADDQZ256rr:
  8294. case X86::VPADDBZrr:
  8295. case X86::VPADDWZrr:
  8296. case X86::VPADDDZrr:
  8297. case X86::VPADDQZrr:
  8298. case X86::VPMULLWrr:
  8299. case X86::VPMULLWYrr:
  8300. case X86::VPMULLWZ128rr:
  8301. case X86::VPMULLWZ256rr:
  8302. case X86::VPMULLWZrr:
  8303. case X86::VPMULLDrr:
  8304. case X86::VPMULLDYrr:
  8305. case X86::VPMULLDZ128rr:
  8306. case X86::VPMULLDZ256rr:
  8307. case X86::VPMULLDZrr:
  8308. case X86::VPMULLQZ128rr:
  8309. case X86::VPMULLQZ256rr:
  8310. case X86::VPMULLQZrr:
  8311. case X86::VPMAXSBrr:
  8312. case X86::VPMAXSBYrr:
  8313. case X86::VPMAXSBZ128rr:
  8314. case X86::VPMAXSBZ256rr:
  8315. case X86::VPMAXSBZrr:
  8316. case X86::VPMAXSDrr:
  8317. case X86::VPMAXSDYrr:
  8318. case X86::VPMAXSDZ128rr:
  8319. case X86::VPMAXSDZ256rr:
  8320. case X86::VPMAXSDZrr:
  8321. case X86::VPMAXSQZ128rr:
  8322. case X86::VPMAXSQZ256rr:
  8323. case X86::VPMAXSQZrr:
  8324. case X86::VPMAXSWrr:
  8325. case X86::VPMAXSWYrr:
  8326. case X86::VPMAXSWZ128rr:
  8327. case X86::VPMAXSWZ256rr:
  8328. case X86::VPMAXSWZrr:
  8329. case X86::VPMAXUBrr:
  8330. case X86::VPMAXUBYrr:
  8331. case X86::VPMAXUBZ128rr:
  8332. case X86::VPMAXUBZ256rr:
  8333. case X86::VPMAXUBZrr:
  8334. case X86::VPMAXUDrr:
  8335. case X86::VPMAXUDYrr:
  8336. case X86::VPMAXUDZ128rr:
  8337. case X86::VPMAXUDZ256rr:
  8338. case X86::VPMAXUDZrr:
  8339. case X86::VPMAXUQZ128rr:
  8340. case X86::VPMAXUQZ256rr:
  8341. case X86::VPMAXUQZrr:
  8342. case X86::VPMAXUWrr:
  8343. case X86::VPMAXUWYrr:
  8344. case X86::VPMAXUWZ128rr:
  8345. case X86::VPMAXUWZ256rr:
  8346. case X86::VPMAXUWZrr:
  8347. case X86::VPMINSBrr:
  8348. case X86::VPMINSBYrr:
  8349. case X86::VPMINSBZ128rr:
  8350. case X86::VPMINSBZ256rr:
  8351. case X86::VPMINSBZrr:
  8352. case X86::VPMINSDrr:
  8353. case X86::VPMINSDYrr:
  8354. case X86::VPMINSDZ128rr:
  8355. case X86::VPMINSDZ256rr:
  8356. case X86::VPMINSDZrr:
  8357. case X86::VPMINSQZ128rr:
  8358. case X86::VPMINSQZ256rr:
  8359. case X86::VPMINSQZrr:
  8360. case X86::VPMINSWrr:
  8361. case X86::VPMINSWYrr:
  8362. case X86::VPMINSWZ128rr:
  8363. case X86::VPMINSWZ256rr:
  8364. case X86::VPMINSWZrr:
  8365. case X86::VPMINUBrr:
  8366. case X86::VPMINUBYrr:
  8367. case X86::VPMINUBZ128rr:
  8368. case X86::VPMINUBZ256rr:
  8369. case X86::VPMINUBZrr:
  8370. case X86::VPMINUDrr:
  8371. case X86::VPMINUDYrr:
  8372. case X86::VPMINUDZ128rr:
  8373. case X86::VPMINUDZ256rr:
  8374. case X86::VPMINUDZrr:
  8375. case X86::VPMINUQZ128rr:
  8376. case X86::VPMINUQZ256rr:
  8377. case X86::VPMINUQZrr:
  8378. case X86::VPMINUWrr:
  8379. case X86::VPMINUWYrr:
  8380. case X86::VPMINUWZ128rr:
  8381. case X86::VPMINUWZ256rr:
  8382. case X86::VPMINUWZrr:
  8383. // Normal min/max instructions are not commutative because of NaN and signed
  8384. // zero semantics, but these are. Thus, there's no need to check for global
  8385. // relaxed math; the instructions themselves have the properties we need.
  8386. case X86::MAXCPDrr:
  8387. case X86::MAXCPSrr:
  8388. case X86::MAXCSDrr:
  8389. case X86::MAXCSSrr:
  8390. case X86::MINCPDrr:
  8391. case X86::MINCPSrr:
  8392. case X86::MINCSDrr:
  8393. case X86::MINCSSrr:
  8394. case X86::VMAXCPDrr:
  8395. case X86::VMAXCPSrr:
  8396. case X86::VMAXCPDYrr:
  8397. case X86::VMAXCPSYrr:
  8398. case X86::VMAXCPDZ128rr:
  8399. case X86::VMAXCPSZ128rr:
  8400. case X86::VMAXCPDZ256rr:
  8401. case X86::VMAXCPSZ256rr:
  8402. case X86::VMAXCPDZrr:
  8403. case X86::VMAXCPSZrr:
  8404. case X86::VMAXCSDrr:
  8405. case X86::VMAXCSSrr:
  8406. case X86::VMAXCSDZrr:
  8407. case X86::VMAXCSSZrr:
  8408. case X86::VMINCPDrr:
  8409. case X86::VMINCPSrr:
  8410. case X86::VMINCPDYrr:
  8411. case X86::VMINCPSYrr:
  8412. case X86::VMINCPDZ128rr:
  8413. case X86::VMINCPSZ128rr:
  8414. case X86::VMINCPDZ256rr:
  8415. case X86::VMINCPSZ256rr:
  8416. case X86::VMINCPDZrr:
  8417. case X86::VMINCPSZrr:
  8418. case X86::VMINCSDrr:
  8419. case X86::VMINCSSrr:
  8420. case X86::VMINCSDZrr:
  8421. case X86::VMINCSSZrr:
  8422. case X86::VMAXCPHZ128rr:
  8423. case X86::VMAXCPHZ256rr:
  8424. case X86::VMAXCPHZrr:
  8425. case X86::VMAXCSHZrr:
  8426. case X86::VMINCPHZ128rr:
  8427. case X86::VMINCPHZ256rr:
  8428. case X86::VMINCPHZrr:
  8429. case X86::VMINCSHZrr:
  8430. return true;
  8431. case X86::ADDPDrr:
  8432. case X86::ADDPSrr:
  8433. case X86::ADDSDrr:
  8434. case X86::ADDSSrr:
  8435. case X86::MULPDrr:
  8436. case X86::MULPSrr:
  8437. case X86::MULSDrr:
  8438. case X86::MULSSrr:
  8439. case X86::VADDPDrr:
  8440. case X86::VADDPSrr:
  8441. case X86::VADDPDYrr:
  8442. case X86::VADDPSYrr:
  8443. case X86::VADDPDZ128rr:
  8444. case X86::VADDPSZ128rr:
  8445. case X86::VADDPDZ256rr:
  8446. case X86::VADDPSZ256rr:
  8447. case X86::VADDPDZrr:
  8448. case X86::VADDPSZrr:
  8449. case X86::VADDSDrr:
  8450. case X86::VADDSSrr:
  8451. case X86::VADDSDZrr:
  8452. case X86::VADDSSZrr:
  8453. case X86::VMULPDrr:
  8454. case X86::VMULPSrr:
  8455. case X86::VMULPDYrr:
  8456. case X86::VMULPSYrr:
  8457. case X86::VMULPDZ128rr:
  8458. case X86::VMULPSZ128rr:
  8459. case X86::VMULPDZ256rr:
  8460. case X86::VMULPSZ256rr:
  8461. case X86::VMULPDZrr:
  8462. case X86::VMULPSZrr:
  8463. case X86::VMULSDrr:
  8464. case X86::VMULSSrr:
  8465. case X86::VMULSDZrr:
  8466. case X86::VMULSSZrr:
  8467. case X86::VADDPHZ128rr:
  8468. case X86::VADDPHZ256rr:
  8469. case X86::VADDPHZrr:
  8470. case X86::VADDSHZrr:
  8471. case X86::VMULPHZ128rr:
  8472. case X86::VMULPHZ256rr:
  8473. case X86::VMULPHZrr:
  8474. case X86::VMULSHZrr:
  8475. return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
  8476. Inst.getFlag(MachineInstr::MIFlag::FmNsz);
  8477. default:
  8478. return false;
  8479. }
  8480. }
  8481. /// If \p DescribedReg overlaps with the MOVrr instruction's destination
  8482. /// register then, if possible, describe the value in terms of the source
  8483. /// register.
  8484. static std::optional<ParamLoadedValue>
  8485. describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
  8486. const TargetRegisterInfo *TRI) {
  8487. Register DestReg = MI.getOperand(0).getReg();
  8488. Register SrcReg = MI.getOperand(1).getReg();
  8489. auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
  8490. // If the described register is the destination, just return the source.
  8491. if (DestReg == DescribedReg)
  8492. return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
  8493. // If the described register is a sub-register of the destination register,
  8494. // then pick out the source register's corresponding sub-register.
  8495. if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
  8496. Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
  8497. return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
  8498. }
  8499. // The remaining case to consider is when the described register is a
  8500. // super-register of the destination register. MOV8rr and MOV16rr does not
  8501. // write to any of the other bytes in the register, meaning that we'd have to
  8502. // describe the value using a combination of the source register and the
  8503. // non-overlapping bits in the described register, which is not currently
  8504. // possible.
  8505. if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
  8506. !TRI->isSuperRegister(DestReg, DescribedReg))
  8507. return std::nullopt;
  8508. assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
  8509. return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
  8510. }
  8511. std::optional<ParamLoadedValue>
  8512. X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
  8513. const MachineOperand *Op = nullptr;
  8514. DIExpression *Expr = nullptr;
  8515. const TargetRegisterInfo *TRI = &getRegisterInfo();
  8516. switch (MI.getOpcode()) {
  8517. case X86::LEA32r:
  8518. case X86::LEA64r:
  8519. case X86::LEA64_32r: {
  8520. // We may need to describe a 64-bit parameter with a 32-bit LEA.
  8521. if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
  8522. return std::nullopt;
  8523. // Operand 4 could be global address. For now we do not support
  8524. // such situation.
  8525. if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
  8526. return std::nullopt;
  8527. const MachineOperand &Op1 = MI.getOperand(1);
  8528. const MachineOperand &Op2 = MI.getOperand(3);
  8529. assert(Op2.isReg() &&
  8530. (Op2.getReg() == X86::NoRegister || Op2.getReg().isPhysical()));
  8531. // Omit situations like:
  8532. // %rsi = lea %rsi, 4, ...
  8533. if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
  8534. Op2.getReg() == MI.getOperand(0).getReg())
  8535. return std::nullopt;
  8536. else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
  8537. TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
  8538. (Op2.getReg() != X86::NoRegister &&
  8539. TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
  8540. return std::nullopt;
  8541. int64_t Coef = MI.getOperand(2).getImm();
  8542. int64_t Offset = MI.getOperand(4).getImm();
  8543. SmallVector<uint64_t, 8> Ops;
  8544. if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
  8545. Op = &Op1;
  8546. } else if (Op1.isFI())
  8547. Op = &Op1;
  8548. if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
  8549. Ops.push_back(dwarf::DW_OP_constu);
  8550. Ops.push_back(Coef + 1);
  8551. Ops.push_back(dwarf::DW_OP_mul);
  8552. } else {
  8553. if (Op && Op2.getReg() != X86::NoRegister) {
  8554. int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
  8555. if (dwarfReg < 0)
  8556. return std::nullopt;
  8557. else if (dwarfReg < 32) {
  8558. Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
  8559. Ops.push_back(0);
  8560. } else {
  8561. Ops.push_back(dwarf::DW_OP_bregx);
  8562. Ops.push_back(dwarfReg);
  8563. Ops.push_back(0);
  8564. }
  8565. } else if (!Op) {
  8566. assert(Op2.getReg() != X86::NoRegister);
  8567. Op = &Op2;
  8568. }
  8569. if (Coef > 1) {
  8570. assert(Op2.getReg() != X86::NoRegister);
  8571. Ops.push_back(dwarf::DW_OP_constu);
  8572. Ops.push_back(Coef);
  8573. Ops.push_back(dwarf::DW_OP_mul);
  8574. }
  8575. if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
  8576. Op2.getReg() != X86::NoRegister) {
  8577. Ops.push_back(dwarf::DW_OP_plus);
  8578. }
  8579. }
  8580. DIExpression::appendOffset(Ops, Offset);
  8581. Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
  8582. return ParamLoadedValue(*Op, Expr);;
  8583. }
  8584. case X86::MOV8ri:
  8585. case X86::MOV16ri:
  8586. // TODO: Handle MOV8ri and MOV16ri.
  8587. return std::nullopt;
  8588. case X86::MOV32ri:
  8589. case X86::MOV64ri:
  8590. case X86::MOV64ri32:
  8591. // MOV32ri may be used for producing zero-extended 32-bit immediates in
  8592. // 64-bit parameters, so we need to consider super-registers.
  8593. if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
  8594. return std::nullopt;
  8595. return ParamLoadedValue(MI.getOperand(1), Expr);
  8596. case X86::MOV8rr:
  8597. case X86::MOV16rr:
  8598. case X86::MOV32rr:
  8599. case X86::MOV64rr:
  8600. return describeMOVrrLoadedValue(MI, Reg, TRI);
  8601. case X86::XOR32rr: {
  8602. // 64-bit parameters are zero-materialized using XOR32rr, so also consider
  8603. // super-registers.
  8604. if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
  8605. return std::nullopt;
  8606. if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
  8607. return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
  8608. return std::nullopt;
  8609. }
  8610. case X86::MOVSX64rr32: {
  8611. // We may need to describe the lower 32 bits of the MOVSX; for example, in
  8612. // cases like this:
  8613. //
  8614. // $ebx = [...]
  8615. // $rdi = MOVSX64rr32 $ebx
  8616. // $esi = MOV32rr $edi
  8617. if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
  8618. return std::nullopt;
  8619. Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
  8620. // If the described register is the destination register we need to
  8621. // sign-extend the source register from 32 bits. The other case we handle
  8622. // is when the described register is the 32-bit sub-register of the
  8623. // destination register, in case we just need to return the source
  8624. // register.
  8625. if (Reg == MI.getOperand(0).getReg())
  8626. Expr = DIExpression::appendExt(Expr, 32, 64, true);
  8627. else
  8628. assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
  8629. "Unhandled sub-register case for MOVSX64rr32");
  8630. return ParamLoadedValue(MI.getOperand(1), Expr);
  8631. }
  8632. default:
  8633. assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
  8634. return TargetInstrInfo::describeLoadedValue(MI, Reg);
  8635. }
  8636. }
  8637. /// This is an architecture-specific helper function of reassociateOps.
  8638. /// Set special operand attributes for new instructions after reassociation.
  8639. void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
  8640. MachineInstr &OldMI2,
  8641. MachineInstr &NewMI1,
  8642. MachineInstr &NewMI2) const {
  8643. // Propagate FP flags from the original instructions.
  8644. // But clear poison-generating flags because those may not be valid now.
  8645. // TODO: There should be a helper function for copying only fast-math-flags.
  8646. uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
  8647. NewMI1.setFlags(IntersectedFlags);
  8648. NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
  8649. NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
  8650. NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
  8651. NewMI2.setFlags(IntersectedFlags);
  8652. NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
  8653. NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
  8654. NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
  8655. // Integer instructions may define an implicit EFLAGS dest register operand.
  8656. MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
  8657. MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
  8658. assert(!OldFlagDef1 == !OldFlagDef2 &&
  8659. "Unexpected instruction type for reassociation");
  8660. if (!OldFlagDef1 || !OldFlagDef2)
  8661. return;
  8662. assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
  8663. "Must have dead EFLAGS operand in reassociable instruction");
  8664. MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
  8665. MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
  8666. assert(NewFlagDef1 && NewFlagDef2 &&
  8667. "Unexpected operand in reassociable instruction");
  8668. // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
  8669. // of this pass or other passes. The EFLAGS operands must be dead in these new
  8670. // instructions because the EFLAGS operands in the original instructions must
  8671. // be dead in order for reassociation to occur.
  8672. NewFlagDef1->setIsDead();
  8673. NewFlagDef2->setIsDead();
  8674. }
  8675. std::pair<unsigned, unsigned>
  8676. X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
  8677. return std::make_pair(TF, 0u);
  8678. }
  8679. ArrayRef<std::pair<unsigned, const char *>>
  8680. X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
  8681. using namespace X86II;
  8682. static const std::pair<unsigned, const char *> TargetFlags[] = {
  8683. {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
  8684. {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
  8685. {MO_GOT, "x86-got"},
  8686. {MO_GOTOFF, "x86-gotoff"},
  8687. {MO_GOTPCREL, "x86-gotpcrel"},
  8688. {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"},
  8689. {MO_PLT, "x86-plt"},
  8690. {MO_TLSGD, "x86-tlsgd"},
  8691. {MO_TLSLD, "x86-tlsld"},
  8692. {MO_TLSLDM, "x86-tlsldm"},
  8693. {MO_GOTTPOFF, "x86-gottpoff"},
  8694. {MO_INDNTPOFF, "x86-indntpoff"},
  8695. {MO_TPOFF, "x86-tpoff"},
  8696. {MO_DTPOFF, "x86-dtpoff"},
  8697. {MO_NTPOFF, "x86-ntpoff"},
  8698. {MO_GOTNTPOFF, "x86-gotntpoff"},
  8699. {MO_DLLIMPORT, "x86-dllimport"},
  8700. {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
  8701. {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
  8702. {MO_TLVP, "x86-tlvp"},
  8703. {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
  8704. {MO_SECREL, "x86-secrel"},
  8705. {MO_COFFSTUB, "x86-coffstub"}};
  8706. return ArrayRef(TargetFlags);
  8707. }
  8708. namespace {
  8709. /// Create Global Base Reg pass. This initializes the PIC
  8710. /// global base register for x86-32.
  8711. struct CGBR : public MachineFunctionPass {
  8712. static char ID;
  8713. CGBR() : MachineFunctionPass(ID) {}
  8714. bool runOnMachineFunction(MachineFunction &MF) override {
  8715. const X86TargetMachine *TM =
  8716. static_cast<const X86TargetMachine *>(&MF.getTarget());
  8717. const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
  8718. // Don't do anything in the 64-bit small and kernel code models. They use
  8719. // RIP-relative addressing for everything.
  8720. if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
  8721. TM->getCodeModel() == CodeModel::Kernel))
  8722. return false;
  8723. // Only emit a global base reg in PIC mode.
  8724. if (!TM->isPositionIndependent())
  8725. return false;
  8726. X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
  8727. Register GlobalBaseReg = X86FI->getGlobalBaseReg();
  8728. // If we didn't need a GlobalBaseReg, don't insert code.
  8729. if (GlobalBaseReg == 0)
  8730. return false;
  8731. // Insert the set of GlobalBaseReg into the first MBB of the function
  8732. MachineBasicBlock &FirstMBB = MF.front();
  8733. MachineBasicBlock::iterator MBBI = FirstMBB.begin();
  8734. DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
  8735. MachineRegisterInfo &RegInfo = MF.getRegInfo();
  8736. const X86InstrInfo *TII = STI.getInstrInfo();
  8737. Register PC;
  8738. if (STI.isPICStyleGOT())
  8739. PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
  8740. else
  8741. PC = GlobalBaseReg;
  8742. if (STI.is64Bit()) {
  8743. if (TM->getCodeModel() == CodeModel::Medium) {
  8744. // In the medium code model, use a RIP-relative LEA to materialize the
  8745. // GOT.
  8746. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
  8747. .addReg(X86::RIP)
  8748. .addImm(0)
  8749. .addReg(0)
  8750. .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
  8751. .addReg(0);
  8752. } else if (TM->getCodeModel() == CodeModel::Large) {
  8753. // In the large code model, we are aiming for this code, though the
  8754. // register allocation may vary:
  8755. // leaq .LN$pb(%rip), %rax
  8756. // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
  8757. // addq %rcx, %rax
  8758. // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
  8759. Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
  8760. Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
  8761. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
  8762. .addReg(X86::RIP)
  8763. .addImm(0)
  8764. .addReg(0)
  8765. .addSym(MF.getPICBaseSymbol())
  8766. .addReg(0);
  8767. std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
  8768. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
  8769. .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
  8770. X86II::MO_PIC_BASE_OFFSET);
  8771. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
  8772. .addReg(PBReg, RegState::Kill)
  8773. .addReg(GOTReg, RegState::Kill);
  8774. } else {
  8775. llvm_unreachable("unexpected code model");
  8776. }
  8777. } else {
  8778. // Operand of MovePCtoStack is completely ignored by asm printer. It's
  8779. // only used in JIT code emission as displacement to pc.
  8780. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
  8781. // If we're using vanilla 'GOT' PIC style, we should use relative
  8782. // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
  8783. if (STI.isPICStyleGOT()) {
  8784. // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
  8785. // %some_register
  8786. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
  8787. .addReg(PC)
  8788. .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
  8789. X86II::MO_GOT_ABSOLUTE_ADDRESS);
  8790. }
  8791. }
  8792. return true;
  8793. }
  8794. StringRef getPassName() const override {
  8795. return "X86 PIC Global Base Reg Initialization";
  8796. }
  8797. void getAnalysisUsage(AnalysisUsage &AU) const override {
  8798. AU.setPreservesCFG();
  8799. MachineFunctionPass::getAnalysisUsage(AU);
  8800. }
  8801. };
  8802. } // namespace
  8803. char CGBR::ID = 0;
  8804. FunctionPass*
  8805. llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
  8806. namespace {
  8807. struct LDTLSCleanup : public MachineFunctionPass {
  8808. static char ID;
  8809. LDTLSCleanup() : MachineFunctionPass(ID) {}
  8810. bool runOnMachineFunction(MachineFunction &MF) override {
  8811. if (skipFunction(MF.getFunction()))
  8812. return false;
  8813. X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
  8814. if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
  8815. // No point folding accesses if there isn't at least two.
  8816. return false;
  8817. }
  8818. MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
  8819. return VisitNode(DT->getRootNode(), 0);
  8820. }
  8821. // Visit the dominator subtree rooted at Node in pre-order.
  8822. // If TLSBaseAddrReg is non-null, then use that to replace any
  8823. // TLS_base_addr instructions. Otherwise, create the register
  8824. // when the first such instruction is seen, and then use it
  8825. // as we encounter more instructions.
  8826. bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
  8827. MachineBasicBlock *BB = Node->getBlock();
  8828. bool Changed = false;
  8829. // Traverse the current block.
  8830. for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
  8831. ++I) {
  8832. switch (I->getOpcode()) {
  8833. case X86::TLS_base_addr32:
  8834. case X86::TLS_base_addr64:
  8835. if (TLSBaseAddrReg)
  8836. I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
  8837. else
  8838. I = SetRegister(*I, &TLSBaseAddrReg);
  8839. Changed = true;
  8840. break;
  8841. default:
  8842. break;
  8843. }
  8844. }
  8845. // Visit the children of this block in the dominator tree.
  8846. for (auto &I : *Node) {
  8847. Changed |= VisitNode(I, TLSBaseAddrReg);
  8848. }
  8849. return Changed;
  8850. }
  8851. // Replace the TLS_base_addr instruction I with a copy from
  8852. // TLSBaseAddrReg, returning the new instruction.
  8853. MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
  8854. unsigned TLSBaseAddrReg) {
  8855. MachineFunction *MF = I.getParent()->getParent();
  8856. const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
  8857. const bool is64Bit = STI.is64Bit();
  8858. const X86InstrInfo *TII = STI.getInstrInfo();
  8859. // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
  8860. MachineInstr *Copy =
  8861. BuildMI(*I.getParent(), I, I.getDebugLoc(),
  8862. TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
  8863. .addReg(TLSBaseAddrReg);
  8864. // Erase the TLS_base_addr instruction.
  8865. I.eraseFromParent();
  8866. return Copy;
  8867. }
  8868. // Create a virtual register in *TLSBaseAddrReg, and populate it by
  8869. // inserting a copy instruction after I. Returns the new instruction.
  8870. MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
  8871. MachineFunction *MF = I.getParent()->getParent();
  8872. const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
  8873. const bool is64Bit = STI.is64Bit();
  8874. const X86InstrInfo *TII = STI.getInstrInfo();
  8875. // Create a virtual register for the TLS base address.
  8876. MachineRegisterInfo &RegInfo = MF->getRegInfo();
  8877. *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
  8878. ? &X86::GR64RegClass
  8879. : &X86::GR32RegClass);
  8880. // Insert a copy from RAX/EAX to TLSBaseAddrReg.
  8881. MachineInstr *Next = I.getNextNode();
  8882. MachineInstr *Copy =
  8883. BuildMI(*I.getParent(), Next, I.getDebugLoc(),
  8884. TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
  8885. .addReg(is64Bit ? X86::RAX : X86::EAX);
  8886. return Copy;
  8887. }
  8888. StringRef getPassName() const override {
  8889. return "Local Dynamic TLS Access Clean-up";
  8890. }
  8891. void getAnalysisUsage(AnalysisUsage &AU) const override {
  8892. AU.setPreservesCFG();
  8893. AU.addRequired<MachineDominatorTree>();
  8894. MachineFunctionPass::getAnalysisUsage(AU);
  8895. }
  8896. };
  8897. }
  8898. char LDTLSCleanup::ID = 0;
  8899. FunctionPass*
  8900. llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
  8901. /// Constants defining how certain sequences should be outlined.
  8902. ///
  8903. /// \p MachineOutlinerDefault implies that the function is called with a call
  8904. /// instruction, and a return must be emitted for the outlined function frame.
  8905. ///
  8906. /// That is,
  8907. ///
  8908. /// I1 OUTLINED_FUNCTION:
  8909. /// I2 --> call OUTLINED_FUNCTION I1
  8910. /// I3 I2
  8911. /// I3
  8912. /// ret
  8913. ///
  8914. /// * Call construction overhead: 1 (call instruction)
  8915. /// * Frame construction overhead: 1 (return instruction)
  8916. ///
  8917. /// \p MachineOutlinerTailCall implies that the function is being tail called.
  8918. /// A jump is emitted instead of a call, and the return is already present in
  8919. /// the outlined sequence. That is,
  8920. ///
  8921. /// I1 OUTLINED_FUNCTION:
  8922. /// I2 --> jmp OUTLINED_FUNCTION I1
  8923. /// ret I2
  8924. /// ret
  8925. ///
  8926. /// * Call construction overhead: 1 (jump instruction)
  8927. /// * Frame construction overhead: 0 (don't need to return)
  8928. ///
  8929. enum MachineOutlinerClass {
  8930. MachineOutlinerDefault,
  8931. MachineOutlinerTailCall
  8932. };
  8933. outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
  8934. std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
  8935. unsigned SequenceSize =
  8936. std::accumulate(RepeatedSequenceLocs[0].front(),
  8937. std::next(RepeatedSequenceLocs[0].back()), 0,
  8938. [](unsigned Sum, const MachineInstr &MI) {
  8939. // FIXME: x86 doesn't implement getInstSizeInBytes, so
  8940. // we can't tell the cost. Just assume each instruction
  8941. // is one byte.
  8942. if (MI.isDebugInstr() || MI.isKill())
  8943. return Sum;
  8944. return Sum + 1;
  8945. });
  8946. // We check to see if CFI Instructions are present, and if they are
  8947. // we find the number of CFI Instructions in the candidates.
  8948. unsigned CFICount = 0;
  8949. for (auto &I : make_range(RepeatedSequenceLocs[0].front(),
  8950. std::next(RepeatedSequenceLocs[0].back()))) {
  8951. if (I.isCFIInstruction())
  8952. CFICount++;
  8953. }
  8954. // We compare the number of found CFI Instructions to the number of CFI
  8955. // instructions in the parent function for each candidate. We must check this
  8956. // since if we outline one of the CFI instructions in a function, we have to
  8957. // outline them all for correctness. If we do not, the address offsets will be
  8958. // incorrect between the two sections of the program.
  8959. for (outliner::Candidate &C : RepeatedSequenceLocs) {
  8960. std::vector<MCCFIInstruction> CFIInstructions =
  8961. C.getMF()->getFrameInstructions();
  8962. if (CFICount > 0 && CFICount != CFIInstructions.size())
  8963. return outliner::OutlinedFunction();
  8964. }
  8965. // FIXME: Use real size in bytes for call and ret instructions.
  8966. if (RepeatedSequenceLocs[0].back()->isTerminator()) {
  8967. for (outliner::Candidate &C : RepeatedSequenceLocs)
  8968. C.setCallInfo(MachineOutlinerTailCall, 1);
  8969. return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
  8970. 0, // Number of bytes to emit frame.
  8971. MachineOutlinerTailCall // Type of frame.
  8972. );
  8973. }
  8974. if (CFICount > 0)
  8975. return outliner::OutlinedFunction();
  8976. for (outliner::Candidate &C : RepeatedSequenceLocs)
  8977. C.setCallInfo(MachineOutlinerDefault, 1);
  8978. return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
  8979. MachineOutlinerDefault);
  8980. }
  8981. bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
  8982. bool OutlineFromLinkOnceODRs) const {
  8983. const Function &F = MF.getFunction();
  8984. // Does the function use a red zone? If it does, then we can't risk messing
  8985. // with the stack.
  8986. if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
  8987. // It could have a red zone. If it does, then we don't want to touch it.
  8988. const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
  8989. if (!X86FI || X86FI->getUsesRedZone())
  8990. return false;
  8991. }
  8992. // If we *don't* want to outline from things that could potentially be deduped
  8993. // then return false.
  8994. if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
  8995. return false;
  8996. // This function is viable for outlining, so return true.
  8997. return true;
  8998. }
  8999. outliner::InstrType
  9000. X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
  9001. MachineInstr &MI = *MIT;
  9002. // Don't allow debug values to impact outlining type.
  9003. if (MI.isDebugInstr() || MI.isIndirectDebugValue())
  9004. return outliner::InstrType::Invisible;
  9005. // At this point, KILL instructions don't really tell us much so we can go
  9006. // ahead and skip over them.
  9007. if (MI.isKill())
  9008. return outliner::InstrType::Invisible;
  9009. // Is this a tail call? If yes, we can outline as a tail call.
  9010. if (isTailCall(MI))
  9011. return outliner::InstrType::Legal;
  9012. // Is this the terminator of a basic block?
  9013. if (MI.isTerminator() || MI.isReturn()) {
  9014. // Does its parent have any successors in its MachineFunction?
  9015. if (MI.getParent()->succ_empty())
  9016. return outliner::InstrType::Legal;
  9017. // It does, so we can't tail call it.
  9018. return outliner::InstrType::Illegal;
  9019. }
  9020. // Don't outline anything that modifies or reads from the stack pointer.
  9021. //
  9022. // FIXME: There are instructions which are being manually built without
  9023. // explicit uses/defs so we also have to check the MCInstrDesc. We should be
  9024. // able to remove the extra checks once those are fixed up. For example,
  9025. // sometimes we might get something like %rax = POP64r 1. This won't be
  9026. // caught by modifiesRegister or readsRegister even though the instruction
  9027. // really ought to be formed so that modifiesRegister/readsRegister would
  9028. // catch it.
  9029. if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
  9030. MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
  9031. MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
  9032. return outliner::InstrType::Illegal;
  9033. // Outlined calls change the instruction pointer, so don't read from it.
  9034. if (MI.readsRegister(X86::RIP, &RI) ||
  9035. MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
  9036. MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
  9037. return outliner::InstrType::Illegal;
  9038. // Positions can't safely be outlined.
  9039. if (MI.isPosition())
  9040. return outliner::InstrType::Illegal;
  9041. // Make sure none of the operands of this instruction do anything tricky.
  9042. for (const MachineOperand &MOP : MI.operands())
  9043. if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
  9044. MOP.isTargetIndex())
  9045. return outliner::InstrType::Illegal;
  9046. return outliner::InstrType::Legal;
  9047. }
  9048. void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
  9049. MachineFunction &MF,
  9050. const outliner::OutlinedFunction &OF)
  9051. const {
  9052. // If we're a tail call, we already have a return, so don't do anything.
  9053. if (OF.FrameConstructionID == MachineOutlinerTailCall)
  9054. return;
  9055. // We're a normal call, so our sequence doesn't have a return instruction.
  9056. // Add it in.
  9057. MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64));
  9058. MBB.insert(MBB.end(), retq);
  9059. }
  9060. MachineBasicBlock::iterator
  9061. X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
  9062. MachineBasicBlock::iterator &It,
  9063. MachineFunction &MF,
  9064. outliner::Candidate &C) const {
  9065. // Is it a tail call?
  9066. if (C.CallConstructionID == MachineOutlinerTailCall) {
  9067. // Yes, just insert a JMP.
  9068. It = MBB.insert(It,
  9069. BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
  9070. .addGlobalAddress(M.getNamedValue(MF.getName())));
  9071. } else {
  9072. // No, insert a call.
  9073. It = MBB.insert(It,
  9074. BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
  9075. .addGlobalAddress(M.getNamedValue(MF.getName())));
  9076. }
  9077. return It;
  9078. }
  9079. #define GET_INSTRINFO_HELPERS
  9080. #include "X86GenInstrInfo.inc"