README.txt 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794
  1. //===---------------------------------------------------------------------===//
  2. // Random ideas for the X86 backend.
  3. //===---------------------------------------------------------------------===//
  4. Improvements to the multiply -> shift/add algorithm:
  5. http://gcc.gnu.org/ml/gcc-patches/2004-08/msg01590.html
  6. //===---------------------------------------------------------------------===//
  7. Improve code like this (occurs fairly frequently, e.g. in LLVM):
  8. long long foo(int x) { return 1LL << x; }
  9. http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01109.html
  10. http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01128.html
  11. http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01136.html
  12. Another useful one would be ~0ULL >> X and ~0ULL << X.
  13. One better solution for 1LL << x is:
  14. xorl %eax, %eax
  15. xorl %edx, %edx
  16. testb $32, %cl
  17. sete %al
  18. setne %dl
  19. sall %cl, %eax
  20. sall %cl, %edx
  21. But that requires good 8-bit subreg support.
  22. Also, this might be better. It's an extra shift, but it's one instruction
  23. shorter, and doesn't stress 8-bit subreg support.
  24. (From http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01148.html,
  25. but without the unnecessary and.)
  26. movl %ecx, %eax
  27. shrl $5, %eax
  28. movl %eax, %edx
  29. xorl $1, %edx
  30. sall %cl, %eax
  31. sall %cl. %edx
  32. 64-bit shifts (in general) expand to really bad code. Instead of using
  33. cmovs, we should expand to a conditional branch like GCC produces.
  34. //===---------------------------------------------------------------------===//
  35. Some isel ideas:
  36. 1. Dynamic programming based approach when compile time is not an
  37. issue.
  38. 2. Code duplication (addressing mode) during isel.
  39. 3. Other ideas from "Register-Sensitive Selection, Duplication, and
  40. Sequencing of Instructions".
  41. 4. Scheduling for reduced register pressure. E.g. "Minimum Register
  42. Instruction Sequence Problem: Revisiting Optimal Code Generation for DAGs"
  43. and other related papers.
  44. http://citeseer.ist.psu.edu/govindarajan01minimum.html
  45. //===---------------------------------------------------------------------===//
  46. Should we promote i16 to i32 to avoid partial register update stalls?
  47. //===---------------------------------------------------------------------===//
  48. Leave any_extend as pseudo instruction and hint to register
  49. allocator. Delay codegen until post register allocation.
  50. Note. any_extend is now turned into an INSERT_SUBREG. We still need to teach
  51. the coalescer how to deal with it though.
  52. //===---------------------------------------------------------------------===//
  53. It appears icc use push for parameter passing. Need to investigate.
  54. //===---------------------------------------------------------------------===//
  55. The instruction selector sometimes misses folding a load into a compare. The
  56. pattern is written as (cmp reg, (load p)). Because the compare isn't
  57. commutative, it is not matched with the load on both sides. The dag combiner
  58. should be made smart enough to canonicalize the load into the RHS of a compare
  59. when it can invert the result of the compare for free.
  60. //===---------------------------------------------------------------------===//
  61. In many cases, LLVM generates code like this:
  62. _test:
  63. movl 8(%esp), %eax
  64. cmpl %eax, 4(%esp)
  65. setl %al
  66. movzbl %al, %eax
  67. ret
  68. on some processors (which ones?), it is more efficient to do this:
  69. _test:
  70. movl 8(%esp), %ebx
  71. xor %eax, %eax
  72. cmpl %ebx, 4(%esp)
  73. setl %al
  74. ret
  75. Doing this correctly is tricky though, as the xor clobbers the flags.
  76. //===---------------------------------------------------------------------===//
  77. We should generate bts/btr/etc instructions on targets where they are cheap or
  78. when codesize is important. e.g., for:
  79. void setbit(int *target, int bit) {
  80. *target |= (1 << bit);
  81. }
  82. void clearbit(int *target, int bit) {
  83. *target &= ~(1 << bit);
  84. }
  85. //===---------------------------------------------------------------------===//
  86. Instead of the following for memset char*, 1, 10:
  87. movl $16843009, 4(%edx)
  88. movl $16843009, (%edx)
  89. movw $257, 8(%edx)
  90. It might be better to generate
  91. movl $16843009, %eax
  92. movl %eax, 4(%edx)
  93. movl %eax, (%edx)
  94. movw al, 8(%edx)
  95. when we can spare a register. It reduces code size.
  96. //===---------------------------------------------------------------------===//
  97. Evaluate what the best way to codegen sdiv X, (2^C) is. For X/8, we currently
  98. get this:
  99. define i32 @test1(i32 %X) {
  100. %Y = sdiv i32 %X, 8
  101. ret i32 %Y
  102. }
  103. _test1:
  104. movl 4(%esp), %eax
  105. movl %eax, %ecx
  106. sarl $31, %ecx
  107. shrl $29, %ecx
  108. addl %ecx, %eax
  109. sarl $3, %eax
  110. ret
  111. GCC knows several different ways to codegen it, one of which is this:
  112. _test1:
  113. movl 4(%esp), %eax
  114. cmpl $-1, %eax
  115. leal 7(%eax), %ecx
  116. cmovle %ecx, %eax
  117. sarl $3, %eax
  118. ret
  119. which is probably slower, but it's interesting at least :)
  120. //===---------------------------------------------------------------------===//
  121. We are currently lowering large (1MB+) memmove/memcpy to rep/stosl and rep/movsl
  122. We should leave these as libcalls for everything over a much lower threshold,
  123. since libc is hand tuned for medium and large mem ops (avoiding RFO for large
  124. stores, TLB preheating, etc)
  125. //===---------------------------------------------------------------------===//
  126. Optimize this into something reasonable:
  127. x * copysign(1.0, y) * copysign(1.0, z)
  128. //===---------------------------------------------------------------------===//
  129. Optimize copysign(x, *y) to use an integer load from y.
  130. //===---------------------------------------------------------------------===//
  131. The following tests perform worse with LSR:
  132. lambda, siod, optimizer-eval, ackermann, hash2, nestedloop, strcat, and Treesor.
  133. //===---------------------------------------------------------------------===//
  134. Adding to the list of cmp / test poor codegen issues:
  135. int test(__m128 *A, __m128 *B) {
  136. if (_mm_comige_ss(*A, *B))
  137. return 3;
  138. else
  139. return 4;
  140. }
  141. _test:
  142. movl 8(%esp), %eax
  143. movaps (%eax), %xmm0
  144. movl 4(%esp), %eax
  145. movaps (%eax), %xmm1
  146. comiss %xmm0, %xmm1
  147. setae %al
  148. movzbl %al, %ecx
  149. movl $3, %eax
  150. movl $4, %edx
  151. cmpl $0, %ecx
  152. cmove %edx, %eax
  153. ret
  154. Note the setae, movzbl, cmpl, cmove can be replaced with a single cmovae. There
  155. are a number of issues. 1) We are introducing a setcc between the result of the
  156. intrisic call and select. 2) The intrinsic is expected to produce a i32 value
  157. so a any extend (which becomes a zero extend) is added.
  158. We probably need some kind of target DAG combine hook to fix this.
  159. //===---------------------------------------------------------------------===//
  160. We generate significantly worse code for this than GCC:
  161. http://gcc.gnu.org/bugzilla/show_bug.cgi?id=21150
  162. http://gcc.gnu.org/bugzilla/attachment.cgi?id=8701
  163. There is also one case we do worse on PPC.
  164. //===---------------------------------------------------------------------===//
  165. For this:
  166. int test(int a)
  167. {
  168. return a * 3;
  169. }
  170. We currently emits
  171. imull $3, 4(%esp), %eax
  172. Perhaps this is what we really should generate is? Is imull three or four
  173. cycles? Note: ICC generates this:
  174. movl 4(%esp), %eax
  175. leal (%eax,%eax,2), %eax
  176. The current instruction priority is based on pattern complexity. The former is
  177. more "complex" because it folds a load so the latter will not be emitted.
  178. Perhaps we should use AddedComplexity to give LEA32r a higher priority? We
  179. should always try to match LEA first since the LEA matching code does some
  180. estimate to determine whether the match is profitable.
  181. However, if we care more about code size, then imull is better. It's two bytes
  182. shorter than movl + leal.
  183. On a Pentium M, both variants have the same characteristics with regard
  184. to throughput; however, the multiplication has a latency of four cycles, as
  185. opposed to two cycles for the movl+lea variant.
  186. //===---------------------------------------------------------------------===//
  187. It appears gcc place string data with linkonce linkage in
  188. .section __TEXT,__const_coal,coalesced instead of
  189. .section __DATA,__const_coal,coalesced.
  190. Take a look at darwin.h, there are other Darwin assembler directives that we
  191. do not make use of.
  192. //===---------------------------------------------------------------------===//
  193. define i32 @foo(i32* %a, i32 %t) {
  194. entry:
  195. br label %cond_true
  196. cond_true: ; preds = %cond_true, %entry
  197. %x.0.0 = phi i32 [ 0, %entry ], [ %tmp9, %cond_true ] ; <i32> [#uses=3]
  198. %t_addr.0.0 = phi i32 [ %t, %entry ], [ %tmp7, %cond_true ] ; <i32> [#uses=1]
  199. %tmp2 = getelementptr i32* %a, i32 %x.0.0 ; <i32*> [#uses=1]
  200. %tmp3 = load i32* %tmp2 ; <i32> [#uses=1]
  201. %tmp5 = add i32 %t_addr.0.0, %x.0.0 ; <i32> [#uses=1]
  202. %tmp7 = add i32 %tmp5, %tmp3 ; <i32> [#uses=2]
  203. %tmp9 = add i32 %x.0.0, 1 ; <i32> [#uses=2]
  204. %tmp = icmp sgt i32 %tmp9, 39 ; <i1> [#uses=1]
  205. br i1 %tmp, label %bb12, label %cond_true
  206. bb12: ; preds = %cond_true
  207. ret i32 %tmp7
  208. }
  209. is pessimized by -loop-reduce and -indvars
  210. //===---------------------------------------------------------------------===//
  211. u32 to float conversion improvement:
  212. float uint32_2_float( unsigned u ) {
  213. float fl = (int) (u & 0xffff);
  214. float fh = (int) (u >> 16);
  215. fh *= 0x1.0p16f;
  216. return fh + fl;
  217. }
  218. 00000000 subl $0x04,%esp
  219. 00000003 movl 0x08(%esp,1),%eax
  220. 00000007 movl %eax,%ecx
  221. 00000009 shrl $0x10,%ecx
  222. 0000000c cvtsi2ss %ecx,%xmm0
  223. 00000010 andl $0x0000ffff,%eax
  224. 00000015 cvtsi2ss %eax,%xmm1
  225. 00000019 mulss 0x00000078,%xmm0
  226. 00000021 addss %xmm1,%xmm0
  227. 00000025 movss %xmm0,(%esp,1)
  228. 0000002a flds (%esp,1)
  229. 0000002d addl $0x04,%esp
  230. 00000030 ret
  231. //===---------------------------------------------------------------------===//
  232. When using fastcc abi, align stack slot of argument of type double on 8 byte
  233. boundary to improve performance.
  234. //===---------------------------------------------------------------------===//
  235. GCC's ix86_expand_int_movcc function (in i386.c) has a ton of interesting
  236. simplifications for integer "x cmp y ? a : b".
  237. //===---------------------------------------------------------------------===//
  238. Consider the expansion of:
  239. define i32 @test3(i32 %X) {
  240. %tmp1 = urem i32 %X, 255
  241. ret i32 %tmp1
  242. }
  243. Currently it compiles to:
  244. ...
  245. movl $2155905153, %ecx
  246. movl 8(%esp), %esi
  247. movl %esi, %eax
  248. mull %ecx
  249. ...
  250. This could be "reassociated" into:
  251. movl $2155905153, %eax
  252. movl 8(%esp), %ecx
  253. mull %ecx
  254. to avoid the copy. In fact, the existing two-address stuff would do this
  255. except that mul isn't a commutative 2-addr instruction. I guess this has
  256. to be done at isel time based on the #uses to mul?
  257. //===---------------------------------------------------------------------===//
  258. Make sure the instruction which starts a loop does not cross a cacheline
  259. boundary. This requires knowning the exact length of each machine instruction.
  260. That is somewhat complicated, but doable. Example 256.bzip2:
  261. In the new trace, the hot loop has an instruction which crosses a cacheline
  262. boundary. In addition to potential cache misses, this can't help decoding as I
  263. imagine there has to be some kind of complicated decoder reset and realignment
  264. to grab the bytes from the next cacheline.
  265. 532 532 0x3cfc movb (1809(%esp, %esi), %bl <<<--- spans 2 64 byte lines
  266. 942 942 0x3d03 movl %dh, (1809(%esp, %esi)
  267. 937 937 0x3d0a incl %esi
  268. 3 3 0x3d0b cmpb %bl, %dl
  269. 27 27 0x3d0d jnz 0x000062db <main+11707>
  270. //===---------------------------------------------------------------------===//
  271. In c99 mode, the preprocessor doesn't like assembly comments like #TRUNCATE.
  272. //===---------------------------------------------------------------------===//
  273. This could be a single 16-bit load.
  274. int f(char *p) {
  275. if ((p[0] == 1) & (p[1] == 2)) return 1;
  276. return 0;
  277. }
  278. //===---------------------------------------------------------------------===//
  279. We should inline lrintf and probably other libc functions.
  280. //===---------------------------------------------------------------------===//
  281. This code:
  282. void test(int X) {
  283. if (X) abort();
  284. }
  285. is currently compiled to:
  286. _test:
  287. subl $12, %esp
  288. cmpl $0, 16(%esp)
  289. jne LBB1_1
  290. addl $12, %esp
  291. ret
  292. LBB1_1:
  293. call L_abort$stub
  294. It would be better to produce:
  295. _test:
  296. subl $12, %esp
  297. cmpl $0, 16(%esp)
  298. jne L_abort$stub
  299. addl $12, %esp
  300. ret
  301. This can be applied to any no-return function call that takes no arguments etc.
  302. Alternatively, the stack save/restore logic could be shrink-wrapped, producing
  303. something like this:
  304. _test:
  305. cmpl $0, 4(%esp)
  306. jne LBB1_1
  307. ret
  308. LBB1_1:
  309. subl $12, %esp
  310. call L_abort$stub
  311. Both are useful in different situations. Finally, it could be shrink-wrapped
  312. and tail called, like this:
  313. _test:
  314. cmpl $0, 4(%esp)
  315. jne LBB1_1
  316. ret
  317. LBB1_1:
  318. pop %eax # realign stack.
  319. call L_abort$stub
  320. Though this probably isn't worth it.
  321. //===---------------------------------------------------------------------===//
  322. Sometimes it is better to codegen subtractions from a constant (e.g. 7-x) with
  323. a neg instead of a sub instruction. Consider:
  324. int test(char X) { return 7-X; }
  325. we currently produce:
  326. _test:
  327. movl $7, %eax
  328. movsbl 4(%esp), %ecx
  329. subl %ecx, %eax
  330. ret
  331. We would use one fewer register if codegen'd as:
  332. movsbl 4(%esp), %eax
  333. neg %eax
  334. add $7, %eax
  335. ret
  336. Note that this isn't beneficial if the load can be folded into the sub. In
  337. this case, we want a sub:
  338. int test(int X) { return 7-X; }
  339. _test:
  340. movl $7, %eax
  341. subl 4(%esp), %eax
  342. ret
  343. //===---------------------------------------------------------------------===//
  344. Leaf functions that require one 4-byte spill slot have a prolog like this:
  345. _foo:
  346. pushl %esi
  347. subl $4, %esp
  348. ...
  349. and an epilog like this:
  350. addl $4, %esp
  351. popl %esi
  352. ret
  353. It would be smaller, and potentially faster, to push eax on entry and to
  354. pop into a dummy register instead of using addl/subl of esp. Just don't pop
  355. into any return registers :)
  356. //===---------------------------------------------------------------------===//
  357. The X86 backend should fold (branch (or (setcc, setcc))) into multiple
  358. branches. We generate really poor code for:
  359. double testf(double a) {
  360. return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0);
  361. }
  362. For example, the entry BB is:
  363. _testf:
  364. subl $20, %esp
  365. pxor %xmm0, %xmm0
  366. movsd 24(%esp), %xmm1
  367. ucomisd %xmm0, %xmm1
  368. setnp %al
  369. sete %cl
  370. testb %cl, %al
  371. jne LBB1_5 # UnifiedReturnBlock
  372. LBB1_1: # cond_true
  373. it would be better to replace the last four instructions with:
  374. jp LBB1_1
  375. je LBB1_5
  376. LBB1_1:
  377. We also codegen the inner ?: into a diamond:
  378. cvtss2sd LCPI1_0(%rip), %xmm2
  379. cvtss2sd LCPI1_1(%rip), %xmm3
  380. ucomisd %xmm1, %xmm0
  381. ja LBB1_3 # cond_true
  382. LBB1_2: # cond_true
  383. movapd %xmm3, %xmm2
  384. LBB1_3: # cond_true
  385. movapd %xmm2, %xmm0
  386. ret
  387. We should sink the load into xmm3 into the LBB1_2 block. This should
  388. be pretty easy, and will nuke all the copies.
  389. //===---------------------------------------------------------------------===//
  390. This:
  391. #include <algorithm>
  392. inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b)
  393. { return std::make_pair(a + b, a + b < a); }
  394. bool no_overflow(unsigned a, unsigned b)
  395. { return !full_add(a, b).second; }
  396. Should compile to:
  397. addl %esi, %edi
  398. setae %al
  399. movzbl %al, %eax
  400. ret
  401. on x86-64, instead of the rather stupid-looking:
  402. addl %esi, %edi
  403. setb %al
  404. xorb $1, %al
  405. movzbl %al, %eax
  406. ret
  407. //===---------------------------------------------------------------------===//
  408. The following code:
  409. bb114.preheader: ; preds = %cond_next94
  410. %tmp231232 = sext i16 %tmp62 to i32 ; <i32> [#uses=1]
  411. %tmp233 = sub i32 32, %tmp231232 ; <i32> [#uses=1]
  412. %tmp245246 = sext i16 %tmp65 to i32 ; <i32> [#uses=1]
  413. %tmp252253 = sext i16 %tmp68 to i32 ; <i32> [#uses=1]
  414. %tmp254 = sub i32 32, %tmp252253 ; <i32> [#uses=1]
  415. %tmp553554 = bitcast i16* %tmp37 to i8* ; <i8*> [#uses=2]
  416. %tmp583584 = sext i16 %tmp98 to i32 ; <i32> [#uses=1]
  417. %tmp585 = sub i32 32, %tmp583584 ; <i32> [#uses=1]
  418. %tmp614615 = sext i16 %tmp101 to i32 ; <i32> [#uses=1]
  419. %tmp621622 = sext i16 %tmp104 to i32 ; <i32> [#uses=1]
  420. %tmp623 = sub i32 32, %tmp621622 ; <i32> [#uses=1]
  421. br label %bb114
  422. produces:
  423. LBB3_5: # bb114.preheader
  424. movswl -68(%ebp), %eax
  425. movl $32, %ecx
  426. movl %ecx, -80(%ebp)
  427. subl %eax, -80(%ebp)
  428. movswl -52(%ebp), %eax
  429. movl %ecx, -84(%ebp)
  430. subl %eax, -84(%ebp)
  431. movswl -70(%ebp), %eax
  432. movl %ecx, -88(%ebp)
  433. subl %eax, -88(%ebp)
  434. movswl -50(%ebp), %eax
  435. subl %eax, %ecx
  436. movl %ecx, -76(%ebp)
  437. movswl -42(%ebp), %eax
  438. movl %eax, -92(%ebp)
  439. movswl -66(%ebp), %eax
  440. movl %eax, -96(%ebp)
  441. movw $0, -98(%ebp)
  442. This appears to be bad because the RA is not folding the store to the stack
  443. slot into the movl. The above instructions could be:
  444. movl $32, -80(%ebp)
  445. ...
  446. movl $32, -84(%ebp)
  447. ...
  448. This seems like a cross between remat and spill folding.
  449. This has redundant subtractions of %eax from a stack slot. However, %ecx doesn't
  450. change, so we could simply subtract %eax from %ecx first and then use %ecx (or
  451. vice-versa).
  452. //===---------------------------------------------------------------------===//
  453. This code:
  454. %tmp659 = icmp slt i16 %tmp654, 0 ; <i1> [#uses=1]
  455. br i1 %tmp659, label %cond_true662, label %cond_next715
  456. produces this:
  457. testw %cx, %cx
  458. movswl %cx, %esi
  459. jns LBB4_109 # cond_next715
  460. Shark tells us that using %cx in the testw instruction is sub-optimal. It
  461. suggests using the 32-bit register (which is what ICC uses).
  462. //===---------------------------------------------------------------------===//
  463. We compile this:
  464. void compare (long long foo) {
  465. if (foo < 4294967297LL)
  466. abort();
  467. }
  468. to:
  469. compare:
  470. subl $4, %esp
  471. cmpl $0, 8(%esp)
  472. setne %al
  473. movzbw %al, %ax
  474. cmpl $1, 12(%esp)
  475. setg %cl
  476. movzbw %cl, %cx
  477. cmove %ax, %cx
  478. testb $1, %cl
  479. jne .LBB1_2 # UnifiedReturnBlock
  480. .LBB1_1: # ifthen
  481. call abort
  482. .LBB1_2: # UnifiedReturnBlock
  483. addl $4, %esp
  484. ret
  485. (also really horrible code on ppc). This is due to the expand code for 64-bit
  486. compares. GCC produces multiple branches, which is much nicer:
  487. compare:
  488. subl $12, %esp
  489. movl 20(%esp), %edx
  490. movl 16(%esp), %eax
  491. decl %edx
  492. jle .L7
  493. .L5:
  494. addl $12, %esp
  495. ret
  496. .p2align 4,,7
  497. .L7:
  498. jl .L4
  499. cmpl $0, %eax
  500. .p2align 4,,8
  501. ja .L5
  502. .L4:
  503. .p2align 4,,9
  504. call abort
  505. //===---------------------------------------------------------------------===//
  506. Tail call optimization improvements: Tail call optimization currently
  507. pushes all arguments on the top of the stack (their normal place for
  508. non-tail call optimized calls) that source from the callers arguments
  509. or that source from a virtual register (also possibly sourcing from
  510. callers arguments).
  511. This is done to prevent overwriting of parameters (see example
  512. below) that might be used later.
  513. example:
  514. int callee(int32, int64);
  515. int caller(int32 arg1, int32 arg2) {
  516. int64 local = arg2 * 2;
  517. return callee(arg2, (int64)local);
  518. }
  519. [arg1] [!arg2 no longer valid since we moved local onto it]
  520. [arg2] -> [(int64)
  521. [RETADDR] local ]
  522. Moving arg1 onto the stack slot of callee function would overwrite
  523. arg2 of the caller.
  524. Possible optimizations:
  525. - Analyse the actual parameters of the callee to see which would
  526. overwrite a caller parameter which is used by the callee and only
  527. push them onto the top of the stack.
  528. int callee (int32 arg1, int32 arg2);
  529. int caller (int32 arg1, int32 arg2) {
  530. return callee(arg1,arg2);
  531. }
  532. Here we don't need to write any variables to the top of the stack
  533. since they don't overwrite each other.
  534. int callee (int32 arg1, int32 arg2);
  535. int caller (int32 arg1, int32 arg2) {
  536. return callee(arg2,arg1);
  537. }
  538. Here we need to push the arguments because they overwrite each
  539. other.
  540. //===---------------------------------------------------------------------===//
  541. main ()
  542. {
  543. int i = 0;
  544. unsigned long int z = 0;
  545. do {
  546. z -= 0x00004000;
  547. i++;
  548. if (i > 0x00040000)
  549. abort ();
  550. } while (z > 0);
  551. exit (0);
  552. }
  553. gcc compiles this to:
  554. _main:
  555. subl $28, %esp
  556. xorl %eax, %eax
  557. jmp L2
  558. L3:
  559. cmpl $262144, %eax
  560. je L10
  561. L2:
  562. addl $1, %eax
  563. cmpl $262145, %eax
  564. jne L3
  565. call L_abort$stub
  566. L10:
  567. movl $0, (%esp)
  568. call L_exit$stub
  569. llvm:
  570. _main:
  571. subl $12, %esp
  572. movl $1, %eax
  573. movl $16384, %ecx
  574. LBB1_1: # bb
  575. cmpl $262145, %eax
  576. jge LBB1_4 # cond_true
  577. LBB1_2: # cond_next
  578. incl %eax
  579. addl $4294950912, %ecx
  580. cmpl $16384, %ecx
  581. jne LBB1_1 # bb
  582. LBB1_3: # bb11
  583. xorl %eax, %eax
  584. addl $12, %esp
  585. ret
  586. LBB1_4: # cond_true
  587. call L_abort$stub
  588. 1. LSR should rewrite the first cmp with induction variable %ecx.
  589. 2. DAG combiner should fold
  590. leal 1(%eax), %edx
  591. cmpl $262145, %edx
  592. =>
  593. cmpl $262144, %eax
  594. //===---------------------------------------------------------------------===//
  595. define i64 @test(double %X) {
  596. %Y = fptosi double %X to i64
  597. ret i64 %Y
  598. }
  599. compiles to:
  600. _test:
  601. subl $20, %esp
  602. movsd 24(%esp), %xmm0
  603. movsd %xmm0, 8(%esp)
  604. fldl 8(%esp)
  605. fisttpll (%esp)
  606. movl 4(%esp), %edx
  607. movl (%esp), %eax
  608. addl $20, %esp
  609. #FP_REG_KILL
  610. ret
  611. This should just fldl directly from the input stack slot.
  612. //===---------------------------------------------------------------------===//
  613. This code:
  614. int foo (int x) { return (x & 65535) | 255; }
  615. Should compile into:
  616. _foo:
  617. movzwl 4(%esp), %eax
  618. orl $255, %eax
  619. ret
  620. instead of:
  621. _foo:
  622. movl $65280, %eax
  623. andl 4(%esp), %eax
  624. orl $255, %eax
  625. ret
  626. //===---------------------------------------------------------------------===//
  627. We're codegen'ing multiply of long longs inefficiently:
  628. unsigned long long LLM(unsigned long long arg1, unsigned long long arg2) {
  629. return arg1 * arg2;
  630. }
  631. We compile to (fomit-frame-pointer):
  632. _LLM:
  633. pushl %esi
  634. movl 8(%esp), %ecx
  635. movl 16(%esp), %esi
  636. movl %esi, %eax
  637. mull %ecx
  638. imull 12(%esp), %esi
  639. addl %edx, %esi
  640. imull 20(%esp), %ecx
  641. movl %esi, %edx
  642. addl %ecx, %edx
  643. popl %esi
  644. ret
  645. This looks like a scheduling deficiency and lack of remat of the load from
  646. the argument area. ICC apparently produces:
  647. movl 8(%esp), %ecx
  648. imull 12(%esp), %ecx
  649. movl 16(%esp), %eax
  650. imull 4(%esp), %eax
  651. addl %eax, %ecx
  652. movl 4(%esp), %eax
  653. mull 12(%esp)
  654. addl %ecx, %edx
  655. ret
  656. Note that it remat'd loads from 4(esp) and 12(esp). See this GCC PR:
  657. http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17236
  658. //===---------------------------------------------------------------------===//
  659. We can fold a store into "zeroing a reg". Instead of:
  660. xorl %eax, %eax
  661. movl %eax, 124(%esp)
  662. we should get:
  663. movl $0, 124(%esp)
  664. if the flags of the xor are dead.
  665. Likewise, we isel "x<<1" into "add reg,reg". If reg is spilled, this should
  666. be folded into: shl [mem], 1
  667. //===---------------------------------------------------------------------===//
  668. In SSE mode, we turn abs and neg into a load from the constant pool plus a xor
  669. or and instruction, for example:
  670. xorpd LCPI1_0, %xmm2
  671. However, if xmm2 gets spilled, we end up with really ugly code like this:
  672. movsd (%esp), %xmm0
  673. xorpd LCPI1_0, %xmm0
  674. movsd %xmm0, (%esp)
  675. Since we 'know' that this is a 'neg', we can actually "fold" the spill into
  676. the neg/abs instruction, turning it into an *integer* operation, like this:
  677. xorl 2147483648, [mem+4] ## 2147483648 = (1 << 31)
  678. you could also use xorb, but xorl is less likely to lead to a partial register
  679. stall. Here is a contrived testcase:
  680. double a, b, c;
  681. void test(double *P) {
  682. double X = *P;
  683. a = X;
  684. bar();
  685. X = -X;
  686. b = X;
  687. bar();
  688. c = X;
  689. }
  690. //===---------------------------------------------------------------------===//
  691. The generated code on x86 for checking for signed overflow on a multiply the
  692. obvious way is much longer than it needs to be.
  693. int x(int a, int b) {
  694. long long prod = (long long)a*b;
  695. return prod > 0x7FFFFFFF || prod < (-0x7FFFFFFF-1);
  696. }
  697. See PR2053 for more details.
  698. //===---------------------------------------------------------------------===//
  699. We should investigate using cdq/ctld (effect: edx = sar eax, 31)
  700. more aggressively; it should cost the same as a move+shift on any modern
  701. processor, but it's a lot shorter. Downside is that it puts more
  702. pressure on register allocation because it has fixed operands.
  703. Example:
  704. int abs(int x) {return x < 0 ? -x : x;}
  705. gcc compiles this to the following when using march/mtune=pentium2/3/4/m/etc.:
  706. abs:
  707. movl 4(%esp), %eax
  708. cltd
  709. xorl %edx, %eax
  710. subl %edx, %eax
  711. ret
  712. //===---------------------------------------------------------------------===//
  713. Take the following code (from
  714. http://gcc.gnu.org/bugzilla/show_bug.cgi?id=16541):
  715. extern unsigned char first_one[65536];
  716. int FirstOnet(unsigned long long arg1)
  717. {
  718. if (arg1 >> 48)
  719. return (first_one[arg1 >> 48]);
  720. return 0;
  721. }
  722. The following code is currently generated:
  723. FirstOnet:
  724. movl 8(%esp), %eax
  725. cmpl $65536, %eax
  726. movl 4(%esp), %ecx
  727. jb .LBB1_2 # UnifiedReturnBlock
  728. .LBB1_1: # ifthen
  729. shrl $16, %eax
  730. movzbl first_one(%eax), %eax
  731. ret
  732. .LBB1_2: # UnifiedReturnBlock
  733. xorl %eax, %eax
  734. ret
  735. We could change the "movl 8(%esp), %eax" into "movzwl 10(%esp), %eax"; this
  736. lets us change the cmpl into a testl, which is shorter, and eliminate the shift.
  737. //===---------------------------------------------------------------------===//
  738. We compile this function:
  739. define i32 @foo(i32 %a, i32 %b, i32 %c, i8 zeroext %d) nounwind {
  740. entry:
  741. %tmp2 = icmp eq i8 %d, 0 ; <i1> [#uses=1]
  742. br i1 %tmp2, label %bb7, label %bb
  743. bb: ; preds = %entry
  744. %tmp6 = add i32 %b, %a ; <i32> [#uses=1]
  745. ret i32 %tmp6
  746. bb7: ; preds = %entry
  747. %tmp10 = sub i32 %a, %c ; <i32> [#uses=1]
  748. ret i32 %tmp10
  749. }
  750. to:
  751. foo: # @foo
  752. # %bb.0: # %entry
  753. movl 4(%esp), %ecx
  754. cmpb $0, 16(%esp)
  755. je .LBB0_2
  756. # %bb.1: # %bb
  757. movl 8(%esp), %eax
  758. addl %ecx, %eax
  759. ret
  760. .LBB0_2: # %bb7
  761. movl 12(%esp), %edx
  762. movl %ecx, %eax
  763. subl %edx, %eax
  764. ret
  765. There's an obviously unnecessary movl in .LBB0_2, and we could eliminate a
  766. couple more movls by putting 4(%esp) into %eax instead of %ecx.
  767. //===---------------------------------------------------------------------===//
  768. See rdar://4653682.
  769. From flops:
  770. LBB1_15: # bb310
  771. cvtss2sd LCPI1_0, %xmm1
  772. addsd %xmm1, %xmm0
  773. movsd 176(%esp), %xmm2
  774. mulsd %xmm0, %xmm2
  775. movapd %xmm2, %xmm3
  776. mulsd %xmm3, %xmm3
  777. movapd %xmm3, %xmm4
  778. mulsd LCPI1_23, %xmm4
  779. addsd LCPI1_24, %xmm4
  780. mulsd %xmm3, %xmm4
  781. addsd LCPI1_25, %xmm4
  782. mulsd %xmm3, %xmm4
  783. addsd LCPI1_26, %xmm4
  784. mulsd %xmm3, %xmm4
  785. addsd LCPI1_27, %xmm4
  786. mulsd %xmm3, %xmm4
  787. addsd LCPI1_28, %xmm4
  788. mulsd %xmm3, %xmm4
  789. addsd %xmm1, %xmm4
  790. mulsd %xmm2, %xmm4
  791. movsd 152(%esp), %xmm1
  792. addsd %xmm4, %xmm1
  793. movsd %xmm1, 152(%esp)
  794. incl %eax
  795. cmpl %eax, %esi
  796. jge LBB1_15 # bb310
  797. LBB1_16: # bb358.loopexit
  798. movsd 152(%esp), %xmm0
  799. addsd %xmm0, %xmm0
  800. addsd LCPI1_22, %xmm0
  801. movsd %xmm0, 152(%esp)
  802. Rather than spilling the result of the last addsd in the loop, we should have
  803. insert a copy to split the interval (one for the duration of the loop, one
  804. extending to the fall through). The register pressure in the loop isn't high
  805. enough to warrant the spill.
  806. Also check why xmm7 is not used at all in the function.
  807. //===---------------------------------------------------------------------===//
  808. Take the following:
  809. target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128-S128"
  810. target triple = "i386-apple-darwin8"
  811. @in_exit.4870.b = internal global i1 false ; <i1*> [#uses=2]
  812. define fastcc void @abort_gzip() noreturn nounwind {
  813. entry:
  814. %tmp.b.i = load i1* @in_exit.4870.b ; <i1> [#uses=1]
  815. br i1 %tmp.b.i, label %bb.i, label %bb4.i
  816. bb.i: ; preds = %entry
  817. tail call void @exit( i32 1 ) noreturn nounwind
  818. unreachable
  819. bb4.i: ; preds = %entry
  820. store i1 true, i1* @in_exit.4870.b
  821. tail call void @exit( i32 1 ) noreturn nounwind
  822. unreachable
  823. }
  824. declare void @exit(i32) noreturn nounwind
  825. This compiles into:
  826. _abort_gzip: ## @abort_gzip
  827. ## %bb.0: ## %entry
  828. subl $12, %esp
  829. movb _in_exit.4870.b, %al
  830. cmpb $1, %al
  831. jne LBB0_2
  832. We somehow miss folding the movb into the cmpb.
  833. //===---------------------------------------------------------------------===//
  834. We compile:
  835. int test(int x, int y) {
  836. return x-y-1;
  837. }
  838. into (-m64):
  839. _test:
  840. decl %edi
  841. movl %edi, %eax
  842. subl %esi, %eax
  843. ret
  844. it would be better to codegen as: x+~y (notl+addl)
  845. //===---------------------------------------------------------------------===//
  846. This code:
  847. int foo(const char *str,...)
  848. {
  849. __builtin_va_list a; int x;
  850. __builtin_va_start(a,str); x = __builtin_va_arg(a,int); __builtin_va_end(a);
  851. return x;
  852. }
  853. gets compiled into this on x86-64:
  854. subq $200, %rsp
  855. movaps %xmm7, 160(%rsp)
  856. movaps %xmm6, 144(%rsp)
  857. movaps %xmm5, 128(%rsp)
  858. movaps %xmm4, 112(%rsp)
  859. movaps %xmm3, 96(%rsp)
  860. movaps %xmm2, 80(%rsp)
  861. movaps %xmm1, 64(%rsp)
  862. movaps %xmm0, 48(%rsp)
  863. movq %r9, 40(%rsp)
  864. movq %r8, 32(%rsp)
  865. movq %rcx, 24(%rsp)
  866. movq %rdx, 16(%rsp)
  867. movq %rsi, 8(%rsp)
  868. leaq (%rsp), %rax
  869. movq %rax, 192(%rsp)
  870. leaq 208(%rsp), %rax
  871. movq %rax, 184(%rsp)
  872. movl $48, 180(%rsp)
  873. movl $8, 176(%rsp)
  874. movl 176(%rsp), %eax
  875. cmpl $47, %eax
  876. jbe .LBB1_3 # bb
  877. .LBB1_1: # bb3
  878. movq 184(%rsp), %rcx
  879. leaq 8(%rcx), %rax
  880. movq %rax, 184(%rsp)
  881. .LBB1_2: # bb4
  882. movl (%rcx), %eax
  883. addq $200, %rsp
  884. ret
  885. .LBB1_3: # bb
  886. movl %eax, %ecx
  887. addl $8, %eax
  888. addq 192(%rsp), %rcx
  889. movl %eax, 176(%rsp)
  890. jmp .LBB1_2 # bb4
  891. gcc 4.3 generates:
  892. subq $96, %rsp
  893. .LCFI0:
  894. leaq 104(%rsp), %rax
  895. movq %rsi, -80(%rsp)
  896. movl $8, -120(%rsp)
  897. movq %rax, -112(%rsp)
  898. leaq -88(%rsp), %rax
  899. movq %rax, -104(%rsp)
  900. movl $8, %eax
  901. cmpl $48, %eax
  902. jb .L6
  903. movq -112(%rsp), %rdx
  904. movl (%rdx), %eax
  905. addq $96, %rsp
  906. ret
  907. .p2align 4,,10
  908. .p2align 3
  909. .L6:
  910. mov %eax, %edx
  911. addq -104(%rsp), %rdx
  912. addl $8, %eax
  913. movl %eax, -120(%rsp)
  914. movl (%rdx), %eax
  915. addq $96, %rsp
  916. ret
  917. and it gets compiled into this on x86:
  918. pushl %ebp
  919. movl %esp, %ebp
  920. subl $4, %esp
  921. leal 12(%ebp), %eax
  922. movl %eax, -4(%ebp)
  923. leal 16(%ebp), %eax
  924. movl %eax, -4(%ebp)
  925. movl 12(%ebp), %eax
  926. addl $4, %esp
  927. popl %ebp
  928. ret
  929. gcc 4.3 generates:
  930. pushl %ebp
  931. movl %esp, %ebp
  932. movl 12(%ebp), %eax
  933. popl %ebp
  934. ret
  935. //===---------------------------------------------------------------------===//
  936. Teach tblgen not to check bitconvert source type in some cases. This allows us
  937. to consolidate the following patterns in X86InstrMMX.td:
  938. def : Pat<(v2i32 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
  939. (iPTR 0))))),
  940. (v2i32 (MMX_MOVDQ2Qrr VR128:$src))>;
  941. def : Pat<(v4i16 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
  942. (iPTR 0))))),
  943. (v4i16 (MMX_MOVDQ2Qrr VR128:$src))>;
  944. def : Pat<(v8i8 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
  945. (iPTR 0))))),
  946. (v8i8 (MMX_MOVDQ2Qrr VR128:$src))>;
  947. There are other cases in various td files.
  948. //===---------------------------------------------------------------------===//
  949. Take something like the following on x86-32:
  950. unsigned a(unsigned long long x, unsigned y) {return x % y;}
  951. We currently generate a libcall, but we really shouldn't: the expansion is
  952. shorter and likely faster than the libcall. The expected code is something
  953. like the following:
  954. movl 12(%ebp), %eax
  955. movl 16(%ebp), %ecx
  956. xorl %edx, %edx
  957. divl %ecx
  958. movl 8(%ebp), %eax
  959. divl %ecx
  960. movl %edx, %eax
  961. ret
  962. A similar code sequence works for division.
  963. //===---------------------------------------------------------------------===//
  964. We currently compile this:
  965. define i32 @func1(i32 %v1, i32 %v2) nounwind {
  966. entry:
  967. %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
  968. %sum = extractvalue {i32, i1} %t, 0
  969. %obit = extractvalue {i32, i1} %t, 1
  970. br i1 %obit, label %overflow, label %normal
  971. normal:
  972. ret i32 %sum
  973. overflow:
  974. call void @llvm.trap()
  975. unreachable
  976. }
  977. declare {i32, i1} @llvm.sadd.with.overflow.i32(i32, i32)
  978. declare void @llvm.trap()
  979. to:
  980. _func1:
  981. movl 4(%esp), %eax
  982. addl 8(%esp), %eax
  983. jo LBB1_2 ## overflow
  984. LBB1_1: ## normal
  985. ret
  986. LBB1_2: ## overflow
  987. ud2
  988. it would be nice to produce "into" someday.
  989. //===---------------------------------------------------------------------===//
  990. Test instructions can be eliminated by using EFLAGS values from arithmetic
  991. instructions. This is currently not done for mul, and, or, xor, neg, shl,
  992. sra, srl, shld, shrd, atomic ops, and others. It is also currently not done
  993. for read-modify-write instructions. It is also current not done if the
  994. OF or CF flags are needed.
  995. The shift operators have the complication that when the shift count is
  996. zero, EFLAGS is not set, so they can only subsume a test instruction if
  997. the shift count is known to be non-zero. Also, using the EFLAGS value
  998. from a shift is apparently very slow on some x86 implementations.
  999. In read-modify-write instructions, the root node in the isel match is
  1000. the store, and isel has no way for the use of the EFLAGS result of the
  1001. arithmetic to be remapped to the new node.
  1002. Add and subtract instructions set OF on signed overflow and CF on unsiged
  1003. overflow, while test instructions always clear OF and CF. In order to
  1004. replace a test with an add or subtract in a situation where OF or CF is
  1005. needed, codegen must be able to prove that the operation cannot see
  1006. signed or unsigned overflow, respectively.
  1007. //===---------------------------------------------------------------------===//
  1008. memcpy/memmove do not lower to SSE copies when possible. A silly example is:
  1009. define <16 x float> @foo(<16 x float> %A) nounwind {
  1010. %tmp = alloca <16 x float>, align 16
  1011. %tmp2 = alloca <16 x float>, align 16
  1012. store <16 x float> %A, <16 x float>* %tmp
  1013. %s = bitcast <16 x float>* %tmp to i8*
  1014. %s2 = bitcast <16 x float>* %tmp2 to i8*
  1015. call void @llvm.memcpy.i64(i8* %s, i8* %s2, i64 64, i32 16)
  1016. %R = load <16 x float>* %tmp2
  1017. ret <16 x float> %R
  1018. }
  1019. declare void @llvm.memcpy.i64(i8* nocapture, i8* nocapture, i64, i32) nounwind
  1020. which compiles to:
  1021. _foo:
  1022. subl $140, %esp
  1023. movaps %xmm3, 112(%esp)
  1024. movaps %xmm2, 96(%esp)
  1025. movaps %xmm1, 80(%esp)
  1026. movaps %xmm0, 64(%esp)
  1027. movl 60(%esp), %eax
  1028. movl %eax, 124(%esp)
  1029. movl 56(%esp), %eax
  1030. movl %eax, 120(%esp)
  1031. movl 52(%esp), %eax
  1032. <many many more 32-bit copies>
  1033. movaps (%esp), %xmm0
  1034. movaps 16(%esp), %xmm1
  1035. movaps 32(%esp), %xmm2
  1036. movaps 48(%esp), %xmm3
  1037. addl $140, %esp
  1038. ret
  1039. On Nehalem, it may even be cheaper to just use movups when unaligned than to
  1040. fall back to lower-granularity chunks.
  1041. //===---------------------------------------------------------------------===//
  1042. Implement processor-specific optimizations for parity with GCC on these
  1043. processors. GCC does two optimizations:
  1044. 1. ix86_pad_returns inserts a noop before ret instructions if immediately
  1045. preceded by a conditional branch or is the target of a jump.
  1046. 2. ix86_avoid_jump_misspredicts inserts noops in cases where a 16-byte block of
  1047. code contains more than 3 branches.
  1048. The first one is done for all AMDs, Core2, and "Generic"
  1049. The second one is done for: Atom, Pentium Pro, all AMDs, Pentium 4, Nocona,
  1050. Core 2, and "Generic"
  1051. //===---------------------------------------------------------------------===//
  1052. Testcase:
  1053. int x(int a) { return (a&0xf0)>>4; }
  1054. Current output:
  1055. movl 4(%esp), %eax
  1056. shrl $4, %eax
  1057. andl $15, %eax
  1058. ret
  1059. Ideal output:
  1060. movzbl 4(%esp), %eax
  1061. shrl $4, %eax
  1062. ret
  1063. //===---------------------------------------------------------------------===//
  1064. Re-implement atomic builtins __sync_add_and_fetch() and __sync_sub_and_fetch
  1065. properly.
  1066. When the return value is not used (i.e. only care about the value in the
  1067. memory), x86 does not have to use add to implement these. Instead, it can use
  1068. add, sub, inc, dec instructions with the "lock" prefix.
  1069. This is currently implemented using a bit of instruction selection trick. The
  1070. issue is the target independent pattern produces one output and a chain and we
  1071. want to map it into one that just output a chain. The current trick is to select
  1072. it into a MERGE_VALUES with the first definition being an implicit_def. The
  1073. proper solution is to add new ISD opcodes for the no-output variant. DAG
  1074. combiner can then transform the node before it gets to target node selection.
  1075. Problem #2 is we are adding a whole bunch of x86 atomic instructions when in
  1076. fact these instructions are identical to the non-lock versions. We need a way to
  1077. add target specific information to target nodes and have this information
  1078. carried over to machine instructions. Asm printer (or JIT) can use this
  1079. information to add the "lock" prefix.
  1080. //===---------------------------------------------------------------------===//
  1081. struct B {
  1082. unsigned char y0 : 1;
  1083. };
  1084. int bar(struct B* a) { return a->y0; }
  1085. define i32 @bar(%struct.B* nocapture %a) nounwind readonly optsize {
  1086. %1 = getelementptr inbounds %struct.B* %a, i64 0, i32 0
  1087. %2 = load i8* %1, align 1
  1088. %3 = and i8 %2, 1
  1089. %4 = zext i8 %3 to i32
  1090. ret i32 %4
  1091. }
  1092. bar: # @bar
  1093. # %bb.0:
  1094. movb (%rdi), %al
  1095. andb $1, %al
  1096. movzbl %al, %eax
  1097. ret
  1098. Missed optimization: should be movl+andl.
  1099. //===---------------------------------------------------------------------===//
  1100. The x86_64 abi says:
  1101. Booleans, when stored in a memory object, are stored as single byte objects the
  1102. value of which is always 0 (false) or 1 (true).
  1103. We are not using this fact:
  1104. int bar(_Bool *a) { return *a; }
  1105. define i32 @bar(i8* nocapture %a) nounwind readonly optsize {
  1106. %1 = load i8* %a, align 1, !tbaa !0
  1107. %tmp = and i8 %1, 1
  1108. %2 = zext i8 %tmp to i32
  1109. ret i32 %2
  1110. }
  1111. bar:
  1112. movb (%rdi), %al
  1113. andb $1, %al
  1114. movzbl %al, %eax
  1115. ret
  1116. GCC produces
  1117. bar:
  1118. movzbl (%rdi), %eax
  1119. ret
  1120. //===---------------------------------------------------------------------===//
  1121. Take the following C code:
  1122. int f(int a, int b) { return (unsigned char)a == (unsigned char)b; }
  1123. We generate the following IR with clang:
  1124. define i32 @f(i32 %a, i32 %b) nounwind readnone {
  1125. entry:
  1126. %tmp = xor i32 %b, %a ; <i32> [#uses=1]
  1127. %tmp6 = and i32 %tmp, 255 ; <i32> [#uses=1]
  1128. %cmp = icmp eq i32 %tmp6, 0 ; <i1> [#uses=1]
  1129. %conv5 = zext i1 %cmp to i32 ; <i32> [#uses=1]
  1130. ret i32 %conv5
  1131. }
  1132. And the following x86 code:
  1133. xorl %esi, %edi
  1134. testb $-1, %dil
  1135. sete %al
  1136. movzbl %al, %eax
  1137. ret
  1138. A cmpb instead of the xorl+testb would be one instruction shorter.
  1139. //===---------------------------------------------------------------------===//
  1140. Given the following C code:
  1141. int f(int a, int b) { return (signed char)a == (signed char)b; }
  1142. We generate the following IR with clang:
  1143. define i32 @f(i32 %a, i32 %b) nounwind readnone {
  1144. entry:
  1145. %sext = shl i32 %a, 24 ; <i32> [#uses=1]
  1146. %conv1 = ashr i32 %sext, 24 ; <i32> [#uses=1]
  1147. %sext6 = shl i32 %b, 24 ; <i32> [#uses=1]
  1148. %conv4 = ashr i32 %sext6, 24 ; <i32> [#uses=1]
  1149. %cmp = icmp eq i32 %conv1, %conv4 ; <i1> [#uses=1]
  1150. %conv5 = zext i1 %cmp to i32 ; <i32> [#uses=1]
  1151. ret i32 %conv5
  1152. }
  1153. And the following x86 code:
  1154. movsbl %sil, %eax
  1155. movsbl %dil, %ecx
  1156. cmpl %eax, %ecx
  1157. sete %al
  1158. movzbl %al, %eax
  1159. ret
  1160. It should be possible to eliminate the sign extensions.
  1161. //===---------------------------------------------------------------------===//
  1162. LLVM misses a load+store narrowing opportunity in this code:
  1163. %struct.bf = type { i64, i16, i16, i32 }
  1164. @bfi = external global %struct.bf* ; <%struct.bf**> [#uses=2]
  1165. define void @t1() nounwind ssp {
  1166. entry:
  1167. %0 = load %struct.bf** @bfi, align 8 ; <%struct.bf*> [#uses=1]
  1168. %1 = getelementptr %struct.bf* %0, i64 0, i32 1 ; <i16*> [#uses=1]
  1169. %2 = bitcast i16* %1 to i32* ; <i32*> [#uses=2]
  1170. %3 = load i32* %2, align 1 ; <i32> [#uses=1]
  1171. %4 = and i32 %3, -65537 ; <i32> [#uses=1]
  1172. store i32 %4, i32* %2, align 1
  1173. %5 = load %struct.bf** @bfi, align 8 ; <%struct.bf*> [#uses=1]
  1174. %6 = getelementptr %struct.bf* %5, i64 0, i32 1 ; <i16*> [#uses=1]
  1175. %7 = bitcast i16* %6 to i32* ; <i32*> [#uses=2]
  1176. %8 = load i32* %7, align 1 ; <i32> [#uses=1]
  1177. %9 = and i32 %8, -131073 ; <i32> [#uses=1]
  1178. store i32 %9, i32* %7, align 1
  1179. ret void
  1180. }
  1181. LLVM currently emits this:
  1182. movq bfi(%rip), %rax
  1183. andl $-65537, 8(%rax)
  1184. movq bfi(%rip), %rax
  1185. andl $-131073, 8(%rax)
  1186. ret
  1187. It could narrow the loads and stores to emit this:
  1188. movq bfi(%rip), %rax
  1189. andb $-2, 10(%rax)
  1190. movq bfi(%rip), %rax
  1191. andb $-3, 10(%rax)
  1192. ret
  1193. The trouble is that there is a TokenFactor between the store and the
  1194. load, making it non-trivial to determine if there's anything between
  1195. the load and the store which would prohibit narrowing.
  1196. //===---------------------------------------------------------------------===//
  1197. This code:
  1198. void foo(unsigned x) {
  1199. if (x == 0) bar();
  1200. else if (x == 1) qux();
  1201. }
  1202. currently compiles into:
  1203. _foo:
  1204. movl 4(%esp), %eax
  1205. cmpl $1, %eax
  1206. je LBB0_3
  1207. testl %eax, %eax
  1208. jne LBB0_4
  1209. the testl could be removed:
  1210. _foo:
  1211. movl 4(%esp), %eax
  1212. cmpl $1, %eax
  1213. je LBB0_3
  1214. jb LBB0_4
  1215. 0 is the only unsigned number < 1.
  1216. //===---------------------------------------------------------------------===//
  1217. This code:
  1218. %0 = type { i32, i1 }
  1219. define i32 @add32carry(i32 %sum, i32 %x) nounwind readnone ssp {
  1220. entry:
  1221. %uadd = tail call %0 @llvm.uadd.with.overflow.i32(i32 %sum, i32 %x)
  1222. %cmp = extractvalue %0 %uadd, 1
  1223. %inc = zext i1 %cmp to i32
  1224. %add = add i32 %x, %sum
  1225. %z.0 = add i32 %add, %inc
  1226. ret i32 %z.0
  1227. }
  1228. declare %0 @llvm.uadd.with.overflow.i32(i32, i32) nounwind readnone
  1229. compiles to:
  1230. _add32carry: ## @add32carry
  1231. addl %esi, %edi
  1232. sbbl %ecx, %ecx
  1233. movl %edi, %eax
  1234. subl %ecx, %eax
  1235. ret
  1236. But it could be:
  1237. _add32carry:
  1238. leal (%rsi,%rdi), %eax
  1239. cmpl %esi, %eax
  1240. adcl $0, %eax
  1241. ret
  1242. //===---------------------------------------------------------------------===//
  1243. The hot loop of 256.bzip2 contains code that looks a bit like this:
  1244. int foo(char *P, char *Q, int x, int y) {
  1245. if (P[0] != Q[0])
  1246. return P[0] < Q[0];
  1247. if (P[1] != Q[1])
  1248. return P[1] < Q[1];
  1249. if (P[2] != Q[2])
  1250. return P[2] < Q[2];
  1251. return P[3] < Q[3];
  1252. }
  1253. In the real code, we get a lot more wrong than this. However, even in this
  1254. code we generate:
  1255. _foo: ## @foo
  1256. ## %bb.0: ## %entry
  1257. movb (%rsi), %al
  1258. movb (%rdi), %cl
  1259. cmpb %al, %cl
  1260. je LBB0_2
  1261. LBB0_1: ## %if.then
  1262. cmpb %al, %cl
  1263. jmp LBB0_5
  1264. LBB0_2: ## %if.end
  1265. movb 1(%rsi), %al
  1266. movb 1(%rdi), %cl
  1267. cmpb %al, %cl
  1268. jne LBB0_1
  1269. ## %bb.3: ## %if.end38
  1270. movb 2(%rsi), %al
  1271. movb 2(%rdi), %cl
  1272. cmpb %al, %cl
  1273. jne LBB0_1
  1274. ## %bb.4: ## %if.end60
  1275. movb 3(%rdi), %al
  1276. cmpb 3(%rsi), %al
  1277. LBB0_5: ## %if.end60
  1278. setl %al
  1279. movzbl %al, %eax
  1280. ret
  1281. Note that we generate jumps to LBB0_1 which does a redundant compare. The
  1282. redundant compare also forces the register values to be live, which prevents
  1283. folding one of the loads into the compare. In contrast, GCC 4.2 produces:
  1284. _foo:
  1285. movzbl (%rsi), %eax
  1286. cmpb %al, (%rdi)
  1287. jne L10
  1288. L12:
  1289. movzbl 1(%rsi), %eax
  1290. cmpb %al, 1(%rdi)
  1291. jne L10
  1292. movzbl 2(%rsi), %eax
  1293. cmpb %al, 2(%rdi)
  1294. jne L10
  1295. movzbl 3(%rdi), %eax
  1296. cmpb 3(%rsi), %al
  1297. L10:
  1298. setl %al
  1299. movzbl %al, %eax
  1300. ret
  1301. which is "perfect".
  1302. //===---------------------------------------------------------------------===//
  1303. For the branch in the following code:
  1304. int a();
  1305. int b(int x, int y) {
  1306. if (x & (1<<(y&7)))
  1307. return a();
  1308. return y;
  1309. }
  1310. We currently generate:
  1311. movb %sil, %al
  1312. andb $7, %al
  1313. movzbl %al, %eax
  1314. btl %eax, %edi
  1315. jae .LBB0_2
  1316. movl+andl would be shorter than the movb+andb+movzbl sequence.
  1317. //===---------------------------------------------------------------------===//
  1318. For the following:
  1319. struct u1 {
  1320. float x, y;
  1321. };
  1322. float foo(struct u1 u) {
  1323. return u.x + u.y;
  1324. }
  1325. We currently generate:
  1326. movdqa %xmm0, %xmm1
  1327. pshufd $1, %xmm0, %xmm0 # xmm0 = xmm0[1,0,0,0]
  1328. addss %xmm1, %xmm0
  1329. ret
  1330. We could save an instruction here by commuting the addss.
  1331. //===---------------------------------------------------------------------===//
  1332. This (from PR9661):
  1333. float clamp_float(float a) {
  1334. if (a > 1.0f)
  1335. return 1.0f;
  1336. else if (a < 0.0f)
  1337. return 0.0f;
  1338. else
  1339. return a;
  1340. }
  1341. Could compile to:
  1342. clamp_float: # @clamp_float
  1343. movss .LCPI0_0(%rip), %xmm1
  1344. minss %xmm1, %xmm0
  1345. pxor %xmm1, %xmm1
  1346. maxss %xmm1, %xmm0
  1347. ret
  1348. with -ffast-math.
  1349. //===---------------------------------------------------------------------===//
  1350. This function (from PR9803):
  1351. int clamp2(int a) {
  1352. if (a > 5)
  1353. a = 5;
  1354. if (a < 0)
  1355. return 0;
  1356. return a;
  1357. }
  1358. Compiles to:
  1359. _clamp2: ## @clamp2
  1360. pushq %rbp
  1361. movq %rsp, %rbp
  1362. cmpl $5, %edi
  1363. movl $5, %ecx
  1364. cmovlel %edi, %ecx
  1365. testl %ecx, %ecx
  1366. movl $0, %eax
  1367. cmovnsl %ecx, %eax
  1368. popq %rbp
  1369. ret
  1370. The move of 0 could be scheduled above the test to make it is xor reg,reg.
  1371. //===---------------------------------------------------------------------===//
  1372. GCC PR48986. We currently compile this:
  1373. void bar(void);
  1374. void yyy(int* p) {
  1375. if (__sync_fetch_and_add(p, -1) == 1)
  1376. bar();
  1377. }
  1378. into:
  1379. movl $-1, %eax
  1380. lock
  1381. xaddl %eax, (%rdi)
  1382. cmpl $1, %eax
  1383. je LBB0_2
  1384. Instead we could generate:
  1385. lock
  1386. dec %rdi
  1387. je LBB0_2
  1388. The trick is to match "fetch_and_add(X, -C) == C".
  1389. //===---------------------------------------------------------------------===//
  1390. unsigned t(unsigned a, unsigned b) {
  1391. return a <= b ? 5 : -5;
  1392. }
  1393. We generate:
  1394. movl $5, %ecx
  1395. cmpl %esi, %edi
  1396. movl $-5, %eax
  1397. cmovbel %ecx, %eax
  1398. GCC:
  1399. cmpl %edi, %esi
  1400. sbbl %eax, %eax
  1401. andl $-10, %eax
  1402. addl $5, %eax
  1403. //===---------------------------------------------------------------------===//