RISCVInstrInfoVPseudos.td 263 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412
  1. //===-- RISCVInstrInfoVPseudos.td - RISC-V 'V' Pseudos -----*- tablegen -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. ///
  9. /// This file contains the required infrastructure to support code generation
  10. /// for the standard 'V' (Vector) extension, version 1.0.
  11. ///
  12. /// This file is included from RISCVInstrInfoV.td
  13. ///
  14. //===----------------------------------------------------------------------===//
  15. def riscv_vmv_x_s : SDNode<"RISCVISD::VMV_X_S",
  16. SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisVec<1>,
  17. SDTCisInt<1>]>>;
  18. def riscv_read_vlenb : SDNode<"RISCVISD::READ_VLENB",
  19. SDTypeProfile<1, 0, [SDTCisVT<0, XLenVT>]>>;
  20. // Operand that is allowed to be a register or a 5 bit immediate.
  21. // This allows us to pick between VSETIVLI and VSETVLI opcodes using the same
  22. // pseudo instructions.
  23. def AVL : RegisterOperand<GPRNoX0> {
  24. let OperandNamespace = "RISCVOp";
  25. let OperandType = "OPERAND_AVL";
  26. }
  27. // X0 has special meaning for vsetvl/vsetvli.
  28. // rd | rs1 | AVL value | Effect on vl
  29. //--------------------------------------------------------------
  30. // !X0 | X0 | VLMAX | Set vl to VLMAX
  31. // X0 | X0 | Value in vl | Keep current vl, just change vtype.
  32. def VLOp : ComplexPattern<XLenVT, 1, "selectVLOp">;
  33. def DecImm : SDNodeXForm<imm, [{
  34. return CurDAG->getTargetConstant(N->getSExtValue() - 1, SDLoc(N),
  35. N->getValueType(0));
  36. }]>;
  37. defvar TAIL_UNDISTURBED_MASK_UNDISTURBED = 0;
  38. defvar TAIL_AGNOSTIC = 1;
  39. defvar TA_MA = 3;
  40. //===----------------------------------------------------------------------===//
  41. // Utilities.
  42. //===----------------------------------------------------------------------===//
  43. class PseudoToVInst<string PseudoInst> {
  44. string VInst = !subst("_M8", "",
  45. !subst("_M4", "",
  46. !subst("_M2", "",
  47. !subst("_M1", "",
  48. !subst("_MF2", "",
  49. !subst("_MF4", "",
  50. !subst("_MF8", "",
  51. !subst("_B1", "",
  52. !subst("_B2", "",
  53. !subst("_B4", "",
  54. !subst("_B8", "",
  55. !subst("_B16", "",
  56. !subst("_B32", "",
  57. !subst("_B64", "",
  58. !subst("_MASK", "",
  59. !subst("_TIED", "",
  60. !subst("_TU", "",
  61. !subst("F16", "F",
  62. !subst("F32", "F",
  63. !subst("F64", "F",
  64. !subst("Pseudo", "", PseudoInst)))))))))))))))))))));
  65. }
  66. // This class describes information associated to the LMUL.
  67. class LMULInfo<int lmul, int oct, VReg regclass, VReg wregclass,
  68. VReg f2regclass, VReg f4regclass, VReg f8regclass, string mx> {
  69. bits<3> value = lmul; // This is encoded as the vlmul field of vtype.
  70. VReg vrclass = regclass;
  71. VReg wvrclass = wregclass;
  72. VReg f8vrclass = f8regclass;
  73. VReg f4vrclass = f4regclass;
  74. VReg f2vrclass = f2regclass;
  75. string MX = mx;
  76. int octuple = oct;
  77. }
  78. // Associate LMUL with tablegen records of register classes.
  79. def V_M1 : LMULInfo<0b000, 8, VR, VRM2, VR, VR, VR, "M1">;
  80. def V_M2 : LMULInfo<0b001, 16, VRM2, VRM4, VR, VR, VR, "M2">;
  81. def V_M4 : LMULInfo<0b010, 32, VRM4, VRM8, VRM2, VR, VR, "M4">;
  82. def V_M8 : LMULInfo<0b011, 64, VRM8,/*NoVReg*/VR, VRM4, VRM2, VR, "M8">;
  83. def V_MF8 : LMULInfo<0b101, 1, VR, VR,/*NoVReg*/VR,/*NoVReg*/VR,/*NoVReg*/VR, "MF8">;
  84. def V_MF4 : LMULInfo<0b110, 2, VR, VR, VR,/*NoVReg*/VR,/*NoVReg*/VR, "MF4">;
  85. def V_MF2 : LMULInfo<0b111, 4, VR, VR, VR, VR,/*NoVReg*/VR, "MF2">;
  86. // Used to iterate over all possible LMULs.
  87. defvar MxList = [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8];
  88. // For floating point which don't need MF8.
  89. defvar MxListF = [V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8];
  90. // Used for widening and narrowing instructions as it doesn't contain M8.
  91. defvar MxListW = [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4];
  92. // For floating point which don't need MF8.
  93. defvar MxListFW = [V_MF4, V_MF2, V_M1, V_M2, V_M4];
  94. // Use for zext/sext.vf2
  95. defvar MxListVF2 = [V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8];
  96. // Use for zext/sext.vf4
  97. defvar MxListVF4 = [V_MF2, V_M1, V_M2, V_M4, V_M8];
  98. // Use for zext/sext.vf8
  99. defvar MxListVF8 = [V_M1, V_M2, V_M4, V_M8];
  100. class MxSet<int eew> {
  101. list<LMULInfo> m = !cond(!eq(eew, 8) : [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8],
  102. !eq(eew, 16) : [V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8],
  103. !eq(eew, 32) : [V_MF2, V_M1, V_M2, V_M4, V_M8],
  104. !eq(eew, 64) : [V_M1, V_M2, V_M4, V_M8]);
  105. }
  106. class FPR_Info<RegisterClass regclass, string fx, list<LMULInfo> mxlist,
  107. list<LMULInfo> mxlistfw> {
  108. RegisterClass fprclass = regclass;
  109. string FX = fx;
  110. list<LMULInfo> MxList = mxlist;
  111. list<LMULInfo> MxListFW = mxlistfw;
  112. }
  113. def SCALAR_F16 : FPR_Info<FPR16, "F16", MxSet<16>.m, [V_MF4, V_MF2, V_M1, V_M2, V_M4]>;
  114. def SCALAR_F32 : FPR_Info<FPR32, "F32", MxSet<32>.m, [V_MF2, V_M1, V_M2, V_M4]>;
  115. def SCALAR_F64 : FPR_Info<FPR64, "F64", MxSet<64>.m, []>;
  116. defvar FPList = [SCALAR_F16, SCALAR_F32, SCALAR_F64];
  117. // Used for widening instructions. It excludes F64.
  118. defvar FPListW = [SCALAR_F16, SCALAR_F32];
  119. class NFSet<LMULInfo m> {
  120. list<int> L = !cond(!eq(m.value, V_M8.value): [],
  121. !eq(m.value, V_M4.value): [2],
  122. !eq(m.value, V_M2.value): [2, 3, 4],
  123. true: [2, 3, 4, 5, 6, 7, 8]);
  124. }
  125. class log2<int num> {
  126. int val = !if(!eq(num, 1), 0, !add(1, log2<!srl(num, 1)>.val));
  127. }
  128. class octuple_to_str<int octuple> {
  129. string ret = !if(!eq(octuple, 1), "MF8",
  130. !if(!eq(octuple, 2), "MF4",
  131. !if(!eq(octuple, 4), "MF2",
  132. !if(!eq(octuple, 8), "M1",
  133. !if(!eq(octuple, 16), "M2",
  134. !if(!eq(octuple, 32), "M4",
  135. !if(!eq(octuple, 64), "M8",
  136. "NoDef")))))));
  137. }
  138. def VLOpFrag : PatFrag<(ops), (XLenVT (VLOp (XLenVT AVL:$vl)))>;
  139. // Output pattern for X0 used to represent VLMAX in the pseudo instructions.
  140. // We can't use X0 register becuase the AVL operands use GPRNoX0.
  141. // This must be kept in sync with RISCV::VLMaxSentinel.
  142. def VLMax : OutPatFrag<(ops), (XLenVT -1)>;
  143. // List of EEW.
  144. defvar EEWList = [8, 16, 32, 64];
  145. class SegRegClass<LMULInfo m, int nf> {
  146. VReg RC = !cast<VReg>("VRN" # nf # !cond(!eq(m.value, V_MF8.value): V_M1.MX,
  147. !eq(m.value, V_MF4.value): V_M1.MX,
  148. !eq(m.value, V_MF2.value): V_M1.MX,
  149. true: m.MX));
  150. }
  151. //===----------------------------------------------------------------------===//
  152. // Vector register and vector group type information.
  153. //===----------------------------------------------------------------------===//
  154. class VTypeInfo<ValueType Vec, ValueType Mas, int Sew, VReg Reg, LMULInfo M,
  155. ValueType Scal = XLenVT, RegisterClass ScalarReg = GPR>
  156. {
  157. ValueType Vector = Vec;
  158. ValueType Mask = Mas;
  159. int SEW = Sew;
  160. int Log2SEW = log2<Sew>.val;
  161. VReg RegClass = Reg;
  162. LMULInfo LMul = M;
  163. ValueType Scalar = Scal;
  164. RegisterClass ScalarRegClass = ScalarReg;
  165. // The pattern fragment which produces the AVL operand, representing the
  166. // "natural" vector length for this type. For scalable vectors this is VLMax.
  167. OutPatFrag AVL = VLMax;
  168. string ScalarSuffix = !cond(!eq(Scal, XLenVT) : "X",
  169. !eq(Scal, f16) : "F16",
  170. !eq(Scal, f32) : "F32",
  171. !eq(Scal, f64) : "F64");
  172. }
  173. class GroupVTypeInfo<ValueType Vec, ValueType VecM1, ValueType Mas, int Sew,
  174. VReg Reg, LMULInfo M, ValueType Scal = XLenVT,
  175. RegisterClass ScalarReg = GPR>
  176. : VTypeInfo<Vec, Mas, Sew, Reg, M, Scal, ScalarReg>
  177. {
  178. ValueType VectorM1 = VecM1;
  179. }
  180. defset list<VTypeInfo> AllVectors = {
  181. defset list<VTypeInfo> AllIntegerVectors = {
  182. defset list<VTypeInfo> NoGroupIntegerVectors = {
  183. defset list<VTypeInfo> FractionalGroupIntegerVectors = {
  184. def VI8MF8: VTypeInfo<vint8mf8_t, vbool64_t, 8, VR, V_MF8>;
  185. def VI8MF4: VTypeInfo<vint8mf4_t, vbool32_t, 8, VR, V_MF4>;
  186. def VI8MF2: VTypeInfo<vint8mf2_t, vbool16_t, 8, VR, V_MF2>;
  187. def VI16MF4: VTypeInfo<vint16mf4_t, vbool64_t, 16, VR, V_MF4>;
  188. def VI16MF2: VTypeInfo<vint16mf2_t, vbool32_t, 16, VR, V_MF2>;
  189. def VI32MF2: VTypeInfo<vint32mf2_t, vbool64_t, 32, VR, V_MF2>;
  190. }
  191. def VI8M1: VTypeInfo<vint8m1_t, vbool8_t, 8, VR, V_M1>;
  192. def VI16M1: VTypeInfo<vint16m1_t, vbool16_t, 16, VR, V_M1>;
  193. def VI32M1: VTypeInfo<vint32m1_t, vbool32_t, 32, VR, V_M1>;
  194. def VI64M1: VTypeInfo<vint64m1_t, vbool64_t, 64, VR, V_M1>;
  195. }
  196. defset list<GroupVTypeInfo> GroupIntegerVectors = {
  197. def VI8M2: GroupVTypeInfo<vint8m2_t, vint8m1_t, vbool4_t, 8, VRM2, V_M2>;
  198. def VI8M4: GroupVTypeInfo<vint8m4_t, vint8m1_t, vbool2_t, 8, VRM4, V_M4>;
  199. def VI8M8: GroupVTypeInfo<vint8m8_t, vint8m1_t, vbool1_t, 8, VRM8, V_M8>;
  200. def VI16M2: GroupVTypeInfo<vint16m2_t,vint16m1_t,vbool8_t, 16,VRM2, V_M2>;
  201. def VI16M4: GroupVTypeInfo<vint16m4_t,vint16m1_t,vbool4_t, 16,VRM4, V_M4>;
  202. def VI16M8: GroupVTypeInfo<vint16m8_t,vint16m1_t,vbool2_t, 16,VRM8, V_M8>;
  203. def VI32M2: GroupVTypeInfo<vint32m2_t,vint32m1_t,vbool16_t,32,VRM2, V_M2>;
  204. def VI32M4: GroupVTypeInfo<vint32m4_t,vint32m1_t,vbool8_t, 32,VRM4, V_M4>;
  205. def VI32M8: GroupVTypeInfo<vint32m8_t,vint32m1_t,vbool4_t, 32,VRM8, V_M8>;
  206. def VI64M2: GroupVTypeInfo<vint64m2_t,vint64m1_t,vbool32_t,64,VRM2, V_M2>;
  207. def VI64M4: GroupVTypeInfo<vint64m4_t,vint64m1_t,vbool16_t,64,VRM4, V_M4>;
  208. def VI64M8: GroupVTypeInfo<vint64m8_t,vint64m1_t,vbool8_t, 64,VRM8, V_M8>;
  209. }
  210. }
  211. defset list<VTypeInfo> AllFloatVectors = {
  212. defset list<VTypeInfo> NoGroupFloatVectors = {
  213. defset list<VTypeInfo> FractionalGroupFloatVectors = {
  214. def VF16MF4: VTypeInfo<vfloat16mf4_t, vbool64_t, 16, VR, V_MF4, f16, FPR16>;
  215. def VF16MF2: VTypeInfo<vfloat16mf2_t, vbool32_t, 16, VR, V_MF2, f16, FPR16>;
  216. def VF32MF2: VTypeInfo<vfloat32mf2_t,vbool64_t, 32, VR, V_MF2, f32, FPR32>;
  217. }
  218. def VF16M1: VTypeInfo<vfloat16m1_t, vbool16_t, 16, VR, V_M1, f16, FPR16>;
  219. def VF32M1: VTypeInfo<vfloat32m1_t, vbool32_t, 32, VR, V_M1, f32, FPR32>;
  220. def VF64M1: VTypeInfo<vfloat64m1_t, vbool64_t, 64, VR, V_M1, f64, FPR64>;
  221. }
  222. defset list<GroupVTypeInfo> GroupFloatVectors = {
  223. def VF16M2: GroupVTypeInfo<vfloat16m2_t, vfloat16m1_t, vbool8_t, 16,
  224. VRM2, V_M2, f16, FPR16>;
  225. def VF16M4: GroupVTypeInfo<vfloat16m4_t, vfloat16m1_t, vbool4_t, 16,
  226. VRM4, V_M4, f16, FPR16>;
  227. def VF16M8: GroupVTypeInfo<vfloat16m8_t, vfloat16m1_t, vbool2_t, 16,
  228. VRM8, V_M8, f16, FPR16>;
  229. def VF32M2: GroupVTypeInfo<vfloat32m2_t, vfloat32m1_t, vbool16_t, 32,
  230. VRM2, V_M2, f32, FPR32>;
  231. def VF32M4: GroupVTypeInfo<vfloat32m4_t, vfloat32m1_t, vbool8_t, 32,
  232. VRM4, V_M4, f32, FPR32>;
  233. def VF32M8: GroupVTypeInfo<vfloat32m8_t, vfloat32m1_t, vbool4_t, 32,
  234. VRM8, V_M8, f32, FPR32>;
  235. def VF64M2: GroupVTypeInfo<vfloat64m2_t, vfloat64m1_t, vbool32_t, 64,
  236. VRM2, V_M2, f64, FPR64>;
  237. def VF64M4: GroupVTypeInfo<vfloat64m4_t, vfloat64m1_t, vbool16_t, 64,
  238. VRM4, V_M4, f64, FPR64>;
  239. def VF64M8: GroupVTypeInfo<vfloat64m8_t, vfloat64m1_t, vbool8_t, 64,
  240. VRM8, V_M8, f64, FPR64>;
  241. }
  242. }
  243. }
  244. // This functor is used to obtain the int vector type that has the same SEW and
  245. // multiplier as the input parameter type
  246. class GetIntVTypeInfo<VTypeInfo vti>
  247. {
  248. // Equivalent integer vector type. Eg.
  249. // VI8M1 → VI8M1 (identity)
  250. // VF64M4 → VI64M4
  251. VTypeInfo Vti = !cast<VTypeInfo>(!subst("VF", "VI", !cast<string>(vti)));
  252. }
  253. class MTypeInfo<ValueType Mas, LMULInfo M, string Bx> {
  254. ValueType Mask = Mas;
  255. // {SEW, VLMul} values set a valid VType to deal with this mask type.
  256. // we assume SEW=1 and set corresponding LMUL. vsetvli insertion will
  257. // look for SEW=1 to optimize based on surrounding instructions.
  258. int SEW = 1;
  259. int Log2SEW = 0;
  260. LMULInfo LMul = M;
  261. string BX = Bx; // Appendix of mask operations.
  262. // The pattern fragment which produces the AVL operand, representing the
  263. // "natural" vector length for this mask type. For scalable masks this is
  264. // VLMax.
  265. OutPatFrag AVL = VLMax;
  266. }
  267. defset list<MTypeInfo> AllMasks = {
  268. // vbool<n>_t, <n> = SEW/LMUL, we assume SEW=8 and corresponding LMUL.
  269. def : MTypeInfo<vbool64_t, V_MF8, "B1">;
  270. def : MTypeInfo<vbool32_t, V_MF4, "B2">;
  271. def : MTypeInfo<vbool16_t, V_MF2, "B4">;
  272. def : MTypeInfo<vbool8_t, V_M1, "B8">;
  273. def : MTypeInfo<vbool4_t, V_M2, "B16">;
  274. def : MTypeInfo<vbool2_t, V_M4, "B32">;
  275. def : MTypeInfo<vbool1_t, V_M8, "B64">;
  276. }
  277. class VTypeInfoToWide<VTypeInfo vti, VTypeInfo wti>
  278. {
  279. VTypeInfo Vti = vti;
  280. VTypeInfo Wti = wti;
  281. }
  282. class VTypeInfoToFraction<VTypeInfo vti, VTypeInfo fti>
  283. {
  284. VTypeInfo Vti = vti;
  285. VTypeInfo Fti = fti;
  286. }
  287. defset list<VTypeInfoToWide> AllWidenableIntVectors = {
  288. def : VTypeInfoToWide<VI8MF8, VI16MF4>;
  289. def : VTypeInfoToWide<VI8MF4, VI16MF2>;
  290. def : VTypeInfoToWide<VI8MF2, VI16M1>;
  291. def : VTypeInfoToWide<VI8M1, VI16M2>;
  292. def : VTypeInfoToWide<VI8M2, VI16M4>;
  293. def : VTypeInfoToWide<VI8M4, VI16M8>;
  294. def : VTypeInfoToWide<VI16MF4, VI32MF2>;
  295. def : VTypeInfoToWide<VI16MF2, VI32M1>;
  296. def : VTypeInfoToWide<VI16M1, VI32M2>;
  297. def : VTypeInfoToWide<VI16M2, VI32M4>;
  298. def : VTypeInfoToWide<VI16M4, VI32M8>;
  299. def : VTypeInfoToWide<VI32MF2, VI64M1>;
  300. def : VTypeInfoToWide<VI32M1, VI64M2>;
  301. def : VTypeInfoToWide<VI32M2, VI64M4>;
  302. def : VTypeInfoToWide<VI32M4, VI64M8>;
  303. }
  304. defset list<VTypeInfoToWide> AllWidenableFloatVectors = {
  305. def : VTypeInfoToWide<VF16MF4, VF32MF2>;
  306. def : VTypeInfoToWide<VF16MF2, VF32M1>;
  307. def : VTypeInfoToWide<VF16M1, VF32M2>;
  308. def : VTypeInfoToWide<VF16M2, VF32M4>;
  309. def : VTypeInfoToWide<VF16M4, VF32M8>;
  310. def : VTypeInfoToWide<VF32MF2, VF64M1>;
  311. def : VTypeInfoToWide<VF32M1, VF64M2>;
  312. def : VTypeInfoToWide<VF32M2, VF64M4>;
  313. def : VTypeInfoToWide<VF32M4, VF64M8>;
  314. }
  315. defset list<VTypeInfoToFraction> AllFractionableVF2IntVectors = {
  316. def : VTypeInfoToFraction<VI16MF4, VI8MF8>;
  317. def : VTypeInfoToFraction<VI16MF2, VI8MF4>;
  318. def : VTypeInfoToFraction<VI16M1, VI8MF2>;
  319. def : VTypeInfoToFraction<VI16M2, VI8M1>;
  320. def : VTypeInfoToFraction<VI16M4, VI8M2>;
  321. def : VTypeInfoToFraction<VI16M8, VI8M4>;
  322. def : VTypeInfoToFraction<VI32MF2, VI16MF4>;
  323. def : VTypeInfoToFraction<VI32M1, VI16MF2>;
  324. def : VTypeInfoToFraction<VI32M2, VI16M1>;
  325. def : VTypeInfoToFraction<VI32M4, VI16M2>;
  326. def : VTypeInfoToFraction<VI32M8, VI16M4>;
  327. def : VTypeInfoToFraction<VI64M1, VI32MF2>;
  328. def : VTypeInfoToFraction<VI64M2, VI32M1>;
  329. def : VTypeInfoToFraction<VI64M4, VI32M2>;
  330. def : VTypeInfoToFraction<VI64M8, VI32M4>;
  331. }
  332. defset list<VTypeInfoToFraction> AllFractionableVF4IntVectors = {
  333. def : VTypeInfoToFraction<VI32MF2, VI8MF8>;
  334. def : VTypeInfoToFraction<VI32M1, VI8MF4>;
  335. def : VTypeInfoToFraction<VI32M2, VI8MF2>;
  336. def : VTypeInfoToFraction<VI32M4, VI8M1>;
  337. def : VTypeInfoToFraction<VI32M8, VI8M2>;
  338. def : VTypeInfoToFraction<VI64M1, VI16MF4>;
  339. def : VTypeInfoToFraction<VI64M2, VI16MF2>;
  340. def : VTypeInfoToFraction<VI64M4, VI16M1>;
  341. def : VTypeInfoToFraction<VI64M8, VI16M2>;
  342. }
  343. defset list<VTypeInfoToFraction> AllFractionableVF8IntVectors = {
  344. def : VTypeInfoToFraction<VI64M1, VI8MF8>;
  345. def : VTypeInfoToFraction<VI64M2, VI8MF4>;
  346. def : VTypeInfoToFraction<VI64M4, VI8MF2>;
  347. def : VTypeInfoToFraction<VI64M8, VI8M1>;
  348. }
  349. defset list<VTypeInfoToWide> AllWidenableIntToFloatVectors = {
  350. def : VTypeInfoToWide<VI8MF8, VF16MF4>;
  351. def : VTypeInfoToWide<VI8MF4, VF16MF2>;
  352. def : VTypeInfoToWide<VI8MF2, VF16M1>;
  353. def : VTypeInfoToWide<VI8M1, VF16M2>;
  354. def : VTypeInfoToWide<VI8M2, VF16M4>;
  355. def : VTypeInfoToWide<VI8M4, VF16M8>;
  356. def : VTypeInfoToWide<VI16MF4, VF32MF2>;
  357. def : VTypeInfoToWide<VI16MF2, VF32M1>;
  358. def : VTypeInfoToWide<VI16M1, VF32M2>;
  359. def : VTypeInfoToWide<VI16M2, VF32M4>;
  360. def : VTypeInfoToWide<VI16M4, VF32M8>;
  361. def : VTypeInfoToWide<VI32MF2, VF64M1>;
  362. def : VTypeInfoToWide<VI32M1, VF64M2>;
  363. def : VTypeInfoToWide<VI32M2, VF64M4>;
  364. def : VTypeInfoToWide<VI32M4, VF64M8>;
  365. }
  366. // This class holds the record of the RISCVVPseudoTable below.
  367. // This represents the information we need in codegen for each pseudo.
  368. // The definition should be consistent with `struct PseudoInfo` in
  369. // RISCVBaseInfo.h.
  370. class CONST8b<bits<8> val> {
  371. bits<8> V = val;
  372. }
  373. def InvalidIndex : CONST8b<0x80>;
  374. class RISCVVPseudo {
  375. Pseudo Pseudo = !cast<Pseudo>(NAME); // Used as a key.
  376. Instruction BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
  377. }
  378. // The actual table.
  379. def RISCVVPseudosTable : GenericTable {
  380. let FilterClass = "RISCVVPseudo";
  381. let CppTypeName = "PseudoInfo";
  382. let Fields = [ "Pseudo", "BaseInstr" ];
  383. let PrimaryKey = [ "Pseudo" ];
  384. let PrimaryKeyName = "getPseudoInfo";
  385. let PrimaryKeyEarlyOut = true;
  386. }
  387. def RISCVVInversePseudosTable : GenericTable {
  388. let FilterClass = "RISCVVPseudo";
  389. let CppTypeName = "PseudoInfo";
  390. let Fields = [ "Pseudo", "BaseInstr", "VLMul" ];
  391. let PrimaryKey = [ "BaseInstr", "VLMul" ];
  392. let PrimaryKeyName = "getBaseInfo";
  393. let PrimaryKeyEarlyOut = true;
  394. }
  395. def RISCVVIntrinsicsTable : GenericTable {
  396. let FilterClass = "RISCVVIntrinsic";
  397. let CppTypeName = "RISCVVIntrinsicInfo";
  398. let Fields = ["IntrinsicID", "ScalarOperand", "VLOperand"];
  399. let PrimaryKey = ["IntrinsicID"];
  400. let PrimaryKeyName = "getRISCVVIntrinsicInfo";
  401. }
  402. class RISCVMaskedPseudo<bits<4> MaskIdx, bit HasTU = true> {
  403. Pseudo MaskedPseudo = !cast<Pseudo>(NAME);
  404. Pseudo UnmaskedPseudo = !cast<Pseudo>(!subst("_MASK", "", NAME));
  405. Pseudo UnmaskedTUPseudo = !if(HasTU, !cast<Pseudo>(!subst("_MASK", "", NAME # "_TU")), MaskedPseudo);
  406. bits<4> MaskOpIdx = MaskIdx;
  407. }
  408. def RISCVMaskedPseudosTable : GenericTable {
  409. let FilterClass = "RISCVMaskedPseudo";
  410. let CppTypeName = "RISCVMaskedPseudoInfo";
  411. let Fields = ["MaskedPseudo", "UnmaskedPseudo", "UnmaskedTUPseudo", "MaskOpIdx"];
  412. let PrimaryKey = ["MaskedPseudo"];
  413. let PrimaryKeyName = "getMaskedPseudoInfo";
  414. }
  415. class RISCVVLE<bit M, bit TU, bit Str, bit F, bits<3> S, bits<3> L> {
  416. bits<1> Masked = M;
  417. bits<1> IsTU = TU;
  418. bits<1> Strided = Str;
  419. bits<1> FF = F;
  420. bits<3> Log2SEW = S;
  421. bits<3> LMUL = L;
  422. Pseudo Pseudo = !cast<Pseudo>(NAME);
  423. }
  424. def lookupMaskedIntrinsicByUnmaskedTA : SearchIndex {
  425. let Table = RISCVMaskedPseudosTable;
  426. let Key = ["UnmaskedPseudo"];
  427. }
  428. def RISCVVLETable : GenericTable {
  429. let FilterClass = "RISCVVLE";
  430. let CppTypeName = "VLEPseudo";
  431. let Fields = ["Masked", "IsTU", "Strided", "FF", "Log2SEW", "LMUL", "Pseudo"];
  432. let PrimaryKey = ["Masked", "IsTU", "Strided", "FF", "Log2SEW", "LMUL"];
  433. let PrimaryKeyName = "getVLEPseudo";
  434. }
  435. class RISCVVSE<bit M, bit Str, bits<3> S, bits<3> L> {
  436. bits<1> Masked = M;
  437. bits<1> Strided = Str;
  438. bits<3> Log2SEW = S;
  439. bits<3> LMUL = L;
  440. Pseudo Pseudo = !cast<Pseudo>(NAME);
  441. }
  442. def RISCVVSETable : GenericTable {
  443. let FilterClass = "RISCVVSE";
  444. let CppTypeName = "VSEPseudo";
  445. let Fields = ["Masked", "Strided", "Log2SEW", "LMUL", "Pseudo"];
  446. let PrimaryKey = ["Masked", "Strided", "Log2SEW", "LMUL"];
  447. let PrimaryKeyName = "getVSEPseudo";
  448. }
  449. class RISCVVLX_VSX<bit M, bit TU, bit O, bits<3> S, bits<3> L, bits<3> IL> {
  450. bits<1> Masked = M;
  451. bits<1> IsTU = TU;
  452. bits<1> Ordered = O;
  453. bits<3> Log2SEW = S;
  454. bits<3> LMUL = L;
  455. bits<3> IndexLMUL = IL;
  456. Pseudo Pseudo = !cast<Pseudo>(NAME);
  457. }
  458. class RISCVVLX<bit M, bit TU, bit O, bits<3> S, bits<3> L, bits<3> IL> :
  459. RISCVVLX_VSX<M, TU, O, S, L, IL>;
  460. class RISCVVSX<bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> :
  461. RISCVVLX_VSX<M, /*TU*/0, O, S, L, IL>;
  462. class RISCVVLX_VSXTable : GenericTable {
  463. let CppTypeName = "VLX_VSXPseudo";
  464. let Fields = ["Masked", "IsTU", "Ordered", "Log2SEW", "LMUL", "IndexLMUL", "Pseudo"];
  465. let PrimaryKey = ["Masked", "IsTU", "Ordered", "Log2SEW", "LMUL", "IndexLMUL"];
  466. }
  467. def RISCVVLXTable : RISCVVLX_VSXTable {
  468. let FilterClass = "RISCVVLX";
  469. let PrimaryKeyName = "getVLXPseudo";
  470. }
  471. def RISCVVSXTable : RISCVVLX_VSXTable {
  472. let FilterClass = "RISCVVSX";
  473. let PrimaryKeyName = "getVSXPseudo";
  474. }
  475. class RISCVVLSEG<bits<4> N, bit M, bit TU, bit Str, bit F, bits<3> S, bits<3> L> {
  476. bits<4> NF = N;
  477. bits<1> Masked = M;
  478. bits<1> IsTU = TU;
  479. bits<1> Strided = Str;
  480. bits<1> FF = F;
  481. bits<3> Log2SEW = S;
  482. bits<3> LMUL = L;
  483. Pseudo Pseudo = !cast<Pseudo>(NAME);
  484. }
  485. def RISCVVLSEGTable : GenericTable {
  486. let FilterClass = "RISCVVLSEG";
  487. let CppTypeName = "VLSEGPseudo";
  488. let Fields = ["NF", "Masked", "IsTU", "Strided", "FF", "Log2SEW", "LMUL", "Pseudo"];
  489. let PrimaryKey = ["NF", "Masked", "IsTU", "Strided", "FF", "Log2SEW", "LMUL"];
  490. let PrimaryKeyName = "getVLSEGPseudo";
  491. }
  492. class RISCVVLXSEG<bits<4> N, bit M, bit TU, bit O, bits<3> S, bits<3> L, bits<3> IL> {
  493. bits<4> NF = N;
  494. bits<1> Masked = M;
  495. bits<1> IsTU = TU;
  496. bits<1> Ordered = O;
  497. bits<3> Log2SEW = S;
  498. bits<3> LMUL = L;
  499. bits<3> IndexLMUL = IL;
  500. Pseudo Pseudo = !cast<Pseudo>(NAME);
  501. }
  502. def RISCVVLXSEGTable : GenericTable {
  503. let FilterClass = "RISCVVLXSEG";
  504. let CppTypeName = "VLXSEGPseudo";
  505. let Fields = ["NF", "Masked", "IsTU", "Ordered", "Log2SEW", "LMUL", "IndexLMUL", "Pseudo"];
  506. let PrimaryKey = ["NF", "Masked", "IsTU", "Ordered", "Log2SEW", "LMUL", "IndexLMUL"];
  507. let PrimaryKeyName = "getVLXSEGPseudo";
  508. }
  509. class RISCVVSSEG<bits<4> N, bit M, bit Str, bits<3> S, bits<3> L> {
  510. bits<4> NF = N;
  511. bits<1> Masked = M;
  512. bits<1> Strided = Str;
  513. bits<3> Log2SEW = S;
  514. bits<3> LMUL = L;
  515. Pseudo Pseudo = !cast<Pseudo>(NAME);
  516. }
  517. def RISCVVSSEGTable : GenericTable {
  518. let FilterClass = "RISCVVSSEG";
  519. let CppTypeName = "VSSEGPseudo";
  520. let Fields = ["NF", "Masked", "Strided", "Log2SEW", "LMUL", "Pseudo"];
  521. let PrimaryKey = ["NF", "Masked", "Strided", "Log2SEW", "LMUL"];
  522. let PrimaryKeyName = "getVSSEGPseudo";
  523. }
  524. class RISCVVSXSEG<bits<4> N, bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> {
  525. bits<4> NF = N;
  526. bits<1> Masked = M;
  527. bits<1> Ordered = O;
  528. bits<3> Log2SEW = S;
  529. bits<3> LMUL = L;
  530. bits<3> IndexLMUL = IL;
  531. Pseudo Pseudo = !cast<Pseudo>(NAME);
  532. }
  533. def RISCVVSXSEGTable : GenericTable {
  534. let FilterClass = "RISCVVSXSEG";
  535. let CppTypeName = "VSXSEGPseudo";
  536. let Fields = ["NF", "Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL", "Pseudo"];
  537. let PrimaryKey = ["NF", "Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL"];
  538. let PrimaryKeyName = "getVSXSEGPseudo";
  539. }
  540. //===----------------------------------------------------------------------===//
  541. // Helpers to define the different pseudo instructions.
  542. //===----------------------------------------------------------------------===//
  543. // The destination vector register group for a masked vector instruction cannot
  544. // overlap the source mask register (v0), unless the destination vector register
  545. // is being written with a mask value (e.g., comparisons) or the scalar result
  546. // of a reduction.
  547. class GetVRegNoV0<VReg VRegClass> {
  548. VReg R = !cond(!eq(VRegClass, VR) : VRNoV0,
  549. !eq(VRegClass, VRM2) : VRM2NoV0,
  550. !eq(VRegClass, VRM4) : VRM4NoV0,
  551. !eq(VRegClass, VRM8) : VRM8NoV0,
  552. !eq(VRegClass, VRN2M1) : VRN2M1NoV0,
  553. !eq(VRegClass, VRN2M2) : VRN2M2NoV0,
  554. !eq(VRegClass, VRN2M4) : VRN2M4NoV0,
  555. !eq(VRegClass, VRN3M1) : VRN3M1NoV0,
  556. !eq(VRegClass, VRN3M2) : VRN3M2NoV0,
  557. !eq(VRegClass, VRN4M1) : VRN4M1NoV0,
  558. !eq(VRegClass, VRN4M2) : VRN4M2NoV0,
  559. !eq(VRegClass, VRN5M1) : VRN5M1NoV0,
  560. !eq(VRegClass, VRN6M1) : VRN6M1NoV0,
  561. !eq(VRegClass, VRN7M1) : VRN7M1NoV0,
  562. !eq(VRegClass, VRN8M1) : VRN8M1NoV0,
  563. true : VRegClass);
  564. }
  565. // Join strings in list using separator and ignoring empty elements
  566. class Join<list<string> strings, string separator> {
  567. string ret = !foldl(!head(strings), !tail(strings), a, b,
  568. !cond(
  569. !and(!empty(a), !empty(b)) : "",
  570. !empty(a) : b,
  571. !empty(b) : a,
  572. 1 : a#separator#b));
  573. }
  574. class VPseudo<Instruction instr, LMULInfo m, dag outs, dag ins> :
  575. Pseudo<outs, ins, []>, RISCVVPseudo {
  576. let BaseInstr = instr;
  577. let VLMul = m.value;
  578. }
  579. class VPseudoUSLoadNoMask<VReg RetClass, int EEW, bit DummyMask = 1> :
  580. Pseudo<(outs RetClass:$rd),
  581. (ins GPRMem:$rs1, AVL:$vl, ixlenimm:$sew),[]>,
  582. RISCVVPseudo,
  583. RISCVVLE</*Masked*/0, /*TU*/0, /*Strided*/0, /*FF*/0, log2<EEW>.val, VLMul> {
  584. let mayLoad = 1;
  585. let mayStore = 0;
  586. let hasSideEffects = 0;
  587. let HasVLOp = 1;
  588. let HasSEWOp = 1;
  589. let HasDummyMask = DummyMask;
  590. }
  591. class VPseudoUSLoadNoMaskTU<VReg RetClass, int EEW> :
  592. Pseudo<(outs RetClass:$rd),
  593. (ins RetClass:$dest, GPRMem:$rs1, AVL:$vl, ixlenimm:$sew),[]>,
  594. RISCVVPseudo,
  595. RISCVVLE</*Masked*/0, /*TU*/1, /*Strided*/0, /*FF*/0, log2<EEW>.val, VLMul> {
  596. let mayLoad = 1;
  597. let mayStore = 0;
  598. let hasSideEffects = 0;
  599. let HasVLOp = 1;
  600. let HasSEWOp = 1;
  601. let HasDummyMask = 1;
  602. let HasMergeOp = 1;
  603. let Constraints = "$rd = $dest";
  604. }
  605. class VPseudoUSLoadMask<VReg RetClass, int EEW> :
  606. Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
  607. (ins GetVRegNoV0<RetClass>.R:$merge,
  608. GPRMem:$rs1,
  609. VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy),[]>,
  610. RISCVVPseudo,
  611. RISCVVLE</*Masked*/1, /*TU*/1, /*Strided*/0, /*FF*/0, log2<EEW>.val, VLMul> {
  612. let mayLoad = 1;
  613. let mayStore = 0;
  614. let hasSideEffects = 0;
  615. let Constraints = "$rd = $merge";
  616. let HasVLOp = 1;
  617. let HasSEWOp = 1;
  618. let HasMergeOp = 1;
  619. let HasVecPolicyOp = 1;
  620. let UsesMaskPolicy = 1;
  621. }
  622. class VPseudoUSLoadFFNoMask<VReg RetClass, int EEW, bit DummyMask = 1> :
  623. Pseudo<(outs RetClass:$rd, GPR:$vl),
  624. (ins GPRMem:$rs1, AVL:$avl, ixlenimm:$sew),[]>,
  625. RISCVVPseudo,
  626. RISCVVLE</*Masked*/0, /*TU*/0, /*Strided*/0, /*FF*/1, log2<EEW>.val, VLMul> {
  627. let mayLoad = 1;
  628. let mayStore = 0;
  629. let hasSideEffects = 0;
  630. let HasVLOp = 1;
  631. let HasSEWOp = 1;
  632. let HasDummyMask = DummyMask;
  633. }
  634. class VPseudoUSLoadFFNoMaskTU<VReg RetClass, int EEW> :
  635. Pseudo<(outs RetClass:$rd, GPR:$vl),
  636. (ins RetClass:$dest, GPRMem:$rs1, AVL:$avl, ixlenimm:$sew),[]>,
  637. RISCVVPseudo,
  638. RISCVVLE</*Masked*/0, /*TU*/1, /*Strided*/0, /*FF*/1, log2<EEW>.val, VLMul> {
  639. let mayLoad = 1;
  640. let mayStore = 0;
  641. let hasSideEffects = 0;
  642. let HasVLOp = 1;
  643. let HasSEWOp = 1;
  644. let HasDummyMask = 1;
  645. let HasMergeOp = 1;
  646. let Constraints = "$rd = $dest";
  647. }
  648. class VPseudoUSLoadFFMask<VReg RetClass, int EEW> :
  649. Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd, GPR:$vl),
  650. (ins GetVRegNoV0<RetClass>.R:$merge,
  651. GPRMem:$rs1,
  652. VMaskOp:$vm, AVL:$avl, ixlenimm:$sew, ixlenimm:$policy),[]>,
  653. RISCVVPseudo,
  654. RISCVVLE</*Masked*/1, /*TU*/1, /*Strided*/0, /*FF*/1, log2<EEW>.val, VLMul> {
  655. let mayLoad = 1;
  656. let mayStore = 0;
  657. let hasSideEffects = 0;
  658. let Constraints = "$rd = $merge";
  659. let HasVLOp = 1;
  660. let HasSEWOp = 1;
  661. let HasMergeOp = 1;
  662. let HasVecPolicyOp = 1;
  663. let UsesMaskPolicy = 1;
  664. }
  665. class VPseudoSLoadNoMask<VReg RetClass, int EEW>:
  666. Pseudo<(outs RetClass:$rd),
  667. (ins GPRMem:$rs1, GPR:$rs2, AVL:$vl, ixlenimm:$sew),[]>,
  668. RISCVVPseudo,
  669. RISCVVLE</*Masked*/0, /*TU*/0, /*Strided*/1, /*FF*/0, log2<EEW>.val, VLMul> {
  670. let mayLoad = 1;
  671. let mayStore = 0;
  672. let hasSideEffects = 0;
  673. let HasVLOp = 1;
  674. let HasSEWOp = 1;
  675. let HasDummyMask = 1;
  676. }
  677. class VPseudoSLoadNoMaskTU<VReg RetClass, int EEW>:
  678. Pseudo<(outs RetClass:$rd),
  679. (ins RetClass:$dest, GPRMem:$rs1, GPR:$rs2, AVL:$vl, ixlenimm:$sew),[]>,
  680. RISCVVPseudo,
  681. RISCVVLE</*Masked*/0, /*TU*/1, /*Strided*/1, /*FF*/0, log2<EEW>.val, VLMul> {
  682. let mayLoad = 1;
  683. let mayStore = 0;
  684. let hasSideEffects = 0;
  685. let HasVLOp = 1;
  686. let HasSEWOp = 1;
  687. let HasDummyMask = 1;
  688. let HasMergeOp = 1;
  689. let Constraints = "$rd = $dest";
  690. }
  691. class VPseudoSLoadMask<VReg RetClass, int EEW>:
  692. Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
  693. (ins GetVRegNoV0<RetClass>.R:$merge,
  694. GPRMem:$rs1, GPR:$rs2,
  695. VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy),[]>,
  696. RISCVVPseudo,
  697. RISCVVLE</*Masked*/1, /*TU*/1, /*Strided*/1, /*FF*/0, log2<EEW>.val, VLMul> {
  698. let mayLoad = 1;
  699. let mayStore = 0;
  700. let hasSideEffects = 0;
  701. let Constraints = "$rd = $merge";
  702. let HasVLOp = 1;
  703. let HasSEWOp = 1;
  704. let HasMergeOp = 1;
  705. let HasVecPolicyOp = 1;
  706. let UsesMaskPolicy = 1;
  707. }
  708. class VPseudoILoadNoMask<VReg RetClass, VReg IdxClass, int EEW, bits<3> LMUL,
  709. bit Ordered, bit EarlyClobber>:
  710. Pseudo<(outs RetClass:$rd),
  711. (ins GPRMem:$rs1, IdxClass:$rs2, AVL:$vl,
  712. ixlenimm:$sew),[]>,
  713. RISCVVPseudo,
  714. RISCVVLX</*Masked*/0, /*TU*/0, Ordered, log2<EEW>.val, VLMul, LMUL> {
  715. let mayLoad = 1;
  716. let mayStore = 0;
  717. let hasSideEffects = 0;
  718. let HasVLOp = 1;
  719. let HasSEWOp = 1;
  720. let HasDummyMask = 1;
  721. let Constraints = !if(!eq(EarlyClobber, 1), "@earlyclobber $rd", "");
  722. }
  723. class VPseudoILoadNoMaskTU<VReg RetClass, VReg IdxClass, int EEW, bits<3> LMUL,
  724. bit Ordered, bit EarlyClobber>:
  725. Pseudo<(outs RetClass:$rd),
  726. (ins RetClass:$dest, GPRMem:$rs1, IdxClass:$rs2, AVL:$vl,
  727. ixlenimm:$sew),[]>,
  728. RISCVVPseudo,
  729. RISCVVLX</*Masked*/0, /*TU*/1, Ordered, log2<EEW>.val, VLMul, LMUL> {
  730. let mayLoad = 1;
  731. let mayStore = 0;
  732. let hasSideEffects = 0;
  733. let HasVLOp = 1;
  734. let HasSEWOp = 1;
  735. let HasDummyMask = 1;
  736. let HasMergeOp = 1;
  737. let Constraints = !if(!eq(EarlyClobber, 1), "@earlyclobber $rd, $rd = $dest", "$rd = $dest");
  738. }
  739. class VPseudoILoadMask<VReg RetClass, VReg IdxClass, int EEW, bits<3> LMUL,
  740. bit Ordered, bit EarlyClobber>:
  741. Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
  742. (ins GetVRegNoV0<RetClass>.R:$merge,
  743. GPRMem:$rs1, IdxClass:$rs2,
  744. VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy),[]>,
  745. RISCVVPseudo,
  746. RISCVVLX</*Masked*/1, /*TU*/1, Ordered, log2<EEW>.val, VLMul, LMUL> {
  747. let mayLoad = 1;
  748. let mayStore = 0;
  749. let hasSideEffects = 0;
  750. let Constraints = !if(!eq(EarlyClobber, 1), "@earlyclobber $rd, $rd = $merge", "$rd = $merge");
  751. let HasVLOp = 1;
  752. let HasSEWOp = 1;
  753. let HasMergeOp = 1;
  754. let HasVecPolicyOp = 1;
  755. let UsesMaskPolicy = 1;
  756. }
  757. class VPseudoUSStoreNoMask<VReg StClass, int EEW, bit DummyMask = 1>:
  758. Pseudo<(outs),
  759. (ins StClass:$rd, GPRMem:$rs1, AVL:$vl, ixlenimm:$sew),[]>,
  760. RISCVVPseudo,
  761. RISCVVSE</*Masked*/0, /*Strided*/0, log2<EEW>.val, VLMul> {
  762. let mayLoad = 0;
  763. let mayStore = 1;
  764. let hasSideEffects = 0;
  765. let HasVLOp = 1;
  766. let HasSEWOp = 1;
  767. let HasDummyMask = DummyMask;
  768. }
  769. class VPseudoUSStoreMask<VReg StClass, int EEW>:
  770. Pseudo<(outs),
  771. (ins StClass:$rd, GPRMem:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
  772. RISCVVPseudo,
  773. RISCVVSE</*Masked*/1, /*Strided*/0, log2<EEW>.val, VLMul> {
  774. let mayLoad = 0;
  775. let mayStore = 1;
  776. let hasSideEffects = 0;
  777. let HasVLOp = 1;
  778. let HasSEWOp = 1;
  779. }
  780. class VPseudoSStoreNoMask<VReg StClass, int EEW>:
  781. Pseudo<(outs),
  782. (ins StClass:$rd, GPRMem:$rs1, GPR:$rs2, AVL:$vl, ixlenimm:$sew),[]>,
  783. RISCVVPseudo,
  784. RISCVVSE</*Masked*/0, /*Strided*/1, log2<EEW>.val, VLMul> {
  785. let mayLoad = 0;
  786. let mayStore = 1;
  787. let hasSideEffects = 0;
  788. let HasVLOp = 1;
  789. let HasSEWOp = 1;
  790. let HasDummyMask = 1;
  791. }
  792. class VPseudoSStoreMask<VReg StClass, int EEW>:
  793. Pseudo<(outs),
  794. (ins StClass:$rd, GPRMem:$rs1, GPR:$rs2, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
  795. RISCVVPseudo,
  796. RISCVVSE</*Masked*/1, /*Strided*/1, log2<EEW>.val, VLMul> {
  797. let mayLoad = 0;
  798. let mayStore = 1;
  799. let hasSideEffects = 0;
  800. let HasVLOp = 1;
  801. let HasSEWOp = 1;
  802. }
  803. // Unary instruction that is never masked so HasDummyMask=0.
  804. class VPseudoUnaryNoDummyMask<VReg RetClass,
  805. DAGOperand Op2Class> :
  806. Pseudo<(outs RetClass:$rd),
  807. (ins Op2Class:$rs1, AVL:$vl, ixlenimm:$sew), []>,
  808. RISCVVPseudo {
  809. let mayLoad = 0;
  810. let mayStore = 0;
  811. let hasSideEffects = 0;
  812. let HasVLOp = 1;
  813. let HasSEWOp = 1;
  814. }
  815. class VPseudoUnaryNoDummyMaskTU<VReg RetClass,
  816. DAGOperand Op2Class> :
  817. Pseudo<(outs RetClass:$rd),
  818. (ins RetClass:$dest, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew), []>,
  819. RISCVVPseudo {
  820. let mayLoad = 0;
  821. let mayStore = 0;
  822. let hasSideEffects = 0;
  823. let HasVLOp = 1;
  824. let HasSEWOp = 1;
  825. let HasMergeOp = 1;
  826. let Constraints = "$rd = $dest";
  827. }
  828. class VPseudoNullaryNoMask<VReg RegClass>:
  829. Pseudo<(outs RegClass:$rd),
  830. (ins AVL:$vl, ixlenimm:$sew),
  831. []>, RISCVVPseudo {
  832. let mayLoad = 0;
  833. let mayStore = 0;
  834. let hasSideEffects = 0;
  835. let HasVLOp = 1;
  836. let HasSEWOp = 1;
  837. let HasDummyMask = 1;
  838. }
  839. class VPseudoNullaryNoMaskTU<VReg RegClass>:
  840. Pseudo<(outs RegClass:$rd),
  841. (ins RegClass:$merge, AVL:$vl, ixlenimm:$sew),
  842. []>, RISCVVPseudo {
  843. let mayLoad = 0;
  844. let mayStore = 0;
  845. let hasSideEffects = 0;
  846. let Constraints = "$rd = $merge";
  847. let HasVLOp = 1;
  848. let HasSEWOp = 1;
  849. let HasDummyMask = 1;
  850. let HasMergeOp = 1;
  851. }
  852. class VPseudoNullaryMask<VReg RegClass>:
  853. Pseudo<(outs GetVRegNoV0<RegClass>.R:$rd),
  854. (ins GetVRegNoV0<RegClass>.R:$merge, VMaskOp:$vm, AVL:$vl,
  855. ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo {
  856. let mayLoad = 0;
  857. let mayStore = 0;
  858. let hasSideEffects = 0;
  859. let Constraints ="$rd = $merge";
  860. let HasVLOp = 1;
  861. let HasSEWOp = 1;
  862. let HasMergeOp = 1;
  863. let UsesMaskPolicy = 1;
  864. let HasVecPolicyOp = 1;
  865. }
  866. // Nullary for pseudo instructions. They are expanded in
  867. // RISCVExpandPseudoInsts pass.
  868. class VPseudoNullaryPseudoM<string BaseInst>
  869. : Pseudo<(outs VR:$rd), (ins AVL:$vl, ixlenimm:$sew), []>,
  870. RISCVVPseudo {
  871. let mayLoad = 0;
  872. let mayStore = 0;
  873. let hasSideEffects = 0;
  874. let HasVLOp = 1;
  875. let HasSEWOp = 1;
  876. // BaseInstr is not used in RISCVExpandPseudoInsts pass.
  877. // Just fill a corresponding real v-inst to pass tablegen check.
  878. let BaseInstr = !cast<Instruction>(BaseInst);
  879. }
  880. // RetClass could be GPR or VReg.
  881. class VPseudoUnaryNoMask<DAGOperand RetClass, VReg OpClass, string Constraint = ""> :
  882. Pseudo<(outs RetClass:$rd),
  883. (ins OpClass:$rs2, AVL:$vl, ixlenimm:$sew), []>,
  884. RISCVVPseudo {
  885. let mayLoad = 0;
  886. let mayStore = 0;
  887. let hasSideEffects = 0;
  888. let Constraints = Constraint;
  889. let HasVLOp = 1;
  890. let HasSEWOp = 1;
  891. let HasDummyMask = 1;
  892. }
  893. // RetClass could be GPR or VReg.
  894. class VPseudoUnaryNoMaskTU<DAGOperand RetClass, VReg OpClass, string Constraint = ""> :
  895. Pseudo<(outs RetClass:$rd),
  896. (ins RetClass:$merge, OpClass:$rs2, AVL:$vl, ixlenimm:$sew), []>,
  897. RISCVVPseudo {
  898. let mayLoad = 0;
  899. let mayStore = 0;
  900. let hasSideEffects = 0;
  901. let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret;
  902. let HasVLOp = 1;
  903. let HasSEWOp = 1;
  904. let HasDummyMask = 1;
  905. let HasMergeOp = 1;
  906. }
  907. class VPseudoUnaryMask<VReg RetClass, VReg OpClass, string Constraint = ""> :
  908. Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
  909. (ins GetVRegNoV0<RetClass>.R:$merge, OpClass:$rs2,
  910. VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>,
  911. RISCVVPseudo {
  912. let mayLoad = 0;
  913. let mayStore = 0;
  914. let hasSideEffects = 0;
  915. let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret;
  916. let HasVLOp = 1;
  917. let HasSEWOp = 1;
  918. let HasMergeOp = 1;
  919. let UsesMaskPolicy = 1;
  920. }
  921. class VPseudoUnaryMaskTA<VReg RetClass, VReg OpClass, string Constraint = ""> :
  922. Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
  923. (ins GetVRegNoV0<RetClass>.R:$merge, OpClass:$rs2,
  924. VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
  925. RISCVVPseudo {
  926. let mayLoad = 0;
  927. let mayStore = 0;
  928. let hasSideEffects = 0;
  929. let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret;
  930. let HasVLOp = 1;
  931. let HasSEWOp = 1;
  932. let HasMergeOp = 1;
  933. let HasVecPolicyOp = 1;
  934. let UsesMaskPolicy = 1;
  935. }
  936. class VPseudoUnaryMaskTA_NoExcept<VReg RetClass, VReg OpClass, string Constraint = ""> :
  937. Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
  938. (ins GetVRegNoV0<RetClass>.R:$merge, OpClass:$rs2, VMaskOp:$vm,
  939. AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []> {
  940. let mayLoad = 0;
  941. let mayStore = 0;
  942. let hasSideEffects = 0;
  943. let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret;
  944. let HasVLOp = 1;
  945. let HasSEWOp = 1;
  946. let HasMergeOp = 1;
  947. let HasVecPolicyOp = 1;
  948. let UsesMaskPolicy = 1;
  949. let usesCustomInserter = 1;
  950. }
  951. class VPseudoUnaryMaskTA_FRM<VReg RetClass, VReg OpClass, string Constraint = ""> :
  952. Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
  953. (ins GetVRegNoV0<RetClass>.R:$merge, OpClass:$rs2,
  954. VMaskOp:$vm, ixlenimm:$frm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []> {
  955. let mayLoad = 0;
  956. let mayStore = 0;
  957. let hasSideEffects = 0;
  958. let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret;
  959. let HasVLOp = 1;
  960. let HasSEWOp = 1;
  961. let HasMergeOp = 1;
  962. let HasVecPolicyOp = 1;
  963. let UsesMaskPolicy = 1;
  964. let usesCustomInserter = 1;
  965. }
  966. // mask unary operation without maskedoff
  967. class VPseudoMaskUnarySOutMask:
  968. Pseudo<(outs GPR:$rd),
  969. (ins VR:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>,
  970. RISCVVPseudo {
  971. let mayLoad = 0;
  972. let mayStore = 0;
  973. let hasSideEffects = 0;
  974. let HasVLOp = 1;
  975. let HasSEWOp = 1;
  976. }
  977. // Mask can be V0~V31
  978. class VPseudoUnaryAnyMask<VReg RetClass,
  979. VReg Op1Class> :
  980. Pseudo<(outs RetClass:$rd),
  981. (ins RetClass:$merge,
  982. Op1Class:$rs2,
  983. VR:$vm, AVL:$vl, ixlenimm:$sew),
  984. []>,
  985. RISCVVPseudo {
  986. let mayLoad = 0;
  987. let mayStore = 0;
  988. let hasSideEffects = 0;
  989. let Constraints = "@earlyclobber $rd, $rd = $merge";
  990. let HasVLOp = 1;
  991. let HasSEWOp = 1;
  992. let HasMergeOp = 1;
  993. }
  994. class VPseudoBinaryNoMask<VReg RetClass,
  995. VReg Op1Class,
  996. DAGOperand Op2Class,
  997. string Constraint,
  998. int DummyMask = 1> :
  999. Pseudo<(outs RetClass:$rd),
  1000. (ins Op1Class:$rs2, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew), []>,
  1001. RISCVVPseudo {
  1002. let mayLoad = 0;
  1003. let mayStore = 0;
  1004. let hasSideEffects = 0;
  1005. let Constraints = Constraint;
  1006. let HasVLOp = 1;
  1007. let HasSEWOp = 1;
  1008. let HasDummyMask = DummyMask;
  1009. }
  1010. class VPseudoBinaryNoMaskTU<VReg RetClass,
  1011. VReg Op1Class,
  1012. DAGOperand Op2Class,
  1013. string Constraint> :
  1014. Pseudo<(outs RetClass:$rd),
  1015. (ins RetClass:$merge, Op1Class:$rs2, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew), []>,
  1016. RISCVVPseudo {
  1017. let mayLoad = 0;
  1018. let mayStore = 0;
  1019. let hasSideEffects = 0;
  1020. let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret;
  1021. let HasVLOp = 1;
  1022. let HasSEWOp = 1;
  1023. let HasDummyMask = 1;
  1024. let HasMergeOp = 1;
  1025. }
  1026. // Special version of VPseudoBinaryNoMask where we pretend the first source is
  1027. // tied to the destination.
  1028. // This allows maskedoff and rs2 to be the same register.
  1029. class VPseudoTiedBinaryNoMask<VReg RetClass,
  1030. DAGOperand Op2Class,
  1031. string Constraint> :
  1032. Pseudo<(outs RetClass:$rd),
  1033. (ins RetClass:$rs2, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew,
  1034. ixlenimm:$policy), []>,
  1035. RISCVVPseudo {
  1036. let mayLoad = 0;
  1037. let mayStore = 0;
  1038. let hasSideEffects = 0;
  1039. let Constraints = Join<[Constraint, "$rd = $rs2"], ",">.ret;
  1040. let HasVLOp = 1;
  1041. let HasSEWOp = 1;
  1042. let HasDummyMask = 1;
  1043. let HasVecPolicyOp = 1;
  1044. let isConvertibleToThreeAddress = 1;
  1045. }
  1046. class VPseudoIStoreNoMask<VReg StClass, VReg IdxClass, int EEW, bits<3> LMUL,
  1047. bit Ordered>:
  1048. Pseudo<(outs),
  1049. (ins StClass:$rd, GPRMem:$rs1, IdxClass:$rs2, AVL:$vl, ixlenimm:$sew),[]>,
  1050. RISCVVPseudo,
  1051. RISCVVSX</*Masked*/0, Ordered, log2<EEW>.val, VLMul, LMUL> {
  1052. let mayLoad = 0;
  1053. let mayStore = 1;
  1054. let hasSideEffects = 0;
  1055. let HasVLOp = 1;
  1056. let HasSEWOp = 1;
  1057. let HasDummyMask = 1;
  1058. }
  1059. class VPseudoIStoreMask<VReg StClass, VReg IdxClass, int EEW, bits<3> LMUL,
  1060. bit Ordered>:
  1061. Pseudo<(outs),
  1062. (ins StClass:$rd, GPRMem:$rs1, IdxClass:$rs2, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
  1063. RISCVVPseudo,
  1064. RISCVVSX</*Masked*/1, Ordered, log2<EEW>.val, VLMul, LMUL> {
  1065. let mayLoad = 0;
  1066. let mayStore = 1;
  1067. let hasSideEffects = 0;
  1068. let HasVLOp = 1;
  1069. let HasSEWOp = 1;
  1070. }
  1071. class VPseudoBinaryMask<VReg RetClass,
  1072. RegisterClass Op1Class,
  1073. DAGOperand Op2Class,
  1074. string Constraint> :
  1075. Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
  1076. (ins GetVRegNoV0<RetClass>.R:$merge,
  1077. Op1Class:$rs2, Op2Class:$rs1,
  1078. VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>,
  1079. RISCVVPseudo {
  1080. let mayLoad = 0;
  1081. let mayStore = 0;
  1082. let hasSideEffects = 0;
  1083. let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret;
  1084. let HasVLOp = 1;
  1085. let HasSEWOp = 1;
  1086. let HasMergeOp = 1;
  1087. }
  1088. class VPseudoBinaryMaskPolicy<VReg RetClass,
  1089. RegisterClass Op1Class,
  1090. DAGOperand Op2Class,
  1091. string Constraint> :
  1092. Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
  1093. (ins GetVRegNoV0<RetClass>.R:$merge,
  1094. Op1Class:$rs2, Op2Class:$rs1,
  1095. VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
  1096. RISCVVPseudo {
  1097. let mayLoad = 0;
  1098. let mayStore = 0;
  1099. let hasSideEffects = 0;
  1100. let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret;
  1101. let HasVLOp = 1;
  1102. let HasSEWOp = 1;
  1103. let HasMergeOp = 1;
  1104. let HasVecPolicyOp = 1;
  1105. let UsesMaskPolicy = 1;
  1106. }
  1107. // Like VPseudoBinaryMask, but output can be V0.
  1108. class VPseudoBinaryMOutMask<VReg RetClass,
  1109. RegisterClass Op1Class,
  1110. DAGOperand Op2Class,
  1111. string Constraint> :
  1112. Pseudo<(outs RetClass:$rd),
  1113. (ins RetClass:$merge,
  1114. Op1Class:$rs2, Op2Class:$rs1,
  1115. VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>,
  1116. RISCVVPseudo {
  1117. let mayLoad = 0;
  1118. let mayStore = 0;
  1119. let hasSideEffects = 0;
  1120. let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret;
  1121. let HasVLOp = 1;
  1122. let HasSEWOp = 1;
  1123. let HasMergeOp = 1;
  1124. let UsesMaskPolicy = 1;
  1125. }
  1126. // Special version of VPseudoBinaryMask where we pretend the first source is
  1127. // tied to the destination so we can workaround the earlyclobber constraint.
  1128. // This allows maskedoff and rs2 to be the same register.
  1129. class VPseudoTiedBinaryMask<VReg RetClass,
  1130. DAGOperand Op2Class,
  1131. string Constraint> :
  1132. Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
  1133. (ins GetVRegNoV0<RetClass>.R:$merge,
  1134. Op2Class:$rs1,
  1135. VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>,
  1136. RISCVVPseudo {
  1137. let mayLoad = 0;
  1138. let mayStore = 0;
  1139. let hasSideEffects = 0;
  1140. let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret;
  1141. let HasVLOp = 1;
  1142. let HasSEWOp = 1;
  1143. let HasMergeOp = 0; // Merge is also rs2.
  1144. let HasVecPolicyOp = 1;
  1145. let UsesMaskPolicy = 1;
  1146. }
  1147. class VPseudoBinaryCarryIn<VReg RetClass,
  1148. VReg Op1Class,
  1149. DAGOperand Op2Class,
  1150. LMULInfo MInfo,
  1151. bit CarryIn,
  1152. string Constraint> :
  1153. Pseudo<(outs RetClass:$rd),
  1154. !if(CarryIn,
  1155. (ins Op1Class:$rs2, Op2Class:$rs1, VMV0:$carry, AVL:$vl,
  1156. ixlenimm:$sew),
  1157. (ins Op1Class:$rs2, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew)), []>,
  1158. RISCVVPseudo {
  1159. let mayLoad = 0;
  1160. let mayStore = 0;
  1161. let hasSideEffects = 0;
  1162. let Constraints = Constraint;
  1163. let HasVLOp = 1;
  1164. let HasSEWOp = 1;
  1165. let HasMergeOp = 0;
  1166. let VLMul = MInfo.value;
  1167. }
  1168. class VPseudoTiedBinaryCarryIn<VReg RetClass,
  1169. VReg Op1Class,
  1170. DAGOperand Op2Class,
  1171. LMULInfo MInfo,
  1172. bit CarryIn,
  1173. string Constraint> :
  1174. Pseudo<(outs RetClass:$rd),
  1175. !if(CarryIn,
  1176. (ins RetClass:$merge, Op1Class:$rs2, Op2Class:$rs1, VMV0:$carry, AVL:$vl,
  1177. ixlenimm:$sew),
  1178. (ins RetClass:$merge, Op1Class:$rs2, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew)), []>,
  1179. RISCVVPseudo {
  1180. let mayLoad = 0;
  1181. let mayStore = 0;
  1182. let hasSideEffects = 0;
  1183. let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret;
  1184. let HasVLOp = 1;
  1185. let HasSEWOp = 1;
  1186. let HasMergeOp = 1;
  1187. let HasVecPolicyOp = 0;
  1188. let VLMul = MInfo.value;
  1189. }
  1190. class VPseudoTernaryNoMask<VReg RetClass,
  1191. RegisterClass Op1Class,
  1192. DAGOperand Op2Class,
  1193. string Constraint> :
  1194. Pseudo<(outs RetClass:$rd),
  1195. (ins RetClass:$rs3, Op1Class:$rs1, Op2Class:$rs2,
  1196. AVL:$vl, ixlenimm:$sew),
  1197. []>,
  1198. RISCVVPseudo {
  1199. let mayLoad = 0;
  1200. let mayStore = 0;
  1201. let hasSideEffects = 0;
  1202. let Constraints = Join<[Constraint, "$rd = $rs3"], ",">.ret;
  1203. let HasVLOp = 1;
  1204. let HasSEWOp = 1;
  1205. let HasMergeOp = 1;
  1206. let HasDummyMask = 1;
  1207. }
  1208. class VPseudoTernaryNoMaskWithPolicy<VReg RetClass,
  1209. RegisterClass Op1Class,
  1210. DAGOperand Op2Class,
  1211. string Constraint> :
  1212. Pseudo<(outs RetClass:$rd),
  1213. (ins RetClass:$rs3, Op1Class:$rs1, Op2Class:$rs2,
  1214. AVL:$vl, ixlenimm:$sew, ixlenimm:$policy),
  1215. []>,
  1216. RISCVVPseudo {
  1217. let mayLoad = 0;
  1218. let mayStore = 0;
  1219. let hasSideEffects = 0;
  1220. let Constraints = Join<[Constraint, "$rd = $rs3"], ",">.ret;
  1221. let HasVecPolicyOp = 1;
  1222. let HasVLOp = 1;
  1223. let HasSEWOp = 1;
  1224. let HasMergeOp = 1;
  1225. let HasDummyMask = 1;
  1226. }
  1227. class VPseudoUSSegLoadNoMask<VReg RetClass, int EEW, bits<4> NF>:
  1228. Pseudo<(outs RetClass:$rd),
  1229. (ins GPRMem:$rs1, AVL:$vl, ixlenimm:$sew),[]>,
  1230. RISCVVPseudo,
  1231. RISCVVLSEG<NF, /*Masked*/0, /*TU*/0, /*Strided*/0, /*FF*/0, log2<EEW>.val, VLMul> {
  1232. let mayLoad = 1;
  1233. let mayStore = 0;
  1234. let hasSideEffects = 0;
  1235. let HasVLOp = 1;
  1236. let HasSEWOp = 1;
  1237. let HasDummyMask = 1;
  1238. }
  1239. class VPseudoUSSegLoadNoMaskTU<VReg RetClass, int EEW, bits<4> NF>:
  1240. Pseudo<(outs RetClass:$rd),
  1241. (ins RetClass:$dest, GPRMem:$rs1, AVL:$vl, ixlenimm:$sew),[]>,
  1242. RISCVVPseudo,
  1243. RISCVVLSEG<NF, /*Masked*/0, /*TU*/1, /*Strided*/0, /*FF*/0, log2<EEW>.val, VLMul> {
  1244. let mayLoad = 1;
  1245. let mayStore = 0;
  1246. let hasSideEffects = 0;
  1247. let HasVLOp = 1;
  1248. let HasSEWOp = 1;
  1249. let HasDummyMask = 1;
  1250. let HasMergeOp = 1;
  1251. let Constraints = "$rd = $dest";
  1252. }
  1253. class VPseudoUSSegLoadMask<VReg RetClass, int EEW, bits<4> NF>:
  1254. Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
  1255. (ins GetVRegNoV0<RetClass>.R:$merge, GPRMem:$rs1,
  1256. VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy),[]>,
  1257. RISCVVPseudo,
  1258. RISCVVLSEG<NF, /*Masked*/1, /*TU*/1, /*Strided*/0, /*FF*/0, log2<EEW>.val, VLMul> {
  1259. let mayLoad = 1;
  1260. let mayStore = 0;
  1261. let hasSideEffects = 0;
  1262. let Constraints = "$rd = $merge";
  1263. let HasVLOp = 1;
  1264. let HasSEWOp = 1;
  1265. let HasMergeOp = 1;
  1266. let HasVecPolicyOp = 1;
  1267. let UsesMaskPolicy = 1;
  1268. }
  1269. class VPseudoUSSegLoadFFNoMask<VReg RetClass, int EEW, bits<4> NF>:
  1270. Pseudo<(outs RetClass:$rd, GPR:$vl),
  1271. (ins GPRMem:$rs1, AVL:$avl, ixlenimm:$sew),[]>,
  1272. RISCVVPseudo,
  1273. RISCVVLSEG<NF, /*Masked*/0, /*TU*/0, /*Strided*/0, /*FF*/1, log2<EEW>.val, VLMul> {
  1274. let mayLoad = 1;
  1275. let mayStore = 0;
  1276. let hasSideEffects = 0;
  1277. let HasVLOp = 1;
  1278. let HasSEWOp = 1;
  1279. let HasDummyMask = 1;
  1280. }
  1281. class VPseudoUSSegLoadFFNoMaskTU<VReg RetClass, int EEW, bits<4> NF>:
  1282. Pseudo<(outs RetClass:$rd, GPR:$vl),
  1283. (ins RetClass:$dest, GPRMem:$rs1, AVL:$avl, ixlenimm:$sew),[]>,
  1284. RISCVVPseudo,
  1285. RISCVVLSEG<NF, /*Masked*/0, /*TU*/1, /*Strided*/0, /*FF*/1, log2<EEW>.val, VLMul> {
  1286. let mayLoad = 1;
  1287. let mayStore = 0;
  1288. let hasSideEffects = 0;
  1289. let HasVLOp = 1;
  1290. let HasSEWOp = 1;
  1291. let HasDummyMask = 1;
  1292. let HasMergeOp = 1;
  1293. let Constraints = "$rd = $dest";
  1294. }
  1295. class VPseudoUSSegLoadFFMask<VReg RetClass, int EEW, bits<4> NF>:
  1296. Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd, GPR:$vl),
  1297. (ins GetVRegNoV0<RetClass>.R:$merge, GPRMem:$rs1,
  1298. VMaskOp:$vm, AVL:$avl, ixlenimm:$sew, ixlenimm:$policy),[]>,
  1299. RISCVVPseudo,
  1300. RISCVVLSEG<NF, /*Masked*/1, /*TU*/1, /*Strided*/0, /*FF*/1, log2<EEW>.val, VLMul> {
  1301. let mayLoad = 1;
  1302. let mayStore = 0;
  1303. let hasSideEffects = 0;
  1304. let Constraints = "$rd = $merge";
  1305. let HasVLOp = 1;
  1306. let HasSEWOp = 1;
  1307. let HasMergeOp = 1;
  1308. let HasVecPolicyOp = 1;
  1309. let UsesMaskPolicy = 1;
  1310. }
  1311. class VPseudoSSegLoadNoMask<VReg RetClass, int EEW, bits<4> NF>:
  1312. Pseudo<(outs RetClass:$rd),
  1313. (ins GPRMem:$rs1, GPR:$offset, AVL:$vl, ixlenimm:$sew),[]>,
  1314. RISCVVPseudo,
  1315. RISCVVLSEG<NF, /*Masked*/0, /*TU*/0, /*Strided*/1, /*FF*/0, log2<EEW>.val, VLMul> {
  1316. let mayLoad = 1;
  1317. let mayStore = 0;
  1318. let hasSideEffects = 0;
  1319. let HasVLOp = 1;
  1320. let HasSEWOp = 1;
  1321. let HasDummyMask = 1;
  1322. }
  1323. class VPseudoSSegLoadNoMaskTU<VReg RetClass, int EEW, bits<4> NF>:
  1324. Pseudo<(outs RetClass:$rd),
  1325. (ins RetClass:$merge, GPRMem:$rs1, GPR:$offset, AVL:$vl, ixlenimm:$sew),[]>,
  1326. RISCVVPseudo,
  1327. RISCVVLSEG<NF, /*Masked*/0, /*TU*/1, /*Strided*/1, /*FF*/0, log2<EEW>.val, VLMul> {
  1328. let mayLoad = 1;
  1329. let mayStore = 0;
  1330. let hasSideEffects = 0;
  1331. let HasVLOp = 1;
  1332. let HasSEWOp = 1;
  1333. let HasDummyMask = 1;
  1334. let HasMergeOp = 1;
  1335. let Constraints = "$rd = $merge";
  1336. }
  1337. class VPseudoSSegLoadMask<VReg RetClass, int EEW, bits<4> NF>:
  1338. Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
  1339. (ins GetVRegNoV0<RetClass>.R:$merge, GPRMem:$rs1,
  1340. GPR:$offset, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew,
  1341. ixlenimm:$policy),[]>,
  1342. RISCVVPseudo,
  1343. RISCVVLSEG<NF, /*Masked*/1, /*TU*/1, /*Strided*/1, /*FF*/0, log2<EEW>.val, VLMul> {
  1344. let mayLoad = 1;
  1345. let mayStore = 0;
  1346. let hasSideEffects = 0;
  1347. let Constraints = "$rd = $merge";
  1348. let HasVLOp = 1;
  1349. let HasSEWOp = 1;
  1350. let HasMergeOp = 1;
  1351. let HasVecPolicyOp = 1;
  1352. let UsesMaskPolicy = 1;
  1353. }
  1354. class VPseudoISegLoadNoMask<VReg RetClass, VReg IdxClass, int EEW, bits<3> LMUL,
  1355. bits<4> NF, bit Ordered>:
  1356. Pseudo<(outs RetClass:$rd),
  1357. (ins GPRMem:$rs1, IdxClass:$offset, AVL:$vl, ixlenimm:$sew),[]>,
  1358. RISCVVPseudo,
  1359. RISCVVLXSEG<NF, /*Masked*/0, /*TU*/0, Ordered, log2<EEW>.val, VLMul, LMUL> {
  1360. let mayLoad = 1;
  1361. let mayStore = 0;
  1362. let hasSideEffects = 0;
  1363. // For vector indexed segment loads, the destination vector register groups
  1364. // cannot overlap the source vector register group
  1365. let Constraints = "@earlyclobber $rd";
  1366. let HasVLOp = 1;
  1367. let HasSEWOp = 1;
  1368. let HasDummyMask = 1;
  1369. }
  1370. class VPseudoISegLoadNoMaskTU<VReg RetClass, VReg IdxClass, int EEW, bits<3> LMUL,
  1371. bits<4> NF, bit Ordered>:
  1372. Pseudo<(outs RetClass:$rd),
  1373. (ins RetClass:$merge, GPRMem:$rs1, IdxClass:$offset, AVL:$vl, ixlenimm:$sew),[]>,
  1374. RISCVVPseudo,
  1375. RISCVVLXSEG<NF, /*Masked*/0, /*TU*/1, Ordered, log2<EEW>.val, VLMul, LMUL> {
  1376. let mayLoad = 1;
  1377. let mayStore = 0;
  1378. let hasSideEffects = 0;
  1379. // For vector indexed segment loads, the destination vector register groups
  1380. // cannot overlap the source vector register group
  1381. let Constraints = "@earlyclobber $rd, $rd = $merge";
  1382. let HasVLOp = 1;
  1383. let HasSEWOp = 1;
  1384. let HasDummyMask = 1;
  1385. let HasMergeOp = 1;
  1386. }
  1387. class VPseudoISegLoadMask<VReg RetClass, VReg IdxClass, int EEW, bits<3> LMUL,
  1388. bits<4> NF, bit Ordered>:
  1389. Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
  1390. (ins GetVRegNoV0<RetClass>.R:$merge, GPRMem:$rs1,
  1391. IdxClass:$offset, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew,
  1392. ixlenimm:$policy),[]>,
  1393. RISCVVPseudo,
  1394. RISCVVLXSEG<NF, /*Masked*/1, /*TU*/1, Ordered, log2<EEW>.val, VLMul, LMUL> {
  1395. let mayLoad = 1;
  1396. let mayStore = 0;
  1397. let hasSideEffects = 0;
  1398. // For vector indexed segment loads, the destination vector register groups
  1399. // cannot overlap the source vector register group
  1400. let Constraints = "@earlyclobber $rd, $rd = $merge";
  1401. let HasVLOp = 1;
  1402. let HasSEWOp = 1;
  1403. let HasMergeOp = 1;
  1404. let HasVecPolicyOp = 1;
  1405. let UsesMaskPolicy = 1;
  1406. }
  1407. class VPseudoUSSegStoreNoMask<VReg ValClass, int EEW, bits<4> NF>:
  1408. Pseudo<(outs),
  1409. (ins ValClass:$rd, GPRMem:$rs1, AVL:$vl, ixlenimm:$sew),[]>,
  1410. RISCVVPseudo,
  1411. RISCVVSSEG<NF, /*Masked*/0, /*Strided*/0, log2<EEW>.val, VLMul> {
  1412. let mayLoad = 0;
  1413. let mayStore = 1;
  1414. let hasSideEffects = 0;
  1415. let HasVLOp = 1;
  1416. let HasSEWOp = 1;
  1417. let HasDummyMask = 1;
  1418. }
  1419. class VPseudoUSSegStoreMask<VReg ValClass, int EEW, bits<4> NF>:
  1420. Pseudo<(outs),
  1421. (ins ValClass:$rd, GPRMem:$rs1,
  1422. VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
  1423. RISCVVPseudo,
  1424. RISCVVSSEG<NF, /*Masked*/1, /*Strided*/0, log2<EEW>.val, VLMul> {
  1425. let mayLoad = 0;
  1426. let mayStore = 1;
  1427. let hasSideEffects = 0;
  1428. let HasVLOp = 1;
  1429. let HasSEWOp = 1;
  1430. }
  1431. class VPseudoSSegStoreNoMask<VReg ValClass, int EEW, bits<4> NF>:
  1432. Pseudo<(outs),
  1433. (ins ValClass:$rd, GPRMem:$rs1, GPR: $offset, AVL:$vl, ixlenimm:$sew),[]>,
  1434. RISCVVPseudo,
  1435. RISCVVSSEG<NF, /*Masked*/0, /*Strided*/1, log2<EEW>.val, VLMul> {
  1436. let mayLoad = 0;
  1437. let mayStore = 1;
  1438. let hasSideEffects = 0;
  1439. let HasVLOp = 1;
  1440. let HasSEWOp = 1;
  1441. let HasDummyMask = 1;
  1442. }
  1443. class VPseudoSSegStoreMask<VReg ValClass, int EEW, bits<4> NF>:
  1444. Pseudo<(outs),
  1445. (ins ValClass:$rd, GPRMem:$rs1, GPR: $offset,
  1446. VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
  1447. RISCVVPseudo,
  1448. RISCVVSSEG<NF, /*Masked*/1, /*Strided*/1, log2<EEW>.val, VLMul> {
  1449. let mayLoad = 0;
  1450. let mayStore = 1;
  1451. let hasSideEffects = 0;
  1452. let HasVLOp = 1;
  1453. let HasSEWOp = 1;
  1454. }
  1455. class VPseudoISegStoreNoMask<VReg ValClass, VReg IdxClass, int EEW, bits<3> LMUL,
  1456. bits<4> NF, bit Ordered>:
  1457. Pseudo<(outs),
  1458. (ins ValClass:$rd, GPRMem:$rs1, IdxClass: $index,
  1459. AVL:$vl, ixlenimm:$sew),[]>,
  1460. RISCVVPseudo,
  1461. RISCVVSXSEG<NF, /*Masked*/0, Ordered, log2<EEW>.val, VLMul, LMUL> {
  1462. let mayLoad = 0;
  1463. let mayStore = 1;
  1464. let hasSideEffects = 0;
  1465. let HasVLOp = 1;
  1466. let HasSEWOp = 1;
  1467. let HasDummyMask = 1;
  1468. }
  1469. class VPseudoISegStoreMask<VReg ValClass, VReg IdxClass, int EEW, bits<3> LMUL,
  1470. bits<4> NF, bit Ordered>:
  1471. Pseudo<(outs),
  1472. (ins ValClass:$rd, GPRMem:$rs1, IdxClass: $index,
  1473. VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
  1474. RISCVVPseudo,
  1475. RISCVVSXSEG<NF, /*Masked*/1, Ordered, log2<EEW>.val, VLMul, LMUL> {
  1476. let mayLoad = 0;
  1477. let mayStore = 1;
  1478. let hasSideEffects = 0;
  1479. let HasVLOp = 1;
  1480. let HasSEWOp = 1;
  1481. }
  1482. multiclass VPseudoUSLoad {
  1483. foreach eew = EEWList in {
  1484. foreach lmul = MxSet<eew>.m in {
  1485. defvar LInfo = lmul.MX;
  1486. defvar vreg = lmul.vrclass;
  1487. let VLMul = lmul.value in {
  1488. def "E" # eew # "_V_" # LInfo :
  1489. VPseudoUSLoadNoMask<vreg, eew>,
  1490. VLESched<LInfo>;
  1491. def "E" # eew # "_V_" # LInfo # "_TU":
  1492. VPseudoUSLoadNoMaskTU<vreg, eew>,
  1493. VLESched<LInfo>;
  1494. def "E" # eew # "_V_" # LInfo # "_MASK" :
  1495. VPseudoUSLoadMask<vreg, eew>,
  1496. RISCVMaskedPseudo</*MaskOpIdx*/ 2>,
  1497. VLESched<LInfo>;
  1498. }
  1499. }
  1500. }
  1501. }
  1502. multiclass VPseudoFFLoad {
  1503. foreach eew = EEWList in {
  1504. foreach lmul = MxSet<eew>.m in {
  1505. defvar LInfo = lmul.MX;
  1506. defvar vreg = lmul.vrclass;
  1507. let VLMul = lmul.value in {
  1508. def "E" # eew # "FF_V_" # LInfo:
  1509. VPseudoUSLoadFFNoMask<vreg, eew>,
  1510. VLFSched<LInfo>;
  1511. def "E" # eew # "FF_V_" # LInfo # "_TU":
  1512. VPseudoUSLoadFFNoMaskTU<vreg, eew>,
  1513. VLFSched<LInfo>;
  1514. def "E" # eew # "FF_V_" # LInfo # "_MASK":
  1515. VPseudoUSLoadFFMask<vreg, eew>,
  1516. RISCVMaskedPseudo</*MaskOpIdx*/ 2>,
  1517. VLFSched<LInfo>;
  1518. }
  1519. }
  1520. }
  1521. }
  1522. multiclass VPseudoLoadMask {
  1523. foreach mti = AllMasks in {
  1524. defvar mx = mti.LMul.MX;
  1525. defvar WriteVLDM_MX = !cast<SchedWrite>("WriteVLDM_" # mx);
  1526. defvar ReadVLDX_MX = !cast<SchedRead>("ReadVLDX_" # mx);
  1527. let VLMul = mti.LMul.value in {
  1528. def "_V_" # mti.BX : VPseudoUSLoadNoMask<VR, /*EEW*/1, /*DummyMask*/0>,
  1529. Sched<[WriteVLDM_MX, ReadVLDX_MX]>;
  1530. }
  1531. }
  1532. }
  1533. multiclass VPseudoSLoad {
  1534. foreach eew = EEWList in {
  1535. foreach lmul = MxSet<eew>.m in {
  1536. defvar LInfo = lmul.MX;
  1537. defvar vreg = lmul.vrclass;
  1538. let VLMul = lmul.value in {
  1539. def "E" # eew # "_V_" # LInfo : VPseudoSLoadNoMask<vreg, eew>,
  1540. VLSSched<eew, LInfo>;
  1541. def "E" # eew # "_V_" # LInfo # "_TU": VPseudoSLoadNoMaskTU<vreg, eew>,
  1542. VLSSched<eew, LInfo>;
  1543. def "E" # eew # "_V_" # LInfo # "_MASK" :
  1544. VPseudoSLoadMask<vreg, eew>,
  1545. RISCVMaskedPseudo</*MaskOpIdx*/ 3>,
  1546. VLSSched<eew, LInfo>;
  1547. }
  1548. }
  1549. }
  1550. }
  1551. multiclass VPseudoILoad<bit Ordered> {
  1552. foreach eew = EEWList in {
  1553. foreach sew = EEWList in {
  1554. foreach lmul = MxSet<sew>.m in {
  1555. defvar octuple_lmul = lmul.octuple;
  1556. // Calculate emul = eew * lmul / sew
  1557. defvar octuple_emul = !srl(!mul(eew, octuple_lmul), log2<sew>.val);
  1558. if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then {
  1559. defvar LInfo = lmul.MX;
  1560. defvar IdxLInfo = octuple_to_str<octuple_emul>.ret;
  1561. defvar idx_lmul = !cast<LMULInfo>("V_" # IdxLInfo);
  1562. defvar Vreg = lmul.vrclass;
  1563. defvar IdxVreg = idx_lmul.vrclass;
  1564. defvar HasConstraint = !ne(sew, eew);
  1565. defvar Order = !if(Ordered, "O", "U");
  1566. let VLMul = lmul.value in {
  1567. def "EI" # eew # "_V_" # IdxLInfo # "_" # LInfo :
  1568. VPseudoILoadNoMask<Vreg, IdxVreg, eew, idx_lmul.value, Ordered, HasConstraint>,
  1569. VLXSched<eew, Order, LInfo>;
  1570. def "EI" # eew # "_V_" # IdxLInfo # "_" # LInfo # "_TU":
  1571. VPseudoILoadNoMaskTU<Vreg, IdxVreg, eew, idx_lmul.value, Ordered, HasConstraint>,
  1572. VLXSched<eew, Order, LInfo>;
  1573. def "EI" # eew # "_V_" # IdxLInfo # "_" # LInfo # "_MASK" :
  1574. VPseudoILoadMask<Vreg, IdxVreg, eew, idx_lmul.value, Ordered, HasConstraint>,
  1575. RISCVMaskedPseudo</*MaskOpIdx*/ 3>,
  1576. VLXSched<eew, Order, LInfo>;
  1577. }
  1578. }
  1579. }
  1580. }
  1581. }
  1582. }
  1583. multiclass VPseudoUSStore {
  1584. foreach eew = EEWList in {
  1585. foreach lmul = MxSet<eew>.m in {
  1586. defvar LInfo = lmul.MX;
  1587. defvar vreg = lmul.vrclass;
  1588. let VLMul = lmul.value in {
  1589. def "E" # eew # "_V_" # LInfo : VPseudoUSStoreNoMask<vreg, eew>,
  1590. VSESched<LInfo>;
  1591. def "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoUSStoreMask<vreg, eew>,
  1592. VSESched<LInfo>;
  1593. }
  1594. }
  1595. }
  1596. }
  1597. multiclass VPseudoStoreMask {
  1598. foreach mti = AllMasks in {
  1599. defvar mx = mti.LMul.MX;
  1600. defvar WriteVSTM_MX = !cast<SchedWrite>("WriteVSTM_" # mx);
  1601. defvar ReadVSTX_MX = !cast<SchedRead>("ReadVSTX_" # mx);
  1602. let VLMul = mti.LMul.value in {
  1603. def "_V_" # mti.BX : VPseudoUSStoreNoMask<VR, /*EEW*/1, /*DummyMask*/0>,
  1604. Sched<[WriteVSTM_MX, ReadVSTX_MX]>;
  1605. }
  1606. }
  1607. }
  1608. multiclass VPseudoSStore {
  1609. foreach eew = EEWList in {
  1610. foreach lmul = MxSet<eew>.m in {
  1611. defvar LInfo = lmul.MX;
  1612. defvar vreg = lmul.vrclass;
  1613. let VLMul = lmul.value in {
  1614. def "E" # eew # "_V_" # LInfo : VPseudoSStoreNoMask<vreg, eew>,
  1615. VSSSched<eew, LInfo>;
  1616. def "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSStoreMask<vreg, eew>,
  1617. VSSSched<eew, LInfo>;
  1618. }
  1619. }
  1620. }
  1621. }
  1622. multiclass VPseudoIStore<bit Ordered> {
  1623. foreach eew = EEWList in {
  1624. foreach sew = EEWList in {
  1625. foreach lmul = MxSet<sew>.m in {
  1626. defvar octuple_lmul = lmul.octuple;
  1627. // Calculate emul = eew * lmul / sew
  1628. defvar octuple_emul = !srl(!mul(eew, octuple_lmul), log2<sew>.val);
  1629. if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then {
  1630. defvar LInfo = lmul.MX;
  1631. defvar IdxLInfo = octuple_to_str<octuple_emul>.ret;
  1632. defvar idx_lmul = !cast<LMULInfo>("V_" # IdxLInfo);
  1633. defvar Vreg = lmul.vrclass;
  1634. defvar IdxVreg = idx_lmul.vrclass;
  1635. defvar Order = !if(Ordered, "O", "U");
  1636. let VLMul = lmul.value in {
  1637. def "EI" # eew # "_V_" # IdxLInfo # "_" # LInfo :
  1638. VPseudoIStoreNoMask<Vreg, IdxVreg, eew, idx_lmul.value, Ordered>,
  1639. VSXSched<eew, Order, LInfo>;
  1640. def "EI" # eew # "_V_" # IdxLInfo # "_" # LInfo # "_MASK" :
  1641. VPseudoIStoreMask<Vreg, IdxVreg, eew, idx_lmul.value, Ordered>,
  1642. VSXSched<eew, Order, LInfo>;
  1643. }
  1644. }
  1645. }
  1646. }
  1647. }
  1648. }
  1649. multiclass VPseudoVPOP_M {
  1650. foreach mti = AllMasks in
  1651. {
  1652. defvar mx = mti.LMul.MX;
  1653. defvar WriteVMPopV_MX = !cast<SchedWrite>("WriteVMPopV_" # mx);
  1654. defvar ReadVMPopV_MX = !cast<SchedRead>("ReadVMPopV_" # mx);
  1655. let VLMul = mti.LMul.value in {
  1656. def "_M_" # mti.BX : VPseudoUnaryNoMask<GPR, VR>,
  1657. Sched<[WriteVMPopV_MX, ReadVMPopV_MX, ReadVMPopV_MX]>;
  1658. def "_M_" # mti.BX # "_MASK" : VPseudoMaskUnarySOutMask,
  1659. Sched<[WriteVMPopV_MX, ReadVMPopV_MX, ReadVMPopV_MX]>;
  1660. }
  1661. }
  1662. }
  1663. multiclass VPseudoV1ST_M {
  1664. foreach mti = AllMasks in
  1665. {
  1666. defvar mx = mti.LMul.MX;
  1667. defvar WriteVMFFSV_MX = !cast<SchedWrite>("WriteVMFFSV_" # mx);
  1668. defvar ReadVMFFSV_MX = !cast<SchedRead>("ReadVMFFSV_" # mx);
  1669. let VLMul = mti.LMul.value in {
  1670. def "_M_" # mti.BX : VPseudoUnaryNoMask<GPR, VR>,
  1671. Sched<[WriteVMFFSV_MX, ReadVMFFSV_MX, ReadVMFFSV_MX]>;
  1672. def "_M_" # mti.BX # "_MASK" : VPseudoMaskUnarySOutMask,
  1673. Sched<[WriteVMFFSV_MX, ReadVMFFSV_MX, ReadVMFFSV_MX]>;
  1674. }
  1675. }
  1676. }
  1677. multiclass VPseudoVSFS_M {
  1678. defvar constraint = "@earlyclobber $rd";
  1679. foreach mti = AllMasks in
  1680. {
  1681. defvar mx = mti.LMul.MX;
  1682. defvar WriteVMSFSV_MX = !cast<SchedWrite>("WriteVMSFSV_" # mx);
  1683. defvar ReadVMSFSV_MX = !cast<SchedRead>("ReadVMSFSV_" # mx);
  1684. let VLMul = mti.LMul.value in {
  1685. def "_M_" # mti.BX : VPseudoUnaryNoMask<VR, VR, constraint>,
  1686. Sched<[WriteVMSFSV_MX, ReadVMSFSV_MX, ReadVMask]>;
  1687. def "_M_" # mti.BX # "_MASK" : VPseudoUnaryMask<VR, VR, constraint>,
  1688. Sched<[WriteVMSFSV_MX, ReadVMSFSV_MX, ReadVMask]>;
  1689. }
  1690. }
  1691. }
  1692. multiclass VPseudoVID_V {
  1693. foreach m = MxList in {
  1694. defvar mx = m.MX;
  1695. defvar WriteVMIdxV_MX = !cast<SchedWrite>("WriteVMIdxV_" # mx);
  1696. defvar ReadVMIdxV_MX = !cast<SchedRead>("ReadVMIdxV_" # mx);
  1697. let VLMul = m.value in {
  1698. def "_V_" # m.MX : VPseudoNullaryNoMask<m.vrclass>,
  1699. Sched<[WriteVMIdxV_MX, ReadVMask]>;
  1700. def "_V_" # m.MX # "_TU": VPseudoNullaryNoMaskTU<m.vrclass>,
  1701. Sched<[WriteVMIdxV_MX, ReadVMask]>;
  1702. def "_V_" # m.MX # "_MASK" : VPseudoNullaryMask<m.vrclass>,
  1703. RISCVMaskedPseudo</*MaskOpIdx*/ 1>,
  1704. Sched<[WriteVMIdxV_MX, ReadVMask]>;
  1705. }
  1706. }
  1707. }
  1708. multiclass VPseudoNullaryPseudoM <string BaseInst> {
  1709. foreach mti = AllMasks in {
  1710. defvar mx = mti.LMul.MX;
  1711. defvar WriteVMALUV_MX = !cast<SchedWrite>("WriteVMALUV_" # mx);
  1712. defvar ReadVMALUV_MX = !cast<SchedRead>("ReadVMALUV_" # mx);
  1713. let VLMul = mti.LMul.value in {
  1714. def "_M_" # mti.BX : VPseudoNullaryPseudoM<BaseInst # "_MM">,
  1715. Sched<[WriteVMALUV_MX, ReadVMALUV_MX, ReadVMALUV_MX]>;
  1716. }
  1717. }
  1718. }
  1719. multiclass VPseudoVIOT_M {
  1720. defvar constraint = "@earlyclobber $rd";
  1721. foreach m = MxList in {
  1722. defvar mx = m.MX;
  1723. defvar WriteVMIotV_MX = !cast<SchedWrite>("WriteVMIotV_" # mx);
  1724. defvar ReadVMIotV_MX = !cast<SchedRead>("ReadVMIotV_" # mx);
  1725. let VLMul = m.value in {
  1726. def "_" # m.MX : VPseudoUnaryNoMask<m.vrclass, VR, constraint>,
  1727. Sched<[WriteVMIotV_MX, ReadVMIotV_MX, ReadVMask]>;
  1728. def "_" # m.MX # "_TU" : VPseudoUnaryNoMaskTU<m.vrclass, VR, constraint>,
  1729. Sched<[WriteVMIotV_MX, ReadVMIotV_MX, ReadVMask]>;
  1730. def "_" # m.MX # "_MASK" : VPseudoUnaryMaskTA<m.vrclass, VR, constraint>,
  1731. RISCVMaskedPseudo</*MaskOpIdx*/ 2>,
  1732. Sched<[WriteVMIotV_MX, ReadVMIotV_MX, ReadVMask]>;
  1733. }
  1734. }
  1735. }
  1736. multiclass VPseudoVCPR_V {
  1737. foreach m = MxList in {
  1738. defvar mx = m.MX;
  1739. defvar WriteVCompressV_MX = !cast<SchedWrite>("WriteVCompressV_" # mx);
  1740. defvar ReadVCompressV_MX = !cast<SchedRead>("ReadVCompressV_" # mx);
  1741. let VLMul = m.value in
  1742. def _VM # "_" # m.MX : VPseudoUnaryAnyMask<m.vrclass, m.vrclass>,
  1743. Sched<[WriteVCompressV_MX, ReadVCompressV_MX, ReadVCompressV_MX]>;
  1744. }
  1745. }
  1746. multiclass VPseudoBinary<VReg RetClass,
  1747. VReg Op1Class,
  1748. DAGOperand Op2Class,
  1749. LMULInfo MInfo,
  1750. string Constraint = ""> {
  1751. let VLMul = MInfo.value in {
  1752. def "_" # MInfo.MX : VPseudoBinaryNoMask<RetClass, Op1Class, Op2Class,
  1753. Constraint>;
  1754. def "_" # MInfo.MX # "_TU" : VPseudoBinaryNoMaskTU<RetClass, Op1Class, Op2Class,
  1755. Constraint>;
  1756. def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMaskPolicy<RetClass, Op1Class, Op2Class,
  1757. Constraint>,
  1758. RISCVMaskedPseudo</*MaskOpIdx*/ 3>;
  1759. }
  1760. }
  1761. multiclass VPseudoBinaryM<VReg RetClass,
  1762. VReg Op1Class,
  1763. DAGOperand Op2Class,
  1764. LMULInfo MInfo,
  1765. string Constraint = ""> {
  1766. let VLMul = MInfo.value in {
  1767. def "_" # MInfo.MX : VPseudoBinaryNoMask<RetClass, Op1Class, Op2Class,
  1768. Constraint>;
  1769. let ForceTailAgnostic = true in
  1770. def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMOutMask<RetClass, Op1Class,
  1771. Op2Class, Constraint>,
  1772. RISCVMaskedPseudo</*MaskOpIdx*/ 3, /*HasTU*/ false>;
  1773. }
  1774. }
  1775. multiclass VPseudoBinaryEmul<VReg RetClass,
  1776. VReg Op1Class,
  1777. DAGOperand Op2Class,
  1778. LMULInfo lmul,
  1779. LMULInfo emul,
  1780. string Constraint = ""> {
  1781. let VLMul = lmul.value in {
  1782. def "_" # lmul.MX # "_" # emul.MX : VPseudoBinaryNoMask<RetClass, Op1Class, Op2Class,
  1783. Constraint>;
  1784. def "_" # lmul.MX # "_" # emul.MX # "_TU": VPseudoBinaryNoMaskTU<RetClass, Op1Class, Op2Class,
  1785. Constraint>;
  1786. def "_" # lmul.MX # "_" # emul.MX # "_MASK" : VPseudoBinaryMaskPolicy<RetClass, Op1Class, Op2Class,
  1787. Constraint>,
  1788. RISCVMaskedPseudo</*MaskOpIdx*/ 3>;
  1789. }
  1790. }
  1791. multiclass VPseudoTiedBinary<VReg RetClass,
  1792. DAGOperand Op2Class,
  1793. LMULInfo MInfo,
  1794. string Constraint = ""> {
  1795. let VLMul = MInfo.value in {
  1796. def "_" # MInfo.MX # "_TIED": VPseudoTiedBinaryNoMask<RetClass, Op2Class,
  1797. Constraint>;
  1798. def "_" # MInfo.MX # "_MASK_TIED" : VPseudoTiedBinaryMask<RetClass, Op2Class,
  1799. Constraint>;
  1800. }
  1801. }
  1802. multiclass VPseudoBinaryV_VV<LMULInfo m, string Constraint = ""> {
  1803. defm _VV : VPseudoBinary<m.vrclass, m.vrclass, m.vrclass, m, Constraint>;
  1804. }
  1805. // Similar to VPseudoBinaryV_VV, but uses MxListF.
  1806. multiclass VPseudoBinaryFV_VV<LMULInfo m, string Constraint = ""> {
  1807. defm _VV : VPseudoBinary<m.vrclass, m.vrclass, m.vrclass, m, Constraint>;
  1808. }
  1809. multiclass VPseudoVGTR_VV_EEW<int eew, string Constraint = ""> {
  1810. foreach m = MxList in {
  1811. defvar mx = m.MX;
  1812. defvar WriteVGatherV_MX = !cast<SchedWrite>("WriteVGatherV_" # mx);
  1813. defvar ReadVGatherV_MX = !cast<SchedRead>("ReadVGatherV_" # mx);
  1814. foreach sew = EEWList in {
  1815. defvar octuple_lmul = m.octuple;
  1816. // emul = lmul * eew / sew
  1817. defvar octuple_emul = !srl(!mul(octuple_lmul, eew), log2<sew>.val);
  1818. if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then {
  1819. defvar emulMX = octuple_to_str<octuple_emul>.ret;
  1820. defvar emul = !cast<LMULInfo>("V_" # emulMX);
  1821. defm _VV : VPseudoBinaryEmul<m.vrclass, m.vrclass, emul.vrclass, m, emul, Constraint>,
  1822. Sched<[WriteVGatherV_MX, ReadVGatherV_MX, ReadVGatherV_MX]>;
  1823. }
  1824. }
  1825. }
  1826. }
  1827. multiclass VPseudoBinaryV_VX<LMULInfo m, string Constraint = ""> {
  1828. defm "_VX" : VPseudoBinary<m.vrclass, m.vrclass, GPR, m, Constraint>;
  1829. }
  1830. multiclass VPseudoVSLD1_VX<string Constraint = ""> {
  1831. foreach m = MxList in {
  1832. defvar mx = m.MX;
  1833. defvar WriteVISlide1X_MX = !cast<SchedWrite>("WriteVISlide1X_" # mx);
  1834. defvar ReadVISlideV_MX = !cast<SchedRead>("ReadVISlideV_" # mx);
  1835. defvar ReadVISlideX_MX = !cast<SchedRead>("ReadVISlideX_" # mx);
  1836. defm "_VX" : VPseudoBinary<m.vrclass, m.vrclass, GPR, m, Constraint>,
  1837. Sched<[WriteVISlide1X_MX, ReadVISlideV_MX, ReadVISlideX_MX, ReadVMask]>;
  1838. }
  1839. }
  1840. multiclass VPseudoBinaryV_VF<LMULInfo m, FPR_Info f, string Constraint = ""> {
  1841. defm "_V" # f.FX : VPseudoBinary<m.vrclass, m.vrclass,
  1842. f.fprclass, m, Constraint>;
  1843. }
  1844. multiclass VPseudoVSLD1_VF<string Constraint = ""> {
  1845. foreach f = FPList in {
  1846. foreach m = f.MxList in {
  1847. defvar mx = m.MX;
  1848. defvar WriteVFSlide1F_MX = !cast<SchedWrite>("WriteVFSlide1F_" # mx);
  1849. defvar ReadVFSlideV_MX = !cast<SchedRead>("ReadVFSlideV_" # mx);
  1850. defvar ReadVFSlideF_MX = !cast<SchedRead>("ReadVFSlideF_" # mx);
  1851. defm "_V" # f.FX :
  1852. VPseudoBinary<m.vrclass, m.vrclass, f.fprclass, m, Constraint>,
  1853. Sched<[WriteVFSlide1F_MX, ReadVFSlideV_MX, ReadVFSlideF_MX, ReadVMask]>;
  1854. }
  1855. }
  1856. }
  1857. multiclass VPseudoBinaryV_VI<Operand ImmType = simm5, LMULInfo m, string Constraint = ""> {
  1858. defm _VI : VPseudoBinary<m.vrclass, m.vrclass, ImmType, m, Constraint>;
  1859. }
  1860. multiclass VPseudoVALU_MM {
  1861. foreach m = MxList in {
  1862. defvar mx = m.MX;
  1863. defvar WriteVMALUV_MX = !cast<SchedWrite>("WriteVMALUV_" # mx);
  1864. defvar ReadVMALUV_MX = !cast<SchedRead>("ReadVMALUV_" # mx);
  1865. let VLMul = m.value in {
  1866. def "_MM_" # mx : VPseudoBinaryNoMask<VR, VR, VR, "", /*DummyMask*/0>,
  1867. Sched<[WriteVMALUV_MX, ReadVMALUV_MX, ReadVMALUV_MX]>;
  1868. }
  1869. }
  1870. }
  1871. // We use earlyclobber here due to
  1872. // * The destination EEW is smaller than the source EEW and the overlap is
  1873. // in the lowest-numbered part of the source register group is legal.
  1874. // Otherwise, it is illegal.
  1875. // * The destination EEW is greater than the source EEW, the source EMUL is
  1876. // at least 1, and the overlap is in the highest-numbered part of the
  1877. // destination register group is legal. Otherwise, it is illegal.
  1878. multiclass VPseudoBinaryW_VV<LMULInfo m> {
  1879. defm _VV : VPseudoBinary<m.wvrclass, m.vrclass, m.vrclass, m,
  1880. "@earlyclobber $rd">;
  1881. }
  1882. multiclass VPseudoBinaryW_VX<LMULInfo m> {
  1883. defm "_VX" : VPseudoBinary<m.wvrclass, m.vrclass, GPR, m,
  1884. "@earlyclobber $rd">;
  1885. }
  1886. multiclass VPseudoBinaryW_VF<LMULInfo m, FPR_Info f> {
  1887. defm "_V" # f.FX : VPseudoBinary<m.wvrclass, m.vrclass,
  1888. f.fprclass, m,
  1889. "@earlyclobber $rd">;
  1890. }
  1891. multiclass VPseudoBinaryW_WV<LMULInfo m> {
  1892. defm _WV : VPseudoBinary<m.wvrclass, m.wvrclass, m.vrclass, m,
  1893. "@earlyclobber $rd">;
  1894. defm _WV : VPseudoTiedBinary<m.wvrclass, m.vrclass, m,
  1895. "@earlyclobber $rd">;
  1896. }
  1897. multiclass VPseudoBinaryW_WX<LMULInfo m> {
  1898. defm "_WX" : VPseudoBinary<m.wvrclass, m.wvrclass, GPR, m>;
  1899. }
  1900. multiclass VPseudoBinaryW_WF<LMULInfo m, FPR_Info f> {
  1901. defm "_W" # f.FX : VPseudoBinary<m.wvrclass, m.wvrclass,
  1902. f.fprclass, m>;
  1903. }
  1904. // Narrowing instructions like vnsrl/vnsra/vnclip(u) don't need @earlyclobber
  1905. // if the source and destination have an LMUL<=1. This matches this overlap
  1906. // exception from the spec.
  1907. // "The destination EEW is smaller than the source EEW and the overlap is in the
  1908. // lowest-numbered part of the source register group."
  1909. multiclass VPseudoBinaryV_WV<LMULInfo m> {
  1910. defm _WV : VPseudoBinary<m.vrclass, m.wvrclass, m.vrclass, m,
  1911. !if(!ge(m.octuple, 8), "@earlyclobber $rd", "")>;
  1912. }
  1913. multiclass VPseudoBinaryV_WX<LMULInfo m> {
  1914. defm _WX : VPseudoBinary<m.vrclass, m.wvrclass, GPR, m,
  1915. !if(!ge(m.octuple, 8), "@earlyclobber $rd", "")>;
  1916. }
  1917. multiclass VPseudoBinaryV_WI<LMULInfo m> {
  1918. defm _WI : VPseudoBinary<m.vrclass, m.wvrclass, uimm5, m,
  1919. !if(!ge(m.octuple, 8), "@earlyclobber $rd", "")>;
  1920. }
  1921. // For vadc and vsbc, the instruction encoding is reserved if the destination
  1922. // vector register is v0.
  1923. // For vadc and vsbc, CarryIn == 1 and CarryOut == 0
  1924. multiclass VPseudoBinaryV_VM<LMULInfo m, bit CarryOut = 0, bit CarryIn = 1,
  1925. string Constraint = ""> {
  1926. def "_VV" # !if(CarryIn, "M", "") # "_" # m.MX :
  1927. VPseudoBinaryCarryIn<!if(CarryOut, VR,
  1928. !if(!and(CarryIn, !not(CarryOut)),
  1929. GetVRegNoV0<m.vrclass>.R, m.vrclass)),
  1930. m.vrclass, m.vrclass, m, CarryIn, Constraint>;
  1931. }
  1932. multiclass VPseudoTiedBinaryV_VM<LMULInfo m, bit CarryOut = 0, bit CarryIn = 1,
  1933. string Constraint = ""> {
  1934. def "_VV" # !if(CarryIn, "M", "") # "_" # m.MX # "_TU" :
  1935. VPseudoTiedBinaryCarryIn<!if(CarryOut, VR,
  1936. !if(!and(CarryIn, !not(CarryOut)),
  1937. GetVRegNoV0<m.vrclass>.R, m.vrclass)),
  1938. m.vrclass, m.vrclass, m, CarryIn, Constraint>;
  1939. }
  1940. multiclass VPseudoBinaryV_XM<LMULInfo m, bit CarryOut = 0, bit CarryIn = 1,
  1941. string Constraint = ""> {
  1942. def "_VX" # !if(CarryIn, "M", "") # "_" # m.MX :
  1943. VPseudoBinaryCarryIn<!if(CarryOut, VR,
  1944. !if(!and(CarryIn, !not(CarryOut)),
  1945. GetVRegNoV0<m.vrclass>.R, m.vrclass)),
  1946. m.vrclass, GPR, m, CarryIn, Constraint>;
  1947. }
  1948. multiclass VPseudoTiedBinaryV_XM<LMULInfo m, bit CarryOut = 0, bit CarryIn = 1,
  1949. string Constraint = ""> {
  1950. def "_VX" # !if(CarryIn, "M", "") # "_" # m.MX # "_TU":
  1951. VPseudoTiedBinaryCarryIn<!if(CarryOut, VR,
  1952. !if(!and(CarryIn, !not(CarryOut)),
  1953. GetVRegNoV0<m.vrclass>.R, m.vrclass)),
  1954. m.vrclass, GPR, m, CarryIn, Constraint>;
  1955. }
  1956. multiclass VPseudoVMRG_FM {
  1957. foreach f = FPList in {
  1958. foreach m = f.MxList in {
  1959. defvar mx = m.MX;
  1960. defvar WriteVFMergeV_MX = !cast<SchedWrite>("WriteVFMergeV_" # mx);
  1961. defvar ReadVFMergeV_MX = !cast<SchedRead>("ReadVFMergeV_" # mx);
  1962. defvar ReadVFMergeF_MX = !cast<SchedRead>("ReadVFMergeF_" # mx);
  1963. def "_V" # f.FX # "M_" # mx :
  1964. VPseudoBinaryCarryIn<GetVRegNoV0<m.vrclass>.R,
  1965. m.vrclass, f.fprclass, m, /*CarryIn=*/1, "">,
  1966. Sched<[WriteVFMergeV_MX, ReadVFMergeV_MX, ReadVFMergeF_MX, ReadVMask]>;
  1967. // Tied version to allow codegen control over the tail elements
  1968. def "_V" # f.FX # "M_" # mx # "_TU":
  1969. VPseudoTiedBinaryCarryIn<GetVRegNoV0<m.vrclass>.R,
  1970. m.vrclass, f.fprclass, m, /*CarryIn=*/1, "">,
  1971. Sched<[WriteVFMergeV_MX, ReadVFMergeV_MX, ReadVFMergeF_MX, ReadVMask]>;
  1972. }
  1973. }
  1974. }
  1975. multiclass VPseudoBinaryV_IM<LMULInfo m, bit CarryOut = 0, bit CarryIn = 1,
  1976. string Constraint = ""> {
  1977. def "_VI" # !if(CarryIn, "M", "") # "_" # m.MX :
  1978. VPseudoBinaryCarryIn<!if(CarryOut, VR,
  1979. !if(!and(CarryIn, !not(CarryOut)),
  1980. GetVRegNoV0<m.vrclass>.R, m.vrclass)),
  1981. m.vrclass, simm5, m, CarryIn, Constraint>;
  1982. }
  1983. multiclass VPseudoTiedBinaryV_IM<LMULInfo m, bit CarryOut = 0, bit CarryIn = 1,
  1984. string Constraint = ""> {
  1985. def "_VI" # !if(CarryIn, "M", "") # "_" # m.MX # "_TU":
  1986. VPseudoTiedBinaryCarryIn<!if(CarryOut, VR,
  1987. !if(!and(CarryIn, !not(CarryOut)),
  1988. GetVRegNoV0<m.vrclass>.R, m.vrclass)),
  1989. m.vrclass, simm5, m, CarryIn, Constraint>;
  1990. }
  1991. multiclass VPseudoUnaryVMV_V_X_I {
  1992. foreach m = MxList in {
  1993. let VLMul = m.value in {
  1994. defvar mx = m.MX;
  1995. defvar WriteVIMovV_MX = !cast<SchedWrite>("WriteVIMovV_" # mx);
  1996. defvar WriteVIMovX_MX = !cast<SchedWrite>("WriteVIMovX_" # mx);
  1997. defvar WriteVIMovI_MX = !cast<SchedWrite>("WriteVIMovI_" # mx);
  1998. defvar ReadVIMovV_MX = !cast<SchedRead>("ReadVIMovV_" # mx);
  1999. defvar ReadVIMovX_MX = !cast<SchedRead>("ReadVIMovX_" # mx);
  2000. let VLMul = m.value in {
  2001. def "_V_" # mx : VPseudoUnaryNoDummyMask<m.vrclass, m.vrclass>,
  2002. Sched<[WriteVIMovV_MX, ReadVIMovV_MX]>;
  2003. def "_X_" # mx : VPseudoUnaryNoDummyMask<m.vrclass, GPR>,
  2004. Sched<[WriteVIMovX_MX, ReadVIMovX_MX]>;
  2005. def "_I_" # mx : VPseudoUnaryNoDummyMask<m.vrclass, simm5>,
  2006. Sched<[WriteVIMovI_MX]>;
  2007. def "_V_" # mx # "_TU": VPseudoUnaryNoDummyMaskTU<m.vrclass, m.vrclass>,
  2008. Sched<[WriteVIMovV_MX, ReadVIMovV_MX]>;
  2009. def "_X_" # mx # "_TU": VPseudoUnaryNoDummyMaskTU<m.vrclass, GPR>,
  2010. Sched<[WriteVIMovX_MX, ReadVIMovX_MX]>;
  2011. def "_I_" # mx # "_TU": VPseudoUnaryNoDummyMaskTU<m.vrclass, simm5>,
  2012. Sched<[WriteVIMovI_MX]>;
  2013. }
  2014. }
  2015. }
  2016. }
  2017. multiclass VPseudoVMV_F {
  2018. foreach f = FPList in {
  2019. foreach m = f.MxList in {
  2020. defvar mx = m.MX;
  2021. defvar WriteVFMovV_MX = !cast<SchedWrite>("WriteVFMovV_" # mx);
  2022. defvar ReadVFMovF_MX = !cast<SchedRead>("ReadVFMovF_" # mx);
  2023. let VLMul = m.value in {
  2024. def "_" # f.FX # "_" # mx :
  2025. VPseudoUnaryNoDummyMask<m.vrclass, f.fprclass>,
  2026. Sched<[WriteVFMovV_MX, ReadVFMovF_MX]>;
  2027. def "_" # f.FX # "_" # mx # "_TU":
  2028. VPseudoUnaryNoDummyMaskTU<m.vrclass, f.fprclass>,
  2029. Sched<[WriteVFMovV_MX, ReadVFMovF_MX]>;
  2030. }
  2031. }
  2032. }
  2033. }
  2034. multiclass VPseudoVCLS_V {
  2035. foreach m = MxListF in {
  2036. defvar mx = m.MX;
  2037. defvar WriteVFClassV_MX = !cast<SchedWrite>("WriteVFClassV_" # mx);
  2038. defvar ReadVFClassV_MX = !cast<SchedRead>("ReadVFClassV_" # mx);
  2039. let VLMul = m.value in {
  2040. def "_V_" # mx : VPseudoUnaryNoMask<m.vrclass, m.vrclass>,
  2041. Sched<[WriteVFClassV_MX, ReadVFClassV_MX, ReadVMask]>;
  2042. def "_V_" # mx # "_TU": VPseudoUnaryNoMaskTU<m.vrclass, m.vrclass>,
  2043. Sched<[WriteVFClassV_MX, ReadVFClassV_MX, ReadVMask]>;
  2044. def "_V_" # mx # "_MASK" : VPseudoUnaryMaskTA<m.vrclass, m.vrclass>,
  2045. RISCVMaskedPseudo</*MaskOpIdx*/ 2>,
  2046. Sched<[WriteVFClassV_MX, ReadVFClassV_MX, ReadVMask]>;
  2047. }
  2048. }
  2049. }
  2050. multiclass VPseudoVSQR_V {
  2051. foreach m = MxListF in {
  2052. defvar mx = m.MX;
  2053. defvar WriteVFSqrtV_MX = !cast<SchedWrite>("WriteVFSqrtV_" # mx);
  2054. defvar ReadVFSqrtV_MX = !cast<SchedRead>("ReadVFSqrtV_" # mx);
  2055. let VLMul = m.value in {
  2056. def "_V_" # mx : VPseudoUnaryNoMask<m.vrclass, m.vrclass>,
  2057. Sched<[WriteVFSqrtV_MX, ReadVFSqrtV_MX, ReadVMask]>;
  2058. def "_V_" # mx # "_TU": VPseudoUnaryNoMaskTU<m.vrclass, m.vrclass>,
  2059. Sched<[WriteVFSqrtV_MX, ReadVFSqrtV_MX, ReadVMask]>;
  2060. def "_V_" # mx # "_MASK" : VPseudoUnaryMaskTA<m.vrclass, m.vrclass>,
  2061. RISCVMaskedPseudo</*MaskOpIdx*/ 2>,
  2062. Sched<[WriteVFSqrtV_MX, ReadVFSqrtV_MX, ReadVMask]>;
  2063. }
  2064. }
  2065. }
  2066. multiclass VPseudoVRCP_V {
  2067. foreach m = MxListF in {
  2068. defvar mx = m.MX;
  2069. defvar WriteVFRecpV_MX = !cast<SchedWrite>("WriteVFRecpV_" # mx);
  2070. defvar ReadVFRecpV_MX = !cast<SchedRead>("ReadVFRecpV_" # mx);
  2071. let VLMul = m.value in {
  2072. def "_V_" # mx : VPseudoUnaryNoMask<m.vrclass, m.vrclass>,
  2073. Sched<[WriteVFRecpV_MX, ReadVFRecpV_MX, ReadVMask]>;
  2074. def "_V_" # mx # "_TU": VPseudoUnaryNoMaskTU<m.vrclass, m.vrclass>,
  2075. Sched<[WriteVFRecpV_MX, ReadVFRecpV_MX, ReadVMask]>;
  2076. def "_V_" # mx # "_MASK" : VPseudoUnaryMaskTA<m.vrclass, m.vrclass>,
  2077. RISCVMaskedPseudo</*MaskOpIdx*/ 2>,
  2078. Sched<[WriteVFRecpV_MX, ReadVFRecpV_MX, ReadVMask]>;
  2079. }
  2080. }
  2081. }
  2082. multiclass PseudoVEXT_VF2 {
  2083. defvar constraints = "@earlyclobber $rd";
  2084. foreach m = MxListVF2 in
  2085. {
  2086. defvar mx = m.MX;
  2087. defvar WriteVExtV_MX = !cast<SchedWrite>("WriteVExtV_" # mx);
  2088. defvar ReadVExtV_MX = !cast<SchedRead>("ReadVExtV_" # mx);
  2089. let VLMul = m.value in {
  2090. def "_" # mx : VPseudoUnaryNoMask<m.vrclass, m.f2vrclass, constraints>,
  2091. Sched<[WriteVExtV_MX, ReadVExtV_MX, ReadVMask]>;
  2092. def "_" # mx # "_TU": VPseudoUnaryNoMaskTU<m.vrclass, m.f2vrclass, constraints>,
  2093. Sched<[WriteVExtV_MX, ReadVExtV_MX, ReadVMask]>;
  2094. def "_" # mx # "_MASK" :
  2095. VPseudoUnaryMaskTA<m.vrclass, m.f2vrclass, constraints>,
  2096. RISCVMaskedPseudo</*MaskOpIdx*/ 2>,
  2097. Sched<[WriteVExtV_MX, ReadVExtV_MX, ReadVMask]>;
  2098. }
  2099. }
  2100. }
  2101. multiclass PseudoVEXT_VF4 {
  2102. defvar constraints = "@earlyclobber $rd";
  2103. foreach m = MxListVF4 in
  2104. {
  2105. defvar mx = m.MX;
  2106. defvar WriteVExtV_MX = !cast<SchedWrite>("WriteVExtV_" # mx);
  2107. defvar ReadVExtV_MX = !cast<SchedRead>("ReadVExtV_" # mx);
  2108. let VLMul = m.value in {
  2109. def "_" # mx : VPseudoUnaryNoMask<m.vrclass, m.f4vrclass, constraints>,
  2110. Sched<[WriteVExtV_MX, ReadVExtV_MX, ReadVMask]>;
  2111. def "_" # mx # "_TU": VPseudoUnaryNoMaskTU<m.vrclass, m.f4vrclass, constraints>,
  2112. Sched<[WriteVExtV_MX, ReadVExtV_MX, ReadVMask]>;
  2113. def "_" # mx # "_MASK" :
  2114. VPseudoUnaryMaskTA<m.vrclass, m.f4vrclass, constraints>,
  2115. RISCVMaskedPseudo</*MaskOpIdx*/ 2>,
  2116. Sched<[WriteVExtV_MX, ReadVExtV_MX, ReadVMask]>;
  2117. }
  2118. }
  2119. }
  2120. multiclass PseudoVEXT_VF8 {
  2121. defvar constraints = "@earlyclobber $rd";
  2122. foreach m = MxListVF8 in
  2123. {
  2124. defvar mx = m.MX;
  2125. defvar WriteVExtV_MX = !cast<SchedWrite>("WriteVExtV_" # mx);
  2126. defvar ReadVExtV_MX = !cast<SchedRead>("ReadVExtV_" # mx);
  2127. let VLMul = m.value in {
  2128. def "_" # mx : VPseudoUnaryNoMask<m.vrclass, m.f8vrclass, constraints>,
  2129. Sched<[WriteVExtV_MX, ReadVExtV_MX, ReadVMask]>;
  2130. def "_" # mx # "_TU": VPseudoUnaryNoMaskTU<m.vrclass, m.f8vrclass, constraints>,
  2131. Sched<[WriteVExtV_MX, ReadVExtV_MX, ReadVMask]>;
  2132. def "_" # mx # "_MASK" :
  2133. VPseudoUnaryMaskTA<m.vrclass, m.f8vrclass, constraints>,
  2134. RISCVMaskedPseudo</*MaskOpIdx*/ 2>,
  2135. Sched<[WriteVExtV_MX, ReadVExtV_MX, ReadVMask]>;
  2136. }
  2137. }
  2138. }
  2139. // The destination EEW is 1 since "For the purposes of register group overlap
  2140. // constraints, mask elements have EEW=1."
  2141. // The source EEW is 8, 16, 32, or 64.
  2142. // When the destination EEW is different from source EEW, we need to use
  2143. // @earlyclobber to avoid the overlap between destination and source registers.
  2144. // We don't need @earlyclobber for LMUL<=1 since that matches this overlap
  2145. // exception from the spec
  2146. // "The destination EEW is smaller than the source EEW and the overlap is in the
  2147. // lowest-numbered part of the source register group".
  2148. // With LMUL<=1 the source and dest occupy a single register so any overlap
  2149. // is in the lowest-numbered part.
  2150. multiclass VPseudoBinaryM_VV<LMULInfo m> {
  2151. defm _VV : VPseudoBinaryM<VR, m.vrclass, m.vrclass, m,
  2152. !if(!ge(m.octuple, 16), "@earlyclobber $rd", "")>;
  2153. }
  2154. multiclass VPseudoBinaryM_VX<LMULInfo m> {
  2155. defm "_VX" :
  2156. VPseudoBinaryM<VR, m.vrclass, GPR, m,
  2157. !if(!ge(m.octuple, 16), "@earlyclobber $rd", "")>;
  2158. }
  2159. multiclass VPseudoBinaryM_VF<LMULInfo m, FPR_Info f> {
  2160. defm "_V" # f.FX :
  2161. VPseudoBinaryM<VR, m.vrclass, f.fprclass, m,
  2162. !if(!ge(m.octuple, 16), "@earlyclobber $rd", "")>;
  2163. }
  2164. multiclass VPseudoBinaryM_VI<LMULInfo m> {
  2165. defm _VI : VPseudoBinaryM<VR, m.vrclass, simm5, m,
  2166. !if(!ge(m.octuple, 16), "@earlyclobber $rd", "")>;
  2167. }
  2168. multiclass VPseudoVGTR_VV_VX_VI<Operand ImmType = simm5, string Constraint = ""> {
  2169. foreach m = MxList in {
  2170. defvar mx = m.MX;
  2171. defvar WriteVGatherV_MX = !cast<SchedWrite>("WriteVGatherV_" # mx);
  2172. defvar WriteVGatherX_MX = !cast<SchedWrite>("WriteVGatherX_" # mx);
  2173. defvar WriteVGatherI_MX = !cast<SchedWrite>("WriteVGatherI_" # mx);
  2174. defvar ReadVGatherV_MX = !cast<SchedRead>("ReadVGatherV_" # mx);
  2175. defvar ReadVGatherX_MX = !cast<SchedRead>("ReadVGatherX_" # mx);
  2176. defm "" : VPseudoBinaryV_VV<m, Constraint>,
  2177. Sched<[WriteVGatherV_MX, ReadVGatherV_MX, ReadVGatherV_MX, ReadVMask]>;
  2178. defm "" : VPseudoBinaryV_VX<m, Constraint>,
  2179. Sched<[WriteVGatherX_MX, ReadVGatherV_MX, ReadVGatherX_MX, ReadVMask]>;
  2180. defm "" : VPseudoBinaryV_VI<ImmType, m, Constraint>,
  2181. Sched<[WriteVGatherI_MX, ReadVGatherV_MX, ReadVMask]>;
  2182. }
  2183. }
  2184. multiclass VPseudoVSALU_VV_VX_VI<Operand ImmType = simm5, string Constraint = ""> {
  2185. foreach m = MxList in {
  2186. defvar mx = m.MX;
  2187. defvar WriteVSALUV_MX = !cast<SchedWrite>("WriteVSALUV_" # mx);
  2188. defvar WriteVSALUX_MX = !cast<SchedWrite>("WriteVSALUX_" # mx);
  2189. defvar WriteVSALUI_MX = !cast<SchedWrite>("WriteVSALUI_" # mx);
  2190. defvar ReadVSALUV_MX = !cast<SchedRead>("ReadVSALUV_" # mx);
  2191. defvar ReadVSALUX_MX = !cast<SchedRead>("ReadVSALUX_" # mx);
  2192. defm "" : VPseudoBinaryV_VV<m, Constraint>,
  2193. Sched<[WriteVSALUV_MX, ReadVSALUV_MX, ReadVSALUV_MX, ReadVMask]>;
  2194. defm "" : VPseudoBinaryV_VX<m, Constraint>,
  2195. Sched<[WriteVSALUX_MX, ReadVSALUV_MX, ReadVSALUX_MX, ReadVMask]>;
  2196. defm "" : VPseudoBinaryV_VI<ImmType, m, Constraint>,
  2197. Sched<[WriteVSALUI_MX, ReadVSALUV_MX, ReadVMask]>;
  2198. }
  2199. }
  2200. multiclass VPseudoVSHT_VV_VX_VI<Operand ImmType = simm5, string Constraint = ""> {
  2201. foreach m = MxList in {
  2202. defvar mx = m.MX;
  2203. defvar WriteVShiftV_MX = !cast<SchedWrite>("WriteVShiftV_" # mx);
  2204. defvar WriteVShiftX_MX = !cast<SchedWrite>("WriteVShiftX_" # mx);
  2205. defvar WriteVShiftI_MX = !cast<SchedWrite>("WriteVShiftI_" # mx);
  2206. defvar ReadVShiftV_MX = !cast<SchedRead>("ReadVShiftV_" # mx);
  2207. defvar ReadVShiftX_MX = !cast<SchedRead>("ReadVShiftX_" # mx);
  2208. defm "" : VPseudoBinaryV_VV<m, Constraint>,
  2209. Sched<[WriteVShiftV_MX, ReadVShiftV_MX, ReadVShiftV_MX, ReadVMask]>;
  2210. defm "" : VPseudoBinaryV_VX<m, Constraint>,
  2211. Sched<[WriteVShiftX_MX, ReadVShiftV_MX, ReadVShiftX_MX, ReadVMask]>;
  2212. defm "" : VPseudoBinaryV_VI<ImmType, m, Constraint>,
  2213. Sched<[WriteVShiftI_MX, ReadVShiftV_MX, ReadVMask]>;
  2214. }
  2215. }
  2216. multiclass VPseudoVSSHT_VV_VX_VI<Operand ImmType = simm5, string Constraint = ""> {
  2217. foreach m = MxList in {
  2218. defvar mx = m.MX;
  2219. defvar WriteVSShiftV_MX = !cast<SchedWrite>("WriteVSShiftV_" # mx);
  2220. defvar WriteVSShiftX_MX = !cast<SchedWrite>("WriteVSShiftX_" # mx);
  2221. defvar WriteVSShiftI_MX = !cast<SchedWrite>("WriteVSShiftI_" # mx);
  2222. defvar ReadVSShiftV_MX = !cast<SchedRead>("ReadVSShiftV_" # mx);
  2223. defvar ReadVSShiftX_MX = !cast<SchedRead>("ReadVSShiftX_" # mx);
  2224. defm "" : VPseudoBinaryV_VV<m, Constraint>,
  2225. Sched<[WriteVSShiftV_MX, ReadVSShiftV_MX, ReadVSShiftV_MX, ReadVMask]>;
  2226. defm "" : VPseudoBinaryV_VX<m, Constraint>,
  2227. Sched<[WriteVSShiftX_MX, ReadVSShiftV_MX, ReadVSShiftX_MX, ReadVMask]>;
  2228. defm "" : VPseudoBinaryV_VI<ImmType, m, Constraint>,
  2229. Sched<[WriteVSShiftI_MX, ReadVSShiftV_MX, ReadVMask]>;
  2230. }
  2231. }
  2232. multiclass VPseudoVALU_VV_VX_VI<Operand ImmType = simm5, string Constraint = ""> {
  2233. foreach m = MxList in {
  2234. defvar mx = m.MX;
  2235. defvar WriteVIALUV_MX = !cast<SchedWrite>("WriteVIALUV_" # mx);
  2236. defvar WriteVIALUX_MX = !cast<SchedWrite>("WriteVIALUX_" # mx);
  2237. defvar WriteVIALUI_MX = !cast<SchedWrite>("WriteVIALUI_" # mx);
  2238. defvar ReadVIALUV_MX = !cast<SchedRead>("ReadVIALUV_" # mx);
  2239. defvar ReadVIALUX_MX = !cast<SchedRead>("ReadVIALUX_" # mx);
  2240. defm "" : VPseudoBinaryV_VV<m, Constraint>,
  2241. Sched<[WriteVIALUV_MX, ReadVIALUV_MX, ReadVIALUV_MX, ReadVMask]>;
  2242. defm "" : VPseudoBinaryV_VX<m, Constraint>,
  2243. Sched<[WriteVIALUX_MX, ReadVIALUV_MX, ReadVIALUX_MX, ReadVMask]>;
  2244. defm "" : VPseudoBinaryV_VI<ImmType, m, Constraint>,
  2245. Sched<[WriteVIALUI_MX, ReadVIALUV_MX, ReadVMask]>;
  2246. }
  2247. }
  2248. multiclass VPseudoVSALU_VV_VX {
  2249. foreach m = MxList in {
  2250. defvar mx = m.MX;
  2251. defvar WriteVSALUV_MX = !cast<SchedWrite>("WriteVSALUV_" # mx);
  2252. defvar WriteVSALUX_MX = !cast<SchedWrite>("WriteVSALUX_" # mx);
  2253. defvar ReadVSALUV_MX = !cast<SchedRead>("ReadVSALUV_" # mx);
  2254. defvar ReadVSALUX_MX = !cast<SchedRead>("ReadVSALUX_" # mx);
  2255. defm "" : VPseudoBinaryV_VV<m>,
  2256. Sched<[WriteVSALUV_MX, ReadVSALUV_MX, ReadVSALUV_MX, ReadVMask]>;
  2257. defm "" : VPseudoBinaryV_VX<m>,
  2258. Sched<[WriteVSALUX_MX, ReadVSALUV_MX, ReadVSALUX_MX, ReadVMask]>;
  2259. }
  2260. }
  2261. multiclass VPseudoVSMUL_VV_VX {
  2262. foreach m = MxList in {
  2263. defvar mx = m.MX;
  2264. defvar WriteVSMulV_MX = !cast<SchedWrite>("WriteVSMulV_" # mx);
  2265. defvar WriteVSMulX_MX = !cast<SchedWrite>("WriteVSMulX_" # mx);
  2266. defvar ReadVSMulV_MX = !cast<SchedRead>("ReadVSMulV_" # mx);
  2267. defvar ReadVSMulX_MX = !cast<SchedRead>("ReadVSMulX_" # mx);
  2268. defm "" : VPseudoBinaryV_VV<m>,
  2269. Sched<[WriteVSMulV_MX, ReadVSMulV_MX, ReadVSMulV_MX, ReadVMask]>;
  2270. defm "" : VPseudoBinaryV_VX<m>,
  2271. Sched<[WriteVSMulX_MX, ReadVSMulV_MX, ReadVSMulX_MX, ReadVMask]>;
  2272. }
  2273. }
  2274. multiclass VPseudoVAALU_VV_VX {
  2275. foreach m = MxList in {
  2276. defvar mx = m.MX;
  2277. defvar WriteVAALUV_MX = !cast<SchedWrite>("WriteVAALUV_" # mx);
  2278. defvar WriteVAALUX_MX = !cast<SchedWrite>("WriteVAALUX_" # mx);
  2279. defvar ReadVAALUV_MX = !cast<SchedRead>("ReadVAALUV_" # mx);
  2280. defvar ReadVAALUX_MX = !cast<SchedRead>("ReadVAALUX_" # mx);
  2281. defm "" : VPseudoBinaryV_VV<m>,
  2282. Sched<[WriteVAALUV_MX, ReadVAALUV_MX, ReadVAALUV_MX, ReadVMask]>;
  2283. defm "" : VPseudoBinaryV_VX<m>,
  2284. Sched<[WriteVAALUX_MX, ReadVAALUV_MX, ReadVAALUX_MX, ReadVMask]>;
  2285. }
  2286. }
  2287. multiclass VPseudoVMINMAX_VV_VX {
  2288. foreach m = MxList in {
  2289. defvar mx = m.MX;
  2290. defvar WriteVICmpV_MX = !cast<SchedWrite>("WriteVICmpV_" # mx);
  2291. defvar WriteVICmpX_MX = !cast<SchedWrite>("WriteVICmpX_" # mx);
  2292. defvar ReadVICmpV_MX = !cast<SchedRead>("ReadVICmpV_" # mx);
  2293. defvar ReadVICmpX_MX = !cast<SchedRead>("ReadVICmpX_" # mx);
  2294. defm "" : VPseudoBinaryV_VV<m>,
  2295. Sched<[WriteVICmpV_MX, ReadVICmpV_MX, ReadVICmpV_MX, ReadVMask]>;
  2296. defm "" : VPseudoBinaryV_VX<m>,
  2297. Sched<[WriteVICmpX_MX, ReadVICmpV_MX, ReadVICmpX_MX, ReadVMask]>;
  2298. }
  2299. }
  2300. multiclass VPseudoVMUL_VV_VX {
  2301. foreach m = MxList in {
  2302. defvar mx = m.MX;
  2303. defvar WriteVIMulV_MX = !cast<SchedWrite>("WriteVIMulV_" # mx);
  2304. defvar WriteVIMulX_MX = !cast<SchedWrite>("WriteVIMulX_" # mx);
  2305. defvar ReadVIMulV_MX = !cast<SchedRead>("ReadVIMulV_" # mx);
  2306. defvar ReadVIMulX_MX = !cast<SchedRead>("ReadVIMulX_" # mx);
  2307. defm "" : VPseudoBinaryV_VV<m>,
  2308. Sched<[WriteVIMulV_MX, ReadVIMulV_MX, ReadVIMulV_MX, ReadVMask]>;
  2309. defm "" : VPseudoBinaryV_VX<m>,
  2310. Sched<[WriteVIMulX_MX, ReadVIMulV_MX, ReadVIMulX_MX, ReadVMask]>;
  2311. }
  2312. }
  2313. multiclass VPseudoVDIV_VV_VX {
  2314. foreach m = MxList in {
  2315. defvar mx = m.MX;
  2316. defvar WriteVIDivV_MX = !cast<SchedWrite>("WriteVIDivV_" # mx);
  2317. defvar WriteVIDivX_MX = !cast<SchedWrite>("WriteVIDivX_" # mx);
  2318. defvar ReadVIDivV_MX = !cast<SchedRead>("ReadVIDivV_" # mx);
  2319. defvar ReadVIDivX_MX = !cast<SchedRead>("ReadVIDivX_" # mx);
  2320. defm "" : VPseudoBinaryV_VV<m>,
  2321. Sched<[WriteVIDivV_MX, ReadVIDivV_MX, ReadVIDivV_MX, ReadVMask]>;
  2322. defm "" : VPseudoBinaryV_VX<m>,
  2323. Sched<[WriteVIDivX_MX, ReadVIDivV_MX, ReadVIDivX_MX, ReadVMask]>;
  2324. }
  2325. }
  2326. multiclass VPseudoVFMUL_VV_VF {
  2327. foreach m = MxListF in {
  2328. defvar mx = m.MX;
  2329. defvar WriteVFMulV_MX = !cast<SchedWrite>("WriteVFMulV_" # mx);
  2330. defvar ReadVFMulV_MX = !cast<SchedRead>("ReadVFMulV_" # mx);
  2331. defm "" : VPseudoBinaryFV_VV<m>,
  2332. Sched<[WriteVFMulV_MX, ReadVFMulV_MX, ReadVFMulV_MX, ReadVMask]>;
  2333. }
  2334. foreach f = FPList in {
  2335. foreach m = f.MxList in {
  2336. defvar mx = m.MX;
  2337. defvar WriteVFMulF_MX = !cast<SchedWrite>("WriteVFMulF_" # mx);
  2338. defvar ReadVFMulV_MX = !cast<SchedRead>("ReadVFMulV_" # mx);
  2339. defvar ReadVFMulF_MX = !cast<SchedRead>("ReadVFMulF_" # mx);
  2340. defm "" : VPseudoBinaryV_VF<m, f>,
  2341. Sched<[WriteVFMulF_MX, ReadVFMulV_MX, ReadVFMulF_MX, ReadVMask]>;
  2342. }
  2343. }
  2344. }
  2345. multiclass VPseudoVFDIV_VV_VF {
  2346. foreach m = MxListF in {
  2347. defvar mx = m.MX;
  2348. defvar WriteVFDivV_MX = !cast<SchedWrite>("WriteVFDivV_" # mx);
  2349. defvar ReadVFDivV_MX = !cast<SchedRead>("ReadVFDivV_" # mx);
  2350. defm "" : VPseudoBinaryFV_VV<m>,
  2351. Sched<[WriteVFDivV_MX, ReadVFDivV_MX, ReadVFDivV_MX, ReadVMask]>;
  2352. }
  2353. foreach f = FPList in {
  2354. foreach m = f.MxList in {
  2355. defvar mx = m.MX;
  2356. defvar WriteVFDivF_MX = !cast<SchedWrite>("WriteVFDivF_" # mx);
  2357. defvar ReadVFDivV_MX = !cast<SchedRead>("ReadVFDivV_" # mx);
  2358. defvar ReadVFDivF_MX = !cast<SchedRead>("ReadVFDivF_" # mx);
  2359. defm "" : VPseudoBinaryV_VF<m, f>,
  2360. Sched<[WriteVFDivF_MX, ReadVFDivV_MX, ReadVFDivF_MX, ReadVMask]>;
  2361. }
  2362. }
  2363. }
  2364. multiclass VPseudoVFRDIV_VF {
  2365. foreach f = FPList in {
  2366. foreach m = f.MxList in {
  2367. defvar mx = m.MX;
  2368. defvar WriteVFDivF_MX = !cast<SchedWrite>("WriteVFDivF_" # mx);
  2369. defvar ReadVFDivV_MX = !cast<SchedRead>("ReadVFDivV_" # mx);
  2370. defvar ReadVFDivF_MX = !cast<SchedRead>("ReadVFDivF_" # mx);
  2371. defm "" : VPseudoBinaryV_VF<m, f>,
  2372. Sched<[WriteVFDivF_MX, ReadVFDivV_MX, ReadVFDivF_MX, ReadVMask]>;
  2373. }
  2374. }
  2375. }
  2376. multiclass VPseudoVALU_VV_VX {
  2377. foreach m = MxList in {
  2378. defvar mx = m.MX;
  2379. defvar WriteVIALUV_MX = !cast<SchedWrite>("WriteVIALUV_" # mx);
  2380. defvar WriteVIALUX_MX = !cast<SchedWrite>("WriteVIALUV_" # mx);
  2381. defvar ReadVIALUV_MX = !cast<SchedRead>("ReadVIALUV_" # mx);
  2382. defvar ReadVIALUX_MX = !cast<SchedRead>("ReadVIALUX_" # mx);
  2383. defm "" : VPseudoBinaryV_VV<m>,
  2384. Sched<[WriteVIALUV_MX, ReadVIALUV_MX, ReadVIALUV_MX, ReadVMask]>;
  2385. defm "" : VPseudoBinaryV_VX<m>,
  2386. Sched<[WriteVIALUX_MX, ReadVIALUV_MX, ReadVIALUX_MX, ReadVMask]>;
  2387. }
  2388. }
  2389. multiclass VPseudoVSGNJ_VV_VF {
  2390. foreach m = MxListF in {
  2391. defvar mx = m.MX;
  2392. defvar WriteVFSgnjV_MX = !cast<SchedWrite>("WriteVFSgnjV_" # mx);
  2393. defvar ReadVFSgnjV_MX = !cast<SchedRead>("ReadVFSgnjV_" # mx);
  2394. defm "" : VPseudoBinaryFV_VV<m>,
  2395. Sched<[WriteVFSgnjV_MX, ReadVFSgnjV_MX, ReadVFSgnjV_MX, ReadVMask]>;
  2396. }
  2397. foreach f = FPList in {
  2398. foreach m = f.MxList in {
  2399. defvar mx = m.MX;
  2400. defvar WriteVFSgnjF_MX = !cast<SchedWrite>("WriteVFSgnjF_" # mx);
  2401. defvar ReadVFSgnjV_MX = !cast<SchedRead>("ReadVFSgnjV_" # mx);
  2402. defvar ReadVFSgnjF_MX = !cast<SchedRead>("ReadVFSgnjF_" # mx);
  2403. defm "" : VPseudoBinaryV_VF<m, f>,
  2404. Sched<[WriteVFSgnjF_MX, ReadVFSgnjV_MX, ReadVFSgnjF_MX, ReadVMask]>;
  2405. }
  2406. }
  2407. }
  2408. multiclass VPseudoVMAX_VV_VF {
  2409. foreach m = MxListF in {
  2410. defvar mx = m.MX;
  2411. defvar WriteVFCmpV_MX = !cast<SchedWrite>("WriteVFCmpV_" # mx);
  2412. defvar ReadVFCmpV_MX = !cast<SchedRead>("ReadVFCmpV_" # mx);
  2413. defm "" : VPseudoBinaryFV_VV<m>,
  2414. Sched<[WriteVFCmpV_MX, ReadVFCmpV_MX, ReadVFCmpV_MX, ReadVMask]>;
  2415. }
  2416. foreach f = FPList in {
  2417. foreach m = f.MxList in {
  2418. defvar mx = m.MX;
  2419. defvar WriteVFCmpF_MX = !cast<SchedWrite>("WriteVFCmpF_" # mx);
  2420. defvar ReadVFCmpV_MX = !cast<SchedRead>("ReadVFCmpV_" # mx);
  2421. defvar ReadVFCmpF_MX = !cast<SchedRead>("ReadVFCmpF_" # mx);
  2422. defm "" : VPseudoBinaryV_VF<m, f>,
  2423. Sched<[WriteVFCmpF_MX, ReadVFCmpV_MX, ReadVFCmpF_MX, ReadVMask]>;
  2424. }
  2425. }
  2426. }
  2427. multiclass VPseudoVALU_VV_VF {
  2428. foreach m = MxListF in {
  2429. defvar mx = m.MX;
  2430. defvar WriteVFALUV_MX = !cast<SchedWrite>("WriteVFALUV_" # mx);
  2431. defvar ReadVFALUV_MX = !cast<SchedRead>("ReadVFALUV_" # mx);
  2432. defm "" : VPseudoBinaryFV_VV<m>,
  2433. Sched<[WriteVFALUV_MX, ReadVFALUV_MX, ReadVFALUV_MX, ReadVMask]>;
  2434. }
  2435. foreach f = FPList in {
  2436. foreach m = f.MxList in {
  2437. defvar mx = m.MX;
  2438. defvar WriteVFALUF_MX = !cast<SchedWrite>("WriteVFALUF_" # mx);
  2439. defvar ReadVFALUV_MX = !cast<SchedRead>("ReadVFALUV_" # mx);
  2440. defvar ReadVFALUF_MX = !cast<SchedRead>("ReadVFALUF_" # mx);
  2441. defm "" : VPseudoBinaryV_VF<m, f>,
  2442. Sched<[WriteVFALUF_MX, ReadVFALUV_MX, ReadVFALUF_MX, ReadVMask]>;
  2443. }
  2444. }
  2445. }
  2446. multiclass VPseudoVALU_VF {
  2447. foreach f = FPList in {
  2448. foreach m = f.MxList in {
  2449. defvar mx = m.MX;
  2450. defvar WriteVFALUF_MX = !cast<SchedWrite>("WriteVFALUF_" # mx);
  2451. defvar ReadVFALUV_MX = !cast<SchedRead>("ReadVFALUV_" # mx);
  2452. defvar ReadVFALUF_MX = !cast<SchedRead>("ReadVFALUF_" # mx);
  2453. defm "" : VPseudoBinaryV_VF<m, f>,
  2454. Sched<[WriteVFALUF_MX, ReadVFALUV_MX, ReadVFALUF_MX, ReadVMask]>;
  2455. }
  2456. }
  2457. }
  2458. multiclass VPseudoVALU_VX_VI<Operand ImmType = simm5> {
  2459. foreach m = MxList in {
  2460. defvar mx = m.MX;
  2461. defvar WriteVIALUX_MX = !cast<SchedWrite>("WriteVIALUX_" # mx);
  2462. defvar WriteVIALUI_MX = !cast<SchedWrite>("WriteVIALUI_" # mx);
  2463. defvar ReadVIALUV_MX = !cast<SchedRead>("ReadVIALUV_" # mx);
  2464. defvar ReadVIALUX_MX = !cast<SchedRead>("ReadVIALUX_" # mx);
  2465. defm "" : VPseudoBinaryV_VX<m>,
  2466. Sched<[WriteVIALUX_MX, ReadVIALUV_MX, ReadVIALUX_MX, ReadVMask]>;
  2467. defm "" : VPseudoBinaryV_VI<ImmType, m>,
  2468. Sched<[WriteVIALUI_MX, ReadVIALUV_MX, ReadVMask]>;
  2469. }
  2470. }
  2471. multiclass VPseudoVWALU_VV_VX {
  2472. foreach m = MxListW in {
  2473. defvar mx = m.MX;
  2474. defvar WriteVIWALUV_MX = !cast<SchedWrite>("WriteVIWALUV_" # mx);
  2475. defvar WriteVIWALUX_MX = !cast<SchedWrite>("WriteVIWALUX_" # mx);
  2476. defvar ReadVIWALUV_MX = !cast<SchedRead>("ReadVIWALUV_" # mx);
  2477. defvar ReadVIWALUX_MX = !cast<SchedRead>("ReadVIWALUX_" # mx);
  2478. defm "" : VPseudoBinaryW_VV<m>,
  2479. Sched<[WriteVIWALUV_MX, ReadVIWALUV_MX, ReadVIWALUV_MX, ReadVMask]>;
  2480. defm "" : VPseudoBinaryW_VX<m>,
  2481. Sched<[WriteVIWALUX_MX, ReadVIWALUV_MX, ReadVIWALUX_MX, ReadVMask]>;
  2482. }
  2483. }
  2484. multiclass VPseudoVWMUL_VV_VX {
  2485. foreach m = MxListW in {
  2486. defvar mx = m.MX;
  2487. defvar WriteVIWMulV_MX = !cast<SchedWrite>("WriteVIWMulV_" # mx);
  2488. defvar WriteVIWMulX_MX = !cast<SchedWrite>("WriteVIWMulX_" # mx);
  2489. defvar ReadVIWMulV_MX = !cast<SchedRead>("ReadVIWMulV_" # mx);
  2490. defvar ReadVIWMulX_MX = !cast<SchedRead>("ReadVIWMulX_" # mx);
  2491. defm "" : VPseudoBinaryW_VV<m>,
  2492. Sched<[WriteVIWMulV_MX, ReadVIWMulV_MX, ReadVIWMulV_MX, ReadVMask]>;
  2493. defm "" : VPseudoBinaryW_VX<m>,
  2494. Sched<[WriteVIWMulX_MX, ReadVIWMulV_MX, ReadVIWMulX_MX, ReadVMask]>;
  2495. }
  2496. }
  2497. multiclass VPseudoVWMUL_VV_VF {
  2498. foreach m = MxListFW in {
  2499. defvar mx = m.MX;
  2500. defvar WriteVFWMulV_MX = !cast<SchedWrite>("WriteVFWMulV_" # mx);
  2501. defvar ReadVFWMulV_MX = !cast<SchedRead>("ReadVFWMulV_" # mx);
  2502. defm "" : VPseudoBinaryW_VV<m>,
  2503. Sched<[WriteVFWMulV_MX, ReadVFWMulV_MX, ReadVFWMulV_MX, ReadVMask]>;
  2504. }
  2505. foreach f = FPListW in {
  2506. foreach m = f.MxListFW in {
  2507. defvar mx = m.MX;
  2508. defvar WriteVFWMulF_MX = !cast<SchedWrite>("WriteVFWMulF_" # mx);
  2509. defvar ReadVFWMulV_MX = !cast<SchedRead>("ReadVFWMulV_" # mx);
  2510. defvar ReadVFWMulF_MX = !cast<SchedRead>("ReadVFWMulF_" # mx);
  2511. defm "" : VPseudoBinaryW_VF<m, f>,
  2512. Sched<[WriteVFWMulF_MX, ReadVFWMulV_MX, ReadVFWMulF_MX, ReadVMask]>;
  2513. }
  2514. }
  2515. }
  2516. multiclass VPseudoVWALU_WV_WX {
  2517. foreach m = MxListW in {
  2518. defvar mx = m.MX;
  2519. defvar WriteVIWALUV_MX = !cast<SchedWrite>("WriteVIWALUV_" # mx);
  2520. defvar WriteVIWALUX_MX = !cast<SchedWrite>("WriteVIWALUX_" # mx);
  2521. defvar ReadVIWALUV_MX = !cast<SchedRead>("ReadVIWALUV_" # mx);
  2522. defvar ReadVIWALUX_MX = !cast<SchedRead>("ReadVIWALUX_" # mx);
  2523. defm "" : VPseudoBinaryW_WV<m>,
  2524. Sched<[WriteVIWALUV_MX, ReadVIWALUV_MX, ReadVIWALUV_MX, ReadVMask]>;
  2525. defm "" : VPseudoBinaryW_WX<m>,
  2526. Sched<[WriteVIWALUX_MX, ReadVIWALUV_MX, ReadVIWALUX_MX, ReadVMask]>;
  2527. }
  2528. }
  2529. multiclass VPseudoVFWALU_VV_VF {
  2530. foreach m = MxListFW in {
  2531. defvar mx = m.MX;
  2532. defvar WriteVFWALUV_MX = !cast<SchedWrite>("WriteVFWALUV_" # mx);
  2533. defvar ReadVFWALUV_MX = !cast<SchedRead>("ReadVFWALUV_" # mx);
  2534. defm "" : VPseudoBinaryW_VV<m>,
  2535. Sched<[WriteVFWALUV_MX, ReadVFWALUV_MX, ReadVFWALUV_MX, ReadVMask]>;
  2536. }
  2537. foreach f = FPListW in {
  2538. foreach m = f.MxListFW in {
  2539. defvar mx = m.MX;
  2540. defvar WriteVFWALUF_MX = !cast<SchedWrite>("WriteVFWALUF_" # mx);
  2541. defvar ReadVFWALUV_MX = !cast<SchedRead>("ReadVFWALUV_" # mx);
  2542. defvar ReadVFWALUF_MX = !cast<SchedRead>("ReadVFWALUF_" # mx);
  2543. defm "" : VPseudoBinaryW_VF<m, f>,
  2544. Sched<[WriteVFWALUF_MX, ReadVFWALUV_MX, ReadVFWALUF_MX, ReadVMask]>;
  2545. }
  2546. }
  2547. }
  2548. multiclass VPseudoVFWALU_WV_WF {
  2549. foreach m = MxListFW in {
  2550. defvar mx = m.MX;
  2551. defvar WriteVFWALUV_MX = !cast<SchedWrite>("WriteVFWALUV_" # mx);
  2552. defvar ReadVFWALUV_MX = !cast<SchedRead>("ReadVFWALUV_" # mx);
  2553. defm "" : VPseudoBinaryW_WV<m>,
  2554. Sched<[WriteVFWALUV_MX, ReadVFWALUV_MX, ReadVFWALUV_MX, ReadVMask]>;
  2555. }
  2556. foreach f = FPListW in {
  2557. foreach m = f.MxListFW in {
  2558. defvar mx = m.MX;
  2559. defvar WriteVFWALUF_MX = !cast<SchedWrite>("WriteVFWALUF_" # mx);
  2560. defvar ReadVFWALUV_MX = !cast<SchedRead>("ReadVFWALUV_" # mx);
  2561. defvar ReadVFWALUF_MX = !cast<SchedRead>("ReadVFWALUF_" # mx);
  2562. defm "" : VPseudoBinaryW_WF<m, f>,
  2563. Sched<[WriteVFWALUF_MX, ReadVFWALUV_MX, ReadVFWALUF_MX, ReadVMask]>;
  2564. }
  2565. }
  2566. }
  2567. multiclass VPseudoVMRG_VM_XM_IM {
  2568. foreach m = MxList in {
  2569. defvar mx = m.MX;
  2570. defvar WriteVIMergeV_MX = !cast<SchedWrite>("WriteVIMergeV_" # mx);
  2571. defvar WriteVIMergeX_MX = !cast<SchedWrite>("WriteVIMergeX_" # mx);
  2572. defvar WriteVIMergeI_MX = !cast<SchedWrite>("WriteVIMergeI_" # mx);
  2573. defvar ReadVIMergeV_MX = !cast<SchedRead>("ReadVIMergeV_" # mx);
  2574. defvar ReadVIMergeX_MX = !cast<SchedRead>("ReadVIMergeX_" # mx);
  2575. defm "" : VPseudoBinaryV_VM<m>,
  2576. Sched<[WriteVIMergeV_MX, ReadVIMergeV_MX, ReadVIMergeV_MX, ReadVMask]>;
  2577. defm "" : VPseudoBinaryV_XM<m>,
  2578. Sched<[WriteVIMergeX_MX, ReadVIMergeV_MX, ReadVIMergeX_MX, ReadVMask]>;
  2579. defm "" : VPseudoBinaryV_IM<m>,
  2580. Sched<[WriteVIMergeI_MX, ReadVIMergeV_MX, ReadVMask]>;
  2581. // Tied versions to allow codegen control over the tail elements
  2582. defm "" : VPseudoTiedBinaryV_VM<m>,
  2583. Sched<[WriteVIMergeV_MX, ReadVIMergeV_MX, ReadVIMergeV_MX, ReadVMask]>;
  2584. defm "" : VPseudoTiedBinaryV_XM<m>,
  2585. Sched<[WriteVIMergeX_MX, ReadVIMergeV_MX, ReadVIMergeX_MX, ReadVMask]>;
  2586. defm "" : VPseudoTiedBinaryV_IM<m>,
  2587. Sched<[WriteVIMergeI_MX, ReadVIMergeV_MX, ReadVMask]>;
  2588. }
  2589. }
  2590. multiclass VPseudoVCALU_VM_XM_IM {
  2591. foreach m = MxList in {
  2592. defvar mx = m.MX;
  2593. defvar WriteVICALUV_MX = !cast<SchedWrite>("WriteVICALUV_" # mx);
  2594. defvar WriteVICALUX_MX = !cast<SchedWrite>("WriteVICALUX_" # mx);
  2595. defvar WriteVICALUI_MX = !cast<SchedWrite>("WriteVICALUI_" # mx);
  2596. defvar ReadVICALUV_MX = !cast<SchedRead>("ReadVICALUV_" # mx);
  2597. defvar ReadVICALUX_MX = !cast<SchedRead>("ReadVICALUX_" # mx);
  2598. defm "" : VPseudoBinaryV_VM<m>,
  2599. Sched<[WriteVICALUV_MX, ReadVICALUV_MX, ReadVICALUV_MX, ReadVMask]>;
  2600. defm "" : VPseudoBinaryV_XM<m>,
  2601. Sched<[WriteVICALUX_MX, ReadVICALUV_MX, ReadVICALUX_MX, ReadVMask]>;
  2602. defm "" : VPseudoBinaryV_IM<m>,
  2603. Sched<[WriteVICALUI_MX, ReadVICALUV_MX, ReadVMask]>;
  2604. // Tied versions to allow codegen control over the tail elements
  2605. defm "" : VPseudoTiedBinaryV_VM<m>,
  2606. Sched<[WriteVICALUV_MX, ReadVICALUV_MX, ReadVICALUV_MX, ReadVMask]>;
  2607. defm "" : VPseudoTiedBinaryV_XM<m>,
  2608. Sched<[WriteVICALUX_MX, ReadVICALUV_MX, ReadVICALUX_MX, ReadVMask]>;
  2609. defm "" : VPseudoTiedBinaryV_IM<m>,
  2610. Sched<[WriteVICALUI_MX, ReadVICALUV_MX, ReadVMask]>;
  2611. }
  2612. }
  2613. multiclass VPseudoVCALU_VM_XM {
  2614. foreach m = MxList in {
  2615. defvar mx = m.MX;
  2616. defvar WriteVICALUV_MX = !cast<SchedWrite>("WriteVICALUV_" # mx);
  2617. defvar WriteVICALUX_MX = !cast<SchedWrite>("WriteVICALUX_" # mx);
  2618. defvar ReadVICALUV_MX = !cast<SchedRead>("ReadVICALUV_" # mx);
  2619. defvar ReadVICALUX_MX = !cast<SchedRead>("ReadVICALUX_" # mx);
  2620. defm "" : VPseudoBinaryV_VM<m>,
  2621. Sched<[WriteVICALUV_MX, ReadVICALUV_MX, ReadVICALUV_MX, ReadVMask]>;
  2622. defm "" : VPseudoBinaryV_XM<m>,
  2623. Sched<[WriteVICALUX_MX, ReadVICALUV_MX, ReadVICALUX_MX, ReadVMask]>;
  2624. // Tied versions to allow codegen control over the tail elements
  2625. defm "" : VPseudoTiedBinaryV_VM<m>,
  2626. Sched<[WriteVICALUV_MX, ReadVICALUV_MX, ReadVICALUV_MX, ReadVMask]>;
  2627. defm "" : VPseudoTiedBinaryV_XM<m>,
  2628. Sched<[WriteVICALUX_MX, ReadVICALUV_MX, ReadVICALUX_MX, ReadVMask]>;
  2629. }
  2630. }
  2631. multiclass VPseudoVCALUM_VM_XM_IM<string Constraint> {
  2632. foreach m = MxList in {
  2633. defvar mx = m.MX;
  2634. defvar WriteVICALUV_MX = !cast<SchedWrite>("WriteVICALUV_" # mx);
  2635. defvar WriteVICALUX_MX = !cast<SchedWrite>("WriteVICALUX_" # mx);
  2636. defvar WriteVICALUI_MX = !cast<SchedWrite>("WriteVICALUI_" # mx);
  2637. defvar ReadVICALUV_MX = !cast<SchedRead>("ReadVICALUV_" # mx);
  2638. defvar ReadVICALUX_MX = !cast<SchedRead>("ReadVICALUX_" # mx);
  2639. defm "" : VPseudoBinaryV_VM<m, /*CarryOut=*/1, /*CarryIn=*/1, Constraint>,
  2640. Sched<[WriteVICALUV_MX, ReadVICALUV_MX, ReadVICALUV_MX, ReadVMask]>;
  2641. defm "" : VPseudoBinaryV_XM<m, /*CarryOut=*/1, /*CarryIn=*/1, Constraint>,
  2642. Sched<[WriteVICALUX_MX, ReadVICALUV_MX, ReadVICALUX_MX, ReadVMask]>;
  2643. defm "" : VPseudoBinaryV_IM<m, /*CarryOut=*/1, /*CarryIn=*/1, Constraint>,
  2644. Sched<[WriteVICALUI_MX, ReadVICALUV_MX, ReadVMask]>;
  2645. }
  2646. }
  2647. multiclass VPseudoVCALUM_VM_XM<string Constraint> {
  2648. foreach m = MxList in {
  2649. defvar mx = m.MX;
  2650. defvar WriteVICALUV_MX = !cast<SchedWrite>("WriteVICALUV_" # mx);
  2651. defvar WriteVICALUX_MX = !cast<SchedWrite>("WriteVICALUX_" # mx);
  2652. defvar ReadVICALUV_MX = !cast<SchedRead>("ReadVICALUV_" # mx);
  2653. defvar ReadVICALUX_MX = !cast<SchedRead>("ReadVICALUX_" # mx);
  2654. defm "" : VPseudoBinaryV_VM<m, /*CarryOut=*/1, /*CarryIn=*/1, Constraint>,
  2655. Sched<[WriteVICALUV_MX, ReadVICALUV_MX, ReadVICALUV_MX, ReadVMask]>;
  2656. defm "" : VPseudoBinaryV_XM<m, /*CarryOut=*/1, /*CarryIn=*/1, Constraint>,
  2657. Sched<[WriteVICALUX_MX, ReadVICALUV_MX, ReadVICALUX_MX, ReadVMask]>;
  2658. }
  2659. }
  2660. multiclass VPseudoVCALUM_V_X_I<string Constraint> {
  2661. foreach m = MxList in {
  2662. defvar mx = m.MX;
  2663. defvar WriteVICALUV_MX = !cast<SchedWrite>("WriteVICALUV_" # mx);
  2664. defvar WriteVICALUX_MX = !cast<SchedWrite>("WriteVICALUX_" # mx);
  2665. defvar WriteVICALUI_MX = !cast<SchedWrite>("WriteVICALUI_" # mx);
  2666. defvar ReadVICALUV_MX = !cast<SchedRead>("ReadVICALUV_" # mx);
  2667. defvar ReadVICALUX_MX = !cast<SchedRead>("ReadVICALUX_" # mx);
  2668. defm "" : VPseudoBinaryV_VM<m, /*CarryOut=*/1, /*CarryIn=*/0, Constraint>,
  2669. Sched<[WriteVICALUV_MX, ReadVICALUV_MX, ReadVICALUV_MX]>;
  2670. defm "" : VPseudoBinaryV_XM<m, /*CarryOut=*/1, /*CarryIn=*/0, Constraint>,
  2671. Sched<[WriteVICALUX_MX, ReadVICALUV_MX, ReadVICALUX_MX]>;
  2672. defm "" : VPseudoBinaryV_IM<m, /*CarryOut=*/1, /*CarryIn=*/0, Constraint>,
  2673. Sched<[WriteVICALUI_MX, ReadVICALUV_MX]>;
  2674. }
  2675. }
  2676. multiclass VPseudoVCALUM_V_X<string Constraint> {
  2677. foreach m = MxList in {
  2678. defvar mx = m.MX;
  2679. defvar WriteVICALUV_MX = !cast<SchedWrite>("WriteVICALUV_" # mx);
  2680. defvar WriteVICALUX_MX = !cast<SchedWrite>("WriteVICALUX_" # mx);
  2681. defvar ReadVICALUV_MX = !cast<SchedRead>("ReadVICALUV_" # mx);
  2682. defvar ReadVICALUX_MX = !cast<SchedRead>("ReadVICALUX_" # mx);
  2683. defm "" : VPseudoBinaryV_VM<m, /*CarryOut=*/1, /*CarryIn=*/0, Constraint>,
  2684. Sched<[WriteVICALUV_MX, ReadVICALUV_MX, ReadVICALUV_MX]>;
  2685. defm "" : VPseudoBinaryV_XM<m, /*CarryOut=*/1, /*CarryIn=*/0, Constraint>,
  2686. Sched<[WriteVICALUX_MX, ReadVICALUV_MX, ReadVICALUX_MX]>;
  2687. }
  2688. }
  2689. multiclass VPseudoVNCLP_WV_WX_WI {
  2690. foreach m = MxListW in {
  2691. defvar mx = m.MX;
  2692. defvar WriteVNClipV_MX = !cast<SchedWrite>("WriteVNClipV_" # mx);
  2693. defvar WriteVNClipX_MX = !cast<SchedWrite>("WriteVNClipX_" # mx);
  2694. defvar WriteVNClipI_MX = !cast<SchedWrite>("WriteVNClipI_" # mx);
  2695. defvar ReadVNClipV_MX = !cast<SchedRead>("ReadVNClipV_" # mx);
  2696. defvar ReadVNClipX_MX = !cast<SchedRead>("ReadVNClipX_" # mx);
  2697. defm "" : VPseudoBinaryV_WV<m>,
  2698. Sched<[WriteVNClipV_MX, ReadVNClipV_MX, ReadVNClipV_MX, ReadVMask]>;
  2699. defm "" : VPseudoBinaryV_WX<m>,
  2700. Sched<[WriteVNClipX_MX, ReadVNClipV_MX, ReadVNClipX_MX, ReadVMask]>;
  2701. defm "" : VPseudoBinaryV_WI<m>,
  2702. Sched<[WriteVNClipI_MX, ReadVNClipV_MX, ReadVMask]>;
  2703. }
  2704. }
  2705. multiclass VPseudoVNSHT_WV_WX_WI {
  2706. foreach m = MxListW in {
  2707. defvar mx = m.MX;
  2708. defvar WriteVNShiftV_MX = !cast<SchedWrite>("WriteVNShiftV_" # mx);
  2709. defvar WriteVNShiftX_MX = !cast<SchedWrite>("WriteVNShiftX_" # mx);
  2710. defvar WriteVNShiftI_MX = !cast<SchedWrite>("WriteVNShiftI_" # mx);
  2711. defvar ReadVNShiftV_MX = !cast<SchedRead>("ReadVNShiftV_" # mx);
  2712. defvar ReadVNShiftX_MX = !cast<SchedRead>("ReadVNShiftX_" # mx);
  2713. defm "" : VPseudoBinaryV_WV<m>,
  2714. Sched<[WriteVNShiftV_MX, ReadVNShiftV_MX, ReadVNShiftV_MX, ReadVMask]>;
  2715. defm "" : VPseudoBinaryV_WX<m>,
  2716. Sched<[WriteVNShiftX_MX, ReadVNShiftV_MX, ReadVNShiftX_MX, ReadVMask]>;
  2717. defm "" : VPseudoBinaryV_WI<m>,
  2718. Sched<[WriteVNShiftI_MX, ReadVNShiftV_MX, ReadVMask]>;
  2719. }
  2720. }
  2721. multiclass VPseudoTernary<VReg RetClass,
  2722. RegisterClass Op1Class,
  2723. DAGOperand Op2Class,
  2724. LMULInfo MInfo,
  2725. string Constraint = ""> {
  2726. let VLMul = MInfo.value in {
  2727. def "_" # MInfo.MX : VPseudoTernaryNoMask<RetClass, Op1Class, Op2Class, Constraint>;
  2728. def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMask<RetClass, Op1Class, Op2Class, Constraint>;
  2729. }
  2730. }
  2731. multiclass VPseudoTernaryNoMaskNoPolicy<VReg RetClass,
  2732. RegisterClass Op1Class,
  2733. DAGOperand Op2Class,
  2734. LMULInfo MInfo,
  2735. string Constraint = ""> {
  2736. let VLMul = MInfo.value in {
  2737. def "_" # MInfo.MX : VPseudoTernaryNoMask<RetClass, Op1Class, Op2Class, Constraint>;
  2738. def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMaskPolicy<RetClass, Op1Class, Op2Class,
  2739. Constraint>;
  2740. }
  2741. }
  2742. multiclass VPseudoTernaryWithPolicy<VReg RetClass,
  2743. RegisterClass Op1Class,
  2744. DAGOperand Op2Class,
  2745. LMULInfo MInfo,
  2746. string Constraint = "",
  2747. bit Commutable = 0> {
  2748. let VLMul = MInfo.value in {
  2749. let isCommutable = Commutable in
  2750. def "_" # MInfo.MX : VPseudoTernaryNoMaskWithPolicy<RetClass, Op1Class, Op2Class, Constraint>;
  2751. def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMaskPolicy<RetClass, Op1Class, Op2Class, Constraint>;
  2752. }
  2753. }
  2754. multiclass VPseudoTernaryV_VV_AAXA<LMULInfo m, string Constraint = ""> {
  2755. defm _VV : VPseudoTernaryWithPolicy<m.vrclass, m.vrclass, m.vrclass, m,
  2756. Constraint, /*Commutable*/1>;
  2757. }
  2758. multiclass VPseudoVSLDV_VX<LMULInfo m, string Constraint = ""> {
  2759. defm _VX : VPseudoTernaryWithPolicy<m.vrclass, m.vrclass, GPR, m, Constraint>;
  2760. }
  2761. multiclass VPseudoTernaryV_VX_AAXA<LMULInfo m, string Constraint = ""> {
  2762. defm "_VX" : VPseudoTernaryWithPolicy<m.vrclass, GPR, m.vrclass, m,
  2763. Constraint, /*Commutable*/1>;
  2764. }
  2765. multiclass VPseudoTernaryV_VF_AAXA<LMULInfo m, FPR_Info f, string Constraint = ""> {
  2766. defm "_V" # f.FX : VPseudoTernaryWithPolicy<m.vrclass, f.fprclass,
  2767. m.vrclass, m, Constraint,
  2768. /*Commutable*/1>;
  2769. }
  2770. multiclass VPseudoTernaryW_VV<LMULInfo m> {
  2771. defvar constraint = "@earlyclobber $rd";
  2772. defm _VV : VPseudoTernaryWithPolicy<m.wvrclass, m.vrclass, m.vrclass, m,
  2773. constraint>;
  2774. }
  2775. multiclass VPseudoTernaryW_VX<LMULInfo m> {
  2776. defvar constraint = "@earlyclobber $rd";
  2777. defm "_VX" : VPseudoTernaryWithPolicy<m.wvrclass, GPR, m.vrclass, m,
  2778. constraint>;
  2779. }
  2780. multiclass VPseudoTernaryW_VF<LMULInfo m, FPR_Info f> {
  2781. defvar constraint = "@earlyclobber $rd";
  2782. defm "_V" # f.FX : VPseudoTernaryWithPolicy<m.wvrclass, f.fprclass,
  2783. m.vrclass, m, constraint>;
  2784. }
  2785. multiclass VPseudoVSLDV_VI<Operand ImmType = simm5, LMULInfo m, string Constraint = ""> {
  2786. defm _VI : VPseudoTernaryWithPolicy<m.vrclass, m.vrclass, ImmType, m, Constraint>;
  2787. }
  2788. multiclass VPseudoVMAC_VV_VX_AAXA<string Constraint = ""> {
  2789. foreach m = MxList in {
  2790. defvar mx = m.MX;
  2791. defvar WriteVIMulAddV_MX = !cast<SchedWrite>("WriteVIMulAddV_" # mx);
  2792. defvar WriteVIMulAddX_MX = !cast<SchedWrite>("WriteVIMulAddX_" # mx);
  2793. defvar ReadVIMulAddV_MX = !cast<SchedRead>("ReadVIMulAddV_" # mx);
  2794. defvar ReadVIMulAddX_MX = !cast<SchedRead>("ReadVIMulAddX_" # mx);
  2795. defm "" : VPseudoTernaryV_VV_AAXA<m, Constraint>,
  2796. Sched<[WriteVIMulAddV_MX, ReadVIMulAddV_MX, ReadVIMulAddV_MX,
  2797. ReadVIMulAddV_MX, ReadVMask]>;
  2798. defm "" : VPseudoTernaryV_VX_AAXA<m, Constraint>,
  2799. Sched<[WriteVIMulAddX_MX, ReadVIMulAddV_MX, ReadVIMulAddV_MX,
  2800. ReadVIMulAddX_MX, ReadVMask]>;
  2801. }
  2802. }
  2803. multiclass VPseudoVMAC_VV_VF_AAXA<string Constraint = ""> {
  2804. foreach m = MxListF in {
  2805. defvar mx = m.MX;
  2806. defvar WriteVFMulAddV_MX = !cast<SchedWrite>("WriteVFMulAddV_" # mx);
  2807. defvar ReadVFMulAddV_MX = !cast<SchedRead>("ReadVFMulAddV_" # mx);
  2808. defm "" : VPseudoTernaryV_VV_AAXA<m, Constraint>,
  2809. Sched<[WriteVFMulAddV_MX, ReadVFMulAddV_MX, ReadVFMulAddV_MX, ReadVFMulAddV_MX, ReadVMask]>;
  2810. }
  2811. foreach f = FPList in {
  2812. foreach m = f.MxList in {
  2813. defvar mx = m.MX;
  2814. defvar WriteVFMulAddF_MX = !cast<SchedWrite>("WriteVFMulAddF_" # mx);
  2815. defvar ReadVFMulAddV_MX = !cast<SchedRead>("ReadVFMulAddV_" # mx);
  2816. defvar ReadVFMulAddF_MX = !cast<SchedRead>("ReadVFMulAddF_" # mx);
  2817. defm "" : VPseudoTernaryV_VF_AAXA<m, f, Constraint>,
  2818. Sched<[WriteVFMulAddF_MX, ReadVFMulAddV_MX, ReadVFMulAddV_MX, ReadVFMulAddF_MX, ReadVMask]>;
  2819. }
  2820. }
  2821. }
  2822. multiclass VPseudoVSLD_VX_VI<Operand ImmType = simm5, string Constraint = ""> {
  2823. foreach m = MxList in {
  2824. defvar mx = m.MX;
  2825. defvar WriteVISlideX_MX = !cast<SchedWrite>("WriteVISlideX_" # mx);
  2826. defvar WriteVISlideI_MX = !cast<SchedWrite>("WriteVISlideI_" # mx);
  2827. defvar ReadVISlideV_MX = !cast<SchedRead>("ReadVISlideV_" # mx);
  2828. defvar ReadVISlideX_MX = !cast<SchedRead>("ReadVISlideX_" # mx);
  2829. defm "" : VPseudoVSLDV_VX<m, Constraint>,
  2830. Sched<[WriteVISlideX_MX, ReadVISlideV_MX, ReadVISlideV_MX,
  2831. ReadVISlideX_MX, ReadVMask]>;
  2832. defm "" : VPseudoVSLDV_VI<ImmType, m, Constraint>,
  2833. Sched<[WriteVISlideI_MX, ReadVISlideV_MX, ReadVISlideV_MX, ReadVMask]>;
  2834. }
  2835. }
  2836. multiclass VPseudoVWMAC_VV_VX {
  2837. foreach m = MxListW in {
  2838. defvar mx = m.MX;
  2839. defvar WriteVIWMulAddV_MX = !cast<SchedWrite>("WriteVIWMulAddV_" # mx);
  2840. defvar WriteVIWMulAddX_MX = !cast<SchedWrite>("WriteVIWMulAddX_" # mx);
  2841. defvar ReadVIWMulAddV_MX = !cast<SchedRead>("ReadVIWMulAddV_" # mx);
  2842. defvar ReadVIWMulAddX_MX = !cast<SchedRead>("ReadVIWMulAddX_" # mx);
  2843. defm "" : VPseudoTernaryW_VV<m>,
  2844. Sched<[WriteVIWMulAddV_MX, ReadVIWMulAddV_MX, ReadVIWMulAddV_MX,
  2845. ReadVIWMulAddV_MX, ReadVMask]>;
  2846. defm "" : VPseudoTernaryW_VX<m>,
  2847. Sched<[WriteVIWMulAddX_MX, ReadVIWMulAddV_MX, ReadVIWMulAddV_MX,
  2848. ReadVIWMulAddX_MX, ReadVMask]>;
  2849. }
  2850. }
  2851. multiclass VPseudoVWMAC_VX {
  2852. foreach m = MxListW in {
  2853. defvar mx = m.MX;
  2854. defvar WriteVIWMulAddX_MX = !cast<SchedWrite>("WriteVIWMulAddX_" # mx);
  2855. defvar ReadVIWMulAddV_MX= !cast<SchedRead>("ReadVIWMulAddV_" # mx);
  2856. defvar ReadVIWMulAddX_MX = !cast<SchedRead>("ReadVIWMulAddX_" # mx);
  2857. defm "" : VPseudoTernaryW_VX<m>,
  2858. Sched<[WriteVIWMulAddX_MX, ReadVIWMulAddV_MX, ReadVIWMulAddV_MX,
  2859. ReadVIWMulAddX_MX, ReadVMask]>;
  2860. }
  2861. }
  2862. multiclass VPseudoVWMAC_VV_VF {
  2863. foreach m = MxListFW in {
  2864. defvar mx = m.MX;
  2865. defvar WriteVFWMulAddV_MX = !cast<SchedWrite>("WriteVFWMulAddV_" # mx);
  2866. defvar ReadVFWMulAddV_MX = !cast<SchedRead>("ReadVFWMulAddV_" # mx);
  2867. defm "" : VPseudoTernaryW_VV<m>,
  2868. Sched<[WriteVFWMulAddV_MX, ReadVFWMulAddV_MX,
  2869. ReadVFWMulAddV_MX, ReadVFWMulAddV_MX, ReadVMask]>;
  2870. }
  2871. foreach f = FPListW in {
  2872. foreach m = f.MxListFW in {
  2873. defvar mx = m.MX;
  2874. defvar WriteVFWMulAddF_MX = !cast<SchedWrite>("WriteVFWMulAddF_" # mx);
  2875. defvar ReadVFWMulAddV_MX = !cast<SchedRead>("ReadVFWMulAddV_" # mx);
  2876. defvar ReadVFWMulAddF_MX = !cast<SchedRead>("ReadVFWMulAddF_" # mx);
  2877. defm "" : VPseudoTernaryW_VF<m, f>,
  2878. Sched<[WriteVFWMulAddF_MX, ReadVFWMulAddV_MX,
  2879. ReadVFWMulAddV_MX, ReadVFWMulAddF_MX, ReadVMask]>;
  2880. }
  2881. }
  2882. }
  2883. multiclass VPseudoVCMPM_VV_VX_VI {
  2884. foreach m = MxList in {
  2885. defvar mx = m.MX;
  2886. defvar WriteVICmpV_MX = !cast<SchedWrite>("WriteVICmpV_" # mx);
  2887. defvar WriteVICmpX_MX = !cast<SchedWrite>("WriteVICmpX_" # mx);
  2888. defvar WriteVICmpI_MX = !cast<SchedWrite>("WriteVICmpI_" # mx);
  2889. defvar ReadVICmpV_MX = !cast<SchedRead>("ReadVICmpV_" # mx);
  2890. defvar ReadVICmpX_MX = !cast<SchedRead>("ReadVICmpX_" # mx);
  2891. defm "" : VPseudoBinaryM_VV<m>,
  2892. Sched<[WriteVICmpV_MX, ReadVICmpV_MX, ReadVICmpV_MX, ReadVMask]>;
  2893. defm "" : VPseudoBinaryM_VX<m>,
  2894. Sched<[WriteVICmpX_MX, ReadVICmpV_MX, ReadVICmpX_MX, ReadVMask]>;
  2895. defm "" : VPseudoBinaryM_VI<m>,
  2896. Sched<[WriteVICmpI_MX, ReadVICmpV_MX, ReadVMask]>;
  2897. }
  2898. }
  2899. multiclass VPseudoVCMPM_VV_VX {
  2900. foreach m = MxList in {
  2901. defvar mx = m.MX;
  2902. defvar WriteVICmpV_MX = !cast<SchedWrite>("WriteVICmpV_" # mx);
  2903. defvar WriteVICmpX_MX = !cast<SchedWrite>("WriteVICmpX_" # mx);
  2904. defvar ReadVICmpV_MX = !cast<SchedRead>("ReadVICmpV_" # mx);
  2905. defvar ReadVICmpX_MX = !cast<SchedRead>("ReadVICmpX_" # mx);
  2906. defm "" : VPseudoBinaryM_VV<m>,
  2907. Sched<[WriteVICmpV_MX, ReadVICmpV_MX, ReadVICmpV_MX, ReadVMask]>;
  2908. defm "" : VPseudoBinaryM_VX<m>,
  2909. Sched<[WriteVICmpX_MX, ReadVICmpV_MX, ReadVICmpX_MX, ReadVMask]>;
  2910. }
  2911. }
  2912. multiclass VPseudoVCMPM_VV_VF {
  2913. foreach m = MxListF in {
  2914. defvar mx = m.MX;
  2915. defvar WriteVFCmpV_MX = !cast<SchedWrite>("WriteVFCmpV_" # mx);
  2916. defvar ReadVFCmpV_MX = !cast<SchedRead>("ReadVFCmpV_" # mx);
  2917. defm "" : VPseudoBinaryM_VV<m>,
  2918. Sched<[WriteVFCmpV_MX, ReadVFCmpV_MX, ReadVFCmpV_MX, ReadVMask]>;
  2919. }
  2920. foreach f = FPList in {
  2921. foreach m = f.MxList in {
  2922. defvar mx = m.MX;
  2923. defvar WriteVFCmpF_MX = !cast<SchedWrite>("WriteVFCmpF_" # mx);
  2924. defvar ReadVFCmpV_MX = !cast<SchedRead>("ReadVFCmpV_" # mx);
  2925. defvar ReadVFCmpF_MX = !cast<SchedRead>("ReadVFCmpF_" # mx);
  2926. defm "" : VPseudoBinaryM_VF<m, f>,
  2927. Sched<[WriteVFCmpF_MX, ReadVFCmpV_MX, ReadVFCmpF_MX, ReadVMask]>;
  2928. }
  2929. }
  2930. }
  2931. multiclass VPseudoVCMPM_VF {
  2932. foreach f = FPList in {
  2933. foreach m = f.MxList in {
  2934. defvar mx = m.MX;
  2935. defvar WriteVFCmpF_MX = !cast<SchedWrite>("WriteVFCmpF_" # mx);
  2936. defvar ReadVFCmpV_MX = !cast<SchedRead>("ReadVFCmpV_" # mx);
  2937. defvar ReadVFCmpF_MX = !cast<SchedRead>("ReadVFCmpF_" # mx);
  2938. defm "" : VPseudoBinaryM_VF<m, f>,
  2939. Sched<[WriteVFCmpF_MX, ReadVFCmpV_MX, ReadVFCmpF_MX, ReadVMask]>;
  2940. }
  2941. }
  2942. }
  2943. multiclass VPseudoVCMPM_VX_VI {
  2944. foreach m = MxList in {
  2945. defvar mx = m.MX;
  2946. defvar WriteVICmpX_MX = !cast<SchedWrite>("WriteVICmpX_" # mx);
  2947. defvar WriteVICmpI_MX = !cast<SchedWrite>("WriteVICmpI_" # mx);
  2948. defvar ReadVICmpV_MX = !cast<SchedRead>("ReadVICmpV_" # mx);
  2949. defvar ReadVICmpX_MX = !cast<SchedRead>("ReadVICmpX_" # mx);
  2950. defm "" : VPseudoBinaryM_VX<m>,
  2951. Sched<[WriteVICmpX_MX, ReadVICmpV_MX, ReadVICmpX_MX, ReadVMask]>;
  2952. defm "" : VPseudoBinaryM_VI<m>,
  2953. Sched<[WriteVICmpI_MX, ReadVICmpV_MX, ReadVMask]>;
  2954. }
  2955. }
  2956. multiclass VPseudoVRED_VS {
  2957. foreach m = MxList in {
  2958. defm _VS : VPseudoTernary<V_M1.vrclass, m.vrclass, V_M1.vrclass, m>,
  2959. Sched<[WriteVIRedV, ReadVIRedV, ReadVIRedV, ReadVIRedV, ReadVMask]>;
  2960. }
  2961. }
  2962. multiclass VPseudoVWRED_VS {
  2963. foreach m = MxList in {
  2964. defm _VS : VPseudoTernary<V_M1.vrclass, m.vrclass, V_M1.vrclass, m>,
  2965. Sched<[WriteVIWRedV, ReadVIWRedV, ReadVIWRedV, ReadVIWRedV, ReadVMask]>;
  2966. }
  2967. }
  2968. multiclass VPseudoVFRED_VS {
  2969. foreach m = MxListF in {
  2970. defm _VS : VPseudoTernary<V_M1.vrclass, m.vrclass, V_M1.vrclass, m>,
  2971. Sched<[WriteVFRedV, ReadVFRedV, ReadVFRedV, ReadVFRedV, ReadVMask]>;
  2972. }
  2973. }
  2974. multiclass VPseudoVFREDO_VS {
  2975. foreach m = MxListF in {
  2976. defm _VS : VPseudoTernary<V_M1.vrclass, m.vrclass, V_M1.vrclass, m>,
  2977. Sched<[WriteVFRedOV, ReadVFRedOV, ReadVFRedOV, ReadVFRedOV, ReadVMask]>;
  2978. }
  2979. }
  2980. multiclass VPseudoVFWRED_VS {
  2981. foreach m = MxListF in {
  2982. defm _VS : VPseudoTernary<V_M1.vrclass, m.vrclass, V_M1.vrclass, m>,
  2983. Sched<[WriteVFWRedV, ReadVFWRedV, ReadVFWRedV, ReadVFWRedV, ReadVMask]>;
  2984. }
  2985. }
  2986. multiclass VPseudoConversion<VReg RetClass,
  2987. VReg Op1Class,
  2988. LMULInfo MInfo,
  2989. string Constraint = ""> {
  2990. let VLMul = MInfo.value in {
  2991. def "_" # MInfo.MX : VPseudoUnaryNoMask<RetClass, Op1Class, Constraint>;
  2992. def "_" # MInfo.MX # "_TU": VPseudoUnaryNoMaskTU<RetClass, Op1Class, Constraint>;
  2993. def "_" # MInfo.MX # "_MASK" : VPseudoUnaryMaskTA<RetClass, Op1Class,
  2994. Constraint>,
  2995. RISCVMaskedPseudo</*MaskOpIdx*/ 2>;
  2996. }
  2997. }
  2998. multiclass VPseudoConversionRM<VReg RetClass,
  2999. VReg Op1Class,
  3000. LMULInfo MInfo,
  3001. string Constraint = ""> {
  3002. let VLMul = MInfo.value in {
  3003. def "_" # MInfo.MX # "_MASK" : VPseudoUnaryMaskTA_FRM<RetClass, Op1Class,
  3004. Constraint>;
  3005. }
  3006. }
  3007. multiclass VPseudoConversionNoExcept<VReg RetClass,
  3008. VReg Op1Class,
  3009. LMULInfo MInfo,
  3010. string Constraint = ""> {
  3011. let VLMul = MInfo.value in {
  3012. def "_" # MInfo.MX # "_MASK" : VPseudoUnaryMaskTA_NoExcept<RetClass, Op1Class, Constraint>;
  3013. }
  3014. }
  3015. multiclass VPseudoVCVTI_V {
  3016. foreach m = MxListF in {
  3017. defvar mx = m.MX;
  3018. defvar WriteVFCvtFToIV_MX = !cast<SchedWrite>("WriteVFCvtFToIV_" # mx);
  3019. defvar ReadVFCvtFToIV_MX = !cast<SchedRead>("ReadVFCvtFToIV_" # mx);
  3020. defm _V : VPseudoConversion<m.vrclass, m.vrclass, m>,
  3021. Sched<[WriteVFCvtFToIV_MX, ReadVFCvtFToIV_MX, ReadVMask]>;
  3022. }
  3023. }
  3024. multiclass VPseudoVCVTI_RM_V {
  3025. foreach m = MxListF in {
  3026. defvar mx = m.MX;
  3027. defvar WriteVFCvtFToIV_MX = !cast<SchedWrite>("WriteVFCvtFToIV_" # mx);
  3028. defvar ReadVFCvtFToIV_MX = !cast<SchedRead>("ReadVFCvtFToIV_" # mx);
  3029. defm _V : VPseudoConversionRM<m.vrclass, m.vrclass, m>,
  3030. Sched<[WriteVFCvtFToIV_MX, ReadVFCvtFToIV_MX, ReadVMask]>;
  3031. }
  3032. }
  3033. multiclass VPseudoVFROUND_NOEXCEPT_V {
  3034. foreach m = MxListF in {
  3035. defvar mx = m.MX;
  3036. defvar WriteVFCvtFToIV_MX = !cast<SchedWrite>("WriteVFCvtFToIV_" # mx);
  3037. defvar ReadVFCvtFToIV_MX = !cast<SchedRead>("ReadVFCvtFToIV_" # mx);
  3038. defm _V : VPseudoConversionNoExcept<m.vrclass, m.vrclass, m>,
  3039. Sched<[WriteVFCvtFToIV_MX, ReadVFCvtFToIV_MX, ReadVMask]>;
  3040. }
  3041. }
  3042. multiclass VPseudoVCVTF_V {
  3043. foreach m = MxListF in {
  3044. defvar mx = m.MX;
  3045. defvar WriteVFCvtIToFV_MX = !cast<SchedWrite>("WriteVFCvtIToFV_" # mx);
  3046. defvar ReadVFCvtIToFV_MX = !cast<SchedRead>("ReadVFCvtIToFV_" # mx);
  3047. defm _V : VPseudoConversion<m.vrclass, m.vrclass, m>,
  3048. Sched<[WriteVFCvtIToFV_MX, ReadVFCvtIToFV_MX, ReadVMask]>;
  3049. }
  3050. }
  3051. multiclass VPseudoVCVTF_RM_V {
  3052. foreach m = MxListF in {
  3053. defvar mx = m.MX;
  3054. defvar WriteVFCvtIToFV_MX = !cast<SchedWrite>("WriteVFCvtIToFV_" # mx);
  3055. defvar ReadVFCvtIToFV_MX = !cast<SchedRead>("ReadVFCvtIToFV_" # mx);
  3056. defm _V : VPseudoConversionRM<m.vrclass, m.vrclass, m>,
  3057. Sched<[WriteVFCvtIToFV_MX, ReadVFCvtIToFV_MX, ReadVMask]>;
  3058. }
  3059. }
  3060. multiclass VPseudoConversionW_V {
  3061. defvar constraint = "@earlyclobber $rd";
  3062. foreach m = MxListW in
  3063. defm _V : VPseudoConversion<m.wvrclass, m.vrclass, m, constraint>;
  3064. }
  3065. multiclass VPseudoVWCVTI_V {
  3066. defvar constraint = "@earlyclobber $rd";
  3067. foreach m = MxListFW in {
  3068. defvar mx = m.MX;
  3069. defvar WriteVFWCvtFToIV_MX = !cast<SchedWrite>("WriteVFWCvtFToIV_" # mx);
  3070. defvar ReadVFWCvtFToIV_MX = !cast<SchedRead>("ReadVFWCvtFToIV_" # mx);
  3071. defm _V : VPseudoConversion<m.wvrclass, m.vrclass, m, constraint>,
  3072. Sched<[WriteVFWCvtFToIV_MX, ReadVFWCvtFToIV_MX, ReadVMask]>;
  3073. }
  3074. }
  3075. multiclass VPseudoVWCVTI_RM_V {
  3076. defvar constraint = "@earlyclobber $rd";
  3077. foreach m = MxListFW in {
  3078. defvar mx = m.MX;
  3079. defvar WriteVFWCvtFToIV_MX = !cast<SchedWrite>("WriteVFWCvtFToIV_" # mx);
  3080. defvar ReadVFWCvtFToIV_MX = !cast<SchedRead>("ReadVFWCvtFToIV_" # mx);
  3081. defm _V : VPseudoConversionRM<m.wvrclass, m.vrclass, m, constraint>,
  3082. Sched<[WriteVFWCvtFToIV_MX, ReadVFWCvtFToIV_MX, ReadVMask]>;
  3083. }
  3084. }
  3085. multiclass VPseudoVWCVTF_V {
  3086. defvar constraint = "@earlyclobber $rd";
  3087. foreach m = MxListW in {
  3088. defvar mx = m.MX;
  3089. defvar WriteVFWCvtIToFV_MX = !cast<SchedWrite>("WriteVFWCvtIToFV_" # mx);
  3090. defvar ReadVFWCvtIToFV_MX = !cast<SchedRead>("ReadVFWCvtIToFV_" # mx);
  3091. defm _V : VPseudoConversion<m.wvrclass, m.vrclass, m, constraint>,
  3092. Sched<[WriteVFWCvtIToFV_MX, ReadVFWCvtIToFV_MX, ReadVMask]>;
  3093. }
  3094. }
  3095. multiclass VPseudoVWCVTF_RM_V {
  3096. defvar constraint = "@earlyclobber $rd";
  3097. foreach m = MxListW in {
  3098. defvar mx = m.MX;
  3099. defvar WriteVFWCvtIToFV_MX = !cast<SchedWrite>("WriteVFWCvtIToFV_" # mx);
  3100. defvar ReadVFWCvtIToFV_MX = !cast<SchedRead>("ReadVFWCvtIToFV_" # mx);
  3101. defm _V : VPseudoConversionRM<m.wvrclass, m.vrclass, m, constraint>,
  3102. Sched<[WriteVFWCvtIToFV_MX, ReadVFWCvtIToFV_MX, ReadVMask]>;
  3103. }
  3104. }
  3105. multiclass VPseudoVWCVTD_V {
  3106. defvar constraint = "@earlyclobber $rd";
  3107. foreach m = MxListFW in {
  3108. defvar mx = m.MX;
  3109. defvar WriteVFWCvtFToFV_MX = !cast<SchedWrite>("WriteVFWCvtFToFV_" # mx);
  3110. defvar ReadVFWCvtFToFV_MX = !cast<SchedRead>("ReadVFWCvtFToFV_" # mx);
  3111. defm _V : VPseudoConversion<m.wvrclass, m.vrclass, m, constraint>,
  3112. Sched<[WriteVFWCvtFToFV_MX, ReadVFWCvtFToFV_MX, ReadVMask]>;
  3113. }
  3114. }
  3115. multiclass VPseudoVNCVTI_W {
  3116. defvar constraint = "@earlyclobber $rd";
  3117. foreach m = MxListW in {
  3118. defvar mx = m.MX;
  3119. defvar WriteVFNCvtFToIV_MX = !cast<SchedWrite>("WriteVFNCvtFToIV_" # mx);
  3120. defvar ReadVFNCvtFToIV_MX = !cast<SchedRead>("ReadVFNCvtFToIV_" # mx);
  3121. defm _W : VPseudoConversion<m.vrclass, m.wvrclass, m, constraint>,
  3122. Sched<[WriteVFNCvtFToIV_MX, ReadVFNCvtFToIV_MX, ReadVMask]>;
  3123. }
  3124. }
  3125. multiclass VPseudoVNCVTI_RM_W {
  3126. defvar constraint = "@earlyclobber $rd";
  3127. foreach m = MxListW in {
  3128. defvar mx = m.MX;
  3129. defvar WriteVFNCvtFToIV_MX = !cast<SchedWrite>("WriteVFNCvtFToIV_" # mx);
  3130. defvar ReadVFNCvtFToIV_MX = !cast<SchedRead>("ReadVFNCvtFToIV_" # mx);
  3131. defm _W : VPseudoConversionRM<m.vrclass, m.wvrclass, m, constraint>,
  3132. Sched<[WriteVFNCvtFToIV_MX, ReadVFNCvtFToIV_MX, ReadVMask]>;
  3133. }
  3134. }
  3135. multiclass VPseudoVNCVTF_W {
  3136. defvar constraint = "@earlyclobber $rd";
  3137. foreach m = MxListFW in {
  3138. defvar mx = m.MX;
  3139. defvar WriteVFNCvtIToFV_MX = !cast<SchedWrite>("WriteVFNCvtIToFV_" # mx);
  3140. defvar ReadVFNCvtIToFV_MX = !cast<SchedRead>("ReadVFNCvtIToFV_" # mx);
  3141. defm _W : VPseudoConversion<m.vrclass, m.wvrclass, m, constraint>,
  3142. Sched<[WriteVFNCvtIToFV_MX, ReadVFNCvtIToFV_MX, ReadVMask]>;
  3143. }
  3144. }
  3145. multiclass VPseudoVNCVTF_RM_W {
  3146. defvar constraint = "@earlyclobber $rd";
  3147. foreach m = MxListFW in {
  3148. defvar mx = m.MX;
  3149. defvar WriteVFNCvtIToFV_MX = !cast<SchedWrite>("WriteVFNCvtIToFV_" # mx);
  3150. defvar ReadVFNCvtIToFV_MX = !cast<SchedRead>("ReadVFNCvtIToFV_" # mx);
  3151. defm _W : VPseudoConversionRM<m.vrclass, m.wvrclass, m, constraint>,
  3152. Sched<[WriteVFNCvtIToFV_MX, ReadVFNCvtIToFV_MX, ReadVMask]>;
  3153. }
  3154. }
  3155. multiclass VPseudoVNCVTD_W {
  3156. defvar constraint = "@earlyclobber $rd";
  3157. foreach m = MxListFW in {
  3158. defvar mx = m.MX;
  3159. defvar WriteVFNCvtFToFV_MX = !cast<SchedWrite>("WriteVFNCvtFToFV_" # mx);
  3160. defvar ReadVFNCvtFToFV_MX = !cast<SchedRead>("ReadVFNCvtFToFV_" # mx);
  3161. defm _W : VPseudoConversion<m.vrclass, m.wvrclass, m, constraint>,
  3162. Sched<[WriteVFNCvtFToFV_MX, ReadVFNCvtFToFV_MX, ReadVMask]>;
  3163. }
  3164. }
  3165. multiclass VPseudoUSSegLoad {
  3166. foreach eew = EEWList in {
  3167. foreach lmul = MxSet<eew>.m in {
  3168. defvar LInfo = lmul.MX;
  3169. let VLMul = lmul.value in {
  3170. foreach nf = NFSet<lmul>.L in {
  3171. defvar vreg = SegRegClass<lmul, nf>.RC;
  3172. def nf # "E" # eew # "_V_" # LInfo :
  3173. VPseudoUSSegLoadNoMask<vreg, eew, nf>, VLSEGSched<nf, eew, LInfo>;
  3174. def nf # "E" # eew # "_V_" # LInfo # "_TU" :
  3175. VPseudoUSSegLoadNoMaskTU<vreg, eew, nf>, VLSEGSched<nf, eew, LInfo>;
  3176. def nf # "E" # eew # "_V_" # LInfo # "_MASK" :
  3177. VPseudoUSSegLoadMask<vreg, eew, nf>, VLSEGSched<nf, eew, LInfo>;
  3178. }
  3179. }
  3180. }
  3181. }
  3182. }
  3183. multiclass VPseudoUSSegLoadFF {
  3184. foreach eew = EEWList in {
  3185. foreach lmul = MxSet<eew>.m in {
  3186. defvar LInfo = lmul.MX;
  3187. let VLMul = lmul.value in {
  3188. foreach nf = NFSet<lmul>.L in {
  3189. defvar vreg = SegRegClass<lmul, nf>.RC;
  3190. def nf # "E" # eew # "FF_V_" # LInfo :
  3191. VPseudoUSSegLoadFFNoMask<vreg, eew, nf>, VLSEGFFSched<nf, eew, LInfo>;
  3192. def nf # "E" # eew # "FF_V_" # LInfo # "_TU" :
  3193. VPseudoUSSegLoadFFNoMaskTU<vreg, eew, nf>, VLSEGFFSched<nf, eew, LInfo>;
  3194. def nf # "E" # eew # "FF_V_" # LInfo # "_MASK" :
  3195. VPseudoUSSegLoadFFMask<vreg, eew, nf>, VLSEGFFSched<nf, eew, LInfo>;
  3196. }
  3197. }
  3198. }
  3199. }
  3200. }
  3201. multiclass VPseudoSSegLoad {
  3202. foreach eew = EEWList in {
  3203. foreach lmul = MxSet<eew>.m in {
  3204. defvar LInfo = lmul.MX;
  3205. let VLMul = lmul.value in {
  3206. foreach nf = NFSet<lmul>.L in {
  3207. defvar vreg = SegRegClass<lmul, nf>.RC;
  3208. def nf # "E" # eew # "_V_" # LInfo : VPseudoSSegLoadNoMask<vreg, eew, nf>,
  3209. VLSSEGSched<nf, eew, LInfo>;
  3210. def nf # "E" # eew # "_V_" # LInfo # "_TU" : VPseudoSSegLoadNoMaskTU<vreg, eew, nf>,
  3211. VLSSEGSched<nf, eew, LInfo>;
  3212. def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSSegLoadMask<vreg, eew, nf>,
  3213. VLSSEGSched<nf, eew, LInfo>;
  3214. }
  3215. }
  3216. }
  3217. }
  3218. }
  3219. multiclass VPseudoISegLoad<bit Ordered> {
  3220. foreach idx_eew = EEWList in {
  3221. foreach sew = EEWList in {
  3222. foreach val_lmul = MxSet<sew>.m in {
  3223. defvar octuple_lmul = val_lmul.octuple;
  3224. // Calculate emul = eew * lmul / sew
  3225. defvar octuple_emul = !srl(!mul(idx_eew, octuple_lmul), log2<sew>.val);
  3226. if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then {
  3227. defvar ValLInfo = val_lmul.MX;
  3228. defvar IdxLInfo = octuple_to_str<octuple_emul>.ret;
  3229. defvar idx_lmul = !cast<LMULInfo>("V_" # IdxLInfo);
  3230. defvar Vreg = val_lmul.vrclass;
  3231. defvar IdxVreg = idx_lmul.vrclass;
  3232. defvar Order = !if(Ordered, "O", "U");
  3233. let VLMul = val_lmul.value in {
  3234. foreach nf = NFSet<val_lmul>.L in {
  3235. defvar ValVreg = SegRegClass<val_lmul, nf>.RC;
  3236. def nf # "EI" # idx_eew # "_V_" # IdxLInfo # "_" # ValLInfo :
  3237. VPseudoISegLoadNoMask<ValVreg, IdxVreg, idx_eew, idx_lmul.value,
  3238. nf, Ordered>,
  3239. VLXSEGSched<nf, idx_eew, Order, ValLInfo>;
  3240. def nf # "EI" # idx_eew # "_V_" # IdxLInfo # "_" # ValLInfo # "_TU" :
  3241. VPseudoISegLoadNoMaskTU<ValVreg, IdxVreg, idx_eew, idx_lmul.value,
  3242. nf, Ordered>,
  3243. VLXSEGSched<nf, idx_eew, Order, ValLInfo>;
  3244. def nf # "EI" # idx_eew # "_V_" # IdxLInfo # "_" # ValLInfo # "_MASK" :
  3245. VPseudoISegLoadMask<ValVreg, IdxVreg, idx_eew, idx_lmul.value,
  3246. nf, Ordered>,
  3247. VLXSEGSched<nf, idx_eew, Order, ValLInfo>;
  3248. }
  3249. }
  3250. }
  3251. }
  3252. }
  3253. }
  3254. }
  3255. multiclass VPseudoUSSegStore {
  3256. foreach eew = EEWList in {
  3257. foreach lmul = MxSet<eew>.m in {
  3258. defvar LInfo = lmul.MX;
  3259. let VLMul = lmul.value in {
  3260. foreach nf = NFSet<lmul>.L in {
  3261. defvar vreg = SegRegClass<lmul, nf>.RC;
  3262. def nf # "E" # eew # "_V_" # LInfo : VPseudoUSSegStoreNoMask<vreg, eew, nf>,
  3263. VSSEGSched<nf, eew, LInfo>;
  3264. def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoUSSegStoreMask<vreg, eew, nf>,
  3265. VSSEGSched<nf, eew, LInfo>;
  3266. }
  3267. }
  3268. }
  3269. }
  3270. }
  3271. multiclass VPseudoSSegStore {
  3272. foreach eew = EEWList in {
  3273. foreach lmul = MxSet<eew>.m in {
  3274. defvar LInfo = lmul.MX;
  3275. let VLMul = lmul.value in {
  3276. foreach nf = NFSet<lmul>.L in {
  3277. defvar vreg = SegRegClass<lmul, nf>.RC;
  3278. def nf # "E" # eew # "_V_" # LInfo : VPseudoSSegStoreNoMask<vreg, eew, nf>,
  3279. VSSSEGSched<nf, eew, LInfo>;
  3280. def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSSegStoreMask<vreg, eew, nf>,
  3281. VSSSEGSched<nf, eew, LInfo>;
  3282. }
  3283. }
  3284. }
  3285. }
  3286. }
  3287. multiclass VPseudoISegStore<bit Ordered> {
  3288. foreach idx_eew = EEWList in {
  3289. foreach sew = EEWList in {
  3290. foreach val_lmul = MxSet<sew>.m in {
  3291. defvar octuple_lmul = val_lmul.octuple;
  3292. // Calculate emul = eew * lmul / sew
  3293. defvar octuple_emul = !srl(!mul(idx_eew, octuple_lmul), log2<sew>.val);
  3294. if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then {
  3295. defvar ValLInfo = val_lmul.MX;
  3296. defvar IdxLInfo = octuple_to_str<octuple_emul>.ret;
  3297. defvar idx_lmul = !cast<LMULInfo>("V_" # IdxLInfo);
  3298. defvar Vreg = val_lmul.vrclass;
  3299. defvar IdxVreg = idx_lmul.vrclass;
  3300. defvar Order = !if(Ordered, "O", "U");
  3301. let VLMul = val_lmul.value in {
  3302. foreach nf = NFSet<val_lmul>.L in {
  3303. defvar ValVreg = SegRegClass<val_lmul, nf>.RC;
  3304. def nf # "EI" # idx_eew # "_V_" # IdxLInfo # "_" # ValLInfo :
  3305. VPseudoISegStoreNoMask<ValVreg, IdxVreg, idx_eew, idx_lmul.value,
  3306. nf, Ordered>,
  3307. VSXSEGSched<nf, idx_eew, Order, ValLInfo>;
  3308. def nf # "EI" # idx_eew # "_V_" # IdxLInfo # "_" # ValLInfo # "_MASK" :
  3309. VPseudoISegStoreMask<ValVreg, IdxVreg, idx_eew, idx_lmul.value,
  3310. nf, Ordered>,
  3311. VSXSEGSched<nf, idx_eew, Order, ValLInfo>;
  3312. }
  3313. }
  3314. }
  3315. }
  3316. }
  3317. }
  3318. }
  3319. //===----------------------------------------------------------------------===//
  3320. // Helpers to define the intrinsic patterns.
  3321. //===----------------------------------------------------------------------===//
  3322. class VPatUnaryNoMask<string intrinsic_name,
  3323. string inst,
  3324. string kind,
  3325. ValueType result_type,
  3326. ValueType op2_type,
  3327. int sew,
  3328. LMULInfo vlmul,
  3329. VReg op2_reg_class> :
  3330. Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
  3331. (result_type undef),
  3332. (op2_type op2_reg_class:$rs2),
  3333. VLOpFrag)),
  3334. (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
  3335. (op2_type op2_reg_class:$rs2),
  3336. GPR:$vl, sew)>;
  3337. class VPatUnaryNoMaskTU<string intrinsic_name,
  3338. string inst,
  3339. string kind,
  3340. ValueType result_type,
  3341. ValueType op2_type,
  3342. int sew,
  3343. LMULInfo vlmul,
  3344. VReg result_reg_class,
  3345. VReg op2_reg_class> :
  3346. Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
  3347. (result_type result_reg_class:$merge),
  3348. (op2_type op2_reg_class:$rs2),
  3349. VLOpFrag)),
  3350. (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX#"_TU")
  3351. (result_type result_reg_class:$merge),
  3352. (op2_type op2_reg_class:$rs2),
  3353. GPR:$vl, sew)>;
  3354. class VPatUnaryMask<string intrinsic_name,
  3355. string inst,
  3356. string kind,
  3357. ValueType result_type,
  3358. ValueType op2_type,
  3359. ValueType mask_type,
  3360. int sew,
  3361. LMULInfo vlmul,
  3362. VReg result_reg_class,
  3363. VReg op2_reg_class> :
  3364. Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
  3365. (result_type result_reg_class:$merge),
  3366. (op2_type op2_reg_class:$rs2),
  3367. (mask_type V0),
  3368. VLOpFrag)),
  3369. (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX#"_MASK")
  3370. (result_type result_reg_class:$merge),
  3371. (op2_type op2_reg_class:$rs2),
  3372. (mask_type V0), GPR:$vl, sew)>;
  3373. class VPatUnaryMaskTA<string intrinsic_name,
  3374. string inst,
  3375. string kind,
  3376. ValueType result_type,
  3377. ValueType op2_type,
  3378. ValueType mask_type,
  3379. int sew,
  3380. LMULInfo vlmul,
  3381. VReg result_reg_class,
  3382. VReg op2_reg_class> :
  3383. Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
  3384. (result_type result_reg_class:$merge),
  3385. (op2_type op2_reg_class:$rs2),
  3386. (mask_type V0),
  3387. VLOpFrag, (XLenVT timm:$policy))),
  3388. (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX#"_MASK")
  3389. (result_type result_reg_class:$merge),
  3390. (op2_type op2_reg_class:$rs2),
  3391. (mask_type V0), GPR:$vl, sew, (XLenVT timm:$policy))>;
  3392. class VPatMaskUnaryNoMask<string intrinsic_name,
  3393. string inst,
  3394. MTypeInfo mti> :
  3395. Pat<(mti.Mask (!cast<Intrinsic>(intrinsic_name)
  3396. (mti.Mask VR:$rs2),
  3397. VLOpFrag)),
  3398. (!cast<Instruction>(inst#"_M_"#mti.BX)
  3399. (mti.Mask VR:$rs2),
  3400. GPR:$vl, mti.Log2SEW)>;
  3401. class VPatMaskUnaryMask<string intrinsic_name,
  3402. string inst,
  3403. MTypeInfo mti> :
  3404. Pat<(mti.Mask (!cast<Intrinsic>(intrinsic_name#"_mask")
  3405. (mti.Mask VR:$merge),
  3406. (mti.Mask VR:$rs2),
  3407. (mti.Mask V0),
  3408. VLOpFrag)),
  3409. (!cast<Instruction>(inst#"_M_"#mti.BX#"_MASK")
  3410. (mti.Mask VR:$merge),
  3411. (mti.Mask VR:$rs2),
  3412. (mti.Mask V0), GPR:$vl, mti.Log2SEW)>;
  3413. class VPatUnaryAnyMask<string intrinsic,
  3414. string inst,
  3415. string kind,
  3416. ValueType result_type,
  3417. ValueType op1_type,
  3418. ValueType mask_type,
  3419. int sew,
  3420. LMULInfo vlmul,
  3421. VReg result_reg_class,
  3422. VReg op1_reg_class> :
  3423. Pat<(result_type (!cast<Intrinsic>(intrinsic)
  3424. (result_type result_reg_class:$merge),
  3425. (op1_type op1_reg_class:$rs1),
  3426. (mask_type VR:$rs2),
  3427. VLOpFrag)),
  3428. (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
  3429. (result_type result_reg_class:$merge),
  3430. (op1_type op1_reg_class:$rs1),
  3431. (mask_type VR:$rs2),
  3432. GPR:$vl, sew)>;
  3433. class VPatBinaryM<string intrinsic_name,
  3434. string inst,
  3435. ValueType result_type,
  3436. ValueType op1_type,
  3437. ValueType op2_type,
  3438. int sew,
  3439. VReg op1_reg_class,
  3440. DAGOperand op2_kind> :
  3441. Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
  3442. (op1_type op1_reg_class:$rs1),
  3443. (op2_type op2_kind:$rs2),
  3444. VLOpFrag)),
  3445. (!cast<Instruction>(inst)
  3446. (op1_type op1_reg_class:$rs1),
  3447. (op2_type op2_kind:$rs2),
  3448. GPR:$vl, sew)>;
  3449. class VPatBinaryNoMaskTA<string intrinsic_name,
  3450. string inst,
  3451. ValueType result_type,
  3452. ValueType op1_type,
  3453. ValueType op2_type,
  3454. int sew,
  3455. VReg op1_reg_class,
  3456. DAGOperand op2_kind> :
  3457. Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
  3458. (result_type (undef)),
  3459. (op1_type op1_reg_class:$rs1),
  3460. (op2_type op2_kind:$rs2),
  3461. VLOpFrag)),
  3462. (!cast<Instruction>(inst)
  3463. (op1_type op1_reg_class:$rs1),
  3464. (op2_type op2_kind:$rs2),
  3465. GPR:$vl, sew)>;
  3466. class VPatBinaryNoMaskTU<string intrinsic_name,
  3467. string inst,
  3468. ValueType result_type,
  3469. ValueType op1_type,
  3470. ValueType op2_type,
  3471. int sew,
  3472. VReg result_reg_class,
  3473. VReg op1_reg_class,
  3474. DAGOperand op2_kind> :
  3475. Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
  3476. (result_type result_reg_class:$merge),
  3477. (op1_type op1_reg_class:$rs1),
  3478. (op2_type op2_kind:$rs2),
  3479. VLOpFrag)),
  3480. (!cast<Instruction>(inst#"_TU")
  3481. (result_type result_reg_class:$merge),
  3482. (op1_type op1_reg_class:$rs1),
  3483. (op2_type op2_kind:$rs2),
  3484. GPR:$vl, sew)>;
  3485. // Same as above but source operands are swapped.
  3486. class VPatBinaryNoMaskSwapped<string intrinsic_name,
  3487. string inst,
  3488. ValueType result_type,
  3489. ValueType op1_type,
  3490. ValueType op2_type,
  3491. int sew,
  3492. VReg op1_reg_class,
  3493. DAGOperand op2_kind> :
  3494. Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
  3495. (op2_type op2_kind:$rs2),
  3496. (op1_type op1_reg_class:$rs1),
  3497. VLOpFrag)),
  3498. (!cast<Instruction>(inst)
  3499. (op1_type op1_reg_class:$rs1),
  3500. (op2_type op2_kind:$rs2),
  3501. GPR:$vl, sew)>;
  3502. class VPatBinaryMask<string intrinsic_name,
  3503. string inst,
  3504. ValueType result_type,
  3505. ValueType op1_type,
  3506. ValueType op2_type,
  3507. ValueType mask_type,
  3508. int sew,
  3509. VReg result_reg_class,
  3510. VReg op1_reg_class,
  3511. DAGOperand op2_kind> :
  3512. Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
  3513. (result_type result_reg_class:$merge),
  3514. (op1_type op1_reg_class:$rs1),
  3515. (op2_type op2_kind:$rs2),
  3516. (mask_type V0),
  3517. VLOpFrag)),
  3518. (!cast<Instruction>(inst#"_MASK")
  3519. (result_type result_reg_class:$merge),
  3520. (op1_type op1_reg_class:$rs1),
  3521. (op2_type op2_kind:$rs2),
  3522. (mask_type V0), GPR:$vl, sew)>;
  3523. class VPatBinaryMaskTA<string intrinsic_name,
  3524. string inst,
  3525. ValueType result_type,
  3526. ValueType op1_type,
  3527. ValueType op2_type,
  3528. ValueType mask_type,
  3529. int sew,
  3530. VReg result_reg_class,
  3531. VReg op1_reg_class,
  3532. DAGOperand op2_kind> :
  3533. Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
  3534. (result_type result_reg_class:$merge),
  3535. (op1_type op1_reg_class:$rs1),
  3536. (op2_type op2_kind:$rs2),
  3537. (mask_type V0),
  3538. VLOpFrag, (XLenVT timm:$policy))),
  3539. (!cast<Instruction>(inst#"_MASK")
  3540. (result_type result_reg_class:$merge),
  3541. (op1_type op1_reg_class:$rs1),
  3542. (op2_type op2_kind:$rs2),
  3543. (mask_type V0), GPR:$vl, sew, (XLenVT timm:$policy))>;
  3544. // Same as above but source operands are swapped.
  3545. class VPatBinaryMaskSwapped<string intrinsic_name,
  3546. string inst,
  3547. ValueType result_type,
  3548. ValueType op1_type,
  3549. ValueType op2_type,
  3550. ValueType mask_type,
  3551. int sew,
  3552. VReg result_reg_class,
  3553. VReg op1_reg_class,
  3554. DAGOperand op2_kind> :
  3555. Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
  3556. (result_type result_reg_class:$merge),
  3557. (op2_type op2_kind:$rs2),
  3558. (op1_type op1_reg_class:$rs1),
  3559. (mask_type V0),
  3560. VLOpFrag)),
  3561. (!cast<Instruction>(inst#"_MASK")
  3562. (result_type result_reg_class:$merge),
  3563. (op1_type op1_reg_class:$rs1),
  3564. (op2_type op2_kind:$rs2),
  3565. (mask_type V0), GPR:$vl, sew)>;
  3566. class VPatTiedBinaryNoMask<string intrinsic_name,
  3567. string inst,
  3568. ValueType result_type,
  3569. ValueType op2_type,
  3570. int sew,
  3571. VReg result_reg_class,
  3572. DAGOperand op2_kind> :
  3573. Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
  3574. (result_type (undef)),
  3575. (result_type result_reg_class:$rs1),
  3576. (op2_type op2_kind:$rs2),
  3577. VLOpFrag)),
  3578. (!cast<Instruction>(inst#"_TIED")
  3579. (result_type result_reg_class:$rs1),
  3580. (op2_type op2_kind:$rs2),
  3581. GPR:$vl, sew, TAIL_AGNOSTIC)>;
  3582. class VPatTiedBinaryNoMaskTU<string intrinsic_name,
  3583. string inst,
  3584. ValueType result_type,
  3585. ValueType op2_type,
  3586. int sew,
  3587. VReg result_reg_class,
  3588. DAGOperand op2_kind> :
  3589. Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
  3590. (result_type result_reg_class:$merge),
  3591. (result_type result_reg_class:$merge),
  3592. (op2_type op2_kind:$rs2),
  3593. VLOpFrag)),
  3594. (!cast<Instruction>(inst#"_TIED")
  3595. (result_type result_reg_class:$merge),
  3596. (op2_type op2_kind:$rs2),
  3597. GPR:$vl, sew, TAIL_UNDISTURBED_MASK_UNDISTURBED)>;
  3598. class VPatTiedBinaryMask<string intrinsic_name,
  3599. string inst,
  3600. ValueType result_type,
  3601. ValueType op2_type,
  3602. ValueType mask_type,
  3603. int sew,
  3604. VReg result_reg_class,
  3605. DAGOperand op2_kind> :
  3606. Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
  3607. (result_type result_reg_class:$merge),
  3608. (result_type result_reg_class:$merge),
  3609. (op2_type op2_kind:$rs2),
  3610. (mask_type V0),
  3611. VLOpFrag, (XLenVT timm:$policy))),
  3612. (!cast<Instruction>(inst#"_MASK_TIED")
  3613. (result_type result_reg_class:$merge),
  3614. (op2_type op2_kind:$rs2),
  3615. (mask_type V0), GPR:$vl, sew, (XLenVT timm:$policy))>;
  3616. class VPatTernaryNoMask<string intrinsic,
  3617. string inst,
  3618. string kind,
  3619. ValueType result_type,
  3620. ValueType op1_type,
  3621. ValueType op2_type,
  3622. int sew,
  3623. LMULInfo vlmul,
  3624. VReg result_reg_class,
  3625. RegisterClass op1_reg_class,
  3626. DAGOperand op2_kind> :
  3627. Pat<(result_type (!cast<Intrinsic>(intrinsic)
  3628. (result_type result_reg_class:$rs3),
  3629. (op1_type op1_reg_class:$rs1),
  3630. (op2_type op2_kind:$rs2),
  3631. VLOpFrag)),
  3632. (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
  3633. result_reg_class:$rs3,
  3634. (op1_type op1_reg_class:$rs1),
  3635. op2_kind:$rs2,
  3636. GPR:$vl, sew)>;
  3637. class VPatTernaryNoMaskWithPolicy<string intrinsic,
  3638. string inst,
  3639. string kind,
  3640. ValueType result_type,
  3641. ValueType op1_type,
  3642. ValueType op2_type,
  3643. int sew,
  3644. LMULInfo vlmul,
  3645. VReg result_reg_class,
  3646. RegisterClass op1_reg_class,
  3647. DAGOperand op2_kind> :
  3648. Pat<(result_type (!cast<Intrinsic>(intrinsic)
  3649. (result_type result_reg_class:$rs3),
  3650. (op1_type op1_reg_class:$rs1),
  3651. (op2_type op2_kind:$rs2),
  3652. VLOpFrag, (XLenVT timm:$policy))),
  3653. (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
  3654. result_reg_class:$rs3,
  3655. (op1_type op1_reg_class:$rs1),
  3656. op2_kind:$rs2,
  3657. GPR:$vl, sew, (XLenVT timm:$policy))>;
  3658. class VPatTernaryMask<string intrinsic,
  3659. string inst,
  3660. string kind,
  3661. ValueType result_type,
  3662. ValueType op1_type,
  3663. ValueType op2_type,
  3664. ValueType mask_type,
  3665. int sew,
  3666. LMULInfo vlmul,
  3667. VReg result_reg_class,
  3668. RegisterClass op1_reg_class,
  3669. DAGOperand op2_kind> :
  3670. Pat<(result_type (!cast<Intrinsic>(intrinsic#"_mask")
  3671. (result_type result_reg_class:$rs3),
  3672. (op1_type op1_reg_class:$rs1),
  3673. (op2_type op2_kind:$rs2),
  3674. (mask_type V0),
  3675. VLOpFrag)),
  3676. (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX # "_MASK")
  3677. result_reg_class:$rs3,
  3678. (op1_type op1_reg_class:$rs1),
  3679. op2_kind:$rs2,
  3680. (mask_type V0),
  3681. GPR:$vl, sew)>;
  3682. class VPatTernaryMaskPolicy<string intrinsic,
  3683. string inst,
  3684. string kind,
  3685. ValueType result_type,
  3686. ValueType op1_type,
  3687. ValueType op2_type,
  3688. ValueType mask_type,
  3689. int sew,
  3690. LMULInfo vlmul,
  3691. VReg result_reg_class,
  3692. RegisterClass op1_reg_class,
  3693. DAGOperand op2_kind> :
  3694. Pat<(result_type (!cast<Intrinsic>(intrinsic#"_mask")
  3695. (result_type result_reg_class:$rs3),
  3696. (op1_type op1_reg_class:$rs1),
  3697. (op2_type op2_kind:$rs2),
  3698. (mask_type V0),
  3699. VLOpFrag, (XLenVT timm:$policy))),
  3700. (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX # "_MASK")
  3701. result_reg_class:$rs3,
  3702. (op1_type op1_reg_class:$rs1),
  3703. op2_kind:$rs2,
  3704. (mask_type V0),
  3705. GPR:$vl, sew, (XLenVT timm:$policy))>;
  3706. multiclass VPatUnaryS_M<string intrinsic_name,
  3707. string inst>
  3708. {
  3709. foreach mti = AllMasks in {
  3710. def : Pat<(XLenVT (!cast<Intrinsic>(intrinsic_name)
  3711. (mti.Mask VR:$rs1), VLOpFrag)),
  3712. (!cast<Instruction>(inst#"_M_"#mti.BX) $rs1,
  3713. GPR:$vl, mti.Log2SEW)>;
  3714. def : Pat<(XLenVT (!cast<Intrinsic>(intrinsic_name # "_mask")
  3715. (mti.Mask VR:$rs1), (mti.Mask V0), VLOpFrag)),
  3716. (!cast<Instruction>(inst#"_M_"#mti.BX#"_MASK") $rs1,
  3717. (mti.Mask V0), GPR:$vl, mti.Log2SEW)>;
  3718. }
  3719. }
  3720. multiclass VPatUnaryV_V_AnyMask<string intrinsic, string instruction,
  3721. list<VTypeInfo> vtilist> {
  3722. foreach vti = vtilist in {
  3723. def : VPatUnaryAnyMask<intrinsic, instruction, "VM",
  3724. vti.Vector, vti.Vector, vti.Mask,
  3725. vti.Log2SEW, vti.LMul, vti.RegClass,
  3726. vti.RegClass>;
  3727. }
  3728. }
  3729. multiclass VPatUnaryM_M<string intrinsic,
  3730. string inst>
  3731. {
  3732. foreach mti = AllMasks in {
  3733. def : VPatMaskUnaryNoMask<intrinsic, inst, mti>;
  3734. def : VPatMaskUnaryMask<intrinsic, inst, mti>;
  3735. }
  3736. }
  3737. multiclass VPatUnaryV_M<string intrinsic, string instruction>
  3738. {
  3739. foreach vti = AllIntegerVectors in {
  3740. def : VPatUnaryNoMask<intrinsic, instruction, "M", vti.Vector, vti.Mask,
  3741. vti.Log2SEW, vti.LMul, VR>;
  3742. def : VPatUnaryNoMaskTU<intrinsic, instruction, "M", vti.Vector, vti.Mask,
  3743. vti.Log2SEW, vti.LMul, vti.RegClass,VR>;
  3744. def : VPatUnaryMaskTA<intrinsic, instruction, "M", vti.Vector, vti.Mask,
  3745. vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, VR>;
  3746. }
  3747. }
  3748. multiclass VPatUnaryV_VF<string intrinsic, string instruction, string suffix,
  3749. list<VTypeInfoToFraction> fractionList>
  3750. {
  3751. foreach vtiTofti = fractionList in
  3752. {
  3753. defvar vti = vtiTofti.Vti;
  3754. defvar fti = vtiTofti.Fti;
  3755. def : VPatUnaryNoMask<intrinsic, instruction, suffix,
  3756. vti.Vector, fti.Vector,
  3757. vti.Log2SEW, vti.LMul, fti.RegClass>;
  3758. def : VPatUnaryNoMaskTU<intrinsic, instruction, suffix,
  3759. vti.Vector, fti.Vector,
  3760. vti.Log2SEW, vti.LMul, vti.RegClass, fti.RegClass>;
  3761. def : VPatUnaryMaskTA<intrinsic, instruction, suffix,
  3762. vti.Vector, fti.Vector, vti.Mask,
  3763. vti.Log2SEW, vti.LMul, vti.RegClass, fti.RegClass>;
  3764. }
  3765. }
  3766. multiclass VPatUnaryV_V<string intrinsic, string instruction,
  3767. list<VTypeInfo> vtilist> {
  3768. foreach vti = vtilist in {
  3769. def : VPatUnaryNoMask<intrinsic, instruction, "V",
  3770. vti.Vector, vti.Vector,
  3771. vti.Log2SEW, vti.LMul, vti.RegClass>;
  3772. def : VPatUnaryNoMaskTU<intrinsic, instruction, "V",
  3773. vti.Vector, vti.Vector,
  3774. vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass>;
  3775. def : VPatUnaryMaskTA<intrinsic, instruction, "V",
  3776. vti.Vector, vti.Vector, vti.Mask,
  3777. vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass>;
  3778. }
  3779. }
  3780. multiclass VPatNullaryV<string intrinsic, string instruction>
  3781. {
  3782. foreach vti = AllIntegerVectors in {
  3783. def : Pat<(vti.Vector (!cast<Intrinsic>(intrinsic)
  3784. (vti.Vector undef),
  3785. VLOpFrag)),
  3786. (!cast<Instruction>(instruction#"_V_" # vti.LMul.MX)
  3787. GPR:$vl, vti.Log2SEW)>;
  3788. def : Pat<(vti.Vector (!cast<Intrinsic>(intrinsic)
  3789. (vti.Vector vti.RegClass:$merge),
  3790. VLOpFrag)),
  3791. (!cast<Instruction>(instruction#"_V_" # vti.LMul.MX # "_TU")
  3792. vti.RegClass:$merge, GPR:$vl, vti.Log2SEW)>;
  3793. def : Pat<(vti.Vector (!cast<Intrinsic>(intrinsic # "_mask")
  3794. (vti.Vector vti.RegClass:$merge),
  3795. (vti.Mask V0), VLOpFrag, (XLenVT timm:$policy))),
  3796. (!cast<Instruction>(instruction#"_V_" # vti.LMul.MX # "_MASK")
  3797. vti.RegClass:$merge, (vti.Mask V0),
  3798. GPR:$vl, vti.Log2SEW, (XLenVT timm:$policy))>;
  3799. }
  3800. }
  3801. multiclass VPatNullaryM<string intrinsic, string inst> {
  3802. foreach mti = AllMasks in
  3803. def : Pat<(mti.Mask (!cast<Intrinsic>(intrinsic)
  3804. VLOpFrag)),
  3805. (!cast<Instruction>(inst#"_M_"#mti.BX)
  3806. GPR:$vl, mti.Log2SEW)>;
  3807. }
  3808. multiclass VPatBinaryM<string intrinsic,
  3809. string inst,
  3810. ValueType result_type,
  3811. ValueType op1_type,
  3812. ValueType op2_type,
  3813. ValueType mask_type,
  3814. int sew,
  3815. VReg result_reg_class,
  3816. VReg op1_reg_class,
  3817. DAGOperand op2_kind>
  3818. {
  3819. def : VPatBinaryM<intrinsic, inst, result_type, op1_type, op2_type,
  3820. sew, op1_reg_class, op2_kind>;
  3821. def : VPatBinaryMask<intrinsic, inst, result_type, op1_type, op2_type,
  3822. mask_type, sew, result_reg_class, op1_reg_class,
  3823. op2_kind>;
  3824. }
  3825. multiclass VPatBinaryTA<string intrinsic,
  3826. string inst,
  3827. ValueType result_type,
  3828. ValueType op1_type,
  3829. ValueType op2_type,
  3830. ValueType mask_type,
  3831. int sew,
  3832. VReg result_reg_class,
  3833. VReg op1_reg_class,
  3834. DAGOperand op2_kind>
  3835. {
  3836. def : VPatBinaryNoMaskTA<intrinsic, inst, result_type, op1_type, op2_type,
  3837. sew, op1_reg_class, op2_kind>;
  3838. def : VPatBinaryNoMaskTU<intrinsic, inst, result_type, op1_type, op2_type,
  3839. sew, result_reg_class, op1_reg_class, op2_kind>;
  3840. def : VPatBinaryMaskTA<intrinsic, inst, result_type, op1_type, op2_type,
  3841. mask_type, sew, result_reg_class, op1_reg_class,
  3842. op2_kind>;
  3843. }
  3844. multiclass VPatBinarySwapped<string intrinsic,
  3845. string inst,
  3846. ValueType result_type,
  3847. ValueType op1_type,
  3848. ValueType op2_type,
  3849. ValueType mask_type,
  3850. int sew,
  3851. VReg result_reg_class,
  3852. VReg op1_reg_class,
  3853. DAGOperand op2_kind>
  3854. {
  3855. def : VPatBinaryNoMaskSwapped<intrinsic, inst, result_type, op1_type, op2_type,
  3856. sew, op1_reg_class, op2_kind>;
  3857. def : VPatBinaryMaskSwapped<intrinsic, inst, result_type, op1_type, op2_type,
  3858. mask_type, sew, result_reg_class, op1_reg_class,
  3859. op2_kind>;
  3860. }
  3861. multiclass VPatBinaryCarryInTAIL<string intrinsic,
  3862. string inst,
  3863. string kind,
  3864. ValueType result_type,
  3865. ValueType op1_type,
  3866. ValueType op2_type,
  3867. ValueType mask_type,
  3868. int sew,
  3869. LMULInfo vlmul,
  3870. VReg result_reg_class,
  3871. VReg op1_reg_class,
  3872. DAGOperand op2_kind>
  3873. {
  3874. def : Pat<(result_type (!cast<Intrinsic>(intrinsic)
  3875. (result_type undef),
  3876. (op1_type op1_reg_class:$rs1),
  3877. (op2_type op2_kind:$rs2),
  3878. (mask_type V0),
  3879. VLOpFrag)),
  3880. (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
  3881. (op1_type op1_reg_class:$rs1),
  3882. (op2_type op2_kind:$rs2),
  3883. (mask_type V0), GPR:$vl, sew)>;
  3884. def : Pat<(result_type (!cast<Intrinsic>(intrinsic)
  3885. (result_type result_reg_class:$merge),
  3886. (op1_type op1_reg_class:$rs1),
  3887. (op2_type op2_kind:$rs2),
  3888. (mask_type V0),
  3889. VLOpFrag)),
  3890. (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX#"_TU")
  3891. (result_type result_reg_class:$merge),
  3892. (op1_type op1_reg_class:$rs1),
  3893. (op2_type op2_kind:$rs2),
  3894. (mask_type V0), GPR:$vl, sew)>;
  3895. }
  3896. multiclass VPatBinaryCarryIn<string intrinsic,
  3897. string inst,
  3898. string kind,
  3899. ValueType result_type,
  3900. ValueType op1_type,
  3901. ValueType op2_type,
  3902. ValueType mask_type,
  3903. int sew,
  3904. LMULInfo vlmul,
  3905. VReg op1_reg_class,
  3906. DAGOperand op2_kind>
  3907. {
  3908. def : Pat<(result_type (!cast<Intrinsic>(intrinsic)
  3909. (op1_type op1_reg_class:$rs1),
  3910. (op2_type op2_kind:$rs2),
  3911. (mask_type V0),
  3912. VLOpFrag)),
  3913. (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
  3914. (op1_type op1_reg_class:$rs1),
  3915. (op2_type op2_kind:$rs2),
  3916. (mask_type V0), GPR:$vl, sew)>;
  3917. }
  3918. multiclass VPatBinaryMaskOut<string intrinsic,
  3919. string inst,
  3920. string kind,
  3921. ValueType result_type,
  3922. ValueType op1_type,
  3923. ValueType op2_type,
  3924. int sew,
  3925. LMULInfo vlmul,
  3926. VReg op1_reg_class,
  3927. DAGOperand op2_kind>
  3928. {
  3929. def : Pat<(result_type (!cast<Intrinsic>(intrinsic)
  3930. (op1_type op1_reg_class:$rs1),
  3931. (op2_type op2_kind:$rs2),
  3932. VLOpFrag)),
  3933. (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
  3934. (op1_type op1_reg_class:$rs1),
  3935. (op2_type op2_kind:$rs2),
  3936. GPR:$vl, sew)>;
  3937. }
  3938. multiclass VPatConversionTA<string intrinsic,
  3939. string inst,
  3940. string kind,
  3941. ValueType result_type,
  3942. ValueType op1_type,
  3943. ValueType mask_type,
  3944. int sew,
  3945. LMULInfo vlmul,
  3946. VReg result_reg_class,
  3947. VReg op1_reg_class>
  3948. {
  3949. def : VPatUnaryNoMask<intrinsic, inst, kind, result_type, op1_type,
  3950. sew, vlmul, op1_reg_class>;
  3951. def : VPatUnaryNoMaskTU<intrinsic, inst, kind, result_type, op1_type,
  3952. sew, vlmul, result_reg_class, op1_reg_class>;
  3953. def : VPatUnaryMaskTA<intrinsic, inst, kind, result_type, op1_type,
  3954. mask_type, sew, vlmul, result_reg_class, op1_reg_class>;
  3955. }
  3956. multiclass VPatBinaryV_VV<string intrinsic, string instruction,
  3957. list<VTypeInfo> vtilist> {
  3958. foreach vti = vtilist in
  3959. defm : VPatBinaryTA<intrinsic, instruction # "_VV_" # vti.LMul.MX,
  3960. vti.Vector, vti.Vector, vti.Vector,vti.Mask,
  3961. vti.Log2SEW, vti.RegClass,
  3962. vti.RegClass, vti.RegClass>;
  3963. }
  3964. multiclass VPatBinaryV_VV_INT<string intrinsic, string instruction,
  3965. list<VTypeInfo> vtilist> {
  3966. foreach vti = vtilist in {
  3967. defvar ivti = GetIntVTypeInfo<vti>.Vti;
  3968. defm : VPatBinaryTA<intrinsic, instruction # "_VV_" # vti.LMul.MX,
  3969. vti.Vector, vti.Vector, ivti.Vector, vti.Mask,
  3970. vti.Log2SEW, vti.RegClass,
  3971. vti.RegClass, vti.RegClass>;
  3972. }
  3973. }
  3974. multiclass VPatBinaryV_VV_INT_EEW<string intrinsic, string instruction,
  3975. int eew, list<VTypeInfo> vtilist> {
  3976. foreach vti = vtilist in {
  3977. // emul = lmul * eew / sew
  3978. defvar vlmul = vti.LMul;
  3979. defvar octuple_lmul = vlmul.octuple;
  3980. defvar octuple_emul = !srl(!mul(octuple_lmul, eew), vti.Log2SEW);
  3981. if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then {
  3982. defvar emul_str = octuple_to_str<octuple_emul>.ret;
  3983. defvar ivti = !cast<VTypeInfo>("VI" # eew # emul_str);
  3984. defvar inst = instruction # "_VV_" # vti.LMul.MX # "_" # emul_str;
  3985. defm : VPatBinaryTA<intrinsic, inst,
  3986. vti.Vector, vti.Vector, ivti.Vector, vti.Mask,
  3987. vti.Log2SEW, vti.RegClass,
  3988. vti.RegClass, ivti.RegClass>;
  3989. }
  3990. }
  3991. }
  3992. multiclass VPatBinaryV_VX<string intrinsic, string instruction,
  3993. list<VTypeInfo> vtilist> {
  3994. foreach vti = vtilist in {
  3995. defvar kind = "V"#vti.ScalarSuffix;
  3996. defm : VPatBinaryTA<intrinsic, instruction#"_"#kind#"_"#vti.LMul.MX,
  3997. vti.Vector, vti.Vector, vti.Scalar, vti.Mask,
  3998. vti.Log2SEW, vti.RegClass,
  3999. vti.RegClass, vti.ScalarRegClass>;
  4000. }
  4001. }
  4002. multiclass VPatBinaryV_VX_INT<string intrinsic, string instruction,
  4003. list<VTypeInfo> vtilist> {
  4004. foreach vti = vtilist in
  4005. defm : VPatBinaryTA<intrinsic, instruction # "_VX_" # vti.LMul.MX,
  4006. vti.Vector, vti.Vector, XLenVT, vti.Mask,
  4007. vti.Log2SEW, vti.RegClass,
  4008. vti.RegClass, GPR>;
  4009. }
  4010. multiclass VPatBinaryV_VI<string intrinsic, string instruction,
  4011. list<VTypeInfo> vtilist, Operand imm_type> {
  4012. foreach vti = vtilist in
  4013. defm : VPatBinaryTA<intrinsic, instruction # "_VI_" # vti.LMul.MX,
  4014. vti.Vector, vti.Vector, XLenVT, vti.Mask,
  4015. vti.Log2SEW, vti.RegClass,
  4016. vti.RegClass, imm_type>;
  4017. }
  4018. multiclass VPatBinaryM_MM<string intrinsic, string instruction> {
  4019. foreach mti = AllMasks in
  4020. def : VPatBinaryM<intrinsic, instruction # "_MM_" # mti.LMul.MX,
  4021. mti.Mask, mti.Mask, mti.Mask,
  4022. mti.Log2SEW, VR, VR>;
  4023. }
  4024. multiclass VPatBinaryW_VV<string intrinsic, string instruction,
  4025. list<VTypeInfoToWide> vtilist> {
  4026. foreach VtiToWti = vtilist in {
  4027. defvar Vti = VtiToWti.Vti;
  4028. defvar Wti = VtiToWti.Wti;
  4029. defm : VPatBinaryTA<intrinsic, instruction # "_VV_" # Vti.LMul.MX,
  4030. Wti.Vector, Vti.Vector, Vti.Vector, Vti.Mask,
  4031. Vti.Log2SEW, Wti.RegClass,
  4032. Vti.RegClass, Vti.RegClass>;
  4033. }
  4034. }
  4035. multiclass VPatBinaryW_VX<string intrinsic, string instruction,
  4036. list<VTypeInfoToWide> vtilist> {
  4037. foreach VtiToWti = vtilist in {
  4038. defvar Vti = VtiToWti.Vti;
  4039. defvar Wti = VtiToWti.Wti;
  4040. defvar kind = "V"#Vti.ScalarSuffix;
  4041. defm : VPatBinaryTA<intrinsic, instruction#"_"#kind#"_"#Vti.LMul.MX,
  4042. Wti.Vector, Vti.Vector, Vti.Scalar, Vti.Mask,
  4043. Vti.Log2SEW, Wti.RegClass,
  4044. Vti.RegClass, Vti.ScalarRegClass>;
  4045. }
  4046. }
  4047. multiclass VPatBinaryW_WV<string intrinsic, string instruction,
  4048. list<VTypeInfoToWide> vtilist> {
  4049. foreach VtiToWti = vtilist in {
  4050. defvar Vti = VtiToWti.Vti;
  4051. defvar Wti = VtiToWti.Wti;
  4052. def : VPatTiedBinaryNoMask<intrinsic, instruction # "_WV_" # Vti.LMul.MX,
  4053. Wti.Vector, Vti.Vector,
  4054. Vti.Log2SEW, Wti.RegClass, Vti.RegClass>;
  4055. def : VPatBinaryNoMaskTU<intrinsic, instruction # "_WV_" # Vti.LMul.MX,
  4056. Wti.Vector, Wti.Vector, Vti.Vector, Vti.Log2SEW,
  4057. Wti.RegClass, Wti.RegClass, Vti.RegClass>;
  4058. let AddedComplexity = 1 in {
  4059. def : VPatTiedBinaryNoMaskTU<intrinsic, instruction # "_WV_" # Vti.LMul.MX,
  4060. Wti.Vector, Vti.Vector,
  4061. Vti.Log2SEW, Wti.RegClass, Vti.RegClass>;
  4062. def : VPatTiedBinaryMask<intrinsic, instruction # "_WV_" # Vti.LMul.MX,
  4063. Wti.Vector, Vti.Vector, Vti.Mask,
  4064. Vti.Log2SEW, Wti.RegClass, Vti.RegClass>;
  4065. }
  4066. def : VPatBinaryMaskTA<intrinsic, instruction # "_WV_" # Vti.LMul.MX,
  4067. Wti.Vector, Wti.Vector, Vti.Vector, Vti.Mask,
  4068. Vti.Log2SEW, Wti.RegClass,
  4069. Wti.RegClass, Vti.RegClass>;
  4070. }
  4071. }
  4072. multiclass VPatBinaryW_WX<string intrinsic, string instruction,
  4073. list<VTypeInfoToWide> vtilist> {
  4074. foreach VtiToWti = vtilist in {
  4075. defvar Vti = VtiToWti.Vti;
  4076. defvar Wti = VtiToWti.Wti;
  4077. defvar kind = "W"#Vti.ScalarSuffix;
  4078. defm : VPatBinaryTA<intrinsic, instruction#"_"#kind#"_"#Vti.LMul.MX,
  4079. Wti.Vector, Wti.Vector, Vti.Scalar, Vti.Mask,
  4080. Vti.Log2SEW, Wti.RegClass,
  4081. Wti.RegClass, Vti.ScalarRegClass>;
  4082. }
  4083. }
  4084. multiclass VPatBinaryV_WV<string intrinsic, string instruction,
  4085. list<VTypeInfoToWide> vtilist> {
  4086. foreach VtiToWti = vtilist in {
  4087. defvar Vti = VtiToWti.Vti;
  4088. defvar Wti = VtiToWti.Wti;
  4089. defm : VPatBinaryTA<intrinsic, instruction # "_WV_" # Vti.LMul.MX,
  4090. Vti.Vector, Wti.Vector, Vti.Vector, Vti.Mask,
  4091. Vti.Log2SEW, Vti.RegClass,
  4092. Wti.RegClass, Vti.RegClass>;
  4093. }
  4094. }
  4095. multiclass VPatBinaryV_WX<string intrinsic, string instruction,
  4096. list<VTypeInfoToWide> vtilist> {
  4097. foreach VtiToWti = vtilist in {
  4098. defvar Vti = VtiToWti.Vti;
  4099. defvar Wti = VtiToWti.Wti;
  4100. defvar kind = "W"#Vti.ScalarSuffix;
  4101. defm : VPatBinaryTA<intrinsic, instruction#"_"#kind#"_"#Vti.LMul.MX,
  4102. Vti.Vector, Wti.Vector, Vti.Scalar, Vti.Mask,
  4103. Vti.Log2SEW, Vti.RegClass,
  4104. Wti.RegClass, Vti.ScalarRegClass>;
  4105. }
  4106. }
  4107. multiclass VPatBinaryV_WI<string intrinsic, string instruction,
  4108. list<VTypeInfoToWide> vtilist> {
  4109. foreach VtiToWti = vtilist in {
  4110. defvar Vti = VtiToWti.Vti;
  4111. defvar Wti = VtiToWti.Wti;
  4112. defm : VPatBinaryTA<intrinsic, instruction # "_WI_" # Vti.LMul.MX,
  4113. Vti.Vector, Wti.Vector, XLenVT, Vti.Mask,
  4114. Vti.Log2SEW, Vti.RegClass,
  4115. Wti.RegClass, uimm5>;
  4116. }
  4117. }
  4118. multiclass VPatBinaryV_VM<string intrinsic, string instruction,
  4119. bit CarryOut = 0,
  4120. list<VTypeInfo> vtilist = AllIntegerVectors> {
  4121. foreach vti = vtilist in
  4122. defm : VPatBinaryCarryIn<intrinsic, instruction, "VVM",
  4123. !if(CarryOut, vti.Mask, vti.Vector),
  4124. vti.Vector, vti.Vector, vti.Mask,
  4125. vti.Log2SEW, vti.LMul,
  4126. vti.RegClass, vti.RegClass>;
  4127. }
  4128. multiclass VPatBinaryV_XM<string intrinsic, string instruction,
  4129. bit CarryOut = 0,
  4130. list<VTypeInfo> vtilist = AllIntegerVectors> {
  4131. foreach vti = vtilist in
  4132. defm : VPatBinaryCarryIn<intrinsic, instruction,
  4133. "V"#vti.ScalarSuffix#"M",
  4134. !if(CarryOut, vti.Mask, vti.Vector),
  4135. vti.Vector, vti.Scalar, vti.Mask,
  4136. vti.Log2SEW, vti.LMul,
  4137. vti.RegClass, vti.ScalarRegClass>;
  4138. }
  4139. multiclass VPatBinaryV_IM<string intrinsic, string instruction,
  4140. bit CarryOut = 0> {
  4141. foreach vti = AllIntegerVectors in
  4142. defm : VPatBinaryCarryIn<intrinsic, instruction, "VIM",
  4143. !if(CarryOut, vti.Mask, vti.Vector),
  4144. vti.Vector, XLenVT, vti.Mask,
  4145. vti.Log2SEW, vti.LMul,
  4146. vti.RegClass, simm5>;
  4147. }
  4148. multiclass VPatBinaryV_VM_TAIL<string intrinsic, string instruction,
  4149. bit CarryOut = 0,
  4150. list<VTypeInfo> vtilist = AllIntegerVectors> {
  4151. foreach vti = vtilist in
  4152. defm : VPatBinaryCarryInTAIL<intrinsic, instruction, "VVM",
  4153. !if(CarryOut, vti.Mask, vti.Vector),
  4154. vti.Vector, vti.Vector, vti.Mask,
  4155. vti.Log2SEW, vti.LMul, vti.RegClass,
  4156. vti.RegClass, vti.RegClass>;
  4157. }
  4158. multiclass VPatBinaryV_XM_TAIL<string intrinsic, string instruction,
  4159. bit CarryOut = 0,
  4160. list<VTypeInfo> vtilist = AllIntegerVectors> {
  4161. foreach vti = vtilist in
  4162. defm : VPatBinaryCarryInTAIL<intrinsic, instruction,
  4163. "V"#vti.ScalarSuffix#"M",
  4164. !if(CarryOut, vti.Mask, vti.Vector),
  4165. vti.Vector, vti.Scalar, vti.Mask,
  4166. vti.Log2SEW, vti.LMul, vti.RegClass,
  4167. vti.RegClass, vti.ScalarRegClass>;
  4168. }
  4169. multiclass VPatBinaryV_IM_TAIL<string intrinsic, string instruction,
  4170. bit CarryOut = 0> {
  4171. foreach vti = AllIntegerVectors in
  4172. defm : VPatBinaryCarryInTAIL<intrinsic, instruction, "VIM",
  4173. !if(CarryOut, vti.Mask, vti.Vector),
  4174. vti.Vector, XLenVT, vti.Mask,
  4175. vti.Log2SEW, vti.LMul,
  4176. vti.RegClass, vti.RegClass, simm5>;
  4177. }
  4178. multiclass VPatBinaryV_V<string intrinsic, string instruction> {
  4179. foreach vti = AllIntegerVectors in
  4180. defm : VPatBinaryMaskOut<intrinsic, instruction, "VV",
  4181. vti.Mask, vti.Vector, vti.Vector,
  4182. vti.Log2SEW, vti.LMul,
  4183. vti.RegClass, vti.RegClass>;
  4184. }
  4185. multiclass VPatBinaryV_X<string intrinsic, string instruction> {
  4186. foreach vti = AllIntegerVectors in
  4187. defm : VPatBinaryMaskOut<intrinsic, instruction, "VX",
  4188. vti.Mask, vti.Vector, XLenVT,
  4189. vti.Log2SEW, vti.LMul,
  4190. vti.RegClass, GPR>;
  4191. }
  4192. multiclass VPatBinaryV_I<string intrinsic, string instruction> {
  4193. foreach vti = AllIntegerVectors in
  4194. defm : VPatBinaryMaskOut<intrinsic, instruction, "VI",
  4195. vti.Mask, vti.Vector, XLenVT,
  4196. vti.Log2SEW, vti.LMul,
  4197. vti.RegClass, simm5>;
  4198. }
  4199. multiclass VPatBinaryM_VV<string intrinsic, string instruction,
  4200. list<VTypeInfo> vtilist> {
  4201. foreach vti = vtilist in
  4202. defm : VPatBinaryM<intrinsic, instruction # "_VV_" # vti.LMul.MX,
  4203. vti.Mask, vti.Vector, vti.Vector, vti.Mask,
  4204. vti.Log2SEW, VR,
  4205. vti.RegClass, vti.RegClass>;
  4206. }
  4207. multiclass VPatBinarySwappedM_VV<string intrinsic, string instruction,
  4208. list<VTypeInfo> vtilist> {
  4209. foreach vti = vtilist in
  4210. defm : VPatBinarySwapped<intrinsic, instruction # "_VV_" # vti.LMul.MX,
  4211. vti.Mask, vti.Vector, vti.Vector, vti.Mask,
  4212. vti.Log2SEW, VR,
  4213. vti.RegClass, vti.RegClass>;
  4214. }
  4215. multiclass VPatBinaryM_VX<string intrinsic, string instruction,
  4216. list<VTypeInfo> vtilist> {
  4217. foreach vti = vtilist in {
  4218. defvar kind = "V"#vti.ScalarSuffix;
  4219. defm : VPatBinaryM<intrinsic, instruction#"_"#kind#"_"#vti.LMul.MX,
  4220. vti.Mask, vti.Vector, vti.Scalar, vti.Mask,
  4221. vti.Log2SEW, VR,
  4222. vti.RegClass, vti.ScalarRegClass>;
  4223. }
  4224. }
  4225. multiclass VPatBinaryM_VI<string intrinsic, string instruction,
  4226. list<VTypeInfo> vtilist> {
  4227. foreach vti = vtilist in
  4228. defm : VPatBinaryM<intrinsic, instruction # "_VI_" # vti.LMul.MX,
  4229. vti.Mask, vti.Vector, XLenVT, vti.Mask,
  4230. vti.Log2SEW, VR,
  4231. vti.RegClass, simm5>;
  4232. }
  4233. multiclass VPatBinaryV_VV_VX_VI<string intrinsic, string instruction,
  4234. list<VTypeInfo> vtilist, Operand ImmType = simm5>
  4235. : VPatBinaryV_VV<intrinsic, instruction, vtilist>,
  4236. VPatBinaryV_VX<intrinsic, instruction, vtilist>,
  4237. VPatBinaryV_VI<intrinsic, instruction, vtilist, ImmType>;
  4238. multiclass VPatBinaryV_VV_VX<string intrinsic, string instruction,
  4239. list<VTypeInfo> vtilist>
  4240. : VPatBinaryV_VV<intrinsic, instruction, vtilist>,
  4241. VPatBinaryV_VX<intrinsic, instruction, vtilist>;
  4242. multiclass VPatBinaryV_VX_VI<string intrinsic, string instruction,
  4243. list<VTypeInfo> vtilist>
  4244. : VPatBinaryV_VX<intrinsic, instruction, vtilist>,
  4245. VPatBinaryV_VI<intrinsic, instruction, vtilist, simm5>;
  4246. multiclass VPatBinaryW_VV_VX<string intrinsic, string instruction,
  4247. list<VTypeInfoToWide> vtilist>
  4248. : VPatBinaryW_VV<intrinsic, instruction, vtilist>,
  4249. VPatBinaryW_VX<intrinsic, instruction, vtilist>;
  4250. multiclass VPatBinaryW_WV_WX<string intrinsic, string instruction,
  4251. list<VTypeInfoToWide> vtilist>
  4252. : VPatBinaryW_WV<intrinsic, instruction, vtilist>,
  4253. VPatBinaryW_WX<intrinsic, instruction, vtilist>;
  4254. multiclass VPatBinaryV_WV_WX_WI<string intrinsic, string instruction,
  4255. list<VTypeInfoToWide> vtilist>
  4256. : VPatBinaryV_WV<intrinsic, instruction, vtilist>,
  4257. VPatBinaryV_WX<intrinsic, instruction, vtilist>,
  4258. VPatBinaryV_WI<intrinsic, instruction, vtilist>;
  4259. multiclass VPatBinaryV_VM_XM_IM<string intrinsic, string instruction>
  4260. : VPatBinaryV_VM_TAIL<intrinsic, instruction>,
  4261. VPatBinaryV_XM_TAIL<intrinsic, instruction>,
  4262. VPatBinaryV_IM_TAIL<intrinsic, instruction>;
  4263. multiclass VPatBinaryM_VM_XM_IM<string intrinsic, string instruction>
  4264. : VPatBinaryV_VM<intrinsic, instruction, /*CarryOut=*/1>,
  4265. VPatBinaryV_XM<intrinsic, instruction, /*CarryOut=*/1>,
  4266. VPatBinaryV_IM<intrinsic, instruction, /*CarryOut=*/1>;
  4267. multiclass VPatBinaryM_V_X_I<string intrinsic, string instruction>
  4268. : VPatBinaryV_V<intrinsic, instruction>,
  4269. VPatBinaryV_X<intrinsic, instruction>,
  4270. VPatBinaryV_I<intrinsic, instruction>;
  4271. multiclass VPatBinaryV_VM_XM<string intrinsic, string instruction>
  4272. : VPatBinaryV_VM_TAIL<intrinsic, instruction>,
  4273. VPatBinaryV_XM_TAIL<intrinsic, instruction>;
  4274. multiclass VPatBinaryM_VM_XM<string intrinsic, string instruction>
  4275. : VPatBinaryV_VM<intrinsic, instruction, /*CarryOut=*/1>,
  4276. VPatBinaryV_XM<intrinsic, instruction, /*CarryOut=*/1>;
  4277. multiclass VPatBinaryM_V_X<string intrinsic, string instruction>
  4278. : VPatBinaryV_V<intrinsic, instruction>,
  4279. VPatBinaryV_X<intrinsic, instruction>;
  4280. multiclass VPatTernary<string intrinsic,
  4281. string inst,
  4282. string kind,
  4283. ValueType result_type,
  4284. ValueType op1_type,
  4285. ValueType op2_type,
  4286. ValueType mask_type,
  4287. int sew,
  4288. LMULInfo vlmul,
  4289. VReg result_reg_class,
  4290. RegisterClass op1_reg_class,
  4291. DAGOperand op2_kind> {
  4292. def : VPatTernaryNoMask<intrinsic, inst, kind, result_type, op1_type, op2_type,
  4293. sew, vlmul, result_reg_class, op1_reg_class,
  4294. op2_kind>;
  4295. def : VPatTernaryMask<intrinsic, inst, kind, result_type, op1_type, op2_type,
  4296. mask_type, sew, vlmul, result_reg_class, op1_reg_class,
  4297. op2_kind>;
  4298. }
  4299. multiclass VPatTernaryNoMaskNoPolicy<string intrinsic,
  4300. string inst,
  4301. string kind,
  4302. ValueType result_type,
  4303. ValueType op1_type,
  4304. ValueType op2_type,
  4305. ValueType mask_type,
  4306. int sew,
  4307. LMULInfo vlmul,
  4308. VReg result_reg_class,
  4309. RegisterClass op1_reg_class,
  4310. DAGOperand op2_kind> {
  4311. def : VPatTernaryNoMask<intrinsic, inst, kind, result_type, op1_type, op2_type,
  4312. sew, vlmul, result_reg_class, op1_reg_class,
  4313. op2_kind>;
  4314. def : VPatTernaryMaskPolicy<intrinsic, inst, kind, result_type, op1_type, op2_type,
  4315. mask_type, sew, vlmul, result_reg_class, op1_reg_class,
  4316. op2_kind>;
  4317. }
  4318. multiclass VPatTernaryWithPolicy<string intrinsic,
  4319. string inst,
  4320. string kind,
  4321. ValueType result_type,
  4322. ValueType op1_type,
  4323. ValueType op2_type,
  4324. ValueType mask_type,
  4325. int sew,
  4326. LMULInfo vlmul,
  4327. VReg result_reg_class,
  4328. RegisterClass op1_reg_class,
  4329. DAGOperand op2_kind> {
  4330. def : VPatTernaryNoMaskWithPolicy<intrinsic, inst, kind, result_type, op1_type,
  4331. op2_type, sew, vlmul, result_reg_class,
  4332. op1_reg_class, op2_kind>;
  4333. def : VPatTernaryMaskPolicy<intrinsic, inst, kind, result_type, op1_type, op2_type,
  4334. mask_type, sew, vlmul, result_reg_class, op1_reg_class,
  4335. op2_kind>;
  4336. }
  4337. multiclass VPatTernaryV_VV_AAXA<string intrinsic, string instruction,
  4338. list<VTypeInfo> vtilist> {
  4339. foreach vti = vtilist in
  4340. defm : VPatTernaryWithPolicy<intrinsic, instruction, "VV",
  4341. vti.Vector, vti.Vector, vti.Vector, vti.Mask,
  4342. vti.Log2SEW, vti.LMul, vti.RegClass,
  4343. vti.RegClass, vti.RegClass>;
  4344. }
  4345. multiclass VPatTernaryV_VX<string intrinsic, string instruction,
  4346. list<VTypeInfo> vtilist> {
  4347. foreach vti = vtilist in
  4348. defm : VPatTernaryWithPolicy<intrinsic, instruction, "VX",
  4349. vti.Vector, vti.Vector, XLenVT, vti.Mask,
  4350. vti.Log2SEW, vti.LMul, vti.RegClass,
  4351. vti.RegClass, GPR>;
  4352. }
  4353. multiclass VPatTernaryV_VX_AAXA<string intrinsic, string instruction,
  4354. list<VTypeInfo> vtilist> {
  4355. foreach vti = vtilist in
  4356. defm : VPatTernaryWithPolicy<intrinsic, instruction,
  4357. "V"#vti.ScalarSuffix,
  4358. vti.Vector, vti.Scalar, vti.Vector, vti.Mask,
  4359. vti.Log2SEW, vti.LMul, vti.RegClass,
  4360. vti.ScalarRegClass, vti.RegClass>;
  4361. }
  4362. multiclass VPatTernaryV_VI<string intrinsic, string instruction,
  4363. list<VTypeInfo> vtilist, Operand Imm_type> {
  4364. foreach vti = vtilist in
  4365. defm : VPatTernaryWithPolicy<intrinsic, instruction, "VI",
  4366. vti.Vector, vti.Vector, XLenVT, vti.Mask,
  4367. vti.Log2SEW, vti.LMul, vti.RegClass,
  4368. vti.RegClass, Imm_type>;
  4369. }
  4370. multiclass VPatTernaryW_VV<string intrinsic, string instruction,
  4371. list<VTypeInfoToWide> vtilist> {
  4372. foreach vtiToWti = vtilist in {
  4373. defvar vti = vtiToWti.Vti;
  4374. defvar wti = vtiToWti.Wti;
  4375. defm : VPatTernaryWithPolicy<intrinsic, instruction, "VV",
  4376. wti.Vector, vti.Vector, vti.Vector,
  4377. vti.Mask, vti.Log2SEW, vti.LMul,
  4378. wti.RegClass, vti.RegClass, vti.RegClass>;
  4379. }
  4380. }
  4381. multiclass VPatTernaryW_VX<string intrinsic, string instruction,
  4382. list<VTypeInfoToWide> vtilist> {
  4383. foreach vtiToWti = vtilist in {
  4384. defvar vti = vtiToWti.Vti;
  4385. defvar wti = vtiToWti.Wti;
  4386. defm : VPatTernaryWithPolicy<intrinsic, instruction,
  4387. "V"#vti.ScalarSuffix,
  4388. wti.Vector, vti.Scalar, vti.Vector,
  4389. vti.Mask, vti.Log2SEW, vti.LMul,
  4390. wti.RegClass, vti.ScalarRegClass, vti.RegClass>;
  4391. }
  4392. }
  4393. multiclass VPatTernaryV_VV_VX_AAXA<string intrinsic, string instruction,
  4394. list<VTypeInfo> vtilist>
  4395. : VPatTernaryV_VV_AAXA<intrinsic, instruction, vtilist>,
  4396. VPatTernaryV_VX_AAXA<intrinsic, instruction, vtilist>;
  4397. multiclass VPatTernaryV_VX_VI<string intrinsic, string instruction,
  4398. list<VTypeInfo> vtilist, Operand Imm_type = simm5>
  4399. : VPatTernaryV_VX<intrinsic, instruction, vtilist>,
  4400. VPatTernaryV_VI<intrinsic, instruction, vtilist, Imm_type>;
  4401. multiclass VPatBinaryM_VV_VX_VI<string intrinsic, string instruction,
  4402. list<VTypeInfo> vtilist>
  4403. : VPatBinaryM_VV<intrinsic, instruction, vtilist>,
  4404. VPatBinaryM_VX<intrinsic, instruction, vtilist>,
  4405. VPatBinaryM_VI<intrinsic, instruction, vtilist>;
  4406. multiclass VPatTernaryW_VV_VX<string intrinsic, string instruction,
  4407. list<VTypeInfoToWide> vtilist>
  4408. : VPatTernaryW_VV<intrinsic, instruction, vtilist>,
  4409. VPatTernaryW_VX<intrinsic, instruction, vtilist>;
  4410. multiclass VPatBinaryM_VV_VX<string intrinsic, string instruction,
  4411. list<VTypeInfo> vtilist>
  4412. : VPatBinaryM_VV<intrinsic, instruction, vtilist>,
  4413. VPatBinaryM_VX<intrinsic, instruction, vtilist>;
  4414. multiclass VPatBinaryM_VX_VI<string intrinsic, string instruction,
  4415. list<VTypeInfo> vtilist>
  4416. : VPatBinaryM_VX<intrinsic, instruction, vtilist>,
  4417. VPatBinaryM_VI<intrinsic, instruction, vtilist>;
  4418. multiclass VPatBinaryV_VV_VX_VI_INT<string intrinsic, string instruction,
  4419. list<VTypeInfo> vtilist, Operand ImmType = simm5>
  4420. : VPatBinaryV_VV_INT<intrinsic#"_vv", instruction, vtilist>,
  4421. VPatBinaryV_VX_INT<intrinsic#"_vx", instruction, vtilist>,
  4422. VPatBinaryV_VI<intrinsic#"_vx", instruction, vtilist, ImmType>;
  4423. multiclass VPatReductionV_VS<string intrinsic, string instruction, bit IsFloat = 0> {
  4424. foreach vti = !if(IsFloat, NoGroupFloatVectors, NoGroupIntegerVectors) in
  4425. {
  4426. defvar vectorM1 = !cast<VTypeInfo>(!if(IsFloat, "VF", "VI") # vti.SEW # "M1");
  4427. defm : VPatTernary<intrinsic, instruction, "VS",
  4428. vectorM1.Vector, vti.Vector,
  4429. vectorM1.Vector, vti.Mask,
  4430. vti.Log2SEW, vti.LMul,
  4431. VR, vti.RegClass, VR>;
  4432. }
  4433. foreach gvti = !if(IsFloat, GroupFloatVectors, GroupIntegerVectors) in
  4434. {
  4435. defm : VPatTernary<intrinsic, instruction, "VS",
  4436. gvti.VectorM1, gvti.Vector,
  4437. gvti.VectorM1, gvti.Mask,
  4438. gvti.Log2SEW, gvti.LMul,
  4439. VR, gvti.RegClass, VR>;
  4440. }
  4441. }
  4442. multiclass VPatReductionW_VS<string intrinsic, string instruction, bit IsFloat = 0> {
  4443. foreach vti = !if(IsFloat, AllFloatVectors, AllIntegerVectors) in
  4444. {
  4445. defvar wtiSEW = !mul(vti.SEW, 2);
  4446. if !le(wtiSEW, 64) then {
  4447. defvar wtiM1 = !cast<VTypeInfo>(!if(IsFloat, "VF", "VI") # wtiSEW # "M1");
  4448. defm : VPatTernary<intrinsic, instruction, "VS",
  4449. wtiM1.Vector, vti.Vector,
  4450. wtiM1.Vector, vti.Mask,
  4451. vti.Log2SEW, vti.LMul,
  4452. wtiM1.RegClass, vti.RegClass,
  4453. wtiM1.RegClass>;
  4454. }
  4455. }
  4456. }
  4457. multiclass VPatConversionVI_VF<string intrinsic,
  4458. string instruction>
  4459. {
  4460. foreach fvti = AllFloatVectors in
  4461. {
  4462. defvar ivti = GetIntVTypeInfo<fvti>.Vti;
  4463. defm : VPatConversionTA<intrinsic, instruction, "V",
  4464. ivti.Vector, fvti.Vector, ivti.Mask, fvti.Log2SEW,
  4465. fvti.LMul, ivti.RegClass, fvti.RegClass>;
  4466. }
  4467. }
  4468. multiclass VPatConversionVF_VI<string intrinsic,
  4469. string instruction>
  4470. {
  4471. foreach fvti = AllFloatVectors in
  4472. {
  4473. defvar ivti = GetIntVTypeInfo<fvti>.Vti;
  4474. defm : VPatConversionTA<intrinsic, instruction, "V",
  4475. fvti.Vector, ivti.Vector, fvti.Mask, ivti.Log2SEW,
  4476. ivti.LMul, fvti.RegClass, ivti.RegClass>;
  4477. }
  4478. }
  4479. multiclass VPatConversionWI_VF<string intrinsic, string instruction> {
  4480. foreach fvtiToFWti = AllWidenableFloatVectors in
  4481. {
  4482. defvar fvti = fvtiToFWti.Vti;
  4483. defvar iwti = GetIntVTypeInfo<fvtiToFWti.Wti>.Vti;
  4484. defm : VPatConversionTA<intrinsic, instruction, "V",
  4485. iwti.Vector, fvti.Vector, iwti.Mask, fvti.Log2SEW,
  4486. fvti.LMul, iwti.RegClass, fvti.RegClass>;
  4487. }
  4488. }
  4489. multiclass VPatConversionWF_VI<string intrinsic, string instruction> {
  4490. foreach vtiToWti = AllWidenableIntToFloatVectors in
  4491. {
  4492. defvar vti = vtiToWti.Vti;
  4493. defvar fwti = vtiToWti.Wti;
  4494. defm : VPatConversionTA<intrinsic, instruction, "V",
  4495. fwti.Vector, vti.Vector, fwti.Mask, vti.Log2SEW,
  4496. vti.LMul, fwti.RegClass, vti.RegClass>;
  4497. }
  4498. }
  4499. multiclass VPatConversionWF_VF <string intrinsic, string instruction> {
  4500. foreach fvtiToFWti = AllWidenableFloatVectors in
  4501. {
  4502. defvar fvti = fvtiToFWti.Vti;
  4503. defvar fwti = fvtiToFWti.Wti;
  4504. defm : VPatConversionTA<intrinsic, instruction, "V",
  4505. fwti.Vector, fvti.Vector, fwti.Mask, fvti.Log2SEW,
  4506. fvti.LMul, fwti.RegClass, fvti.RegClass>;
  4507. }
  4508. }
  4509. multiclass VPatConversionVI_WF <string intrinsic, string instruction> {
  4510. foreach vtiToWti = AllWidenableIntToFloatVectors in
  4511. {
  4512. defvar vti = vtiToWti.Vti;
  4513. defvar fwti = vtiToWti.Wti;
  4514. defm : VPatConversionTA<intrinsic, instruction, "W",
  4515. vti.Vector, fwti.Vector, vti.Mask, vti.Log2SEW,
  4516. vti.LMul, vti.RegClass, fwti.RegClass>;
  4517. }
  4518. }
  4519. multiclass VPatConversionVF_WI <string intrinsic, string instruction> {
  4520. foreach fvtiToFWti = AllWidenableFloatVectors in
  4521. {
  4522. defvar fvti = fvtiToFWti.Vti;
  4523. defvar iwti = GetIntVTypeInfo<fvtiToFWti.Wti>.Vti;
  4524. defm : VPatConversionTA<intrinsic, instruction, "W",
  4525. fvti.Vector, iwti.Vector, fvti.Mask, fvti.Log2SEW,
  4526. fvti.LMul, fvti.RegClass, iwti.RegClass>;
  4527. }
  4528. }
  4529. multiclass VPatConversionVF_WF <string intrinsic, string instruction> {
  4530. foreach fvtiToFWti = AllWidenableFloatVectors in
  4531. {
  4532. defvar fvti = fvtiToFWti.Vti;
  4533. defvar fwti = fvtiToFWti.Wti;
  4534. defm : VPatConversionTA<intrinsic, instruction, "W",
  4535. fvti.Vector, fwti.Vector, fvti.Mask, fvti.Log2SEW,
  4536. fvti.LMul, fvti.RegClass, fwti.RegClass>;
  4537. }
  4538. }
  4539. multiclass VPatCompare_VI<string intrinsic, string inst,
  4540. ImmLeaf ImmType> {
  4541. foreach vti = AllIntegerVectors in {
  4542. defvar Intr = !cast<Intrinsic>(intrinsic);
  4543. defvar Pseudo = !cast<Instruction>(inst#"_VI_"#vti.LMul.MX);
  4544. def : Pat<(vti.Mask (Intr (vti.Vector vti.RegClass:$rs1),
  4545. (vti.Scalar ImmType:$rs2),
  4546. VLOpFrag)),
  4547. (Pseudo vti.RegClass:$rs1, (DecImm ImmType:$rs2),
  4548. GPR:$vl, vti.Log2SEW)>;
  4549. defvar IntrMask = !cast<Intrinsic>(intrinsic # "_mask");
  4550. defvar PseudoMask = !cast<Instruction>(inst#"_VI_"#vti.LMul.MX#"_MASK");
  4551. def : Pat<(vti.Mask (IntrMask (vti.Mask VR:$merge),
  4552. (vti.Vector vti.RegClass:$rs1),
  4553. (vti.Scalar ImmType:$rs2),
  4554. (vti.Mask V0),
  4555. VLOpFrag)),
  4556. (PseudoMask VR:$merge, vti.RegClass:$rs1, (DecImm ImmType:$rs2),
  4557. (vti.Mask V0), GPR:$vl, vti.Log2SEW)>;
  4558. }
  4559. }
  4560. //===----------------------------------------------------------------------===//
  4561. // Pseudo instructions
  4562. //===----------------------------------------------------------------------===//
  4563. let Predicates = [HasVInstructions] in {
  4564. //===----------------------------------------------------------------------===//
  4565. // Pseudo Instructions for CodeGen
  4566. //===----------------------------------------------------------------------===//
  4567. let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 1 in {
  4568. def PseudoReadVLENB : Pseudo<(outs GPR:$rd), (ins),
  4569. [(set GPR:$rd, (riscv_read_vlenb))]>,
  4570. Sched<[WriteRdVLENB]>;
  4571. }
  4572. let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 1,
  4573. Uses = [VL] in
  4574. def PseudoReadVL : Pseudo<(outs GPR:$rd), (ins), []>;
  4575. foreach lmul = MxList in {
  4576. foreach nf = NFSet<lmul>.L in {
  4577. defvar vreg = SegRegClass<lmul, nf>.RC;
  4578. let hasSideEffects = 0, mayLoad = 0, mayStore = 1, isCodeGenOnly = 1,
  4579. Size = !mul(4, !sub(!mul(nf, 2), 1)) in {
  4580. def "PseudoVSPILL" # nf # "_" # lmul.MX :
  4581. Pseudo<(outs), (ins vreg:$rs1, GPR:$rs2), []>;
  4582. }
  4583. let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 1,
  4584. Size = !mul(4, !sub(!mul(nf, 2), 1)) in {
  4585. def "PseudoVRELOAD" # nf # "_" # lmul.MX :
  4586. Pseudo<(outs vreg:$rs1), (ins GPR:$rs2), []>;
  4587. }
  4588. }
  4589. }
  4590. //===----------------------------------------------------------------------===//
  4591. // 6. Configuration-Setting Instructions
  4592. //===----------------------------------------------------------------------===//
  4593. // Pseudos.
  4594. let hasSideEffects = 1, mayLoad = 0, mayStore = 0, Defs = [VL, VTYPE] in {
  4595. // Due to rs1=X0 having special meaning, we need a GPRNoX0 register class for
  4596. // the when we aren't using one of the special X0 encodings. Otherwise it could
  4597. // be accidentally be made X0 by MachineIR optimizations. To satisfy the
  4598. // verifier, we also need a GPRX0 instruction for the special encodings.
  4599. def PseudoVSETVLI : Pseudo<(outs GPR:$rd), (ins GPRNoX0:$rs1, VTypeIOp11:$vtypei), []>,
  4600. Sched<[WriteVSETVLI, ReadVSETVLI]>;
  4601. def PseudoVSETVLIX0 : Pseudo<(outs GPR:$rd), (ins GPRX0:$rs1, VTypeIOp11:$vtypei), []>,
  4602. Sched<[WriteVSETVLI, ReadVSETVLI]>;
  4603. def PseudoVSETIVLI : Pseudo<(outs GPR:$rd), (ins uimm5:$rs1, VTypeIOp10:$vtypei), []>,
  4604. Sched<[WriteVSETIVLI]>;
  4605. }
  4606. //===----------------------------------------------------------------------===//
  4607. // 7. Vector Loads and Stores
  4608. //===----------------------------------------------------------------------===//
  4609. //===----------------------------------------------------------------------===//
  4610. // 7.4 Vector Unit-Stride Instructions
  4611. //===----------------------------------------------------------------------===//
  4612. // Pseudos Unit-Stride Loads and Stores
  4613. defm PseudoVL : VPseudoUSLoad;
  4614. defm PseudoVS : VPseudoUSStore;
  4615. defm PseudoVLM : VPseudoLoadMask;
  4616. defm PseudoVSM : VPseudoStoreMask;
  4617. //===----------------------------------------------------------------------===//
  4618. // 7.5 Vector Strided Instructions
  4619. //===----------------------------------------------------------------------===//
  4620. // Vector Strided Loads and Stores
  4621. defm PseudoVLS : VPseudoSLoad;
  4622. defm PseudoVSS : VPseudoSStore;
  4623. //===----------------------------------------------------------------------===//
  4624. // 7.6 Vector Indexed Instructions
  4625. //===----------------------------------------------------------------------===//
  4626. // Vector Indexed Loads and Stores
  4627. defm PseudoVLUX : VPseudoILoad</*Ordered=*/false>;
  4628. defm PseudoVLOX : VPseudoILoad</*Ordered=*/true>;
  4629. defm PseudoVSOX : VPseudoIStore</*Ordered=*/true>;
  4630. defm PseudoVSUX : VPseudoIStore</*Ordered=*/false>;
  4631. //===----------------------------------------------------------------------===//
  4632. // 7.7. Unit-stride Fault-Only-First Loads
  4633. //===----------------------------------------------------------------------===//
  4634. // vleff may update VL register
  4635. let hasSideEffects = 1, Defs = [VL] in
  4636. defm PseudoVL : VPseudoFFLoad;
  4637. //===----------------------------------------------------------------------===//
  4638. // 7.8. Vector Load/Store Segment Instructions
  4639. //===----------------------------------------------------------------------===//
  4640. defm PseudoVLSEG : VPseudoUSSegLoad;
  4641. defm PseudoVLSSEG : VPseudoSSegLoad;
  4642. defm PseudoVLOXSEG : VPseudoISegLoad</*Ordered=*/true>;
  4643. defm PseudoVLUXSEG : VPseudoISegLoad</*Ordered=*/false>;
  4644. defm PseudoVSSEG : VPseudoUSSegStore;
  4645. defm PseudoVSSSEG : VPseudoSSegStore;
  4646. defm PseudoVSOXSEG : VPseudoISegStore</*Ordered=*/true>;
  4647. defm PseudoVSUXSEG : VPseudoISegStore</*Ordered=*/false>;
  4648. // vlseg<nf>e<eew>ff.v may update VL register
  4649. let hasSideEffects = 1, Defs = [VL] in {
  4650. defm PseudoVLSEG : VPseudoUSSegLoadFF;
  4651. }
  4652. //===----------------------------------------------------------------------===//
  4653. // 11. Vector Integer Arithmetic Instructions
  4654. //===----------------------------------------------------------------------===//
  4655. //===----------------------------------------------------------------------===//
  4656. // 11.1. Vector Single-Width Integer Add and Subtract
  4657. //===----------------------------------------------------------------------===//
  4658. defm PseudoVADD : VPseudoVALU_VV_VX_VI;
  4659. defm PseudoVSUB : VPseudoVALU_VV_VX;
  4660. defm PseudoVRSUB : VPseudoVALU_VX_VI;
  4661. foreach vti = AllIntegerVectors in {
  4662. // Match vrsub with 2 vector operands to vsub.vv by swapping operands. This
  4663. // Occurs when legalizing vrsub.vx intrinsics for i64 on RV32 since we need
  4664. // to use a more complex splat sequence. Add the pattern for all VTs for
  4665. // consistency.
  4666. def : Pat<(vti.Vector (int_riscv_vrsub (vti.Vector (undef)),
  4667. (vti.Vector vti.RegClass:$rs2),
  4668. (vti.Vector vti.RegClass:$rs1),
  4669. VLOpFrag)),
  4670. (!cast<Instruction>("PseudoVSUB_VV_"#vti.LMul.MX) vti.RegClass:$rs1,
  4671. vti.RegClass:$rs2,
  4672. GPR:$vl,
  4673. vti.Log2SEW)>;
  4674. def : Pat<(vti.Vector (int_riscv_vrsub (vti.Vector vti.RegClass:$merge),
  4675. (vti.Vector vti.RegClass:$rs2),
  4676. (vti.Vector vti.RegClass:$rs1),
  4677. VLOpFrag)),
  4678. (!cast<Instruction>("PseudoVSUB_VV_"#vti.LMul.MX#"_TU")
  4679. vti.RegClass:$merge,
  4680. vti.RegClass:$rs1,
  4681. vti.RegClass:$rs2,
  4682. GPR:$vl,
  4683. vti.Log2SEW)>;
  4684. def : Pat<(vti.Vector (int_riscv_vrsub_mask (vti.Vector vti.RegClass:$merge),
  4685. (vti.Vector vti.RegClass:$rs2),
  4686. (vti.Vector vti.RegClass:$rs1),
  4687. (vti.Mask V0),
  4688. VLOpFrag,
  4689. (XLenVT timm:$policy))),
  4690. (!cast<Instruction>("PseudoVSUB_VV_"#vti.LMul.MX#"_MASK")
  4691. vti.RegClass:$merge,
  4692. vti.RegClass:$rs1,
  4693. vti.RegClass:$rs2,
  4694. (vti.Mask V0),
  4695. GPR:$vl,
  4696. vti.Log2SEW,
  4697. (XLenVT timm:$policy))>;
  4698. // Match VSUB with a small immediate to vadd.vi by negating the immediate.
  4699. def : Pat<(vti.Vector (int_riscv_vsub (vti.Vector (undef)),
  4700. (vti.Vector vti.RegClass:$rs1),
  4701. (vti.Scalar simm5_plus1:$rs2),
  4702. VLOpFrag)),
  4703. (!cast<Instruction>("PseudoVADD_VI_"#vti.LMul.MX) vti.RegClass:$rs1,
  4704. (NegImm simm5_plus1:$rs2),
  4705. GPR:$vl,
  4706. vti.Log2SEW)>;
  4707. def : Pat<(vti.Vector (int_riscv_vsub_mask (vti.Vector vti.RegClass:$merge),
  4708. (vti.Vector vti.RegClass:$rs1),
  4709. (vti.Scalar simm5_plus1:$rs2),
  4710. (vti.Mask V0),
  4711. VLOpFrag,
  4712. (XLenVT timm:$policy))),
  4713. (!cast<Instruction>("PseudoVADD_VI_"#vti.LMul.MX#"_MASK")
  4714. vti.RegClass:$merge,
  4715. vti.RegClass:$rs1,
  4716. (NegImm simm5_plus1:$rs2),
  4717. (vti.Mask V0),
  4718. GPR:$vl,
  4719. vti.Log2SEW,
  4720. (XLenVT timm:$policy))>;
  4721. }
  4722. //===----------------------------------------------------------------------===//
  4723. // 11.2. Vector Widening Integer Add/Subtract
  4724. //===----------------------------------------------------------------------===//
  4725. defm PseudoVWADDU : VPseudoVWALU_VV_VX;
  4726. defm PseudoVWSUBU : VPseudoVWALU_VV_VX;
  4727. defm PseudoVWADD : VPseudoVWALU_VV_VX;
  4728. defm PseudoVWSUB : VPseudoVWALU_VV_VX;
  4729. defm PseudoVWADDU : VPseudoVWALU_WV_WX;
  4730. defm PseudoVWSUBU : VPseudoVWALU_WV_WX;
  4731. defm PseudoVWADD : VPseudoVWALU_WV_WX;
  4732. defm PseudoVWSUB : VPseudoVWALU_WV_WX;
  4733. //===----------------------------------------------------------------------===//
  4734. // 11.3. Vector Integer Extension
  4735. //===----------------------------------------------------------------------===//
  4736. defm PseudoVZEXT_VF2 : PseudoVEXT_VF2;
  4737. defm PseudoVZEXT_VF4 : PseudoVEXT_VF4;
  4738. defm PseudoVZEXT_VF8 : PseudoVEXT_VF8;
  4739. defm PseudoVSEXT_VF2 : PseudoVEXT_VF2;
  4740. defm PseudoVSEXT_VF4 : PseudoVEXT_VF4;
  4741. defm PseudoVSEXT_VF8 : PseudoVEXT_VF8;
  4742. //===----------------------------------------------------------------------===//
  4743. // 11.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
  4744. //===----------------------------------------------------------------------===//
  4745. defm PseudoVADC : VPseudoVCALU_VM_XM_IM;
  4746. defm PseudoVMADC : VPseudoVCALUM_VM_XM_IM<"@earlyclobber $rd">;
  4747. defm PseudoVMADC : VPseudoVCALUM_V_X_I<"@earlyclobber $rd">;
  4748. defm PseudoVSBC : VPseudoVCALU_VM_XM;
  4749. defm PseudoVMSBC : VPseudoVCALUM_VM_XM<"@earlyclobber $rd">;
  4750. defm PseudoVMSBC : VPseudoVCALUM_V_X<"@earlyclobber $rd">;
  4751. //===----------------------------------------------------------------------===//
  4752. // 11.5. Vector Bitwise Logical Instructions
  4753. //===----------------------------------------------------------------------===//
  4754. defm PseudoVAND : VPseudoVALU_VV_VX_VI;
  4755. defm PseudoVOR : VPseudoVALU_VV_VX_VI;
  4756. defm PseudoVXOR : VPseudoVALU_VV_VX_VI;
  4757. //===----------------------------------------------------------------------===//
  4758. // 11.6. Vector Single-Width Bit Shift Instructions
  4759. //===----------------------------------------------------------------------===//
  4760. defm PseudoVSLL : VPseudoVSHT_VV_VX_VI<uimm5>;
  4761. defm PseudoVSRL : VPseudoVSHT_VV_VX_VI<uimm5>;
  4762. defm PseudoVSRA : VPseudoVSHT_VV_VX_VI<uimm5>;
  4763. //===----------------------------------------------------------------------===//
  4764. // 11.7. Vector Narrowing Integer Right Shift Instructions
  4765. //===----------------------------------------------------------------------===//
  4766. defm PseudoVNSRL : VPseudoVNSHT_WV_WX_WI;
  4767. defm PseudoVNSRA : VPseudoVNSHT_WV_WX_WI;
  4768. //===----------------------------------------------------------------------===//
  4769. // 11.8. Vector Integer Comparison Instructions
  4770. //===----------------------------------------------------------------------===//
  4771. defm PseudoVMSEQ : VPseudoVCMPM_VV_VX_VI;
  4772. defm PseudoVMSNE : VPseudoVCMPM_VV_VX_VI;
  4773. defm PseudoVMSLTU : VPseudoVCMPM_VV_VX;
  4774. defm PseudoVMSLT : VPseudoVCMPM_VV_VX;
  4775. defm PseudoVMSLEU : VPseudoVCMPM_VV_VX_VI;
  4776. defm PseudoVMSLE : VPseudoVCMPM_VV_VX_VI;
  4777. defm PseudoVMSGTU : VPseudoVCMPM_VX_VI;
  4778. defm PseudoVMSGT : VPseudoVCMPM_VX_VI;
  4779. //===----------------------------------------------------------------------===//
  4780. // 11.9. Vector Integer Min/Max Instructions
  4781. //===----------------------------------------------------------------------===//
  4782. defm PseudoVMINU : VPseudoVMINMAX_VV_VX;
  4783. defm PseudoVMIN : VPseudoVMINMAX_VV_VX;
  4784. defm PseudoVMAXU : VPseudoVMINMAX_VV_VX;
  4785. defm PseudoVMAX : VPseudoVMINMAX_VV_VX;
  4786. //===----------------------------------------------------------------------===//
  4787. // 11.10. Vector Single-Width Integer Multiply Instructions
  4788. //===----------------------------------------------------------------------===//
  4789. defm PseudoVMUL : VPseudoVMUL_VV_VX;
  4790. defm PseudoVMULH : VPseudoVMUL_VV_VX;
  4791. defm PseudoVMULHU : VPseudoVMUL_VV_VX;
  4792. defm PseudoVMULHSU : VPseudoVMUL_VV_VX;
  4793. //===----------------------------------------------------------------------===//
  4794. // 11.11. Vector Integer Divide Instructions
  4795. //===----------------------------------------------------------------------===//
  4796. defm PseudoVDIVU : VPseudoVDIV_VV_VX;
  4797. defm PseudoVDIV : VPseudoVDIV_VV_VX;
  4798. defm PseudoVREMU : VPseudoVDIV_VV_VX;
  4799. defm PseudoVREM : VPseudoVDIV_VV_VX;
  4800. //===----------------------------------------------------------------------===//
  4801. // 11.12. Vector Widening Integer Multiply Instructions
  4802. //===----------------------------------------------------------------------===//
  4803. defm PseudoVWMUL : VPseudoVWMUL_VV_VX;
  4804. defm PseudoVWMULU : VPseudoVWMUL_VV_VX;
  4805. defm PseudoVWMULSU : VPseudoVWMUL_VV_VX;
  4806. //===----------------------------------------------------------------------===//
  4807. // 11.13. Vector Single-Width Integer Multiply-Add Instructions
  4808. //===----------------------------------------------------------------------===//
  4809. defm PseudoVMACC : VPseudoVMAC_VV_VX_AAXA;
  4810. defm PseudoVNMSAC : VPseudoVMAC_VV_VX_AAXA;
  4811. defm PseudoVMADD : VPseudoVMAC_VV_VX_AAXA;
  4812. defm PseudoVNMSUB : VPseudoVMAC_VV_VX_AAXA;
  4813. //===----------------------------------------------------------------------===//
  4814. // 11.14. Vector Widening Integer Multiply-Add Instructions
  4815. //===----------------------------------------------------------------------===//
  4816. defm PseudoVWMACCU : VPseudoVWMAC_VV_VX;
  4817. defm PseudoVWMACC : VPseudoVWMAC_VV_VX;
  4818. defm PseudoVWMACCSU : VPseudoVWMAC_VV_VX;
  4819. defm PseudoVWMACCUS : VPseudoVWMAC_VX;
  4820. //===----------------------------------------------------------------------===//
  4821. // 11.15. Vector Integer Merge Instructions
  4822. //===----------------------------------------------------------------------===//
  4823. defm PseudoVMERGE : VPseudoVMRG_VM_XM_IM;
  4824. //===----------------------------------------------------------------------===//
  4825. // 11.16. Vector Integer Move Instructions
  4826. //===----------------------------------------------------------------------===//
  4827. defm PseudoVMV_V : VPseudoUnaryVMV_V_X_I;
  4828. //===----------------------------------------------------------------------===//
  4829. // 12. Vector Fixed-Point Arithmetic Instructions
  4830. //===----------------------------------------------------------------------===//
  4831. //===----------------------------------------------------------------------===//
  4832. // 12.1. Vector Single-Width Saturating Add and Subtract
  4833. //===----------------------------------------------------------------------===//
  4834. let Defs = [VXSAT], hasSideEffects = 1 in {
  4835. defm PseudoVSADDU : VPseudoVSALU_VV_VX_VI;
  4836. defm PseudoVSADD : VPseudoVSALU_VV_VX_VI;
  4837. defm PseudoVSSUBU : VPseudoVSALU_VV_VX;
  4838. defm PseudoVSSUB : VPseudoVSALU_VV_VX;
  4839. }
  4840. //===----------------------------------------------------------------------===//
  4841. // 12.2. Vector Single-Width Averaging Add and Subtract
  4842. //===----------------------------------------------------------------------===//
  4843. let Uses = [VXRM], hasSideEffects = 1 in {
  4844. defm PseudoVAADDU : VPseudoVAALU_VV_VX;
  4845. defm PseudoVAADD : VPseudoVAALU_VV_VX;
  4846. defm PseudoVASUBU : VPseudoVAALU_VV_VX;
  4847. defm PseudoVASUB : VPseudoVAALU_VV_VX;
  4848. }
  4849. //===----------------------------------------------------------------------===//
  4850. // 12.3. Vector Single-Width Fractional Multiply with Rounding and Saturation
  4851. //===----------------------------------------------------------------------===//
  4852. let Uses = [VXRM], Defs = [VXSAT], hasSideEffects = 1 in {
  4853. defm PseudoVSMUL : VPseudoVSMUL_VV_VX;
  4854. }
  4855. //===----------------------------------------------------------------------===//
  4856. // 12.4. Vector Single-Width Scaling Shift Instructions
  4857. //===----------------------------------------------------------------------===//
  4858. let Uses = [VXRM], hasSideEffects = 1 in {
  4859. defm PseudoVSSRL : VPseudoVSSHT_VV_VX_VI<uimm5>;
  4860. defm PseudoVSSRA : VPseudoVSSHT_VV_VX_VI<uimm5>;
  4861. }
  4862. //===----------------------------------------------------------------------===//
  4863. // 12.5. Vector Narrowing Fixed-Point Clip Instructions
  4864. //===----------------------------------------------------------------------===//
  4865. let Uses = [VXRM], Defs = [VXSAT], hasSideEffects = 1 in {
  4866. defm PseudoVNCLIP : VPseudoVNCLP_WV_WX_WI;
  4867. defm PseudoVNCLIPU : VPseudoVNCLP_WV_WX_WI;
  4868. }
  4869. } // Predicates = [HasVInstructions]
  4870. //===----------------------------------------------------------------------===//
  4871. // 13. Vector Floating-Point Instructions
  4872. //===----------------------------------------------------------------------===//
  4873. let Predicates = [HasVInstructionsAnyF] in {
  4874. //===----------------------------------------------------------------------===//
  4875. // 13.2. Vector Single-Width Floating-Point Add/Subtract Instructions
  4876. //===----------------------------------------------------------------------===//
  4877. let Uses = [FRM], mayRaiseFPException = true in {
  4878. defm PseudoVFADD : VPseudoVALU_VV_VF;
  4879. defm PseudoVFSUB : VPseudoVALU_VV_VF;
  4880. defm PseudoVFRSUB : VPseudoVALU_VF;
  4881. }
  4882. //===----------------------------------------------------------------------===//
  4883. // 13.3. Vector Widening Floating-Point Add/Subtract Instructions
  4884. //===----------------------------------------------------------------------===//
  4885. let Uses = [FRM], mayRaiseFPException = true in {
  4886. defm PseudoVFWADD : VPseudoVFWALU_VV_VF;
  4887. defm PseudoVFWSUB : VPseudoVFWALU_VV_VF;
  4888. defm PseudoVFWADD : VPseudoVFWALU_WV_WF;
  4889. defm PseudoVFWSUB : VPseudoVFWALU_WV_WF;
  4890. }
  4891. //===----------------------------------------------------------------------===//
  4892. // 13.4. Vector Single-Width Floating-Point Multiply/Divide Instructions
  4893. //===----------------------------------------------------------------------===//
  4894. let Uses = [FRM], mayRaiseFPException = true in {
  4895. defm PseudoVFMUL : VPseudoVFMUL_VV_VF;
  4896. defm PseudoVFDIV : VPseudoVFDIV_VV_VF;
  4897. defm PseudoVFRDIV : VPseudoVFRDIV_VF;
  4898. }
  4899. //===----------------------------------------------------------------------===//
  4900. // 13.5. Vector Widening Floating-Point Multiply
  4901. //===----------------------------------------------------------------------===//
  4902. let Uses = [FRM], mayRaiseFPException = true in {
  4903. defm PseudoVFWMUL : VPseudoVWMUL_VV_VF;
  4904. }
  4905. //===----------------------------------------------------------------------===//
  4906. // 13.6. Vector Single-Width Floating-Point Fused Multiply-Add Instructions
  4907. //===----------------------------------------------------------------------===//
  4908. let Uses = [FRM], mayRaiseFPException = true in {
  4909. defm PseudoVFMACC : VPseudoVMAC_VV_VF_AAXA;
  4910. defm PseudoVFNMACC : VPseudoVMAC_VV_VF_AAXA;
  4911. defm PseudoVFMSAC : VPseudoVMAC_VV_VF_AAXA;
  4912. defm PseudoVFNMSAC : VPseudoVMAC_VV_VF_AAXA;
  4913. defm PseudoVFMADD : VPseudoVMAC_VV_VF_AAXA;
  4914. defm PseudoVFNMADD : VPseudoVMAC_VV_VF_AAXA;
  4915. defm PseudoVFMSUB : VPseudoVMAC_VV_VF_AAXA;
  4916. defm PseudoVFNMSUB : VPseudoVMAC_VV_VF_AAXA;
  4917. }
  4918. //===----------------------------------------------------------------------===//
  4919. // 13.7. Vector Widening Floating-Point Fused Multiply-Add Instructions
  4920. //===----------------------------------------------------------------------===//
  4921. let Uses = [FRM], mayRaiseFPException = true in {
  4922. defm PseudoVFWMACC : VPseudoVWMAC_VV_VF;
  4923. defm PseudoVFWNMACC : VPseudoVWMAC_VV_VF;
  4924. defm PseudoVFWMSAC : VPseudoVWMAC_VV_VF;
  4925. defm PseudoVFWNMSAC : VPseudoVWMAC_VV_VF;
  4926. }
  4927. //===----------------------------------------------------------------------===//
  4928. // 13.8. Vector Floating-Point Square-Root Instruction
  4929. //===----------------------------------------------------------------------===//
  4930. let Uses = [FRM], mayRaiseFPException = true in
  4931. defm PseudoVFSQRT : VPseudoVSQR_V;
  4932. //===----------------------------------------------------------------------===//
  4933. // 13.9. Vector Floating-Point Reciprocal Square-Root Estimate Instruction
  4934. //===----------------------------------------------------------------------===//
  4935. let mayRaiseFPException = true in
  4936. defm PseudoVFRSQRT7 : VPseudoVRCP_V;
  4937. //===----------------------------------------------------------------------===//
  4938. // 13.10. Vector Floating-Point Reciprocal Estimate Instruction
  4939. //===----------------------------------------------------------------------===//
  4940. let Uses = [FRM], mayRaiseFPException = true in
  4941. defm PseudoVFREC7 : VPseudoVRCP_V;
  4942. //===----------------------------------------------------------------------===//
  4943. // 13.11. Vector Floating-Point Min/Max Instructions
  4944. //===----------------------------------------------------------------------===//
  4945. let mayRaiseFPException = true in {
  4946. defm PseudoVFMIN : VPseudoVMAX_VV_VF;
  4947. defm PseudoVFMAX : VPseudoVMAX_VV_VF;
  4948. }
  4949. //===----------------------------------------------------------------------===//
  4950. // 13.12. Vector Floating-Point Sign-Injection Instructions
  4951. //===----------------------------------------------------------------------===//
  4952. defm PseudoVFSGNJ : VPseudoVSGNJ_VV_VF;
  4953. defm PseudoVFSGNJN : VPseudoVSGNJ_VV_VF;
  4954. defm PseudoVFSGNJX : VPseudoVSGNJ_VV_VF;
  4955. //===----------------------------------------------------------------------===//
  4956. // 13.13. Vector Floating-Point Compare Instructions
  4957. //===----------------------------------------------------------------------===//
  4958. let mayRaiseFPException = true in {
  4959. defm PseudoVMFEQ : VPseudoVCMPM_VV_VF;
  4960. defm PseudoVMFNE : VPseudoVCMPM_VV_VF;
  4961. defm PseudoVMFLT : VPseudoVCMPM_VV_VF;
  4962. defm PseudoVMFLE : VPseudoVCMPM_VV_VF;
  4963. defm PseudoVMFGT : VPseudoVCMPM_VF;
  4964. defm PseudoVMFGE : VPseudoVCMPM_VF;
  4965. }
  4966. //===----------------------------------------------------------------------===//
  4967. // 13.14. Vector Floating-Point Classify Instruction
  4968. //===----------------------------------------------------------------------===//
  4969. defm PseudoVFCLASS : VPseudoVCLS_V;
  4970. //===----------------------------------------------------------------------===//
  4971. // 13.15. Vector Floating-Point Merge Instruction
  4972. //===----------------------------------------------------------------------===//
  4973. defm PseudoVFMERGE : VPseudoVMRG_FM;
  4974. //===----------------------------------------------------------------------===//
  4975. // 13.16. Vector Floating-Point Move Instruction
  4976. //===----------------------------------------------------------------------===//
  4977. defm PseudoVFMV_V : VPseudoVMV_F;
  4978. //===----------------------------------------------------------------------===//
  4979. // 13.17. Single-Width Floating-Point/Integer Type-Convert Instructions
  4980. //===----------------------------------------------------------------------===//
  4981. let mayRaiseFPException = true in {
  4982. let Uses = [FRM] in {
  4983. defm PseudoVFCVT_XU_F : VPseudoVCVTI_V;
  4984. defm PseudoVFCVT_X_F : VPseudoVCVTI_V;
  4985. }
  4986. defm PseudoVFCVT_RM_XU_F : VPseudoVCVTI_RM_V;
  4987. defm PseudoVFCVT_RM_X_F : VPseudoVCVTI_RM_V;
  4988. defm PseudoVFCVT_RTZ_XU_F : VPseudoVCVTI_V;
  4989. defm PseudoVFCVT_RTZ_X_F : VPseudoVCVTI_V;
  4990. defm PseudoVFROUND_NOEXCEPT : VPseudoVFROUND_NOEXCEPT_V;
  4991. let Uses = [FRM] in {
  4992. defm PseudoVFCVT_F_XU : VPseudoVCVTF_V;
  4993. defm PseudoVFCVT_F_X : VPseudoVCVTF_V;
  4994. }
  4995. defm PseudoVFCVT_RM_F_XU : VPseudoVCVTF_RM_V;
  4996. defm PseudoVFCVT_RM_F_X : VPseudoVCVTF_RM_V;
  4997. } // mayRaiseFPException = true
  4998. //===----------------------------------------------------------------------===//
  4999. // 13.18. Widening Floating-Point/Integer Type-Convert Instructions
  5000. //===----------------------------------------------------------------------===//
  5001. let mayRaiseFPException = true in {
  5002. let Uses = [FRM] in {
  5003. defm PseudoVFWCVT_XU_F : VPseudoVWCVTI_V;
  5004. defm PseudoVFWCVT_X_F : VPseudoVWCVTI_V;
  5005. }
  5006. defm PseudoVFWCVT_RM_XU_F : VPseudoVWCVTI_RM_V;
  5007. defm PseudoVFWCVT_RM_X_F : VPseudoVWCVTI_RM_V;
  5008. defm PseudoVFWCVT_RTZ_XU_F : VPseudoVWCVTI_V;
  5009. defm PseudoVFWCVT_RTZ_X_F : VPseudoVWCVTI_V;
  5010. let Uses = [FRM] in {
  5011. defm PseudoVFWCVT_F_XU : VPseudoVWCVTF_V;
  5012. defm PseudoVFWCVT_F_X : VPseudoVWCVTF_V;
  5013. }
  5014. defm PseudoVFWCVT_RM_F_XU : VPseudoVWCVTF_RM_V;
  5015. defm PseudoVFWCVT_RM_F_X : VPseudoVWCVTF_RM_V;
  5016. defm PseudoVFWCVT_F_F : VPseudoVWCVTD_V;
  5017. } // mayRaiseFPException = true
  5018. //===----------------------------------------------------------------------===//
  5019. // 13.19. Narrowing Floating-Point/Integer Type-Convert Instructions
  5020. //===----------------------------------------------------------------------===//
  5021. let mayRaiseFPException = true in {
  5022. let Uses = [FRM] in {
  5023. defm PseudoVFNCVT_XU_F : VPseudoVNCVTI_W;
  5024. defm PseudoVFNCVT_X_F : VPseudoVNCVTI_W;
  5025. }
  5026. defm PseudoVFNCVT_RM_XU_F : VPseudoVNCVTI_RM_W;
  5027. defm PseudoVFNCVT_RM_X_F : VPseudoVNCVTI_RM_W;
  5028. defm PseudoVFNCVT_RTZ_XU_F : VPseudoVNCVTI_W;
  5029. defm PseudoVFNCVT_RTZ_X_F : VPseudoVNCVTI_W;
  5030. let Uses = [FRM] in {
  5031. defm PseudoVFNCVT_F_XU : VPseudoVNCVTF_W;
  5032. defm PseudoVFNCVT_F_X : VPseudoVNCVTF_W;
  5033. }
  5034. defm PseudoVFNCVT_RM_F_XU : VPseudoVNCVTF_RM_W;
  5035. defm PseudoVFNCVT_RM_F_X : VPseudoVNCVTF_RM_W;
  5036. let Uses = [FRM] in
  5037. defm PseudoVFNCVT_F_F : VPseudoVNCVTD_W;
  5038. defm PseudoVFNCVT_ROD_F_F : VPseudoVNCVTD_W;
  5039. } // mayRaiseFPException = true
  5040. } // Predicates = [HasVInstructionsAnyF]
  5041. //===----------------------------------------------------------------------===//
  5042. // 14. Vector Reduction Operations
  5043. //===----------------------------------------------------------------------===//
  5044. let Predicates = [HasVInstructions] in {
  5045. //===----------------------------------------------------------------------===//
  5046. // 14.1. Vector Single-Width Integer Reduction Instructions
  5047. //===----------------------------------------------------------------------===//
  5048. defm PseudoVREDSUM : VPseudoVRED_VS;
  5049. defm PseudoVREDAND : VPseudoVRED_VS;
  5050. defm PseudoVREDOR : VPseudoVRED_VS;
  5051. defm PseudoVREDXOR : VPseudoVRED_VS;
  5052. defm PseudoVREDMINU : VPseudoVRED_VS;
  5053. defm PseudoVREDMIN : VPseudoVRED_VS;
  5054. defm PseudoVREDMAXU : VPseudoVRED_VS;
  5055. defm PseudoVREDMAX : VPseudoVRED_VS;
  5056. //===----------------------------------------------------------------------===//
  5057. // 14.2. Vector Widening Integer Reduction Instructions
  5058. //===----------------------------------------------------------------------===//
  5059. let IsRVVWideningReduction = 1 in {
  5060. defm PseudoVWREDSUMU : VPseudoVWRED_VS;
  5061. defm PseudoVWREDSUM : VPseudoVWRED_VS;
  5062. }
  5063. } // Predicates = [HasVInstructions]
  5064. let Predicates = [HasVInstructionsAnyF] in {
  5065. //===----------------------------------------------------------------------===//
  5066. // 14.3. Vector Single-Width Floating-Point Reduction Instructions
  5067. //===----------------------------------------------------------------------===//
  5068. let Uses = [FRM], mayRaiseFPException = true in {
  5069. defm PseudoVFREDOSUM : VPseudoVFREDO_VS;
  5070. defm PseudoVFREDUSUM : VPseudoVFRED_VS;
  5071. }
  5072. let mayRaiseFPException = true in {
  5073. defm PseudoVFREDMIN : VPseudoVFRED_VS;
  5074. defm PseudoVFREDMAX : VPseudoVFRED_VS;
  5075. }
  5076. //===----------------------------------------------------------------------===//
  5077. // 14.4. Vector Widening Floating-Point Reduction Instructions
  5078. //===----------------------------------------------------------------------===//
  5079. let IsRVVWideningReduction = 1,
  5080. Uses = [FRM],
  5081. mayRaiseFPException = true in {
  5082. defm PseudoVFWREDUSUM : VPseudoVFWRED_VS;
  5083. defm PseudoVFWREDOSUM : VPseudoVFWRED_VS;
  5084. }
  5085. } // Predicates = [HasVInstructionsAnyF]
  5086. //===----------------------------------------------------------------------===//
  5087. // 15. Vector Mask Instructions
  5088. //===----------------------------------------------------------------------===//
  5089. //===----------------------------------------------------------------------===//
  5090. // 15.1 Vector Mask-Register Logical Instructions
  5091. //===----------------------------------------------------------------------===//
  5092. defm PseudoVMAND: VPseudoVALU_MM;
  5093. defm PseudoVMNAND: VPseudoVALU_MM;
  5094. defm PseudoVMANDN: VPseudoVALU_MM;
  5095. defm PseudoVMXOR: VPseudoVALU_MM;
  5096. defm PseudoVMOR: VPseudoVALU_MM;
  5097. defm PseudoVMNOR: VPseudoVALU_MM;
  5098. defm PseudoVMORN: VPseudoVALU_MM;
  5099. defm PseudoVMXNOR: VPseudoVALU_MM;
  5100. // Pseudo instructions
  5101. defm PseudoVMCLR : VPseudoNullaryPseudoM<"VMXOR">;
  5102. defm PseudoVMSET : VPseudoNullaryPseudoM<"VMXNOR">;
  5103. //===----------------------------------------------------------------------===//
  5104. // 15.2. Vector mask population count vcpop
  5105. //===----------------------------------------------------------------------===//
  5106. defm PseudoVCPOP: VPseudoVPOP_M;
  5107. //===----------------------------------------------------------------------===//
  5108. // 15.3. vfirst find-first-set mask bit
  5109. //===----------------------------------------------------------------------===//
  5110. defm PseudoVFIRST: VPseudoV1ST_M;
  5111. //===----------------------------------------------------------------------===//
  5112. // 15.4. vmsbf.m set-before-first mask bit
  5113. //===----------------------------------------------------------------------===//
  5114. defm PseudoVMSBF: VPseudoVSFS_M;
  5115. //===----------------------------------------------------------------------===//
  5116. // 15.5. vmsif.m set-including-first mask bit
  5117. //===----------------------------------------------------------------------===//
  5118. defm PseudoVMSIF: VPseudoVSFS_M;
  5119. //===----------------------------------------------------------------------===//
  5120. // 15.6. vmsof.m set-only-first mask bit
  5121. //===----------------------------------------------------------------------===//
  5122. defm PseudoVMSOF: VPseudoVSFS_M;
  5123. //===----------------------------------------------------------------------===//
  5124. // 15.8. Vector Iota Instruction
  5125. //===----------------------------------------------------------------------===//
  5126. defm PseudoVIOTA_M: VPseudoVIOT_M;
  5127. //===----------------------------------------------------------------------===//
  5128. // 15.9. Vector Element Index Instruction
  5129. //===----------------------------------------------------------------------===//
  5130. defm PseudoVID : VPseudoVID_V;
  5131. //===----------------------------------------------------------------------===//
  5132. // 16. Vector Permutation Instructions
  5133. //===----------------------------------------------------------------------===//
  5134. //===----------------------------------------------------------------------===//
  5135. // 16.1. Integer Scalar Move Instructions
  5136. //===----------------------------------------------------------------------===//
  5137. let Predicates = [HasVInstructions] in {
  5138. let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
  5139. foreach m = MxList in {
  5140. defvar mx = m.MX;
  5141. defvar WriteVIMovVX_MX = !cast<SchedWrite>("WriteVIMovVX_" # mx);
  5142. defvar WriteVIMovXV_MX = !cast<SchedWrite>("WriteVIMovXV_" # mx);
  5143. defvar ReadVIMovVX_MX = !cast<SchedRead>("ReadVIMovVX_" # mx);
  5144. defvar ReadVIMovXV_MX = !cast<SchedRead>("ReadVIMovXV_" # mx);
  5145. defvar ReadVIMovXX_MX = !cast<SchedRead>("ReadVIMovXX_" # mx);
  5146. let VLMul = m.value in {
  5147. let HasSEWOp = 1, BaseInstr = VMV_X_S in
  5148. def PseudoVMV_X_S # "_" # mx:
  5149. Pseudo<(outs GPR:$rd), (ins m.vrclass:$rs2, ixlenimm:$sew), []>,
  5150. Sched<[WriteVIMovVX_MX, ReadVIMovVX_MX]>,
  5151. RISCVVPseudo;
  5152. let HasVLOp = 1, HasSEWOp = 1, BaseInstr = VMV_S_X,
  5153. Constraints = "$rd = $rs1" in
  5154. def PseudoVMV_S_X # "_" # mx: Pseudo<(outs m.vrclass:$rd),
  5155. (ins m.vrclass:$rs1, GPR:$rs2,
  5156. AVL:$vl, ixlenimm:$sew),
  5157. []>,
  5158. Sched<[WriteVIMovXV_MX, ReadVIMovXV_MX, ReadVIMovXX_MX]>,
  5159. RISCVVPseudo;
  5160. }
  5161. }
  5162. }
  5163. } // Predicates = [HasVInstructions]
  5164. //===----------------------------------------------------------------------===//
  5165. // 16.2. Floating-Point Scalar Move Instructions
  5166. //===----------------------------------------------------------------------===//
  5167. let Predicates = [HasVInstructionsAnyF] in {
  5168. let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
  5169. foreach f = FPList in {
  5170. foreach m = f.MxList in {
  5171. defvar mx = m.MX;
  5172. defvar WriteVFMovVF_MX = !cast<SchedWrite>("WriteVFMovVF_" # mx);
  5173. defvar WriteVFMovFV_MX = !cast<SchedWrite>("WriteVFMovFV_" # mx);
  5174. defvar ReadVFMovVF_MX = !cast<SchedRead>("ReadVFMovVF_" # mx);
  5175. defvar ReadVFMovFV_MX = !cast<SchedRead>("ReadVFMovFV_" # mx);
  5176. defvar ReadVFMovFX_MX = !cast<SchedRead>("ReadVFMovFX_" # mx);
  5177. let VLMul = m.value in {
  5178. let HasSEWOp = 1, BaseInstr = VFMV_F_S in
  5179. def "PseudoVFMV_" # f.FX # "_S_" # mx :
  5180. Pseudo<(outs f.fprclass:$rd),
  5181. (ins m.vrclass:$rs2, ixlenimm:$sew), []>,
  5182. Sched<[WriteVFMovVF_MX, ReadVFMovVF_MX]>,
  5183. RISCVVPseudo;
  5184. let HasVLOp = 1, HasSEWOp = 1, BaseInstr = VFMV_S_F,
  5185. Constraints = "$rd = $rs1" in
  5186. def "PseudoVFMV_S_" # f.FX # "_" # mx :
  5187. Pseudo<(outs m.vrclass:$rd),
  5188. (ins m.vrclass:$rs1, f.fprclass:$rs2,
  5189. AVL:$vl, ixlenimm:$sew),
  5190. []>,
  5191. Sched<[WriteVFMovFV_MX, ReadVFMovFV_MX, ReadVFMovFX_MX]>,
  5192. RISCVVPseudo;
  5193. }
  5194. }
  5195. }
  5196. }
  5197. } // Predicates = [HasVInstructionsAnyF]
  5198. //===----------------------------------------------------------------------===//
  5199. // 16.3. Vector Slide Instructions
  5200. //===----------------------------------------------------------------------===//
  5201. let Predicates = [HasVInstructions] in {
  5202. defm PseudoVSLIDEUP : VPseudoVSLD_VX_VI<uimm5, "@earlyclobber $rd">;
  5203. defm PseudoVSLIDEDOWN : VPseudoVSLD_VX_VI<uimm5>;
  5204. defm PseudoVSLIDE1UP : VPseudoVSLD1_VX<"@earlyclobber $rd">;
  5205. defm PseudoVSLIDE1DOWN : VPseudoVSLD1_VX;
  5206. } // Predicates = [HasVInstructions]
  5207. let Predicates = [HasVInstructionsAnyF] in {
  5208. defm PseudoVFSLIDE1UP : VPseudoVSLD1_VF<"@earlyclobber $rd">;
  5209. defm PseudoVFSLIDE1DOWN : VPseudoVSLD1_VF;
  5210. } // Predicates = [HasVInstructionsAnyF]
  5211. //===----------------------------------------------------------------------===//
  5212. // 16.4. Vector Register Gather Instructions
  5213. //===----------------------------------------------------------------------===//
  5214. defm PseudoVRGATHER : VPseudoVGTR_VV_VX_VI<uimm5, "@earlyclobber $rd">;
  5215. defm PseudoVRGATHEREI16 : VPseudoVGTR_VV_EEW</* eew */ 16, "@earlyclobber $rd">;
  5216. //===----------------------------------------------------------------------===//
  5217. // 16.5. Vector Compress Instruction
  5218. //===----------------------------------------------------------------------===//
  5219. defm PseudoVCOMPRESS : VPseudoVCPR_V;
  5220. //===----------------------------------------------------------------------===//
  5221. // Patterns.
  5222. //===----------------------------------------------------------------------===//
  5223. //===----------------------------------------------------------------------===//
  5224. // 11. Vector Integer Arithmetic Instructions
  5225. //===----------------------------------------------------------------------===//
  5226. let Predicates = [HasVInstructions] in {
  5227. //===----------------------------------------------------------------------===//
  5228. // 11.1. Vector Single-Width Integer Add and Subtract
  5229. //===----------------------------------------------------------------------===//
  5230. defm : VPatBinaryV_VV_VX_VI<"int_riscv_vadd", "PseudoVADD", AllIntegerVectors>;
  5231. defm : VPatBinaryV_VV_VX<"int_riscv_vsub", "PseudoVSUB", AllIntegerVectors>;
  5232. defm : VPatBinaryV_VX_VI<"int_riscv_vrsub", "PseudoVRSUB", AllIntegerVectors>;
  5233. //===----------------------------------------------------------------------===//
  5234. // 11.2. Vector Widening Integer Add/Subtract
  5235. //===----------------------------------------------------------------------===//
  5236. defm : VPatBinaryW_VV_VX<"int_riscv_vwaddu", "PseudoVWADDU", AllWidenableIntVectors>;
  5237. defm : VPatBinaryW_VV_VX<"int_riscv_vwsubu", "PseudoVWSUBU", AllWidenableIntVectors>;
  5238. defm : VPatBinaryW_VV_VX<"int_riscv_vwadd", "PseudoVWADD", AllWidenableIntVectors>;
  5239. defm : VPatBinaryW_VV_VX<"int_riscv_vwsub", "PseudoVWSUB", AllWidenableIntVectors>;
  5240. defm : VPatBinaryW_WV_WX<"int_riscv_vwaddu_w", "PseudoVWADDU", AllWidenableIntVectors>;
  5241. defm : VPatBinaryW_WV_WX<"int_riscv_vwsubu_w", "PseudoVWSUBU", AllWidenableIntVectors>;
  5242. defm : VPatBinaryW_WV_WX<"int_riscv_vwadd_w", "PseudoVWADD", AllWidenableIntVectors>;
  5243. defm : VPatBinaryW_WV_WX<"int_riscv_vwsub_w", "PseudoVWSUB", AllWidenableIntVectors>;
  5244. //===----------------------------------------------------------------------===//
  5245. // 11.3. Vector Integer Extension
  5246. //===----------------------------------------------------------------------===//
  5247. defm : VPatUnaryV_VF<"int_riscv_vzext", "PseudoVZEXT", "VF2",
  5248. AllFractionableVF2IntVectors>;
  5249. defm : VPatUnaryV_VF<"int_riscv_vzext", "PseudoVZEXT", "VF4",
  5250. AllFractionableVF4IntVectors>;
  5251. defm : VPatUnaryV_VF<"int_riscv_vzext", "PseudoVZEXT", "VF8",
  5252. AllFractionableVF8IntVectors>;
  5253. defm : VPatUnaryV_VF<"int_riscv_vsext", "PseudoVSEXT", "VF2",
  5254. AllFractionableVF2IntVectors>;
  5255. defm : VPatUnaryV_VF<"int_riscv_vsext", "PseudoVSEXT", "VF4",
  5256. AllFractionableVF4IntVectors>;
  5257. defm : VPatUnaryV_VF<"int_riscv_vsext", "PseudoVSEXT", "VF8",
  5258. AllFractionableVF8IntVectors>;
  5259. //===----------------------------------------------------------------------===//
  5260. // 11.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
  5261. //===----------------------------------------------------------------------===//
  5262. defm : VPatBinaryV_VM_XM_IM<"int_riscv_vadc", "PseudoVADC">;
  5263. defm : VPatBinaryM_VM_XM_IM<"int_riscv_vmadc_carry_in", "PseudoVMADC">;
  5264. defm : VPatBinaryM_V_X_I<"int_riscv_vmadc", "PseudoVMADC">;
  5265. defm : VPatBinaryV_VM_XM<"int_riscv_vsbc", "PseudoVSBC">;
  5266. defm : VPatBinaryM_VM_XM<"int_riscv_vmsbc_borrow_in", "PseudoVMSBC">;
  5267. defm : VPatBinaryM_V_X<"int_riscv_vmsbc", "PseudoVMSBC">;
  5268. //===----------------------------------------------------------------------===//
  5269. // 11.5. Vector Bitwise Logical Instructions
  5270. //===----------------------------------------------------------------------===//
  5271. defm : VPatBinaryV_VV_VX_VI<"int_riscv_vand", "PseudoVAND", AllIntegerVectors>;
  5272. defm : VPatBinaryV_VV_VX_VI<"int_riscv_vor", "PseudoVOR", AllIntegerVectors>;
  5273. defm : VPatBinaryV_VV_VX_VI<"int_riscv_vxor", "PseudoVXOR", AllIntegerVectors>;
  5274. //===----------------------------------------------------------------------===//
  5275. // 11.6. Vector Single-Width Bit Shift Instructions
  5276. //===----------------------------------------------------------------------===//
  5277. defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsll", "PseudoVSLL", AllIntegerVectors,
  5278. uimm5>;
  5279. defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsrl", "PseudoVSRL", AllIntegerVectors,
  5280. uimm5>;
  5281. defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsra", "PseudoVSRA", AllIntegerVectors,
  5282. uimm5>;
  5283. foreach vti = AllIntegerVectors in {
  5284. // Emit shift by 1 as an add since it might be faster.
  5285. def : Pat<(vti.Vector (int_riscv_vsll (vti.Vector undef),
  5286. (vti.Vector vti.RegClass:$rs1),
  5287. (XLenVT 1), VLOpFrag)),
  5288. (!cast<Instruction>("PseudoVADD_VV_"#vti.LMul.MX) vti.RegClass:$rs1,
  5289. vti.RegClass:$rs1,
  5290. GPR:$vl,
  5291. vti.Log2SEW)>;
  5292. def : Pat<(vti.Vector (int_riscv_vsll_mask (vti.Vector vti.RegClass:$merge),
  5293. (vti.Vector vti.RegClass:$rs1),
  5294. (XLenVT 1),
  5295. (vti.Mask V0),
  5296. VLOpFrag,
  5297. (XLenVT timm:$policy))),
  5298. (!cast<Instruction>("PseudoVADD_VV_"#vti.LMul.MX#"_MASK")
  5299. vti.RegClass:$merge,
  5300. vti.RegClass:$rs1,
  5301. vti.RegClass:$rs1,
  5302. (vti.Mask V0),
  5303. GPR:$vl,
  5304. vti.Log2SEW,
  5305. (XLenVT timm:$policy))>;
  5306. }
  5307. //===----------------------------------------------------------------------===//
  5308. // 11.7. Vector Narrowing Integer Right Shift Instructions
  5309. //===----------------------------------------------------------------------===//
  5310. defm : VPatBinaryV_WV_WX_WI<"int_riscv_vnsrl", "PseudoVNSRL", AllWidenableIntVectors>;
  5311. defm : VPatBinaryV_WV_WX_WI<"int_riscv_vnsra", "PseudoVNSRA", AllWidenableIntVectors>;
  5312. //===----------------------------------------------------------------------===//
  5313. // 11.8. Vector Integer Comparison Instructions
  5314. //===----------------------------------------------------------------------===//
  5315. defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmseq", "PseudoVMSEQ", AllIntegerVectors>;
  5316. defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmsne", "PseudoVMSNE", AllIntegerVectors>;
  5317. defm : VPatBinaryM_VV_VX<"int_riscv_vmsltu", "PseudoVMSLTU", AllIntegerVectors>;
  5318. defm : VPatBinaryM_VV_VX<"int_riscv_vmslt", "PseudoVMSLT", AllIntegerVectors>;
  5319. defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmsleu", "PseudoVMSLEU", AllIntegerVectors>;
  5320. defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmsle", "PseudoVMSLE", AllIntegerVectors>;
  5321. defm : VPatBinaryM_VX_VI<"int_riscv_vmsgtu", "PseudoVMSGTU", AllIntegerVectors>;
  5322. defm : VPatBinaryM_VX_VI<"int_riscv_vmsgt", "PseudoVMSGT", AllIntegerVectors>;
  5323. // Match vmsgt with 2 vector operands to vmslt with the operands swapped.
  5324. defm : VPatBinarySwappedM_VV<"int_riscv_vmsgtu", "PseudoVMSLTU", AllIntegerVectors>;
  5325. defm : VPatBinarySwappedM_VV<"int_riscv_vmsgt", "PseudoVMSLT", AllIntegerVectors>;
  5326. defm : VPatBinarySwappedM_VV<"int_riscv_vmsgeu", "PseudoVMSLEU", AllIntegerVectors>;
  5327. defm : VPatBinarySwappedM_VV<"int_riscv_vmsge", "PseudoVMSLE", AllIntegerVectors>;
  5328. // Match vmslt(u).vx intrinsics to vmsle(u).vi if the scalar is -15 to 16 and
  5329. // non-zero. Zero can be .vx with x0. This avoids the user needing to know that
  5330. // there is no vmslt(u).vi instruction. Similar for vmsge(u).vx intrinsics
  5331. // using vmslt(u).vi.
  5332. defm : VPatCompare_VI<"int_riscv_vmslt", "PseudoVMSLE", simm5_plus1_nonzero>;
  5333. defm : VPatCompare_VI<"int_riscv_vmsltu", "PseudoVMSLEU", simm5_plus1_nonzero>;
  5334. // We need to handle 0 for vmsge.vi using vmslt.vi because there is no vmsge.vx.
  5335. defm : VPatCompare_VI<"int_riscv_vmsge", "PseudoVMSGT", simm5_plus1>;
  5336. defm : VPatCompare_VI<"int_riscv_vmsgeu", "PseudoVMSGTU", simm5_plus1_nonzero>;
  5337. //===----------------------------------------------------------------------===//
  5338. // 11.9. Vector Integer Min/Max Instructions
  5339. //===----------------------------------------------------------------------===//
  5340. defm : VPatBinaryV_VV_VX<"int_riscv_vminu", "PseudoVMINU", AllIntegerVectors>;
  5341. defm : VPatBinaryV_VV_VX<"int_riscv_vmin", "PseudoVMIN", AllIntegerVectors>;
  5342. defm : VPatBinaryV_VV_VX<"int_riscv_vmaxu", "PseudoVMAXU", AllIntegerVectors>;
  5343. defm : VPatBinaryV_VV_VX<"int_riscv_vmax", "PseudoVMAX", AllIntegerVectors>;
  5344. //===----------------------------------------------------------------------===//
  5345. // 11.10. Vector Single-Width Integer Multiply Instructions
  5346. //===----------------------------------------------------------------------===//
  5347. defm : VPatBinaryV_VV_VX<"int_riscv_vmul", "PseudoVMUL", AllIntegerVectors>;
  5348. defm : VPatBinaryV_VV_VX<"int_riscv_vmulh", "PseudoVMULH", AllIntegerVectors>;
  5349. defm : VPatBinaryV_VV_VX<"int_riscv_vmulhu", "PseudoVMULHU", AllIntegerVectors>;
  5350. defm : VPatBinaryV_VV_VX<"int_riscv_vmulhsu", "PseudoVMULHSU", AllIntegerVectors>;
  5351. //===----------------------------------------------------------------------===//
  5352. // 11.11. Vector Integer Divide Instructions
  5353. //===----------------------------------------------------------------------===//
  5354. defm : VPatBinaryV_VV_VX<"int_riscv_vdivu", "PseudoVDIVU", AllIntegerVectors>;
  5355. defm : VPatBinaryV_VV_VX<"int_riscv_vdiv", "PseudoVDIV", AllIntegerVectors>;
  5356. defm : VPatBinaryV_VV_VX<"int_riscv_vremu", "PseudoVREMU", AllIntegerVectors>;
  5357. defm : VPatBinaryV_VV_VX<"int_riscv_vrem", "PseudoVREM", AllIntegerVectors>;
  5358. //===----------------------------------------------------------------------===//
  5359. // 11.12. Vector Widening Integer Multiply Instructions
  5360. //===----------------------------------------------------------------------===//
  5361. defm : VPatBinaryW_VV_VX<"int_riscv_vwmul", "PseudoVWMUL", AllWidenableIntVectors>;
  5362. defm : VPatBinaryW_VV_VX<"int_riscv_vwmulu", "PseudoVWMULU", AllWidenableIntVectors>;
  5363. defm : VPatBinaryW_VV_VX<"int_riscv_vwmulsu", "PseudoVWMULSU", AllWidenableIntVectors>;
  5364. //===----------------------------------------------------------------------===//
  5365. // 11.13. Vector Single-Width Integer Multiply-Add Instructions
  5366. //===----------------------------------------------------------------------===//
  5367. defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vmadd", "PseudoVMADD", AllIntegerVectors>;
  5368. defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vnmsub", "PseudoVNMSUB", AllIntegerVectors>;
  5369. defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vmacc", "PseudoVMACC", AllIntegerVectors>;
  5370. defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vnmsac", "PseudoVNMSAC", AllIntegerVectors>;
  5371. //===----------------------------------------------------------------------===//
  5372. // 11.14. Vector Widening Integer Multiply-Add Instructions
  5373. //===----------------------------------------------------------------------===//
  5374. defm : VPatTernaryW_VV_VX<"int_riscv_vwmaccu", "PseudoVWMACCU", AllWidenableIntVectors>;
  5375. defm : VPatTernaryW_VV_VX<"int_riscv_vwmacc", "PseudoVWMACC", AllWidenableIntVectors>;
  5376. defm : VPatTernaryW_VV_VX<"int_riscv_vwmaccsu", "PseudoVWMACCSU", AllWidenableIntVectors>;
  5377. defm : VPatTernaryW_VX<"int_riscv_vwmaccus", "PseudoVWMACCUS", AllWidenableIntVectors>;
  5378. //===----------------------------------------------------------------------===//
  5379. // 11.15. Vector Integer Merge Instructions
  5380. //===----------------------------------------------------------------------===//
  5381. defm : VPatBinaryV_VM_XM_IM<"int_riscv_vmerge", "PseudoVMERGE">;
  5382. //===----------------------------------------------------------------------===//
  5383. // 11.16. Vector Integer Move Instructions
  5384. //===----------------------------------------------------------------------===//
  5385. foreach vti = AllVectors in {
  5386. def : Pat<(vti.Vector (int_riscv_vmv_v_v (vti.Vector undef),
  5387. (vti.Vector vti.RegClass:$rs1),
  5388. VLOpFrag)),
  5389. (!cast<Instruction>("PseudoVMV_V_V_"#vti.LMul.MX)
  5390. $rs1, GPR:$vl, vti.Log2SEW)>;
  5391. def : Pat<(vti.Vector (int_riscv_vmv_v_v (vti.Vector vti.RegClass:$passthru),
  5392. (vti.Vector vti.RegClass:$rs1),
  5393. VLOpFrag)),
  5394. (!cast<Instruction>("PseudoVMV_V_V_"#vti.LMul.MX#"_TU")
  5395. $passthru, $rs1, GPR:$vl, vti.Log2SEW)>;
  5396. // vmv.v.x/vmv.v.i are handled in RISCInstrVInstrInfoVVLPatterns.td
  5397. }
  5398. //===----------------------------------------------------------------------===//
  5399. // 12. Vector Fixed-Point Arithmetic Instructions
  5400. //===----------------------------------------------------------------------===//
  5401. //===----------------------------------------------------------------------===//
  5402. // 12.1. Vector Single-Width Saturating Add and Subtract
  5403. //===----------------------------------------------------------------------===//
  5404. defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsaddu", "PseudoVSADDU", AllIntegerVectors>;
  5405. defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsadd", "PseudoVSADD", AllIntegerVectors>;
  5406. defm : VPatBinaryV_VV_VX<"int_riscv_vssubu", "PseudoVSSUBU", AllIntegerVectors>;
  5407. defm : VPatBinaryV_VV_VX<"int_riscv_vssub", "PseudoVSSUB", AllIntegerVectors>;
  5408. //===----------------------------------------------------------------------===//
  5409. // 12.2. Vector Single-Width Averaging Add and Subtract
  5410. //===----------------------------------------------------------------------===//
  5411. defm : VPatBinaryV_VV_VX<"int_riscv_vaaddu", "PseudoVAADDU", AllIntegerVectors>;
  5412. defm : VPatBinaryV_VV_VX<"int_riscv_vaadd", "PseudoVAADD", AllIntegerVectors>;
  5413. defm : VPatBinaryV_VV_VX<"int_riscv_vasubu", "PseudoVASUBU", AllIntegerVectors>;
  5414. defm : VPatBinaryV_VV_VX<"int_riscv_vasub", "PseudoVASUB", AllIntegerVectors>;
  5415. //===----------------------------------------------------------------------===//
  5416. // 12.3. Vector Single-Width Fractional Multiply with Rounding and Saturation
  5417. //===----------------------------------------------------------------------===//
  5418. defm : VPatBinaryV_VV_VX<"int_riscv_vsmul", "PseudoVSMUL", AllIntegerVectors>;
  5419. //===----------------------------------------------------------------------===//
  5420. // 12.4. Vector Single-Width Scaling Shift Instructions
  5421. //===----------------------------------------------------------------------===//
  5422. defm : VPatBinaryV_VV_VX_VI<"int_riscv_vssrl", "PseudoVSSRL", AllIntegerVectors,
  5423. uimm5>;
  5424. defm : VPatBinaryV_VV_VX_VI<"int_riscv_vssra", "PseudoVSSRA", AllIntegerVectors,
  5425. uimm5>;
  5426. //===----------------------------------------------------------------------===//
  5427. // 12.5. Vector Narrowing Fixed-Point Clip Instructions
  5428. //===----------------------------------------------------------------------===//
  5429. defm : VPatBinaryV_WV_WX_WI<"int_riscv_vnclipu", "PseudoVNCLIPU", AllWidenableIntVectors>;
  5430. defm : VPatBinaryV_WV_WX_WI<"int_riscv_vnclip", "PseudoVNCLIP", AllWidenableIntVectors>;
  5431. } // Predicates = [HasVInstructions]
  5432. //===----------------------------------------------------------------------===//
  5433. // 13. Vector Floating-Point Instructions
  5434. //===----------------------------------------------------------------------===//
  5435. let Predicates = [HasVInstructionsAnyF] in {
  5436. //===----------------------------------------------------------------------===//
  5437. // 13.2. Vector Single-Width Floating-Point Add/Subtract Instructions
  5438. //===----------------------------------------------------------------------===//
  5439. defm : VPatBinaryV_VV_VX<"int_riscv_vfadd", "PseudoVFADD", AllFloatVectors>;
  5440. defm : VPatBinaryV_VV_VX<"int_riscv_vfsub", "PseudoVFSUB", AllFloatVectors>;
  5441. defm : VPatBinaryV_VX<"int_riscv_vfrsub", "PseudoVFRSUB", AllFloatVectors>;
  5442. //===----------------------------------------------------------------------===//
  5443. // 13.3. Vector Widening Floating-Point Add/Subtract Instructions
  5444. //===----------------------------------------------------------------------===//
  5445. defm : VPatBinaryW_VV_VX<"int_riscv_vfwadd", "PseudoVFWADD", AllWidenableFloatVectors>;
  5446. defm : VPatBinaryW_VV_VX<"int_riscv_vfwsub", "PseudoVFWSUB", AllWidenableFloatVectors>;
  5447. defm : VPatBinaryW_WV_WX<"int_riscv_vfwadd_w", "PseudoVFWADD", AllWidenableFloatVectors>;
  5448. defm : VPatBinaryW_WV_WX<"int_riscv_vfwsub_w", "PseudoVFWSUB", AllWidenableFloatVectors>;
  5449. //===----------------------------------------------------------------------===//
  5450. // 13.4. Vector Single-Width Floating-Point Multiply/Divide Instructions
  5451. //===----------------------------------------------------------------------===//
  5452. defm : VPatBinaryV_VV_VX<"int_riscv_vfmul", "PseudoVFMUL", AllFloatVectors>;
  5453. defm : VPatBinaryV_VV_VX<"int_riscv_vfdiv", "PseudoVFDIV", AllFloatVectors>;
  5454. defm : VPatBinaryV_VX<"int_riscv_vfrdiv", "PseudoVFRDIV", AllFloatVectors>;
  5455. //===----------------------------------------------------------------------===//
  5456. // 13.5. Vector Widening Floating-Point Multiply
  5457. //===----------------------------------------------------------------------===//
  5458. defm : VPatBinaryW_VV_VX<"int_riscv_vfwmul", "PseudoVFWMUL", AllWidenableFloatVectors>;
  5459. //===----------------------------------------------------------------------===//
  5460. // 13.6. Vector Single-Width Floating-Point Fused Multiply-Add Instructions
  5461. //===----------------------------------------------------------------------===//
  5462. defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfmacc", "PseudoVFMACC", AllFloatVectors>;
  5463. defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfnmacc", "PseudoVFNMACC", AllFloatVectors>;
  5464. defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfmsac", "PseudoVFMSAC", AllFloatVectors>;
  5465. defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfnmsac", "PseudoVFNMSAC", AllFloatVectors>;
  5466. defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfmadd", "PseudoVFMADD", AllFloatVectors>;
  5467. defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfnmadd", "PseudoVFNMADD", AllFloatVectors>;
  5468. defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfmsub", "PseudoVFMSUB", AllFloatVectors>;
  5469. defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfnmsub", "PseudoVFNMSUB", AllFloatVectors>;
  5470. //===----------------------------------------------------------------------===//
  5471. // 13.7. Vector Widening Floating-Point Fused Multiply-Add Instructions
  5472. //===----------------------------------------------------------------------===//
  5473. defm : VPatTernaryW_VV_VX<"int_riscv_vfwmacc", "PseudoVFWMACC", AllWidenableFloatVectors>;
  5474. defm : VPatTernaryW_VV_VX<"int_riscv_vfwnmacc", "PseudoVFWNMACC", AllWidenableFloatVectors>;
  5475. defm : VPatTernaryW_VV_VX<"int_riscv_vfwmsac", "PseudoVFWMSAC", AllWidenableFloatVectors>;
  5476. defm : VPatTernaryW_VV_VX<"int_riscv_vfwnmsac", "PseudoVFWNMSAC", AllWidenableFloatVectors>;
  5477. //===----------------------------------------------------------------------===//
  5478. // 13.8. Vector Floating-Point Square-Root Instruction
  5479. //===----------------------------------------------------------------------===//
  5480. defm : VPatUnaryV_V<"int_riscv_vfsqrt", "PseudoVFSQRT", AllFloatVectors>;
  5481. //===----------------------------------------------------------------------===//
  5482. // 13.9. Vector Floating-Point Reciprocal Square-Root Estimate Instruction
  5483. //===----------------------------------------------------------------------===//
  5484. defm : VPatUnaryV_V<"int_riscv_vfrsqrt7", "PseudoVFRSQRT7", AllFloatVectors>;
  5485. //===----------------------------------------------------------------------===//
  5486. // 13.10. Vector Floating-Point Reciprocal Estimate Instruction
  5487. //===----------------------------------------------------------------------===//
  5488. defm : VPatUnaryV_V<"int_riscv_vfrec7", "PseudoVFREC7", AllFloatVectors>;
  5489. //===----------------------------------------------------------------------===//
  5490. // 13.11. Vector Floating-Point Min/Max Instructions
  5491. //===----------------------------------------------------------------------===//
  5492. defm : VPatBinaryV_VV_VX<"int_riscv_vfmin", "PseudoVFMIN", AllFloatVectors>;
  5493. defm : VPatBinaryV_VV_VX<"int_riscv_vfmax", "PseudoVFMAX", AllFloatVectors>;
  5494. //===----------------------------------------------------------------------===//
  5495. // 13.12. Vector Floating-Point Sign-Injection Instructions
  5496. //===----------------------------------------------------------------------===//
  5497. defm : VPatBinaryV_VV_VX<"int_riscv_vfsgnj", "PseudoVFSGNJ", AllFloatVectors>;
  5498. defm : VPatBinaryV_VV_VX<"int_riscv_vfsgnjn", "PseudoVFSGNJN", AllFloatVectors>;
  5499. defm : VPatBinaryV_VV_VX<"int_riscv_vfsgnjx", "PseudoVFSGNJX", AllFloatVectors>;
  5500. //===----------------------------------------------------------------------===//
  5501. // 13.13. Vector Floating-Point Compare Instructions
  5502. //===----------------------------------------------------------------------===//
  5503. defm : VPatBinaryM_VV_VX<"int_riscv_vmfeq", "PseudoVMFEQ", AllFloatVectors>;
  5504. defm : VPatBinaryM_VV_VX<"int_riscv_vmfle", "PseudoVMFLE", AllFloatVectors>;
  5505. defm : VPatBinaryM_VV_VX<"int_riscv_vmflt", "PseudoVMFLT", AllFloatVectors>;
  5506. defm : VPatBinaryM_VV_VX<"int_riscv_vmfne", "PseudoVMFNE", AllFloatVectors>;
  5507. defm : VPatBinaryM_VX<"int_riscv_vmfgt", "PseudoVMFGT", AllFloatVectors>;
  5508. defm : VPatBinaryM_VX<"int_riscv_vmfge", "PseudoVMFGE", AllFloatVectors>;
  5509. defm : VPatBinarySwappedM_VV<"int_riscv_vmfgt", "PseudoVMFLT", AllFloatVectors>;
  5510. defm : VPatBinarySwappedM_VV<"int_riscv_vmfge", "PseudoVMFLE", AllFloatVectors>;
  5511. //===----------------------------------------------------------------------===//
  5512. // 13.14. Vector Floating-Point Classify Instruction
  5513. //===----------------------------------------------------------------------===//
  5514. defm : VPatConversionVI_VF<"int_riscv_vfclass", "PseudoVFCLASS">;
  5515. //===----------------------------------------------------------------------===//
  5516. // 13.15. Vector Floating-Point Merge Instruction
  5517. //===----------------------------------------------------------------------===//
  5518. // We can use vmerge.vvm to support vector-vector vfmerge.
  5519. // NOTE: Clang previously used int_riscv_vfmerge for vector-vector, but now uses
  5520. // int_riscv_vmerge. Support both for compatibility.
  5521. defm : VPatBinaryV_VM_TAIL<"int_riscv_vmerge", "PseudoVMERGE",
  5522. /*CarryOut = */0, /*vtilist=*/AllFloatVectors>;
  5523. defm : VPatBinaryV_VM_TAIL<"int_riscv_vfmerge", "PseudoVMERGE",
  5524. /*CarryOut = */0, /*vtilist=*/AllFloatVectors>;
  5525. defm : VPatBinaryV_XM_TAIL<"int_riscv_vfmerge", "PseudoVFMERGE",
  5526. /*CarryOut = */0, /*vtilist=*/AllFloatVectors>;
  5527. foreach fvti = AllFloatVectors in {
  5528. defvar instr = !cast<Instruction>("PseudoVMERGE_VIM_"#fvti.LMul.MX);
  5529. def : Pat<(fvti.Vector (int_riscv_vfmerge (fvti.Vector undef),
  5530. (fvti.Vector fvti.RegClass:$rs2),
  5531. (fvti.Scalar (fpimm0)),
  5532. (fvti.Mask V0), VLOpFrag)),
  5533. (instr fvti.RegClass:$rs2, 0, (fvti.Mask V0), GPR:$vl, fvti.Log2SEW)>;
  5534. defvar instr_tu = !cast<Instruction>("PseudoVMERGE_VIM_"#fvti.LMul.MX#"_TU");
  5535. def : Pat<(fvti.Vector (int_riscv_vfmerge (fvti.Vector fvti.RegClass:$merge),
  5536. (fvti.Vector fvti.RegClass:$rs2),
  5537. (fvti.Scalar (fpimm0)),
  5538. (fvti.Mask V0), VLOpFrag)),
  5539. (instr_tu fvti.RegClass:$merge, fvti.RegClass:$rs2, 0,
  5540. (fvti.Mask V0), GPR:$vl, fvti.Log2SEW)>;
  5541. }
  5542. //===----------------------------------------------------------------------===//
  5543. // 13.17. Single-Width Floating-Point/Integer Type-Convert Instructions
  5544. //===----------------------------------------------------------------------===//
  5545. defm : VPatConversionVI_VF<"int_riscv_vfcvt_xu_f_v", "PseudoVFCVT_XU_F">;
  5546. defm : VPatConversionVI_VF<"int_riscv_vfcvt_rtz_xu_f_v", "PseudoVFCVT_RTZ_XU_F">;
  5547. defm : VPatConversionVI_VF<"int_riscv_vfcvt_x_f_v", "PseudoVFCVT_X_F">;
  5548. defm : VPatConversionVI_VF<"int_riscv_vfcvt_rtz_x_f_v", "PseudoVFCVT_RTZ_X_F">;
  5549. defm : VPatConversionVF_VI<"int_riscv_vfcvt_f_x_v", "PseudoVFCVT_F_X">;
  5550. defm : VPatConversionVF_VI<"int_riscv_vfcvt_f_xu_v", "PseudoVFCVT_F_XU">;
  5551. //===----------------------------------------------------------------------===//
  5552. // 13.18. Widening Floating-Point/Integer Type-Convert Instructions
  5553. //===----------------------------------------------------------------------===//
  5554. defm : VPatConversionWI_VF<"int_riscv_vfwcvt_xu_f_v", "PseudoVFWCVT_XU_F">;
  5555. defm : VPatConversionWI_VF<"int_riscv_vfwcvt_x_f_v", "PseudoVFWCVT_X_F">;
  5556. defm : VPatConversionWI_VF<"int_riscv_vfwcvt_rtz_xu_f_v", "PseudoVFWCVT_RTZ_XU_F">;
  5557. defm : VPatConversionWI_VF<"int_riscv_vfwcvt_rtz_x_f_v", "PseudoVFWCVT_RTZ_X_F">;
  5558. defm : VPatConversionWF_VI<"int_riscv_vfwcvt_f_xu_v", "PseudoVFWCVT_F_XU">;
  5559. defm : VPatConversionWF_VI<"int_riscv_vfwcvt_f_x_v", "PseudoVFWCVT_F_X">;
  5560. defm : VPatConversionWF_VF<"int_riscv_vfwcvt_f_f_v", "PseudoVFWCVT_F_F">;
  5561. //===----------------------------------------------------------------------===//
  5562. // 13.19. Narrowing Floating-Point/Integer Type-Convert Instructions
  5563. //===----------------------------------------------------------------------===//
  5564. defm : VPatConversionVI_WF<"int_riscv_vfncvt_xu_f_w", "PseudoVFNCVT_XU_F">;
  5565. defm : VPatConversionVI_WF<"int_riscv_vfncvt_x_f_w", "PseudoVFNCVT_X_F">;
  5566. defm : VPatConversionVI_WF<"int_riscv_vfncvt_rtz_xu_f_w", "PseudoVFNCVT_RTZ_XU_F">;
  5567. defm : VPatConversionVI_WF<"int_riscv_vfncvt_rtz_x_f_w", "PseudoVFNCVT_RTZ_X_F">;
  5568. defm : VPatConversionVF_WI <"int_riscv_vfncvt_f_xu_w", "PseudoVFNCVT_F_XU">;
  5569. defm : VPatConversionVF_WI <"int_riscv_vfncvt_f_x_w", "PseudoVFNCVT_F_X">;
  5570. defm : VPatConversionVF_WF<"int_riscv_vfncvt_f_f_w", "PseudoVFNCVT_F_F">;
  5571. defm : VPatConversionVF_WF<"int_riscv_vfncvt_rod_f_f_w", "PseudoVFNCVT_ROD_F_F">;
  5572. } // Predicates = [HasVInstructionsAnyF]
  5573. //===----------------------------------------------------------------------===//
  5574. // 14. Vector Reduction Operations
  5575. //===----------------------------------------------------------------------===//
  5576. let Predicates = [HasVInstructions] in {
  5577. //===----------------------------------------------------------------------===//
  5578. // 14.1. Vector Single-Width Integer Reduction Instructions
  5579. //===----------------------------------------------------------------------===//
  5580. defm : VPatReductionV_VS<"int_riscv_vredsum", "PseudoVREDSUM">;
  5581. defm : VPatReductionV_VS<"int_riscv_vredand", "PseudoVREDAND">;
  5582. defm : VPatReductionV_VS<"int_riscv_vredor", "PseudoVREDOR">;
  5583. defm : VPatReductionV_VS<"int_riscv_vredxor", "PseudoVREDXOR">;
  5584. defm : VPatReductionV_VS<"int_riscv_vredminu", "PseudoVREDMINU">;
  5585. defm : VPatReductionV_VS<"int_riscv_vredmin", "PseudoVREDMIN">;
  5586. defm : VPatReductionV_VS<"int_riscv_vredmaxu", "PseudoVREDMAXU">;
  5587. defm : VPatReductionV_VS<"int_riscv_vredmax", "PseudoVREDMAX">;
  5588. //===----------------------------------------------------------------------===//
  5589. // 14.2. Vector Widening Integer Reduction Instructions
  5590. //===----------------------------------------------------------------------===//
  5591. defm : VPatReductionW_VS<"int_riscv_vwredsumu", "PseudoVWREDSUMU">;
  5592. defm : VPatReductionW_VS<"int_riscv_vwredsum", "PseudoVWREDSUM">;
  5593. } // Predicates = [HasVInstructions]
  5594. let Predicates = [HasVInstructionsAnyF] in {
  5595. //===----------------------------------------------------------------------===//
  5596. // 14.3. Vector Single-Width Floating-Point Reduction Instructions
  5597. //===----------------------------------------------------------------------===//
  5598. defm : VPatReductionV_VS<"int_riscv_vfredosum", "PseudoVFREDOSUM", /*IsFloat=*/1>;
  5599. defm : VPatReductionV_VS<"int_riscv_vfredusum", "PseudoVFREDUSUM", /*IsFloat=*/1>;
  5600. defm : VPatReductionV_VS<"int_riscv_vfredmin", "PseudoVFREDMIN", /*IsFloat=*/1>;
  5601. defm : VPatReductionV_VS<"int_riscv_vfredmax", "PseudoVFREDMAX", /*IsFloat=*/1>;
  5602. //===----------------------------------------------------------------------===//
  5603. // 14.4. Vector Widening Floating-Point Reduction Instructions
  5604. //===----------------------------------------------------------------------===//
  5605. defm : VPatReductionW_VS<"int_riscv_vfwredusum", "PseudoVFWREDUSUM", /*IsFloat=*/1>;
  5606. defm : VPatReductionW_VS<"int_riscv_vfwredosum", "PseudoVFWREDOSUM", /*IsFloat=*/1>;
  5607. } // Predicates = [HasVInstructionsAnyF]
  5608. //===----------------------------------------------------------------------===//
  5609. // 15. Vector Mask Instructions
  5610. //===----------------------------------------------------------------------===//
  5611. let Predicates = [HasVInstructions] in {
  5612. //===----------------------------------------------------------------------===//
  5613. // 15.1 Vector Mask-Register Logical Instructions
  5614. //===----------------------------------------------------------------------===//
  5615. defm : VPatBinaryM_MM<"int_riscv_vmand", "PseudoVMAND">;
  5616. defm : VPatBinaryM_MM<"int_riscv_vmnand", "PseudoVMNAND">;
  5617. defm : VPatBinaryM_MM<"int_riscv_vmandn", "PseudoVMANDN">;
  5618. defm : VPatBinaryM_MM<"int_riscv_vmxor", "PseudoVMXOR">;
  5619. defm : VPatBinaryM_MM<"int_riscv_vmor", "PseudoVMOR">;
  5620. defm : VPatBinaryM_MM<"int_riscv_vmnor", "PseudoVMNOR">;
  5621. defm : VPatBinaryM_MM<"int_riscv_vmorn", "PseudoVMORN">;
  5622. defm : VPatBinaryM_MM<"int_riscv_vmxnor", "PseudoVMXNOR">;
  5623. // pseudo instructions
  5624. defm : VPatNullaryM<"int_riscv_vmclr", "PseudoVMCLR">;
  5625. defm : VPatNullaryM<"int_riscv_vmset", "PseudoVMSET">;
  5626. //===----------------------------------------------------------------------===//
  5627. // 15.2. Vector count population in mask vcpop.m
  5628. //===----------------------------------------------------------------------===//
  5629. defm : VPatUnaryS_M<"int_riscv_vcpop", "PseudoVCPOP">;
  5630. //===----------------------------------------------------------------------===//
  5631. // 15.3. vfirst find-first-set mask bit
  5632. //===----------------------------------------------------------------------===//
  5633. defm : VPatUnaryS_M<"int_riscv_vfirst", "PseudoVFIRST">;
  5634. //===----------------------------------------------------------------------===//
  5635. // 15.4. vmsbf.m set-before-first mask bit
  5636. //===----------------------------------------------------------------------===//
  5637. defm : VPatUnaryM_M<"int_riscv_vmsbf", "PseudoVMSBF">;
  5638. //===----------------------------------------------------------------------===//
  5639. // 15.5. vmsif.m set-including-first mask bit
  5640. //===----------------------------------------------------------------------===//
  5641. defm : VPatUnaryM_M<"int_riscv_vmsif", "PseudoVMSIF">;
  5642. //===----------------------------------------------------------------------===//
  5643. // 15.6. vmsof.m set-only-first mask bit
  5644. //===----------------------------------------------------------------------===//
  5645. defm : VPatUnaryM_M<"int_riscv_vmsof", "PseudoVMSOF">;
  5646. //===----------------------------------------------------------------------===//
  5647. // 15.8. Vector Iota Instruction
  5648. //===----------------------------------------------------------------------===//
  5649. defm : VPatUnaryV_M<"int_riscv_viota", "PseudoVIOTA">;
  5650. //===----------------------------------------------------------------------===//
  5651. // 15.9. Vector Element Index Instruction
  5652. //===----------------------------------------------------------------------===//
  5653. defm : VPatNullaryV<"int_riscv_vid", "PseudoVID">;
  5654. } // Predicates = [HasVInstructions]
  5655. //===----------------------------------------------------------------------===//
  5656. // 16. Vector Permutation Instructions
  5657. //===----------------------------------------------------------------------===//
  5658. //===----------------------------------------------------------------------===//
  5659. // 16.1. Integer Scalar Move Instructions
  5660. //===----------------------------------------------------------------------===//
  5661. let Predicates = [HasVInstructions] in {
  5662. foreach vti = AllIntegerVectors in {
  5663. def : Pat<(riscv_vmv_x_s (vti.Vector vti.RegClass:$rs2)),
  5664. (!cast<Instruction>("PseudoVMV_X_S_" # vti.LMul.MX) $rs2, vti.Log2SEW)>;
  5665. // vmv.s.x is handled with a custom node in RISCVInstrInfoVVLPatterns.td
  5666. }
  5667. } // Predicates = [HasVInstructions]
  5668. //===----------------------------------------------------------------------===//
  5669. // 16.2. Floating-Point Scalar Move Instructions
  5670. //===----------------------------------------------------------------------===//
  5671. let Predicates = [HasVInstructionsAnyF] in {
  5672. foreach fvti = AllFloatVectors in {
  5673. def : Pat<(fvti.Vector (int_riscv_vfmv_s_f (fvti.Vector fvti.RegClass:$rs1),
  5674. (fvti.Scalar fvti.ScalarRegClass:$rs2), VLOpFrag)),
  5675. (!cast<Instruction>("PseudoVFMV_S_"#fvti.ScalarSuffix#"_" #
  5676. fvti.LMul.MX)
  5677. (fvti.Vector $rs1),
  5678. (fvti.Scalar fvti.ScalarRegClass:$rs2),
  5679. GPR:$vl, fvti.Log2SEW)>;
  5680. def : Pat<(fvti.Vector (int_riscv_vfmv_s_f (fvti.Vector fvti.RegClass:$rs1),
  5681. (fvti.Scalar (fpimm0)), VLOpFrag)),
  5682. (!cast<Instruction>("PseudoVMV_S_X_" # fvti.LMul.MX)
  5683. (fvti.Vector $rs1), X0, GPR:$vl, fvti.Log2SEW)>;
  5684. }
  5685. } // Predicates = [HasVInstructionsAnyF]
  5686. //===----------------------------------------------------------------------===//
  5687. // 16.3. Vector Slide Instructions
  5688. //===----------------------------------------------------------------------===//
  5689. let Predicates = [HasVInstructions] in {
  5690. defm : VPatTernaryV_VX_VI<"int_riscv_vslideup", "PseudoVSLIDEUP", AllIntegerVectors, uimm5>;
  5691. defm : VPatTernaryV_VX_VI<"int_riscv_vslidedown", "PseudoVSLIDEDOWN", AllIntegerVectors, uimm5>;
  5692. defm : VPatBinaryV_VX<"int_riscv_vslide1up", "PseudoVSLIDE1UP", AllIntegerVectors>;
  5693. defm : VPatBinaryV_VX<"int_riscv_vslide1down", "PseudoVSLIDE1DOWN", AllIntegerVectors>;
  5694. } // Predicates = [HasVInstructions]
  5695. let Predicates = [HasVInstructionsAnyF] in {
  5696. defm : VPatTernaryV_VX_VI<"int_riscv_vslideup", "PseudoVSLIDEUP", AllFloatVectors, uimm5>;
  5697. defm : VPatTernaryV_VX_VI<"int_riscv_vslidedown", "PseudoVSLIDEDOWN", AllFloatVectors, uimm5>;
  5698. defm : VPatBinaryV_VX<"int_riscv_vfslide1up", "PseudoVFSLIDE1UP", AllFloatVectors>;
  5699. defm : VPatBinaryV_VX<"int_riscv_vfslide1down", "PseudoVFSLIDE1DOWN", AllFloatVectors>;
  5700. } // Predicates = [HasVInstructionsAnyF]
  5701. //===----------------------------------------------------------------------===//
  5702. // 16.4. Vector Register Gather Instructions
  5703. //===----------------------------------------------------------------------===//
  5704. let Predicates = [HasVInstructions] in {
  5705. defm : VPatBinaryV_VV_VX_VI_INT<"int_riscv_vrgather", "PseudoVRGATHER",
  5706. AllIntegerVectors, uimm5>;
  5707. defm : VPatBinaryV_VV_INT_EEW<"int_riscv_vrgatherei16_vv", "PseudoVRGATHEREI16",
  5708. /* eew */ 16, AllIntegerVectors>;
  5709. } // Predicates = [HasVInstructions]
  5710. let Predicates = [HasVInstructionsAnyF] in {
  5711. defm : VPatBinaryV_VV_VX_VI_INT<"int_riscv_vrgather", "PseudoVRGATHER",
  5712. AllFloatVectors, uimm5>;
  5713. defm : VPatBinaryV_VV_INT_EEW<"int_riscv_vrgatherei16_vv", "PseudoVRGATHEREI16",
  5714. /* eew */ 16, AllFloatVectors>;
  5715. } // Predicates = [HasVInstructionsAnyF]
  5716. //===----------------------------------------------------------------------===//
  5717. // 16.5. Vector Compress Instruction
  5718. //===----------------------------------------------------------------------===//
  5719. let Predicates = [HasVInstructions] in {
  5720. defm : VPatUnaryV_V_AnyMask<"int_riscv_vcompress", "PseudoVCOMPRESS", AllIntegerVectors>;
  5721. } // Predicates = [HasVInstructions]
  5722. let Predicates = [HasVInstructionsAnyF] in {
  5723. defm : VPatUnaryV_V_AnyMask<"int_riscv_vcompress", "PseudoVCOMPRESS", AllFloatVectors>;
  5724. } // Predicates = [HasVInstructionsAnyF]
  5725. // Include the non-intrinsic ISel patterns
  5726. include "RISCVInstrInfoVVLPatterns.td"
  5727. include "RISCVInstrInfoVSDPatterns.td"