123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405 |
- //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "AArch64TargetTransformInfo.h"
- #include "AArch64ExpandImm.h"
- #include "AArch64PerfectShuffle.h"
- #include "MCTargetDesc/AArch64AddressingModes.h"
- #include "llvm/Analysis/IVDescriptors.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/CodeGen/BasicTTIImpl.h"
- #include "llvm/CodeGen/CostTable.h"
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/IntrinsicsAArch64.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Transforms/InstCombine/InstCombiner.h"
- #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
- #include <algorithm>
- #include <optional>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "aarch64tti"
- static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
- cl::init(true), cl::Hidden);
- static cl::opt<unsigned> SVEGatherOverhead("sve-gather-overhead", cl::init(10),
- cl::Hidden);
- static cl::opt<unsigned> SVEScatterOverhead("sve-scatter-overhead",
- cl::init(10), cl::Hidden);
- namespace {
- class TailFoldingKind {
- private:
- uint8_t Bits = 0; // Currently defaults to disabled.
- public:
- enum TailFoldingOpts {
- TFDisabled = 0x0,
- TFReductions = 0x01,
- TFRecurrences = 0x02,
- TFSimple = 0x80,
- TFAll = TFReductions | TFRecurrences | TFSimple
- };
- void operator=(const std::string &Val) {
- if (Val.empty())
- return;
- SmallVector<StringRef, 6> TailFoldTypes;
- StringRef(Val).split(TailFoldTypes, '+', -1, false);
- for (auto TailFoldType : TailFoldTypes) {
- if (TailFoldType == "disabled")
- Bits = 0;
- else if (TailFoldType == "all")
- Bits = TFAll;
- else if (TailFoldType == "default")
- Bits = 0; // Currently defaults to never tail-folding.
- else if (TailFoldType == "simple")
- add(TFSimple);
- else if (TailFoldType == "reductions")
- add(TFReductions);
- else if (TailFoldType == "recurrences")
- add(TFRecurrences);
- else if (TailFoldType == "noreductions")
- remove(TFReductions);
- else if (TailFoldType == "norecurrences")
- remove(TFRecurrences);
- else {
- errs()
- << "invalid argument " << TailFoldType.str()
- << " to -sve-tail-folding=; each element must be one of: disabled, "
- "all, default, simple, reductions, noreductions, recurrences, "
- "norecurrences\n";
- }
- }
- }
- operator uint8_t() const { return Bits; }
- void add(uint8_t Flag) { Bits |= Flag; }
- void remove(uint8_t Flag) { Bits &= ~Flag; }
- };
- } // namespace
- TailFoldingKind TailFoldingKindLoc;
- cl::opt<TailFoldingKind, true, cl::parser<std::string>> SVETailFolding(
- "sve-tail-folding",
- cl::desc(
- "Control the use of vectorisation using tail-folding for SVE:"
- "\ndisabled No loop types will vectorize using tail-folding"
- "\ndefault Uses the default tail-folding settings for the target "
- "CPU"
- "\nall All legal loop types will vectorize using tail-folding"
- "\nsimple Use tail-folding for simple loops (not reductions or "
- "recurrences)"
- "\nreductions Use tail-folding for loops containing reductions"
- "\nrecurrences Use tail-folding for loops containing fixed order "
- "recurrences"),
- cl::location(TailFoldingKindLoc));
- // Experimental option that will only be fully functional when the
- // code-generator is changed to use SVE instead of NEON for all fixed-width
- // operations.
- static cl::opt<bool> EnableFixedwidthAutovecInStreamingMode(
- "enable-fixedwidth-autovec-in-streaming-mode", cl::init(false), cl::Hidden);
- // Experimental option that will only be fully functional when the cost-model
- // and code-generator have been changed to avoid using scalable vector
- // instructions that are not legal in streaming SVE mode.
- static cl::opt<bool> EnableScalableAutovecInStreamingMode(
- "enable-scalable-autovec-in-streaming-mode", cl::init(false), cl::Hidden);
- bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
- const Function *Callee) const {
- SMEAttrs CallerAttrs(*Caller);
- SMEAttrs CalleeAttrs(*Callee);
- if (CallerAttrs.requiresSMChange(CalleeAttrs,
- /*BodyOverridesInterface=*/true) ||
- CallerAttrs.requiresLazySave(CalleeAttrs) ||
- CalleeAttrs.hasNewZAInterface())
- return false;
- const TargetMachine &TM = getTLI()->getTargetMachine();
- const FeatureBitset &CallerBits =
- TM.getSubtargetImpl(*Caller)->getFeatureBits();
- const FeatureBitset &CalleeBits =
- TM.getSubtargetImpl(*Callee)->getFeatureBits();
- // Inline a callee if its target-features are a subset of the callers
- // target-features.
- return (CallerBits & CalleeBits) == CalleeBits;
- }
- bool AArch64TTIImpl::shouldMaximizeVectorBandwidth(
- TargetTransformInfo::RegisterKind K) const {
- assert(K != TargetTransformInfo::RGK_Scalar);
- return K == TargetTransformInfo::RGK_FixedWidthVector;
- }
- /// Calculate the cost of materializing a 64-bit value. This helper
- /// method might only calculate a fraction of a larger immediate. Therefore it
- /// is valid to return a cost of ZERO.
- InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) {
- // Check if the immediate can be encoded within an instruction.
- if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
- return 0;
- if (Val < 0)
- Val = ~Val;
- // Calculate how many moves we will need to materialize this constant.
- SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
- AArch64_IMM::expandMOVImm(Val, 64, Insn);
- return Insn.size();
- }
- /// Calculate the cost of materializing the given constant.
- InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
- TTI::TargetCostKind CostKind) {
- assert(Ty->isIntegerTy());
- unsigned BitSize = Ty->getPrimitiveSizeInBits();
- if (BitSize == 0)
- return ~0U;
- // Sign-extend all constants to a multiple of 64-bit.
- APInt ImmVal = Imm;
- if (BitSize & 0x3f)
- ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
- // Split the constant into 64-bit chunks and calculate the cost for each
- // chunk.
- InstructionCost Cost = 0;
- for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
- APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
- int64_t Val = Tmp.getSExtValue();
- Cost += getIntImmCost(Val);
- }
- // We need at least one instruction to materialze the constant.
- return std::max<InstructionCost>(1, Cost);
- }
- InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
- const APInt &Imm, Type *Ty,
- TTI::TargetCostKind CostKind,
- Instruction *Inst) {
- assert(Ty->isIntegerTy());
- unsigned BitSize = Ty->getPrimitiveSizeInBits();
- // There is no cost model for constants with a bit size of 0. Return TCC_Free
- // here, so that constant hoisting will ignore this constant.
- if (BitSize == 0)
- return TTI::TCC_Free;
- unsigned ImmIdx = ~0U;
- switch (Opcode) {
- default:
- return TTI::TCC_Free;
- case Instruction::GetElementPtr:
- // Always hoist the base address of a GetElementPtr.
- if (Idx == 0)
- return 2 * TTI::TCC_Basic;
- return TTI::TCC_Free;
- case Instruction::Store:
- ImmIdx = 0;
- break;
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::ICmp:
- ImmIdx = 1;
- break;
- // Always return TCC_Free for the shift value of a shift instruction.
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- if (Idx == 1)
- return TTI::TCC_Free;
- break;
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::IntToPtr:
- case Instruction::PtrToInt:
- case Instruction::BitCast:
- case Instruction::PHI:
- case Instruction::Call:
- case Instruction::Select:
- case Instruction::Ret:
- case Instruction::Load:
- break;
- }
- if (Idx == ImmIdx) {
- int NumConstants = (BitSize + 63) / 64;
- InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
- return (Cost <= NumConstants * TTI::TCC_Basic)
- ? static_cast<int>(TTI::TCC_Free)
- : Cost;
- }
- return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
- }
- InstructionCost
- AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
- const APInt &Imm, Type *Ty,
- TTI::TargetCostKind CostKind) {
- assert(Ty->isIntegerTy());
- unsigned BitSize = Ty->getPrimitiveSizeInBits();
- // There is no cost model for constants with a bit size of 0. Return TCC_Free
- // here, so that constant hoisting will ignore this constant.
- if (BitSize == 0)
- return TTI::TCC_Free;
- // Most (all?) AArch64 intrinsics do not support folding immediates into the
- // selected instruction, so we compute the materialization cost for the
- // immediate directly.
- if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
- return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
- switch (IID) {
- default:
- return TTI::TCC_Free;
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::usub_with_overflow:
- case Intrinsic::smul_with_overflow:
- case Intrinsic::umul_with_overflow:
- if (Idx == 1) {
- int NumConstants = (BitSize + 63) / 64;
- InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
- return (Cost <= NumConstants * TTI::TCC_Basic)
- ? static_cast<int>(TTI::TCC_Free)
- : Cost;
- }
- break;
- case Intrinsic::experimental_stackmap:
- if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
- return TTI::TCC_Free;
- break;
- case Intrinsic::experimental_patchpoint_void:
- case Intrinsic::experimental_patchpoint_i64:
- if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
- return TTI::TCC_Free;
- break;
- case Intrinsic::experimental_gc_statepoint:
- if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
- return TTI::TCC_Free;
- break;
- }
- return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
- }
- TargetTransformInfo::PopcntSupportKind
- AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
- assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
- if (TyWidth == 32 || TyWidth == 64)
- return TTI::PSK_FastHardware;
- // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
- return TTI::PSK_Software;
- }
- InstructionCost
- AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
- TTI::TargetCostKind CostKind) {
- auto *RetTy = ICA.getReturnType();
- switch (ICA.getID()) {
- case Intrinsic::umin:
- case Intrinsic::umax:
- case Intrinsic::smin:
- case Intrinsic::smax: {
- static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
- MVT::v8i16, MVT::v2i32, MVT::v4i32};
- auto LT = getTypeLegalizationCost(RetTy);
- // v2i64 types get converted to cmp+bif hence the cost of 2
- if (LT.second == MVT::v2i64)
- return LT.first * 2;
- if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; }))
- return LT.first;
- break;
- }
- case Intrinsic::sadd_sat:
- case Intrinsic::ssub_sat:
- case Intrinsic::uadd_sat:
- case Intrinsic::usub_sat: {
- static const auto ValidSatTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
- MVT::v8i16, MVT::v2i32, MVT::v4i32,
- MVT::v2i64};
- auto LT = getTypeLegalizationCost(RetTy);
- // This is a base cost of 1 for the vadd, plus 3 extract shifts if we
- // need to extend the type, as it uses shr(qadd(shl, shl)).
- unsigned Instrs =
- LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4;
- if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; }))
- return LT.first * Instrs;
- break;
- }
- case Intrinsic::abs: {
- static const auto ValidAbsTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
- MVT::v8i16, MVT::v2i32, MVT::v4i32,
- MVT::v2i64};
- auto LT = getTypeLegalizationCost(RetTy);
- if (any_of(ValidAbsTys, [<](MVT M) { return M == LT.second; }))
- return LT.first;
- break;
- }
- case Intrinsic::experimental_stepvector: {
- InstructionCost Cost = 1; // Cost of the `index' instruction
- auto LT = getTypeLegalizationCost(RetTy);
- // Legalisation of illegal vectors involves an `index' instruction plus
- // (LT.first - 1) vector adds.
- if (LT.first > 1) {
- Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext());
- InstructionCost AddCost =
- getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind);
- Cost += AddCost * (LT.first - 1);
- }
- return Cost;
- }
- case Intrinsic::bitreverse: {
- static const CostTblEntry BitreverseTbl[] = {
- {Intrinsic::bitreverse, MVT::i32, 1},
- {Intrinsic::bitreverse, MVT::i64, 1},
- {Intrinsic::bitreverse, MVT::v8i8, 1},
- {Intrinsic::bitreverse, MVT::v16i8, 1},
- {Intrinsic::bitreverse, MVT::v4i16, 2},
- {Intrinsic::bitreverse, MVT::v8i16, 2},
- {Intrinsic::bitreverse, MVT::v2i32, 2},
- {Intrinsic::bitreverse, MVT::v4i32, 2},
- {Intrinsic::bitreverse, MVT::v1i64, 2},
- {Intrinsic::bitreverse, MVT::v2i64, 2},
- };
- const auto LegalisationCost = getTypeLegalizationCost(RetTy);
- const auto *Entry =
- CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second);
- if (Entry) {
- // Cost Model is using the legal type(i32) that i8 and i16 will be
- // converted to +1 so that we match the actual lowering cost
- if (TLI->getValueType(DL, RetTy, true) == MVT::i8 ||
- TLI->getValueType(DL, RetTy, true) == MVT::i16)
- return LegalisationCost.first * Entry->Cost + 1;
- return LegalisationCost.first * Entry->Cost;
- }
- break;
- }
- case Intrinsic::ctpop: {
- if (!ST->hasNEON()) {
- // 32-bit or 64-bit ctpop without NEON is 12 instructions.
- return getTypeLegalizationCost(RetTy).first * 12;
- }
- static const CostTblEntry CtpopCostTbl[] = {
- {ISD::CTPOP, MVT::v2i64, 4},
- {ISD::CTPOP, MVT::v4i32, 3},
- {ISD::CTPOP, MVT::v8i16, 2},
- {ISD::CTPOP, MVT::v16i8, 1},
- {ISD::CTPOP, MVT::i64, 4},
- {ISD::CTPOP, MVT::v2i32, 3},
- {ISD::CTPOP, MVT::v4i16, 2},
- {ISD::CTPOP, MVT::v8i8, 1},
- {ISD::CTPOP, MVT::i32, 5},
- };
- auto LT = getTypeLegalizationCost(RetTy);
- MVT MTy = LT.second;
- if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) {
- // Extra cost of +1 when illegal vector types are legalized by promoting
- // the integer type.
- int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() !=
- RetTy->getScalarSizeInBits()
- ? 1
- : 0;
- return LT.first * Entry->Cost + ExtraCost;
- }
- break;
- }
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::usub_with_overflow:
- case Intrinsic::smul_with_overflow:
- case Intrinsic::umul_with_overflow: {
- static const CostTblEntry WithOverflowCostTbl[] = {
- {Intrinsic::sadd_with_overflow, MVT::i8, 3},
- {Intrinsic::uadd_with_overflow, MVT::i8, 3},
- {Intrinsic::sadd_with_overflow, MVT::i16, 3},
- {Intrinsic::uadd_with_overflow, MVT::i16, 3},
- {Intrinsic::sadd_with_overflow, MVT::i32, 1},
- {Intrinsic::uadd_with_overflow, MVT::i32, 1},
- {Intrinsic::sadd_with_overflow, MVT::i64, 1},
- {Intrinsic::uadd_with_overflow, MVT::i64, 1},
- {Intrinsic::ssub_with_overflow, MVT::i8, 3},
- {Intrinsic::usub_with_overflow, MVT::i8, 3},
- {Intrinsic::ssub_with_overflow, MVT::i16, 3},
- {Intrinsic::usub_with_overflow, MVT::i16, 3},
- {Intrinsic::ssub_with_overflow, MVT::i32, 1},
- {Intrinsic::usub_with_overflow, MVT::i32, 1},
- {Intrinsic::ssub_with_overflow, MVT::i64, 1},
- {Intrinsic::usub_with_overflow, MVT::i64, 1},
- {Intrinsic::smul_with_overflow, MVT::i8, 5},
- {Intrinsic::umul_with_overflow, MVT::i8, 4},
- {Intrinsic::smul_with_overflow, MVT::i16, 5},
- {Intrinsic::umul_with_overflow, MVT::i16, 4},
- {Intrinsic::smul_with_overflow, MVT::i32, 2}, // eg umull;tst
- {Intrinsic::umul_with_overflow, MVT::i32, 2}, // eg umull;cmp sxtw
- {Intrinsic::smul_with_overflow, MVT::i64, 3}, // eg mul;smulh;cmp
- {Intrinsic::umul_with_overflow, MVT::i64, 3}, // eg mul;umulh;cmp asr
- };
- EVT MTy = TLI->getValueType(DL, RetTy->getContainedType(0), true);
- if (MTy.isSimple())
- if (const auto *Entry = CostTableLookup(WithOverflowCostTbl, ICA.getID(),
- MTy.getSimpleVT()))
- return Entry->Cost;
- break;
- }
- case Intrinsic::fptosi_sat:
- case Intrinsic::fptoui_sat: {
- if (ICA.getArgTypes().empty())
- break;
- bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat;
- auto LT = getTypeLegalizationCost(ICA.getArgTypes()[0]);
- EVT MTy = TLI->getValueType(DL, RetTy);
- // Check for the legal types, which are where the size of the input and the
- // output are the same, or we are using cvt f64->i32 or f32->i64.
- if ((LT.second == MVT::f32 || LT.second == MVT::f64 ||
- LT.second == MVT::v2f32 || LT.second == MVT::v4f32 ||
- LT.second == MVT::v2f64) &&
- (LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits() ||
- (LT.second == MVT::f64 && MTy == MVT::i32) ||
- (LT.second == MVT::f32 && MTy == MVT::i64)))
- return LT.first;
- // Similarly for fp16 sizes
- if (ST->hasFullFP16() &&
- ((LT.second == MVT::f16 && MTy == MVT::i32) ||
- ((LT.second == MVT::v4f16 || LT.second == MVT::v8f16) &&
- (LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits()))))
- return LT.first;
- // Otherwise we use a legal convert followed by a min+max
- if ((LT.second.getScalarType() == MVT::f32 ||
- LT.second.getScalarType() == MVT::f64 ||
- (ST->hasFullFP16() && LT.second.getScalarType() == MVT::f16)) &&
- LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) {
- Type *LegalTy =
- Type::getIntNTy(RetTy->getContext(), LT.second.getScalarSizeInBits());
- if (LT.second.isVector())
- LegalTy = VectorType::get(LegalTy, LT.second.getVectorElementCount());
- InstructionCost Cost = 1;
- IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin : Intrinsic::umin,
- LegalTy, {LegalTy, LegalTy});
- Cost += getIntrinsicInstrCost(Attrs1, CostKind);
- IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax : Intrinsic::umax,
- LegalTy, {LegalTy, LegalTy});
- Cost += getIntrinsicInstrCost(Attrs2, CostKind);
- return LT.first * Cost;
- }
- break;
- }
- default:
- break;
- }
- return BaseT::getIntrinsicInstrCost(ICA, CostKind);
- }
- /// The function will remove redundant reinterprets casting in the presence
- /// of the control flow
- static std::optional<Instruction *> processPhiNode(InstCombiner &IC,
- IntrinsicInst &II) {
- SmallVector<Instruction *, 32> Worklist;
- auto RequiredType = II.getType();
- auto *PN = dyn_cast<PHINode>(II.getArgOperand(0));
- assert(PN && "Expected Phi Node!");
- // Don't create a new Phi unless we can remove the old one.
- if (!PN->hasOneUse())
- return std::nullopt;
- for (Value *IncValPhi : PN->incoming_values()) {
- auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi);
- if (!Reinterpret ||
- Reinterpret->getIntrinsicID() !=
- Intrinsic::aarch64_sve_convert_to_svbool ||
- RequiredType != Reinterpret->getArgOperand(0)->getType())
- return std::nullopt;
- }
- // Create the new Phi
- LLVMContext &Ctx = PN->getContext();
- IRBuilder<> Builder(Ctx);
- Builder.SetInsertPoint(PN);
- PHINode *NPN = Builder.CreatePHI(RequiredType, PN->getNumIncomingValues());
- Worklist.push_back(PN);
- for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) {
- auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I));
- NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I));
- Worklist.push_back(Reinterpret);
- }
- // Cleanup Phi Node and reinterprets
- return IC.replaceInstUsesWith(II, NPN);
- }
- // (from_svbool (binop (to_svbool pred) (svbool_t _) (svbool_t _))))
- // => (binop (pred) (from_svbool _) (from_svbool _))
- //
- // The above transformation eliminates a `to_svbool` in the predicate
- // operand of bitwise operation `binop` by narrowing the vector width of
- // the operation. For example, it would convert a `<vscale x 16 x i1>
- // and` into a `<vscale x 4 x i1> and`. This is profitable because
- // to_svbool must zero the new lanes during widening, whereas
- // from_svbool is free.
- static std::optional<Instruction *>
- tryCombineFromSVBoolBinOp(InstCombiner &IC, IntrinsicInst &II) {
- auto BinOp = dyn_cast<IntrinsicInst>(II.getOperand(0));
- if (!BinOp)
- return std::nullopt;
- auto IntrinsicID = BinOp->getIntrinsicID();
- switch (IntrinsicID) {
- case Intrinsic::aarch64_sve_and_z:
- case Intrinsic::aarch64_sve_bic_z:
- case Intrinsic::aarch64_sve_eor_z:
- case Intrinsic::aarch64_sve_nand_z:
- case Intrinsic::aarch64_sve_nor_z:
- case Intrinsic::aarch64_sve_orn_z:
- case Intrinsic::aarch64_sve_orr_z:
- break;
- default:
- return std::nullopt;
- }
- auto BinOpPred = BinOp->getOperand(0);
- auto BinOpOp1 = BinOp->getOperand(1);
- auto BinOpOp2 = BinOp->getOperand(2);
- auto PredIntr = dyn_cast<IntrinsicInst>(BinOpPred);
- if (!PredIntr ||
- PredIntr->getIntrinsicID() != Intrinsic::aarch64_sve_convert_to_svbool)
- return std::nullopt;
- auto PredOp = PredIntr->getOperand(0);
- auto PredOpTy = cast<VectorType>(PredOp->getType());
- if (PredOpTy != II.getType())
- return std::nullopt;
- IRBuilder<> Builder(II.getContext());
- Builder.SetInsertPoint(&II);
- SmallVector<Value *> NarrowedBinOpArgs = {PredOp};
- auto NarrowBinOpOp1 = Builder.CreateIntrinsic(
- Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp1});
- NarrowedBinOpArgs.push_back(NarrowBinOpOp1);
- if (BinOpOp1 == BinOpOp2)
- NarrowedBinOpArgs.push_back(NarrowBinOpOp1);
- else
- NarrowedBinOpArgs.push_back(Builder.CreateIntrinsic(
- Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp2}));
- auto NarrowedBinOp =
- Builder.CreateIntrinsic(IntrinsicID, {PredOpTy}, NarrowedBinOpArgs);
- return IC.replaceInstUsesWith(II, NarrowedBinOp);
- }
- static std::optional<Instruction *>
- instCombineConvertFromSVBool(InstCombiner &IC, IntrinsicInst &II) {
- // If the reinterpret instruction operand is a PHI Node
- if (isa<PHINode>(II.getArgOperand(0)))
- return processPhiNode(IC, II);
- if (auto BinOpCombine = tryCombineFromSVBoolBinOp(IC, II))
- return BinOpCombine;
- SmallVector<Instruction *, 32> CandidatesForRemoval;
- Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr;
- const auto *IVTy = cast<VectorType>(II.getType());
- // Walk the chain of conversions.
- while (Cursor) {
- // If the type of the cursor has fewer lanes than the final result, zeroing
- // must take place, which breaks the equivalence chain.
- const auto *CursorVTy = cast<VectorType>(Cursor->getType());
- if (CursorVTy->getElementCount().getKnownMinValue() <
- IVTy->getElementCount().getKnownMinValue())
- break;
- // If the cursor has the same type as I, it is a viable replacement.
- if (Cursor->getType() == IVTy)
- EarliestReplacement = Cursor;
- auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor);
- // If this is not an SVE conversion intrinsic, this is the end of the chain.
- if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() ==
- Intrinsic::aarch64_sve_convert_to_svbool ||
- IntrinsicCursor->getIntrinsicID() ==
- Intrinsic::aarch64_sve_convert_from_svbool))
- break;
- CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor);
- Cursor = IntrinsicCursor->getOperand(0);
- }
- // If no viable replacement in the conversion chain was found, there is
- // nothing to do.
- if (!EarliestReplacement)
- return std::nullopt;
- return IC.replaceInstUsesWith(II, EarliestReplacement);
- }
- static std::optional<Instruction *> instCombineSVESel(InstCombiner &IC,
- IntrinsicInst &II) {
- IRBuilder<> Builder(&II);
- auto Select = Builder.CreateSelect(II.getOperand(0), II.getOperand(1),
- II.getOperand(2));
- return IC.replaceInstUsesWith(II, Select);
- }
- static std::optional<Instruction *> instCombineSVEDup(InstCombiner &IC,
- IntrinsicInst &II) {
- IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
- if (!Pg)
- return std::nullopt;
- if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
- return std::nullopt;
- const auto PTruePattern =
- cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
- if (PTruePattern != AArch64SVEPredPattern::vl1)
- return std::nullopt;
- // The intrinsic is inserting into lane zero so use an insert instead.
- auto *IdxTy = Type::getInt64Ty(II.getContext());
- auto *Insert = InsertElementInst::Create(
- II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0));
- Insert->insertBefore(&II);
- Insert->takeName(&II);
- return IC.replaceInstUsesWith(II, Insert);
- }
- static std::optional<Instruction *> instCombineSVEDupX(InstCombiner &IC,
- IntrinsicInst &II) {
- // Replace DupX with a regular IR splat.
- IRBuilder<> Builder(II.getContext());
- Builder.SetInsertPoint(&II);
- auto *RetTy = cast<ScalableVectorType>(II.getType());
- Value *Splat =
- Builder.CreateVectorSplat(RetTy->getElementCount(), II.getArgOperand(0));
- Splat->takeName(&II);
- return IC.replaceInstUsesWith(II, Splat);
- }
- static std::optional<Instruction *> instCombineSVECmpNE(InstCombiner &IC,
- IntrinsicInst &II) {
- LLVMContext &Ctx = II.getContext();
- IRBuilder<> Builder(Ctx);
- Builder.SetInsertPoint(&II);
- // Check that the predicate is all active
- auto *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(0));
- if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
- return std::nullopt;
- const auto PTruePattern =
- cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
- if (PTruePattern != AArch64SVEPredPattern::all)
- return std::nullopt;
- // Check that we have a compare of zero..
- auto *SplatValue =
- dyn_cast_or_null<ConstantInt>(getSplatValue(II.getArgOperand(2)));
- if (!SplatValue || !SplatValue->isZero())
- return std::nullopt;
- // ..against a dupq
- auto *DupQLane = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
- if (!DupQLane ||
- DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane)
- return std::nullopt;
- // Where the dupq is a lane 0 replicate of a vector insert
- if (!cast<ConstantInt>(DupQLane->getArgOperand(1))->isZero())
- return std::nullopt;
- auto *VecIns = dyn_cast<IntrinsicInst>(DupQLane->getArgOperand(0));
- if (!VecIns || VecIns->getIntrinsicID() != Intrinsic::vector_insert)
- return std::nullopt;
- // Where the vector insert is a fixed constant vector insert into undef at
- // index zero
- if (!isa<UndefValue>(VecIns->getArgOperand(0)))
- return std::nullopt;
- if (!cast<ConstantInt>(VecIns->getArgOperand(2))->isZero())
- return std::nullopt;
- auto *ConstVec = dyn_cast<Constant>(VecIns->getArgOperand(1));
- if (!ConstVec)
- return std::nullopt;
- auto *VecTy = dyn_cast<FixedVectorType>(ConstVec->getType());
- auto *OutTy = dyn_cast<ScalableVectorType>(II.getType());
- if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements())
- return std::nullopt;
- unsigned NumElts = VecTy->getNumElements();
- unsigned PredicateBits = 0;
- // Expand intrinsic operands to a 16-bit byte level predicate
- for (unsigned I = 0; I < NumElts; ++I) {
- auto *Arg = dyn_cast<ConstantInt>(ConstVec->getAggregateElement(I));
- if (!Arg)
- return std::nullopt;
- if (!Arg->isZero())
- PredicateBits |= 1 << (I * (16 / NumElts));
- }
- // If all bits are zero bail early with an empty predicate
- if (PredicateBits == 0) {
- auto *PFalse = Constant::getNullValue(II.getType());
- PFalse->takeName(&II);
- return IC.replaceInstUsesWith(II, PFalse);
- }
- // Calculate largest predicate type used (where byte predicate is largest)
- unsigned Mask = 8;
- for (unsigned I = 0; I < 16; ++I)
- if ((PredicateBits & (1 << I)) != 0)
- Mask |= (I % 8);
- unsigned PredSize = Mask & -Mask;
- auto *PredType = ScalableVectorType::get(
- Type::getInt1Ty(Ctx), AArch64::SVEBitsPerBlock / (PredSize * 8));
- // Ensure all relevant bits are set
- for (unsigned I = 0; I < 16; I += PredSize)
- if ((PredicateBits & (1 << I)) == 0)
- return std::nullopt;
- auto *PTruePat =
- ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
- auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
- {PredType}, {PTruePat});
- auto *ConvertToSVBool = Builder.CreateIntrinsic(
- Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue});
- auto *ConvertFromSVBool =
- Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool,
- {II.getType()}, {ConvertToSVBool});
- ConvertFromSVBool->takeName(&II);
- return IC.replaceInstUsesWith(II, ConvertFromSVBool);
- }
- static std::optional<Instruction *> instCombineSVELast(InstCombiner &IC,
- IntrinsicInst &II) {
- IRBuilder<> Builder(II.getContext());
- Builder.SetInsertPoint(&II);
- Value *Pg = II.getArgOperand(0);
- Value *Vec = II.getArgOperand(1);
- auto IntrinsicID = II.getIntrinsicID();
- bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta;
- // lastX(splat(X)) --> X
- if (auto *SplatVal = getSplatValue(Vec))
- return IC.replaceInstUsesWith(II, SplatVal);
- // If x and/or y is a splat value then:
- // lastX (binop (x, y)) --> binop(lastX(x), lastX(y))
- Value *LHS, *RHS;
- if (match(Vec, m_OneUse(m_BinOp(m_Value(LHS), m_Value(RHS))))) {
- if (isSplatValue(LHS) || isSplatValue(RHS)) {
- auto *OldBinOp = cast<BinaryOperator>(Vec);
- auto OpC = OldBinOp->getOpcode();
- auto *NewLHS =
- Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, LHS});
- auto *NewRHS =
- Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, RHS});
- auto *NewBinOp = BinaryOperator::CreateWithCopiedFlags(
- OpC, NewLHS, NewRHS, OldBinOp, OldBinOp->getName(), &II);
- return IC.replaceInstUsesWith(II, NewBinOp);
- }
- }
- auto *C = dyn_cast<Constant>(Pg);
- if (IsAfter && C && C->isNullValue()) {
- // The intrinsic is extracting lane 0 so use an extract instead.
- auto *IdxTy = Type::getInt64Ty(II.getContext());
- auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0));
- Extract->insertBefore(&II);
- Extract->takeName(&II);
- return IC.replaceInstUsesWith(II, Extract);
- }
- auto *IntrPG = dyn_cast<IntrinsicInst>(Pg);
- if (!IntrPG)
- return std::nullopt;
- if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
- return std::nullopt;
- const auto PTruePattern =
- cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue();
- // Can the intrinsic's predicate be converted to a known constant index?
- unsigned MinNumElts = getNumElementsFromSVEPredPattern(PTruePattern);
- if (!MinNumElts)
- return std::nullopt;
- unsigned Idx = MinNumElts - 1;
- // Increment the index if extracting the element after the last active
- // predicate element.
- if (IsAfter)
- ++Idx;
- // Ignore extracts whose index is larger than the known minimum vector
- // length. NOTE: This is an artificial constraint where we prefer to
- // maintain what the user asked for until an alternative is proven faster.
- auto *PgVTy = cast<ScalableVectorType>(Pg->getType());
- if (Idx >= PgVTy->getMinNumElements())
- return std::nullopt;
- // The intrinsic is extracting a fixed lane so use an extract instead.
- auto *IdxTy = Type::getInt64Ty(II.getContext());
- auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx));
- Extract->insertBefore(&II);
- Extract->takeName(&II);
- return IC.replaceInstUsesWith(II, Extract);
- }
- static std::optional<Instruction *> instCombineSVECondLast(InstCombiner &IC,
- IntrinsicInst &II) {
- // The SIMD&FP variant of CLAST[AB] is significantly faster than the scalar
- // integer variant across a variety of micro-architectures. Replace scalar
- // integer CLAST[AB] intrinsic with optimal SIMD&FP variant. A simple
- // bitcast-to-fp + clast[ab] + bitcast-to-int will cost a cycle or two more
- // depending on the micro-architecture, but has been observed as generally
- // being faster, particularly when the CLAST[AB] op is a loop-carried
- // dependency.
- IRBuilder<> Builder(II.getContext());
- Builder.SetInsertPoint(&II);
- Value *Pg = II.getArgOperand(0);
- Value *Fallback = II.getArgOperand(1);
- Value *Vec = II.getArgOperand(2);
- Type *Ty = II.getType();
- if (!Ty->isIntegerTy())
- return std::nullopt;
- Type *FPTy;
- switch (cast<IntegerType>(Ty)->getBitWidth()) {
- default:
- return std::nullopt;
- case 16:
- FPTy = Builder.getHalfTy();
- break;
- case 32:
- FPTy = Builder.getFloatTy();
- break;
- case 64:
- FPTy = Builder.getDoubleTy();
- break;
- }
- Value *FPFallBack = Builder.CreateBitCast(Fallback, FPTy);
- auto *FPVTy = VectorType::get(
- FPTy, cast<VectorType>(Vec->getType())->getElementCount());
- Value *FPVec = Builder.CreateBitCast(Vec, FPVTy);
- auto *FPII = Builder.CreateIntrinsic(II.getIntrinsicID(), {FPVec->getType()},
- {Pg, FPFallBack, FPVec});
- Value *FPIItoInt = Builder.CreateBitCast(FPII, II.getType());
- return IC.replaceInstUsesWith(II, FPIItoInt);
- }
- static std::optional<Instruction *> instCombineRDFFR(InstCombiner &IC,
- IntrinsicInst &II) {
- LLVMContext &Ctx = II.getContext();
- IRBuilder<> Builder(Ctx);
- Builder.SetInsertPoint(&II);
- // Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr
- // can work with RDFFR_PP for ptest elimination.
- auto *AllPat =
- ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
- auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
- {II.getType()}, {AllPat});
- auto *RDFFR =
- Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue});
- RDFFR->takeName(&II);
- return IC.replaceInstUsesWith(II, RDFFR);
- }
- static std::optional<Instruction *>
- instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) {
- const auto Pattern = cast<ConstantInt>(II.getArgOperand(0))->getZExtValue();
- if (Pattern == AArch64SVEPredPattern::all) {
- LLVMContext &Ctx = II.getContext();
- IRBuilder<> Builder(Ctx);
- Builder.SetInsertPoint(&II);
- Constant *StepVal = ConstantInt::get(II.getType(), NumElts);
- auto *VScale = Builder.CreateVScale(StepVal);
- VScale->takeName(&II);
- return IC.replaceInstUsesWith(II, VScale);
- }
- unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern);
- return MinNumElts && NumElts >= MinNumElts
- ? std::optional<Instruction *>(IC.replaceInstUsesWith(
- II, ConstantInt::get(II.getType(), MinNumElts)))
- : std::nullopt;
- }
- static std::optional<Instruction *> instCombineSVEPTest(InstCombiner &IC,
- IntrinsicInst &II) {
- Value *PgVal = II.getArgOperand(0);
- Value *OpVal = II.getArgOperand(1);
- IRBuilder<> Builder(II.getContext());
- Builder.SetInsertPoint(&II);
- // PTEST_<FIRST|LAST>(X, X) is equivalent to PTEST_ANY(X, X).
- // Later optimizations prefer this form.
- if (PgVal == OpVal &&
- (II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_first ||
- II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_last)) {
- Value *Ops[] = {PgVal, OpVal};
- Type *Tys[] = {PgVal->getType()};
- auto *PTest =
- Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptest_any, Tys, Ops);
- PTest->takeName(&II);
- return IC.replaceInstUsesWith(II, PTest);
- }
- IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(PgVal);
- IntrinsicInst *Op = dyn_cast<IntrinsicInst>(OpVal);
- if (!Pg || !Op)
- return std::nullopt;
- Intrinsic::ID OpIID = Op->getIntrinsicID();
- if (Pg->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
- OpIID == Intrinsic::aarch64_sve_convert_to_svbool &&
- Pg->getArgOperand(0)->getType() == Op->getArgOperand(0)->getType()) {
- Value *Ops[] = {Pg->getArgOperand(0), Op->getArgOperand(0)};
- Type *Tys[] = {Pg->getArgOperand(0)->getType()};
- auto *PTest = Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops);
- PTest->takeName(&II);
- return IC.replaceInstUsesWith(II, PTest);
- }
- // Transform PTEST_ANY(X=OP(PG,...), X) -> PTEST_ANY(PG, X)).
- // Later optimizations may rewrite sequence to use the flag-setting variant
- // of instruction X to remove PTEST.
- if ((Pg == Op) && (II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_any) &&
- ((OpIID == Intrinsic::aarch64_sve_brka_z) ||
- (OpIID == Intrinsic::aarch64_sve_brkb_z) ||
- (OpIID == Intrinsic::aarch64_sve_brkpa_z) ||
- (OpIID == Intrinsic::aarch64_sve_brkpb_z) ||
- (OpIID == Intrinsic::aarch64_sve_rdffr_z) ||
- (OpIID == Intrinsic::aarch64_sve_and_z) ||
- (OpIID == Intrinsic::aarch64_sve_bic_z) ||
- (OpIID == Intrinsic::aarch64_sve_eor_z) ||
- (OpIID == Intrinsic::aarch64_sve_nand_z) ||
- (OpIID == Intrinsic::aarch64_sve_nor_z) ||
- (OpIID == Intrinsic::aarch64_sve_orn_z) ||
- (OpIID == Intrinsic::aarch64_sve_orr_z))) {
- Value *Ops[] = {Pg->getArgOperand(0), Pg};
- Type *Tys[] = {Pg->getType()};
- auto *PTest = Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops);
- PTest->takeName(&II);
- return IC.replaceInstUsesWith(II, PTest);
- }
- return std::nullopt;
- }
- template <Intrinsic::ID MulOpc, typename Intrinsic::ID FuseOpc>
- static std::optional<Instruction *>
- instCombineSVEVectorFuseMulAddSub(InstCombiner &IC, IntrinsicInst &II,
- bool MergeIntoAddendOp) {
- Value *P = II.getOperand(0);
- Value *MulOp0, *MulOp1, *AddendOp, *Mul;
- if (MergeIntoAddendOp) {
- AddendOp = II.getOperand(1);
- Mul = II.getOperand(2);
- } else {
- AddendOp = II.getOperand(2);
- Mul = II.getOperand(1);
- }
- if (!match(Mul, m_Intrinsic<MulOpc>(m_Specific(P), m_Value(MulOp0),
- m_Value(MulOp1))))
- return std::nullopt;
- if (!Mul->hasOneUse())
- return std::nullopt;
- Instruction *FMFSource = nullptr;
- if (II.getType()->isFPOrFPVectorTy()) {
- llvm::FastMathFlags FAddFlags = II.getFastMathFlags();
- // Stop the combine when the flags on the inputs differ in case dropping
- // flags would lead to us missing out on more beneficial optimizations.
- if (FAddFlags != cast<CallInst>(Mul)->getFastMathFlags())
- return std::nullopt;
- if (!FAddFlags.allowContract())
- return std::nullopt;
- FMFSource = &II;
- }
- IRBuilder<> Builder(II.getContext());
- Builder.SetInsertPoint(&II);
- CallInst *Res;
- if (MergeIntoAddendOp)
- Res = Builder.CreateIntrinsic(FuseOpc, {II.getType()},
- {P, AddendOp, MulOp0, MulOp1}, FMFSource);
- else
- Res = Builder.CreateIntrinsic(FuseOpc, {II.getType()},
- {P, MulOp0, MulOp1, AddendOp}, FMFSource);
- return IC.replaceInstUsesWith(II, Res);
- }
- static bool isAllActivePredicate(Value *Pred) {
- // Look through convert.from.svbool(convert.to.svbool(...) chain.
- Value *UncastedPred;
- if (match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_convert_from_svbool>(
- m_Intrinsic<Intrinsic::aarch64_sve_convert_to_svbool>(
- m_Value(UncastedPred)))))
- // If the predicate has the same or less lanes than the uncasted
- // predicate then we know the casting has no effect.
- if (cast<ScalableVectorType>(Pred->getType())->getMinNumElements() <=
- cast<ScalableVectorType>(UncastedPred->getType())->getMinNumElements())
- Pred = UncastedPred;
- return match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
- m_ConstantInt<AArch64SVEPredPattern::all>()));
- }
- static std::optional<Instruction *>
- instCombineSVELD1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
- IRBuilder<> Builder(II.getContext());
- Builder.SetInsertPoint(&II);
- Value *Pred = II.getOperand(0);
- Value *PtrOp = II.getOperand(1);
- Type *VecTy = II.getType();
- Value *VecPtr = Builder.CreateBitCast(PtrOp, VecTy->getPointerTo());
- if (isAllActivePredicate(Pred)) {
- LoadInst *Load = Builder.CreateLoad(VecTy, VecPtr);
- Load->copyMetadata(II);
- return IC.replaceInstUsesWith(II, Load);
- }
- CallInst *MaskedLoad =
- Builder.CreateMaskedLoad(VecTy, VecPtr, PtrOp->getPointerAlignment(DL),
- Pred, ConstantAggregateZero::get(VecTy));
- MaskedLoad->copyMetadata(II);
- return IC.replaceInstUsesWith(II, MaskedLoad);
- }
- static std::optional<Instruction *>
- instCombineSVEST1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
- IRBuilder<> Builder(II.getContext());
- Builder.SetInsertPoint(&II);
- Value *VecOp = II.getOperand(0);
- Value *Pred = II.getOperand(1);
- Value *PtrOp = II.getOperand(2);
- Value *VecPtr =
- Builder.CreateBitCast(PtrOp, VecOp->getType()->getPointerTo());
- if (isAllActivePredicate(Pred)) {
- StoreInst *Store = Builder.CreateStore(VecOp, VecPtr);
- Store->copyMetadata(II);
- return IC.eraseInstFromFunction(II);
- }
- CallInst *MaskedStore = Builder.CreateMaskedStore(
- VecOp, VecPtr, PtrOp->getPointerAlignment(DL), Pred);
- MaskedStore->copyMetadata(II);
- return IC.eraseInstFromFunction(II);
- }
- static Instruction::BinaryOps intrinsicIDToBinOpCode(unsigned Intrinsic) {
- switch (Intrinsic) {
- case Intrinsic::aarch64_sve_fmul:
- return Instruction::BinaryOps::FMul;
- case Intrinsic::aarch64_sve_fadd:
- return Instruction::BinaryOps::FAdd;
- case Intrinsic::aarch64_sve_fsub:
- return Instruction::BinaryOps::FSub;
- default:
- return Instruction::BinaryOpsEnd;
- }
- }
- static std::optional<Instruction *>
- instCombineSVEVectorBinOp(InstCombiner &IC, IntrinsicInst &II) {
- auto *OpPredicate = II.getOperand(0);
- auto BinOpCode = intrinsicIDToBinOpCode(II.getIntrinsicID());
- if (BinOpCode == Instruction::BinaryOpsEnd ||
- !match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
- m_ConstantInt<AArch64SVEPredPattern::all>())))
- return std::nullopt;
- IRBuilder<> Builder(II.getContext());
- Builder.SetInsertPoint(&II);
- Builder.setFastMathFlags(II.getFastMathFlags());
- auto BinOp =
- Builder.CreateBinOp(BinOpCode, II.getOperand(1), II.getOperand(2));
- return IC.replaceInstUsesWith(II, BinOp);
- }
- static std::optional<Instruction *> instCombineSVEVectorAdd(InstCombiner &IC,
- IntrinsicInst &II) {
- if (auto FMLA =
- instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
- Intrinsic::aarch64_sve_fmla>(IC, II,
- true))
- return FMLA;
- if (auto MLA = instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul,
- Intrinsic::aarch64_sve_mla>(
- IC, II, true))
- return MLA;
- if (auto FMAD =
- instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
- Intrinsic::aarch64_sve_fmad>(IC, II,
- false))
- return FMAD;
- if (auto MAD = instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul,
- Intrinsic::aarch64_sve_mad>(
- IC, II, false))
- return MAD;
- return instCombineSVEVectorBinOp(IC, II);
- }
- static std::optional<Instruction *> instCombineSVEVectorSub(InstCombiner &IC,
- IntrinsicInst &II) {
- if (auto FMLS =
- instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
- Intrinsic::aarch64_sve_fmls>(IC, II,
- true))
- return FMLS;
- if (auto MLS = instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul,
- Intrinsic::aarch64_sve_mls>(
- IC, II, true))
- return MLS;
- if (auto FMSB =
- instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
- Intrinsic::aarch64_sve_fnmsb>(
- IC, II, false))
- return FMSB;
- return instCombineSVEVectorBinOp(IC, II);
- }
- static std::optional<Instruction *> instCombineSVEVectorMul(InstCombiner &IC,
- IntrinsicInst &II) {
- auto *OpPredicate = II.getOperand(0);
- auto *OpMultiplicand = II.getOperand(1);
- auto *OpMultiplier = II.getOperand(2);
- IRBuilder<> Builder(II.getContext());
- Builder.SetInsertPoint(&II);
- // Return true if a given instruction is a unit splat value, false otherwise.
- auto IsUnitSplat = [](auto *I) {
- auto *SplatValue = getSplatValue(I);
- if (!SplatValue)
- return false;
- return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
- };
- // Return true if a given instruction is an aarch64_sve_dup intrinsic call
- // with a unit splat value, false otherwise.
- auto IsUnitDup = [](auto *I) {
- auto *IntrI = dyn_cast<IntrinsicInst>(I);
- if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup)
- return false;
- auto *SplatValue = IntrI->getOperand(2);
- return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
- };
- if (IsUnitSplat(OpMultiplier)) {
- // [f]mul pg %n, (dupx 1) => %n
- OpMultiplicand->takeName(&II);
- return IC.replaceInstUsesWith(II, OpMultiplicand);
- } else if (IsUnitDup(OpMultiplier)) {
- // [f]mul pg %n, (dup pg 1) => %n
- auto *DupInst = cast<IntrinsicInst>(OpMultiplier);
- auto *DupPg = DupInst->getOperand(1);
- // TODO: this is naive. The optimization is still valid if DupPg
- // 'encompasses' OpPredicate, not only if they're the same predicate.
- if (OpPredicate == DupPg) {
- OpMultiplicand->takeName(&II);
- return IC.replaceInstUsesWith(II, OpMultiplicand);
- }
- }
- return instCombineSVEVectorBinOp(IC, II);
- }
- static std::optional<Instruction *> instCombineSVEUnpack(InstCombiner &IC,
- IntrinsicInst &II) {
- IRBuilder<> Builder(II.getContext());
- Builder.SetInsertPoint(&II);
- Value *UnpackArg = II.getArgOperand(0);
- auto *RetTy = cast<ScalableVectorType>(II.getType());
- bool IsSigned = II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi ||
- II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo;
- // Hi = uunpkhi(splat(X)) --> Hi = splat(extend(X))
- // Lo = uunpklo(splat(X)) --> Lo = splat(extend(X))
- if (auto *ScalarArg = getSplatValue(UnpackArg)) {
- ScalarArg =
- Builder.CreateIntCast(ScalarArg, RetTy->getScalarType(), IsSigned);
- Value *NewVal =
- Builder.CreateVectorSplat(RetTy->getElementCount(), ScalarArg);
- NewVal->takeName(&II);
- return IC.replaceInstUsesWith(II, NewVal);
- }
- return std::nullopt;
- }
- static std::optional<Instruction *> instCombineSVETBL(InstCombiner &IC,
- IntrinsicInst &II) {
- auto *OpVal = II.getOperand(0);
- auto *OpIndices = II.getOperand(1);
- VectorType *VTy = cast<VectorType>(II.getType());
- // Check whether OpIndices is a constant splat value < minimal element count
- // of result.
- auto *SplatValue = dyn_cast_or_null<ConstantInt>(getSplatValue(OpIndices));
- if (!SplatValue ||
- SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue()))
- return std::nullopt;
- // Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to
- // splat_vector(extractelement(OpVal, SplatValue)) for further optimization.
- IRBuilder<> Builder(II.getContext());
- Builder.SetInsertPoint(&II);
- auto *Extract = Builder.CreateExtractElement(OpVal, SplatValue);
- auto *VectorSplat =
- Builder.CreateVectorSplat(VTy->getElementCount(), Extract);
- VectorSplat->takeName(&II);
- return IC.replaceInstUsesWith(II, VectorSplat);
- }
- static std::optional<Instruction *> instCombineSVEZip(InstCombiner &IC,
- IntrinsicInst &II) {
- // zip1(uzp1(A, B), uzp2(A, B)) --> A
- // zip2(uzp1(A, B), uzp2(A, B)) --> B
- Value *A, *B;
- if (match(II.getArgOperand(0),
- m_Intrinsic<Intrinsic::aarch64_sve_uzp1>(m_Value(A), m_Value(B))) &&
- match(II.getArgOperand(1), m_Intrinsic<Intrinsic::aarch64_sve_uzp2>(
- m_Specific(A), m_Specific(B))))
- return IC.replaceInstUsesWith(
- II, (II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ? A : B));
- return std::nullopt;
- }
- static std::optional<Instruction *>
- instCombineLD1GatherIndex(InstCombiner &IC, IntrinsicInst &II) {
- Value *Mask = II.getOperand(0);
- Value *BasePtr = II.getOperand(1);
- Value *Index = II.getOperand(2);
- Type *Ty = II.getType();
- Value *PassThru = ConstantAggregateZero::get(Ty);
- // Contiguous gather => masked load.
- // (sve.ld1.gather.index Mask BasePtr (sve.index IndexBase 1))
- // => (masked.load (gep BasePtr IndexBase) Align Mask zeroinitializer)
- Value *IndexBase;
- if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
- m_Value(IndexBase), m_SpecificInt(1)))) {
- IRBuilder<> Builder(II.getContext());
- Builder.SetInsertPoint(&II);
- Align Alignment =
- BasePtr->getPointerAlignment(II.getModule()->getDataLayout());
- Type *VecPtrTy = PointerType::getUnqual(Ty);
- Value *Ptr = Builder.CreateGEP(cast<VectorType>(Ty)->getElementType(),
- BasePtr, IndexBase);
- Ptr = Builder.CreateBitCast(Ptr, VecPtrTy);
- CallInst *MaskedLoad =
- Builder.CreateMaskedLoad(Ty, Ptr, Alignment, Mask, PassThru);
- MaskedLoad->takeName(&II);
- return IC.replaceInstUsesWith(II, MaskedLoad);
- }
- return std::nullopt;
- }
- static std::optional<Instruction *>
- instCombineST1ScatterIndex(InstCombiner &IC, IntrinsicInst &II) {
- Value *Val = II.getOperand(0);
- Value *Mask = II.getOperand(1);
- Value *BasePtr = II.getOperand(2);
- Value *Index = II.getOperand(3);
- Type *Ty = Val->getType();
- // Contiguous scatter => masked store.
- // (sve.st1.scatter.index Value Mask BasePtr (sve.index IndexBase 1))
- // => (masked.store Value (gep BasePtr IndexBase) Align Mask)
- Value *IndexBase;
- if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
- m_Value(IndexBase), m_SpecificInt(1)))) {
- IRBuilder<> Builder(II.getContext());
- Builder.SetInsertPoint(&II);
- Align Alignment =
- BasePtr->getPointerAlignment(II.getModule()->getDataLayout());
- Value *Ptr = Builder.CreateGEP(cast<VectorType>(Ty)->getElementType(),
- BasePtr, IndexBase);
- Type *VecPtrTy = PointerType::getUnqual(Ty);
- Ptr = Builder.CreateBitCast(Ptr, VecPtrTy);
- (void)Builder.CreateMaskedStore(Val, Ptr, Alignment, Mask);
- return IC.eraseInstFromFunction(II);
- }
- return std::nullopt;
- }
- static std::optional<Instruction *> instCombineSVESDIV(InstCombiner &IC,
- IntrinsicInst &II) {
- IRBuilder<> Builder(II.getContext());
- Builder.SetInsertPoint(&II);
- Type *Int32Ty = Builder.getInt32Ty();
- Value *Pred = II.getOperand(0);
- Value *Vec = II.getOperand(1);
- Value *DivVec = II.getOperand(2);
- Value *SplatValue = getSplatValue(DivVec);
- ConstantInt *SplatConstantInt = dyn_cast_or_null<ConstantInt>(SplatValue);
- if (!SplatConstantInt)
- return std::nullopt;
- APInt Divisor = SplatConstantInt->getValue();
- if (Divisor.isPowerOf2()) {
- Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2());
- auto ASRD = Builder.CreateIntrinsic(
- Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
- return IC.replaceInstUsesWith(II, ASRD);
- }
- if (Divisor.isNegatedPowerOf2()) {
- Divisor.negate();
- Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2());
- auto ASRD = Builder.CreateIntrinsic(
- Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
- auto NEG = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_neg,
- {ASRD->getType()}, {ASRD, Pred, ASRD});
- return IC.replaceInstUsesWith(II, NEG);
- }
- return std::nullopt;
- }
- bool SimplifyValuePattern(SmallVector<Value *> &Vec, bool AllowPoison) {
- size_t VecSize = Vec.size();
- if (VecSize == 1)
- return true;
- if (!isPowerOf2_64(VecSize))
- return false;
- size_t HalfVecSize = VecSize / 2;
- for (auto LHS = Vec.begin(), RHS = Vec.begin() + HalfVecSize;
- RHS != Vec.end(); LHS++, RHS++) {
- if (*LHS != nullptr && *RHS != nullptr) {
- if (*LHS == *RHS)
- continue;
- else
- return false;
- }
- if (!AllowPoison)
- return false;
- if (*LHS == nullptr && *RHS != nullptr)
- *LHS = *RHS;
- }
- Vec.resize(HalfVecSize);
- SimplifyValuePattern(Vec, AllowPoison);
- return true;
- }
- // Try to simplify dupqlane patterns like dupqlane(f32 A, f32 B, f32 A, f32 B)
- // to dupqlane(f64(C)) where C is A concatenated with B
- static std::optional<Instruction *> instCombineSVEDupqLane(InstCombiner &IC,
- IntrinsicInst &II) {
- Value *CurrentInsertElt = nullptr, *Default = nullptr;
- if (!match(II.getOperand(0),
- m_Intrinsic<Intrinsic::vector_insert>(
- m_Value(Default), m_Value(CurrentInsertElt), m_Value())) ||
- !isa<FixedVectorType>(CurrentInsertElt->getType()))
- return std::nullopt;
- auto IIScalableTy = cast<ScalableVectorType>(II.getType());
- // Insert the scalars into a container ordered by InsertElement index
- SmallVector<Value *> Elts(IIScalableTy->getMinNumElements(), nullptr);
- while (auto InsertElt = dyn_cast<InsertElementInst>(CurrentInsertElt)) {
- auto Idx = cast<ConstantInt>(InsertElt->getOperand(2));
- Elts[Idx->getValue().getZExtValue()] = InsertElt->getOperand(1);
- CurrentInsertElt = InsertElt->getOperand(0);
- }
- bool AllowPoison =
- isa<PoisonValue>(CurrentInsertElt) && isa<PoisonValue>(Default);
- if (!SimplifyValuePattern(Elts, AllowPoison))
- return std::nullopt;
- // Rebuild the simplified chain of InsertElements. e.g. (a, b, a, b) as (a, b)
- IRBuilder<> Builder(II.getContext());
- Builder.SetInsertPoint(&II);
- Value *InsertEltChain = PoisonValue::get(CurrentInsertElt->getType());
- for (size_t I = 0; I < Elts.size(); I++) {
- if (Elts[I] == nullptr)
- continue;
- InsertEltChain = Builder.CreateInsertElement(InsertEltChain, Elts[I],
- Builder.getInt64(I));
- }
- if (InsertEltChain == nullptr)
- return std::nullopt;
- // Splat the simplified sequence, e.g. (f16 a, f16 b, f16 c, f16 d) as one i64
- // value or (f16 a, f16 b) as one i32 value. This requires an InsertSubvector
- // be bitcast to a type wide enough to fit the sequence, be splatted, and then
- // be narrowed back to the original type.
- unsigned PatternWidth = IIScalableTy->getScalarSizeInBits() * Elts.size();
- unsigned PatternElementCount = IIScalableTy->getScalarSizeInBits() *
- IIScalableTy->getMinNumElements() /
- PatternWidth;
- IntegerType *WideTy = Builder.getIntNTy(PatternWidth);
- auto *WideScalableTy = ScalableVectorType::get(WideTy, PatternElementCount);
- auto *WideShuffleMaskTy =
- ScalableVectorType::get(Builder.getInt32Ty(), PatternElementCount);
- auto ZeroIdx = ConstantInt::get(Builder.getInt64Ty(), APInt(64, 0));
- auto InsertSubvector = Builder.CreateInsertVector(
- II.getType(), PoisonValue::get(II.getType()), InsertEltChain, ZeroIdx);
- auto WideBitcast =
- Builder.CreateBitOrPointerCast(InsertSubvector, WideScalableTy);
- auto WideShuffleMask = ConstantAggregateZero::get(WideShuffleMaskTy);
- auto WideShuffle = Builder.CreateShuffleVector(
- WideBitcast, PoisonValue::get(WideScalableTy), WideShuffleMask);
- auto NarrowBitcast =
- Builder.CreateBitOrPointerCast(WideShuffle, II.getType());
- return IC.replaceInstUsesWith(II, NarrowBitcast);
- }
- static std::optional<Instruction *> instCombineMaxMinNM(InstCombiner &IC,
- IntrinsicInst &II) {
- Value *A = II.getArgOperand(0);
- Value *B = II.getArgOperand(1);
- if (A == B)
- return IC.replaceInstUsesWith(II, A);
- return std::nullopt;
- }
- static std::optional<Instruction *> instCombineSVESrshl(InstCombiner &IC,
- IntrinsicInst &II) {
- IRBuilder<> Builder(&II);
- Value *Pred = II.getOperand(0);
- Value *Vec = II.getOperand(1);
- Value *Shift = II.getOperand(2);
- // Convert SRSHL into the simpler LSL intrinsic when fed by an ABS intrinsic.
- Value *AbsPred, *MergedValue;
- if (!match(Vec, m_Intrinsic<Intrinsic::aarch64_sve_sqabs>(
- m_Value(MergedValue), m_Value(AbsPred), m_Value())) &&
- !match(Vec, m_Intrinsic<Intrinsic::aarch64_sve_abs>(
- m_Value(MergedValue), m_Value(AbsPred), m_Value())))
- return std::nullopt;
- // Transform is valid if any of the following are true:
- // * The ABS merge value is an undef or non-negative
- // * The ABS predicate is all active
- // * The ABS predicate and the SRSHL predicates are the same
- if (!isa<UndefValue>(MergedValue) && !match(MergedValue, m_NonNegative()) &&
- AbsPred != Pred && !isAllActivePredicate(AbsPred))
- return std::nullopt;
- // Only valid when the shift amount is non-negative, otherwise the rounding
- // behaviour of SRSHL cannot be ignored.
- if (!match(Shift, m_NonNegative()))
- return std::nullopt;
- auto LSL = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_lsl, {II.getType()},
- {Pred, Vec, Shift});
- return IC.replaceInstUsesWith(II, LSL);
- }
- std::optional<Instruction *>
- AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC,
- IntrinsicInst &II) const {
- Intrinsic::ID IID = II.getIntrinsicID();
- switch (IID) {
- default:
- break;
- case Intrinsic::aarch64_neon_fmaxnm:
- case Intrinsic::aarch64_neon_fminnm:
- return instCombineMaxMinNM(IC, II);
- case Intrinsic::aarch64_sve_convert_from_svbool:
- return instCombineConvertFromSVBool(IC, II);
- case Intrinsic::aarch64_sve_dup:
- return instCombineSVEDup(IC, II);
- case Intrinsic::aarch64_sve_dup_x:
- return instCombineSVEDupX(IC, II);
- case Intrinsic::aarch64_sve_cmpne:
- case Intrinsic::aarch64_sve_cmpne_wide:
- return instCombineSVECmpNE(IC, II);
- case Intrinsic::aarch64_sve_rdffr:
- return instCombineRDFFR(IC, II);
- case Intrinsic::aarch64_sve_lasta:
- case Intrinsic::aarch64_sve_lastb:
- return instCombineSVELast(IC, II);
- case Intrinsic::aarch64_sve_clasta_n:
- case Intrinsic::aarch64_sve_clastb_n:
- return instCombineSVECondLast(IC, II);
- case Intrinsic::aarch64_sve_cntd:
- return instCombineSVECntElts(IC, II, 2);
- case Intrinsic::aarch64_sve_cntw:
- return instCombineSVECntElts(IC, II, 4);
- case Intrinsic::aarch64_sve_cnth:
- return instCombineSVECntElts(IC, II, 8);
- case Intrinsic::aarch64_sve_cntb:
- return instCombineSVECntElts(IC, II, 16);
- case Intrinsic::aarch64_sve_ptest_any:
- case Intrinsic::aarch64_sve_ptest_first:
- case Intrinsic::aarch64_sve_ptest_last:
- return instCombineSVEPTest(IC, II);
- case Intrinsic::aarch64_sve_mul:
- case Intrinsic::aarch64_sve_fmul:
- return instCombineSVEVectorMul(IC, II);
- case Intrinsic::aarch64_sve_fadd:
- case Intrinsic::aarch64_sve_add:
- return instCombineSVEVectorAdd(IC, II);
- case Intrinsic::aarch64_sve_fsub:
- case Intrinsic::aarch64_sve_sub:
- return instCombineSVEVectorSub(IC, II);
- case Intrinsic::aarch64_sve_tbl:
- return instCombineSVETBL(IC, II);
- case Intrinsic::aarch64_sve_uunpkhi:
- case Intrinsic::aarch64_sve_uunpklo:
- case Intrinsic::aarch64_sve_sunpkhi:
- case Intrinsic::aarch64_sve_sunpklo:
- return instCombineSVEUnpack(IC, II);
- case Intrinsic::aarch64_sve_zip1:
- case Intrinsic::aarch64_sve_zip2:
- return instCombineSVEZip(IC, II);
- case Intrinsic::aarch64_sve_ld1_gather_index:
- return instCombineLD1GatherIndex(IC, II);
- case Intrinsic::aarch64_sve_st1_scatter_index:
- return instCombineST1ScatterIndex(IC, II);
- case Intrinsic::aarch64_sve_ld1:
- return instCombineSVELD1(IC, II, DL);
- case Intrinsic::aarch64_sve_st1:
- return instCombineSVEST1(IC, II, DL);
- case Intrinsic::aarch64_sve_sdiv:
- return instCombineSVESDIV(IC, II);
- case Intrinsic::aarch64_sve_sel:
- return instCombineSVESel(IC, II);
- case Intrinsic::aarch64_sve_srshl:
- return instCombineSVESrshl(IC, II);
- case Intrinsic::aarch64_sve_dupq_lane:
- return instCombineSVEDupqLane(IC, II);
- }
- return std::nullopt;
- }
- std::optional<Value *> AArch64TTIImpl::simplifyDemandedVectorEltsIntrinsic(
- InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts,
- APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
- std::function<void(Instruction *, unsigned, APInt, APInt &)>
- SimplifyAndSetOp) const {
- switch (II.getIntrinsicID()) {
- default:
- break;
- case Intrinsic::aarch64_neon_fcvtxn:
- case Intrinsic::aarch64_neon_rshrn:
- case Intrinsic::aarch64_neon_sqrshrn:
- case Intrinsic::aarch64_neon_sqrshrun:
- case Intrinsic::aarch64_neon_sqshrn:
- case Intrinsic::aarch64_neon_sqshrun:
- case Intrinsic::aarch64_neon_sqxtn:
- case Intrinsic::aarch64_neon_sqxtun:
- case Intrinsic::aarch64_neon_uqrshrn:
- case Intrinsic::aarch64_neon_uqshrn:
- case Intrinsic::aarch64_neon_uqxtn:
- SimplifyAndSetOp(&II, 0, OrigDemandedElts, UndefElts);
- break;
- }
- return std::nullopt;
- }
- TypeSize
- AArch64TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
- switch (K) {
- case TargetTransformInfo::RGK_Scalar:
- return TypeSize::getFixed(64);
- case TargetTransformInfo::RGK_FixedWidthVector:
- if (!ST->isStreamingSVEModeDisabled() &&
- !EnableFixedwidthAutovecInStreamingMode)
- return TypeSize::getFixed(0);
- if (ST->hasSVE())
- return TypeSize::getFixed(
- std::max(ST->getMinSVEVectorSizeInBits(), 128u));
- return TypeSize::getFixed(ST->hasNEON() ? 128 : 0);
- case TargetTransformInfo::RGK_ScalableVector:
- if (!ST->isStreamingSVEModeDisabled() && !EnableScalableAutovecInStreamingMode)
- return TypeSize::getScalable(0);
- return TypeSize::getScalable(ST->hasSVE() ? 128 : 0);
- }
- llvm_unreachable("Unsupported register kind");
- }
- bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
- ArrayRef<const Value *> Args) {
- // A helper that returns a vector type from the given type. The number of
- // elements in type Ty determines the vector width.
- auto toVectorTy = [&](Type *ArgTy) {
- return VectorType::get(ArgTy->getScalarType(),
- cast<VectorType>(DstTy)->getElementCount());
- };
- // Exit early if DstTy is not a vector type whose elements are at least
- // 16-bits wide. SVE doesn't generally have the same set of instructions to
- // perform an extend with the add/sub/mul. There are SMULLB style
- // instructions, but they operate on top/bottom, requiring some sort of lane
- // interleaving to be used with zext/sext.
- if (!useNeonVector(DstTy) || DstTy->getScalarSizeInBits() < 16)
- return false;
- // Determine if the operation has a widening variant. We consider both the
- // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
- // instructions.
- //
- // TODO: Add additional widening operations (e.g., shl, etc.) once we
- // verify that their extending operands are eliminated during code
- // generation.
- switch (Opcode) {
- case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
- case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
- case Instruction::Mul: // SMULL(2), UMULL(2)
- break;
- default:
- return false;
- }
- // To be a widening instruction (either the "wide" or "long" versions), the
- // second operand must be a sign- or zero extend.
- if (Args.size() != 2 ||
- (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])))
- return false;
- auto *Extend = cast<CastInst>(Args[1]);
- auto *Arg0 = dyn_cast<CastInst>(Args[0]);
- // A mul only has a mull version (not like addw). Both operands need to be
- // extending and the same type.
- if (Opcode == Instruction::Mul &&
- (!Arg0 || Arg0->getOpcode() != Extend->getOpcode() ||
- Arg0->getOperand(0)->getType() != Extend->getOperand(0)->getType()))
- return false;
- // Legalize the destination type and ensure it can be used in a widening
- // operation.
- auto DstTyL = getTypeLegalizationCost(DstTy);
- unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
- if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
- return false;
- // Legalize the source type and ensure it can be used in a widening
- // operation.
- auto *SrcTy = toVectorTy(Extend->getSrcTy());
- auto SrcTyL = getTypeLegalizationCost(SrcTy);
- unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
- if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
- return false;
- // Get the total number of vector elements in the legalized types.
- InstructionCost NumDstEls =
- DstTyL.first * DstTyL.second.getVectorMinNumElements();
- InstructionCost NumSrcEls =
- SrcTyL.first * SrcTyL.second.getVectorMinNumElements();
- // Return true if the legalized types have the same number of vector elements
- // and the destination element type size is twice that of the source type.
- return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
- }
- InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
- Type *Src,
- TTI::CastContextHint CCH,
- TTI::TargetCostKind CostKind,
- const Instruction *I) {
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- assert(ISD && "Invalid opcode");
- // If the cast is observable, and it is used by a widening instruction (e.g.,
- // uaddl, saddw, etc.), it may be free.
- if (I && I->hasOneUser()) {
- auto *SingleUser = cast<Instruction>(*I->user_begin());
- SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
- if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
- // If the cast is the second operand, it is free. We will generate either
- // a "wide" or "long" version of the widening instruction.
- if (I == SingleUser->getOperand(1))
- return 0;
- // If the cast is not the second operand, it will be free if it looks the
- // same as the second operand. In this case, we will generate a "long"
- // version of the widening instruction.
- if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
- if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
- cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
- return 0;
- }
- }
- // TODO: Allow non-throughput costs that aren't binary.
- auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
- if (CostKind != TTI::TCK_RecipThroughput)
- return Cost == 0 ? 0 : 1;
- return Cost;
- };
- EVT SrcTy = TLI->getValueType(DL, Src);
- EVT DstTy = TLI->getValueType(DL, Dst);
- if (!SrcTy.isSimple() || !DstTy.isSimple())
- return AdjustCost(
- BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
- static const TypeConversionCostTblEntry
- ConversionTbl[] = {
- { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 1}, // xtn
- { ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, 1}, // xtn
- { ISD::TRUNCATE, MVT::v2i32, MVT::v2i64, 1}, // xtn
- { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1}, // xtn
- { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 3}, // 2 xtn + 1 uzp1
- { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1}, // xtn
- { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2}, // 1 uzp1 + 1 xtn
- { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1}, // 1 uzp1
- { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1}, // 1 xtn
- { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2}, // 1 uzp1 + 1 xtn
- { ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 4}, // 3 x uzp1 + xtn
- { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 1}, // 1 uzp1
- { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 3}, // 3 x uzp1
- { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 2}, // 2 x uzp1
- { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 1}, // uzp1
- { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 3}, // (2 + 1) x uzp1
- { ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 7}, // (4 + 2 + 1) x uzp1
- { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 2}, // 2 x uzp1
- { ISD::TRUNCATE, MVT::v16i16, MVT::v16i64, 6}, // (4 + 2) x uzp1
- { ISD::TRUNCATE, MVT::v16i32, MVT::v16i64, 4}, // 4 x uzp1
- // Truncations on nxvmiN
- { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 },
- { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 },
- { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 },
- { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 },
- { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 },
- { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 },
- { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 },
- { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 },
- { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 },
- { ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 1 },
- { ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 },
- { ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 },
- { ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 },
- { ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 },
- { ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 },
- { ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 },
- // The number of shll instructions for the extension.
- { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
- { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
- { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
- { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
- { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
- { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
- { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
- { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
- { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
- { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
- { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
- { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
- { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
- { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
- { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
- { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
- // LowerVectorINT_TO_FP:
- { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
- { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
- { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
- { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
- { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
- { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
- // Complex: to v2f32
- { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
- { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
- { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
- { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
- { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
- { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
- // Complex: to v4f32
- { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
- { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
- { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
- { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
- // Complex: to v8f32
- { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
- { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
- { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
- { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
- // Complex: to v16f32
- { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
- { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
- // Complex: to v2f64
- { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
- { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
- { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
- { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
- { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
- { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
- // Complex: to v4f64
- { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 4 },
- { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 4 },
- // LowerVectorFP_TO_INT
- { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
- { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
- { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
- { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
- { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
- { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
- // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
- { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
- { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
- { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
- { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
- { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
- { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
- // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
- { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
- { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
- { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
- { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
- // Complex, from nxv2f32.
- { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
- { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
- { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
- { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f32, 1 },
- { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
- { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
- { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
- { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f32, 1 },
- // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
- { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
- { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
- { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
- { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
- { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
- { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
- // Complex, from nxv2f64.
- { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
- { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
- { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
- { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f64, 1 },
- { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
- { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
- { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
- { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f64, 1 },
- // Complex, from nxv4f32.
- { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
- { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
- { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
- { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f32, 1 },
- { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
- { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
- { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
- { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f32, 1 },
- // Complex, from nxv8f64. Illegal -> illegal conversions not required.
- { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
- { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f64, 7 },
- { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
- { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f64, 7 },
- // Complex, from nxv4f64. Illegal -> illegal conversions not required.
- { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
- { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
- { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f64, 3 },
- { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
- { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
- { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f64, 3 },
- // Complex, from nxv8f32. Illegal -> illegal conversions not required.
- { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
- { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f32, 3 },
- { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
- { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f32, 3 },
- // Complex, from nxv8f16.
- { ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
- { ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
- { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
- { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f16, 1 },
- { ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
- { ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
- { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
- { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f16, 1 },
- // Complex, from nxv4f16.
- { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
- { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
- { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
- { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f16, 1 },
- { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
- { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
- { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
- { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f16, 1 },
- // Complex, from nxv2f16.
- { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
- { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
- { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
- { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f16, 1 },
- { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
- { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
- { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
- { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f16, 1 },
- // Truncate from nxvmf32 to nxvmf16.
- { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 },
- { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 },
- { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 },
- // Truncate from nxvmf64 to nxvmf16.
- { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 },
- { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 },
- { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 },
- // Truncate from nxvmf64 to nxvmf32.
- { ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 },
- { ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 },
- { ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 },
- // Extend from nxvmf16 to nxvmf32.
- { ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1},
- { ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1},
- { ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2},
- // Extend from nxvmf16 to nxvmf64.
- { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1},
- { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2},
- { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4},
- // Extend from nxvmf32 to nxvmf64.
- { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1},
- { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2},
- { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6},
- // Bitcasts from float to integer
- { ISD::BITCAST, MVT::nxv2f16, MVT::nxv2i16, 0 },
- { ISD::BITCAST, MVT::nxv4f16, MVT::nxv4i16, 0 },
- { ISD::BITCAST, MVT::nxv2f32, MVT::nxv2i32, 0 },
- // Bitcasts from integer to float
- { ISD::BITCAST, MVT::nxv2i16, MVT::nxv2f16, 0 },
- { ISD::BITCAST, MVT::nxv4i16, MVT::nxv4f16, 0 },
- { ISD::BITCAST, MVT::nxv2i32, MVT::nxv2f32, 0 },
- };
- if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
- DstTy.getSimpleVT(),
- SrcTy.getSimpleVT()))
- return AdjustCost(Entry->Cost);
- static const TypeConversionCostTblEntry FP16Tbl[] = {
- {ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f16, 1}, // fcvtzs
- {ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f16, 1},
- {ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f16, 1}, // fcvtzs
- {ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f16, 1},
- {ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f16, 2}, // fcvtl+fcvtzs
- {ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f16, 2},
- {ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f16, 2}, // fcvtzs+xtn
- {ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f16, 2},
- {ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f16, 1}, // fcvtzs
- {ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f16, 1},
- {ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f16, 4}, // 2*fcvtl+2*fcvtzs
- {ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f16, 4},
- {ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f16, 3}, // 2*fcvtzs+xtn
- {ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f16, 3},
- {ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f16, 2}, // 2*fcvtzs
- {ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f16, 2},
- {ISD::FP_TO_SINT, MVT::v16i32, MVT::v16f16, 8}, // 4*fcvtl+4*fcvtzs
- {ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f16, 8},
- {ISD::UINT_TO_FP, MVT::v8f16, MVT::v8i8, 2}, // ushll + ucvtf
- {ISD::SINT_TO_FP, MVT::v8f16, MVT::v8i8, 2}, // sshll + scvtf
- {ISD::UINT_TO_FP, MVT::v16f16, MVT::v16i8, 4}, // 2 * ushl(2) + 2 * ucvtf
- {ISD::SINT_TO_FP, MVT::v16f16, MVT::v16i8, 4}, // 2 * sshl(2) + 2 * scvtf
- };
- if (ST->hasFullFP16())
- if (const auto *Entry = ConvertCostTableLookup(
- FP16Tbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
- return AdjustCost(Entry->Cost);
- return AdjustCost(
- BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
- }
- InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode,
- Type *Dst,
- VectorType *VecTy,
- unsigned Index) {
- // Make sure we were given a valid extend opcode.
- assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
- "Invalid opcode");
- // We are extending an element we extract from a vector, so the source type
- // of the extend is the element type of the vector.
- auto *Src = VecTy->getElementType();
- // Sign- and zero-extends are for integer types only.
- assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
- // Get the cost for the extract. We compute the cost (if any) for the extend
- // below.
- TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
- InstructionCost Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy,
- CostKind, Index, nullptr, nullptr);
- // Legalize the types.
- auto VecLT = getTypeLegalizationCost(VecTy);
- auto DstVT = TLI->getValueType(DL, Dst);
- auto SrcVT = TLI->getValueType(DL, Src);
- // If the resulting type is still a vector and the destination type is legal,
- // we may get the extension for free. If not, get the default cost for the
- // extend.
- if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
- return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
- CostKind);
- // The destination type should be larger than the element type. If not, get
- // the default cost for the extend.
- if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits())
- return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
- CostKind);
- switch (Opcode) {
- default:
- llvm_unreachable("Opcode should be either SExt or ZExt");
- // For sign-extends, we only need a smov, which performs the extension
- // automatically.
- case Instruction::SExt:
- return Cost;
- // For zero-extends, the extend is performed automatically by a umov unless
- // the destination type is i64 and the element type is i8 or i16.
- case Instruction::ZExt:
- if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
- return Cost;
- }
- // If we are unable to perform the extend for free, get the default cost.
- return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
- CostKind);
- }
- InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode,
- TTI::TargetCostKind CostKind,
- const Instruction *I) {
- if (CostKind != TTI::TCK_RecipThroughput)
- return Opcode == Instruction::PHI ? 0 : 1;
- assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind");
- // Branches are assumed to be predicted.
- return 0;
- }
- InstructionCost AArch64TTIImpl::getVectorInstrCostHelper(Type *Val,
- unsigned Index,
- bool HasRealUse) {
- assert(Val->isVectorTy() && "This must be a vector type");
- if (Index != -1U) {
- // Legalize the type.
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Val);
- // This type is legalized to a scalar type.
- if (!LT.second.isVector())
- return 0;
- // The type may be split. For fixed-width vectors we can normalize the
- // index to the new type.
- if (LT.second.isFixedLengthVector()) {
- unsigned Width = LT.second.getVectorNumElements();
- Index = Index % Width;
- }
- // The element at index zero is already inside the vector.
- // - For a physical (HasRealUse==true) insert-element or extract-element
- // instruction that extracts integers, an explicit FPR -> GPR move is
- // needed. So it has non-zero cost.
- // - For the rest of cases (virtual instruction or element type is float),
- // consider the instruction free.
- //
- // FIXME:
- // If the extract-element and insert-element instructions could be
- // simplified away (e.g., could be combined into users by looking at use-def
- // context), they have no cost. This is not done in the first place for
- // compile-time considerations.
- if (Index == 0 && (!HasRealUse || !Val->getScalarType()->isIntegerTy()))
- return 0;
- }
- // All other insert/extracts cost this much.
- return ST->getVectorInsertExtractBaseCost();
- }
- InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
- TTI::TargetCostKind CostKind,
- unsigned Index, Value *Op0,
- Value *Op1) {
- return getVectorInstrCostHelper(Val, Index, false /* HasRealUse */);
- }
- InstructionCost AArch64TTIImpl::getVectorInstrCost(const Instruction &I,
- Type *Val,
- TTI::TargetCostKind CostKind,
- unsigned Index) {
- return getVectorInstrCostHelper(Val, Index, true /* HasRealUse */);
- }
- InstructionCost AArch64TTIImpl::getArithmeticInstrCost(
- unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
- TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
- ArrayRef<const Value *> Args,
- const Instruction *CxtI) {
- // TODO: Handle more cost kinds.
- if (CostKind != TTI::TCK_RecipThroughput)
- return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
- Op2Info, Args, CxtI);
- // Legalize the type.
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- switch (ISD) {
- default:
- return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
- Op2Info);
- case ISD::SDIV:
- if (Op2Info.isConstant() && Op2Info.isUniform() && Op2Info.isPowerOf2()) {
- // On AArch64, scalar signed division by constants power-of-two are
- // normally expanded to the sequence ADD + CMP + SELECT + SRA.
- // The OperandValue properties many not be same as that of previous
- // operation; conservatively assume OP_None.
- InstructionCost Cost = getArithmeticInstrCost(
- Instruction::Add, Ty, CostKind,
- Op1Info.getNoProps(), Op2Info.getNoProps());
- Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind,
- Op1Info.getNoProps(), Op2Info.getNoProps());
- Cost += getArithmeticInstrCost(
- Instruction::Select, Ty, CostKind,
- Op1Info.getNoProps(), Op2Info.getNoProps());
- Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
- Op1Info.getNoProps(), Op2Info.getNoProps());
- return Cost;
- }
- [[fallthrough]];
- case ISD::UDIV: {
- if (Op2Info.isConstant() && Op2Info.isUniform()) {
- auto VT = TLI->getValueType(DL, Ty);
- if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
- // Vector signed division by constant are expanded to the
- // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
- // to MULHS + SUB + SRL + ADD + SRL.
- InstructionCost MulCost = getArithmeticInstrCost(
- Instruction::Mul, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps());
- InstructionCost AddCost = getArithmeticInstrCost(
- Instruction::Add, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps());
- InstructionCost ShrCost = getArithmeticInstrCost(
- Instruction::AShr, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps());
- return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
- }
- }
- InstructionCost Cost = BaseT::getArithmeticInstrCost(
- Opcode, Ty, CostKind, Op1Info, Op2Info);
- if (Ty->isVectorTy()) {
- if (TLI->isOperationLegalOrCustom(ISD, LT.second) && ST->hasSVE()) {
- // SDIV/UDIV operations are lowered using SVE, then we can have less
- // costs.
- if (isa<FixedVectorType>(Ty) && cast<FixedVectorType>(Ty)
- ->getPrimitiveSizeInBits()
- .getFixedValue() < 128) {
- EVT VT = TLI->getValueType(DL, Ty);
- static const CostTblEntry DivTbl[]{
- {ISD::SDIV, MVT::v2i8, 5}, {ISD::SDIV, MVT::v4i8, 8},
- {ISD::SDIV, MVT::v8i8, 8}, {ISD::SDIV, MVT::v2i16, 5},
- {ISD::SDIV, MVT::v4i16, 5}, {ISD::SDIV, MVT::v2i32, 1},
- {ISD::UDIV, MVT::v2i8, 5}, {ISD::UDIV, MVT::v4i8, 8},
- {ISD::UDIV, MVT::v8i8, 8}, {ISD::UDIV, MVT::v2i16, 5},
- {ISD::UDIV, MVT::v4i16, 5}, {ISD::UDIV, MVT::v2i32, 1}};
- const auto *Entry = CostTableLookup(DivTbl, ISD, VT.getSimpleVT());
- if (nullptr != Entry)
- return Entry->Cost;
- }
- // For 8/16-bit elements, the cost is higher because the type
- // requires promotion and possibly splitting:
- if (LT.second.getScalarType() == MVT::i8)
- Cost *= 8;
- else if (LT.second.getScalarType() == MVT::i16)
- Cost *= 4;
- return Cost;
- } else {
- // If one of the operands is a uniform constant then the cost for each
- // element is Cost for insertion, extraction and division.
- // Insertion cost = 2, Extraction Cost = 2, Division = cost for the
- // operation with scalar type
- if ((Op1Info.isConstant() && Op1Info.isUniform()) ||
- (Op2Info.isConstant() && Op2Info.isUniform())) {
- if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
- InstructionCost DivCost = BaseT::getArithmeticInstrCost(
- Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info);
- return (4 + DivCost) * VTy->getNumElements();
- }
- }
- // On AArch64, without SVE, vector divisions are expanded
- // into scalar divisions of each pair of elements.
- Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty,
- CostKind, Op1Info, Op2Info);
- Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind,
- Op1Info, Op2Info);
- }
- // TODO: if one of the arguments is scalar, then it's not necessary to
- // double the cost of handling the vector elements.
- Cost += Cost;
- }
- return Cost;
- }
- case ISD::MUL:
- // When SVE is available, then we can lower the v2i64 operation using
- // the SVE mul instruction, which has a lower cost.
- if (LT.second == MVT::v2i64 && ST->hasSVE())
- return LT.first;
- // When SVE is not available, there is no MUL.2d instruction,
- // which means mul <2 x i64> is expensive as elements are extracted
- // from the vectors and the muls scalarized.
- // As getScalarizationOverhead is a bit too pessimistic, we
- // estimate the cost for a i64 vector directly here, which is:
- // - four 2-cost i64 extracts,
- // - two 2-cost i64 inserts, and
- // - two 1-cost muls.
- // So, for a v2i64 with LT.First = 1 the cost is 14, and for a v4i64 with
- // LT.first = 2 the cost is 28. If both operands are extensions it will not
- // need to scalarize so the cost can be cheaper (smull or umull).
- // so the cost can be cheaper (smull or umull).
- if (LT.second != MVT::v2i64 || isWideningInstruction(Ty, Opcode, Args))
- return LT.first;
- return LT.first * 14;
- case ISD::ADD:
- case ISD::XOR:
- case ISD::OR:
- case ISD::AND:
- case ISD::SRL:
- case ISD::SRA:
- case ISD::SHL:
- // These nodes are marked as 'custom' for combining purposes only.
- // We know that they are legal. See LowerAdd in ISelLowering.
- return LT.first;
- case ISD::FADD:
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FNEG:
- // These nodes are marked as 'custom' just to lower them to SVE.
- // We know said lowering will incur no additional cost.
- if (!Ty->getScalarType()->isFP128Ty())
- return 2 * LT.first;
- return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
- Op2Info);
- }
- }
- InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty,
- ScalarEvolution *SE,
- const SCEV *Ptr) {
- // Address computations in vectorized code with non-consecutive addresses will
- // likely result in more instructions compared to scalar code where the
- // computation can more often be merged into the index mode. The resulting
- // extra micro-ops can significantly decrease throughput.
- unsigned NumVectorInstToHideOverhead = 10;
- int MaxMergeDistance = 64;
- if (Ty->isVectorTy() && SE &&
- !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
- return NumVectorInstToHideOverhead;
- // In many cases the address computation is not merged into the instruction
- // addressing mode.
- return 1;
- }
- InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
- Type *CondTy,
- CmpInst::Predicate VecPred,
- TTI::TargetCostKind CostKind,
- const Instruction *I) {
- // TODO: Handle other cost kinds.
- if (CostKind != TTI::TCK_RecipThroughput)
- return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
- I);
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- // We don't lower some vector selects well that are wider than the register
- // width.
- if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) {
- // We would need this many instructions to hide the scalarization happening.
- const int AmortizationCost = 20;
- // If VecPred is not set, check if we can get a predicate from the context
- // instruction, if its type matches the requested ValTy.
- if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) {
- CmpInst::Predicate CurrentPred;
- if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(),
- m_Value())))
- VecPred = CurrentPred;
- }
- // Check if we have a compare/select chain that can be lowered using
- // a (F)CMxx & BFI pair.
- if (CmpInst::isIntPredicate(VecPred) || VecPred == CmpInst::FCMP_OLE ||
- VecPred == CmpInst::FCMP_OLT || VecPred == CmpInst::FCMP_OGT ||
- VecPred == CmpInst::FCMP_OGE || VecPred == CmpInst::FCMP_OEQ ||
- VecPred == CmpInst::FCMP_UNE) {
- static const auto ValidMinMaxTys = {
- MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32,
- MVT::v4i32, MVT::v2i64, MVT::v2f32, MVT::v4f32, MVT::v2f64};
- static const auto ValidFP16MinMaxTys = {MVT::v4f16, MVT::v8f16};
- auto LT = getTypeLegalizationCost(ValTy);
- if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; }) ||
- (ST->hasFullFP16() &&
- any_of(ValidFP16MinMaxTys, [<](MVT M) { return M == LT.second; })))
- return LT.first;
- }
- static const TypeConversionCostTblEntry
- VectorSelectTbl[] = {
- { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
- { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
- { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
- { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
- { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
- { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
- };
- EVT SelCondTy = TLI->getValueType(DL, CondTy);
- EVT SelValTy = TLI->getValueType(DL, ValTy);
- if (SelCondTy.isSimple() && SelValTy.isSimple()) {
- if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
- SelCondTy.getSimpleVT(),
- SelValTy.getSimpleVT()))
- return Entry->Cost;
- }
- }
- // The base case handles scalable vectors fine for now, since it treats the
- // cost as 1 * legalization cost.
- return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
- }
- AArch64TTIImpl::TTI::MemCmpExpansionOptions
- AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
- TTI::MemCmpExpansionOptions Options;
- if (ST->requiresStrictAlign()) {
- // TODO: Add cost modeling for strict align. Misaligned loads expand to
- // a bunch of instructions when strict align is enabled.
- return Options;
- }
- Options.AllowOverlappingLoads = true;
- Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
- Options.NumLoadsPerBlock = Options.MaxNumLoads;
- // TODO: Though vector loads usually perform well on AArch64, in some targets
- // they may wake up the FP unit, which raises the power consumption. Perhaps
- // they could be used with no holds barred (-O3).
- Options.LoadSizes = {8, 4, 2, 1};
- return Options;
- }
- bool AArch64TTIImpl::prefersVectorizedAddressing() const {
- return ST->hasSVE();
- }
- InstructionCost
- AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
- Align Alignment, unsigned AddressSpace,
- TTI::TargetCostKind CostKind) {
- if (useNeonVector(Src))
- return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
- CostKind);
- auto LT = getTypeLegalizationCost(Src);
- if (!LT.first.isValid())
- return InstructionCost::getInvalid();
- // The code-generator is currently not able to handle scalable vectors
- // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
- // it. This change will be removed when code-generation for these types is
- // sufficiently reliable.
- if (cast<VectorType>(Src)->getElementCount() == ElementCount::getScalable(1))
- return InstructionCost::getInvalid();
- return LT.first;
- }
- static unsigned getSVEGatherScatterOverhead(unsigned Opcode) {
- return Opcode == Instruction::Load ? SVEGatherOverhead : SVEScatterOverhead;
- }
- InstructionCost AArch64TTIImpl::getGatherScatterOpCost(
- unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
- Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
- if (useNeonVector(DataTy))
- return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
- Alignment, CostKind, I);
- auto *VT = cast<VectorType>(DataTy);
- auto LT = getTypeLegalizationCost(DataTy);
- if (!LT.first.isValid())
- return InstructionCost::getInvalid();
- // The code-generator is currently not able to handle scalable vectors
- // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
- // it. This change will be removed when code-generation for these types is
- // sufficiently reliable.
- if (cast<VectorType>(DataTy)->getElementCount() ==
- ElementCount::getScalable(1))
- return InstructionCost::getInvalid();
- ElementCount LegalVF = LT.second.getVectorElementCount();
- InstructionCost MemOpCost =
- getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind,
- {TTI::OK_AnyValue, TTI::OP_None}, I);
- // Add on an overhead cost for using gathers/scatters.
- // TODO: At the moment this is applied unilaterally for all CPUs, but at some
- // point we may want a per-CPU overhead.
- MemOpCost *= getSVEGatherScatterOverhead(Opcode);
- return LT.first * MemOpCost * getMaxNumElements(LegalVF);
- }
- bool AArch64TTIImpl::useNeonVector(const Type *Ty) const {
- return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors();
- }
- InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
- MaybeAlign Alignment,
- unsigned AddressSpace,
- TTI::TargetCostKind CostKind,
- TTI::OperandValueInfo OpInfo,
- const Instruction *I) {
- EVT VT = TLI->getValueType(DL, Ty, true);
- // Type legalization can't handle structs
- if (VT == MVT::Other)
- return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
- CostKind);
- auto LT = getTypeLegalizationCost(Ty);
- if (!LT.first.isValid())
- return InstructionCost::getInvalid();
- // The code-generator is currently not able to handle scalable vectors
- // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
- // it. This change will be removed when code-generation for these types is
- // sufficiently reliable.
- if (auto *VTy = dyn_cast<ScalableVectorType>(Ty))
- if (VTy->getElementCount() == ElementCount::getScalable(1))
- return InstructionCost::getInvalid();
- // TODO: consider latency as well for TCK_SizeAndLatency.
- if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
- return LT.first;
- if (CostKind != TTI::TCK_RecipThroughput)
- return 1;
- if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
- LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
- // Unaligned stores are extremely inefficient. We don't split all
- // unaligned 128-bit stores because the negative impact that has shown in
- // practice on inlined block copy code.
- // We make such stores expensive so that we will only vectorize if there
- // are 6 other instructions getting vectorized.
- const int AmortizationCost = 6;
- return LT.first * 2 * AmortizationCost;
- }
- // Opaque ptr or ptr vector types are i64s and can be lowered to STP/LDPs.
- if (Ty->isPtrOrPtrVectorTy())
- return LT.first;
- // Check truncating stores and extending loads.
- if (useNeonVector(Ty) &&
- Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) {
- // v4i8 types are lowered to scalar a load/store and sshll/xtn.
- if (VT == MVT::v4i8)
- return 2;
- // Otherwise we need to scalarize.
- return cast<FixedVectorType>(Ty)->getNumElements() * 2;
- }
- return LT.first;
- }
- InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost(
- unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
- Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
- bool UseMaskForCond, bool UseMaskForGaps) {
- assert(Factor >= 2 && "Invalid interleave factor");
- auto *VecVTy = cast<FixedVectorType>(VecTy);
- if (!UseMaskForCond && !UseMaskForGaps &&
- Factor <= TLI->getMaxSupportedInterleaveFactor()) {
- unsigned NumElts = VecVTy->getNumElements();
- auto *SubVecTy =
- FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
- // ldN/stN only support legal vector types of size 64 or 128 in bits.
- // Accesses having vector types that are a multiple of 128 bits can be
- // matched to more than one ldN/stN instruction.
- bool UseScalable;
- if (NumElts % Factor == 0 &&
- TLI->isLegalInterleavedAccessType(SubVecTy, DL, UseScalable))
- return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL, UseScalable);
- }
- return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
- Alignment, AddressSpace, CostKind,
- UseMaskForCond, UseMaskForGaps);
- }
- InstructionCost
- AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
- InstructionCost Cost = 0;
- TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
- for (auto *I : Tys) {
- if (!I->isVectorTy())
- continue;
- if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() ==
- 128)
- Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) +
- getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind);
- }
- return Cost;
- }
- unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
- return ST->getMaxInterleaveFactor();
- }
- // For Falkor, we want to avoid having too many strided loads in a loop since
- // that can exhaust the HW prefetcher resources. We adjust the unroller
- // MaxCount preference below to attempt to ensure unrolling doesn't create too
- // many strided loads.
- static void
- getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
- TargetTransformInfo::UnrollingPreferences &UP) {
- enum { MaxStridedLoads = 7 };
- auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
- int StridedLoads = 0;
- // FIXME? We could make this more precise by looking at the CFG and
- // e.g. not counting loads in each side of an if-then-else diamond.
- for (const auto BB : L->blocks()) {
- for (auto &I : *BB) {
- LoadInst *LMemI = dyn_cast<LoadInst>(&I);
- if (!LMemI)
- continue;
- Value *PtrValue = LMemI->getPointerOperand();
- if (L->isLoopInvariant(PtrValue))
- continue;
- const SCEV *LSCEV = SE.getSCEV(PtrValue);
- const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
- if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
- continue;
- // FIXME? We could take pairing of unrolled load copies into account
- // by looking at the AddRec, but we would probably have to limit this
- // to loops with no stores or other memory optimization barriers.
- ++StridedLoads;
- // We've seen enough strided loads that seeing more won't make a
- // difference.
- if (StridedLoads > MaxStridedLoads / 2)
- return StridedLoads;
- }
- }
- return StridedLoads;
- };
- int StridedLoads = countStridedLoads(L, SE);
- LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
- << " strided loads\n");
- // Pick the largest power of 2 unroll count that won't result in too many
- // strided loads.
- if (StridedLoads) {
- UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
- LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
- << UP.MaxCount << '\n');
- }
- }
- void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
- TTI::UnrollingPreferences &UP,
- OptimizationRemarkEmitter *ORE) {
- // Enable partial unrolling and runtime unrolling.
- BaseT::getUnrollingPreferences(L, SE, UP, ORE);
- UP.UpperBound = true;
- // For inner loop, it is more likely to be a hot one, and the runtime check
- // can be promoted out from LICM pass, so the overhead is less, let's try
- // a larger threshold to unroll more loops.
- if (L->getLoopDepth() > 1)
- UP.PartialThreshold *= 2;
- // Disable partial & runtime unrolling on -Os.
- UP.PartialOptSizeThreshold = 0;
- if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
- EnableFalkorHWPFUnrollFix)
- getFalkorUnrollingPreferences(L, SE, UP);
- // Scan the loop: don't unroll loops with calls as this could prevent
- // inlining. Don't unroll vector loops either, as they don't benefit much from
- // unrolling.
- for (auto *BB : L->getBlocks()) {
- for (auto &I : *BB) {
- // Don't unroll vectorised loop.
- if (I.getType()->isVectorTy())
- return;
- if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
- if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
- if (!isLoweredToCall(F))
- continue;
- }
- return;
- }
- }
- }
- // Enable runtime unrolling for in-order models
- // If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by
- // checking for that case, we can ensure that the default behaviour is
- // unchanged
- if (ST->getProcFamily() != AArch64Subtarget::Others &&
- !ST->getSchedModel().isOutOfOrder()) {
- UP.Runtime = true;
- UP.Partial = true;
- UP.UnrollRemainder = true;
- UP.DefaultUnrollRuntimeCount = 4;
- UP.UnrollAndJam = true;
- UP.UnrollAndJamInnerLoopThreshold = 60;
- }
- }
- void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
- TTI::PeelingPreferences &PP) {
- BaseT::getPeelingPreferences(L, SE, PP);
- }
- Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
- Type *ExpectedType) {
- switch (Inst->getIntrinsicID()) {
- default:
- return nullptr;
- case Intrinsic::aarch64_neon_st2:
- case Intrinsic::aarch64_neon_st3:
- case Intrinsic::aarch64_neon_st4: {
- // Create a struct type
- StructType *ST = dyn_cast<StructType>(ExpectedType);
- if (!ST)
- return nullptr;
- unsigned NumElts = Inst->arg_size() - 1;
- if (ST->getNumElements() != NumElts)
- return nullptr;
- for (unsigned i = 0, e = NumElts; i != e; ++i) {
- if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
- return nullptr;
- }
- Value *Res = PoisonValue::get(ExpectedType);
- IRBuilder<> Builder(Inst);
- for (unsigned i = 0, e = NumElts; i != e; ++i) {
- Value *L = Inst->getArgOperand(i);
- Res = Builder.CreateInsertValue(Res, L, i);
- }
- return Res;
- }
- case Intrinsic::aarch64_neon_ld2:
- case Intrinsic::aarch64_neon_ld3:
- case Intrinsic::aarch64_neon_ld4:
- if (Inst->getType() == ExpectedType)
- return Inst;
- return nullptr;
- }
- }
- bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
- MemIntrinsicInfo &Info) {
- switch (Inst->getIntrinsicID()) {
- default:
- break;
- case Intrinsic::aarch64_neon_ld2:
- case Intrinsic::aarch64_neon_ld3:
- case Intrinsic::aarch64_neon_ld4:
- Info.ReadMem = true;
- Info.WriteMem = false;
- Info.PtrVal = Inst->getArgOperand(0);
- break;
- case Intrinsic::aarch64_neon_st2:
- case Intrinsic::aarch64_neon_st3:
- case Intrinsic::aarch64_neon_st4:
- Info.ReadMem = false;
- Info.WriteMem = true;
- Info.PtrVal = Inst->getArgOperand(Inst->arg_size() - 1);
- break;
- }
- switch (Inst->getIntrinsicID()) {
- default:
- return false;
- case Intrinsic::aarch64_neon_ld2:
- case Intrinsic::aarch64_neon_st2:
- Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
- break;
- case Intrinsic::aarch64_neon_ld3:
- case Intrinsic::aarch64_neon_st3:
- Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
- break;
- case Intrinsic::aarch64_neon_ld4:
- case Intrinsic::aarch64_neon_st4:
- Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
- break;
- }
- return true;
- }
- /// See if \p I should be considered for address type promotion. We check if \p
- /// I is a sext with right type and used in memory accesses. If it used in a
- /// "complex" getelementptr, we allow it to be promoted without finding other
- /// sext instructions that sign extended the same initial value. A getelementptr
- /// is considered as "complex" if it has more than 2 operands.
- bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
- const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
- bool Considerable = false;
- AllowPromotionWithoutCommonHeader = false;
- if (!isa<SExtInst>(&I))
- return false;
- Type *ConsideredSExtType =
- Type::getInt64Ty(I.getParent()->getParent()->getContext());
- if (I.getType() != ConsideredSExtType)
- return false;
- // See if the sext is the one with the right type and used in at least one
- // GetElementPtrInst.
- for (const User *U : I.users()) {
- if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
- Considerable = true;
- // A getelementptr is considered as "complex" if it has more than 2
- // operands. We will promote a SExt used in such complex GEP as we
- // expect some computation to be merged if they are done on 64 bits.
- if (GEPInst->getNumOperands() > 2) {
- AllowPromotionWithoutCommonHeader = true;
- break;
- }
- }
- }
- return Considerable;
- }
- bool AArch64TTIImpl::isLegalToVectorizeReduction(
- const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
- if (!VF.isScalable())
- return true;
- Type *Ty = RdxDesc.getRecurrenceType();
- if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty))
- return false;
- switch (RdxDesc.getRecurrenceKind()) {
- case RecurKind::Add:
- case RecurKind::FAdd:
- case RecurKind::And:
- case RecurKind::Or:
- case RecurKind::Xor:
- case RecurKind::SMin:
- case RecurKind::SMax:
- case RecurKind::UMin:
- case RecurKind::UMax:
- case RecurKind::FMin:
- case RecurKind::FMax:
- case RecurKind::SelectICmp:
- case RecurKind::SelectFCmp:
- case RecurKind::FMulAdd:
- return true;
- default:
- return false;
- }
- }
- InstructionCost
- AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
- bool IsUnsigned,
- TTI::TargetCostKind CostKind) {
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
- if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16())
- return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
- assert((isa<ScalableVectorType>(Ty) == isa<ScalableVectorType>(CondTy)) &&
- "Both vector needs to be equally scalable");
- InstructionCost LegalizationCost = 0;
- if (LT.first > 1) {
- Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext());
- unsigned MinMaxOpcode =
- Ty->isFPOrFPVectorTy()
- ? Intrinsic::maxnum
- : (IsUnsigned ? Intrinsic::umin : Intrinsic::smin);
- IntrinsicCostAttributes Attrs(MinMaxOpcode, LegalVTy, {LegalVTy, LegalVTy});
- LegalizationCost = getIntrinsicInstrCost(Attrs, CostKind) * (LT.first - 1);
- }
- return LegalizationCost + /*Cost of horizontal reduction*/ 2;
- }
- InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE(
- unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) {
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
- InstructionCost LegalizationCost = 0;
- if (LT.first > 1) {
- Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext());
- LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind);
- LegalizationCost *= LT.first - 1;
- }
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- assert(ISD && "Invalid opcode");
- // Add the final reduction cost for the legal horizontal reduction
- switch (ISD) {
- case ISD::ADD:
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR:
- case ISD::FADD:
- return LegalizationCost + 2;
- default:
- return InstructionCost::getInvalid();
- }
- }
- InstructionCost
- AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
- std::optional<FastMathFlags> FMF,
- TTI::TargetCostKind CostKind) {
- if (TTI::requiresOrderedReduction(FMF)) {
- if (auto *FixedVTy = dyn_cast<FixedVectorType>(ValTy)) {
- InstructionCost BaseCost =
- BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
- // Add on extra cost to reflect the extra overhead on some CPUs. We still
- // end up vectorizing for more computationally intensive loops.
- return BaseCost + FixedVTy->getNumElements();
- }
- if (Opcode != Instruction::FAdd)
- return InstructionCost::getInvalid();
- auto *VTy = cast<ScalableVectorType>(ValTy);
- InstructionCost Cost =
- getArithmeticInstrCost(Opcode, VTy->getScalarType(), CostKind);
- Cost *= getMaxNumElements(VTy->getElementCount());
- return Cost;
- }
- if (isa<ScalableVectorType>(ValTy))
- return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind);
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
- MVT MTy = LT.second;
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- assert(ISD && "Invalid opcode");
- // Horizontal adds can use the 'addv' instruction. We model the cost of these
- // instructions as twice a normal vector add, plus 1 for each legalization
- // step (LT.first). This is the only arithmetic vector reduction operation for
- // which we have an instruction.
- // OR, XOR and AND costs should match the codegen from:
- // OR: llvm/test/CodeGen/AArch64/reduce-or.ll
- // XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll
- // AND: llvm/test/CodeGen/AArch64/reduce-and.ll
- static const CostTblEntry CostTblNoPairwise[]{
- {ISD::ADD, MVT::v8i8, 2},
- {ISD::ADD, MVT::v16i8, 2},
- {ISD::ADD, MVT::v4i16, 2},
- {ISD::ADD, MVT::v8i16, 2},
- {ISD::ADD, MVT::v4i32, 2},
- {ISD::ADD, MVT::v2i64, 2},
- {ISD::OR, MVT::v8i8, 15},
- {ISD::OR, MVT::v16i8, 17},
- {ISD::OR, MVT::v4i16, 7},
- {ISD::OR, MVT::v8i16, 9},
- {ISD::OR, MVT::v2i32, 3},
- {ISD::OR, MVT::v4i32, 5},
- {ISD::OR, MVT::v2i64, 3},
- {ISD::XOR, MVT::v8i8, 15},
- {ISD::XOR, MVT::v16i8, 17},
- {ISD::XOR, MVT::v4i16, 7},
- {ISD::XOR, MVT::v8i16, 9},
- {ISD::XOR, MVT::v2i32, 3},
- {ISD::XOR, MVT::v4i32, 5},
- {ISD::XOR, MVT::v2i64, 3},
- {ISD::AND, MVT::v8i8, 15},
- {ISD::AND, MVT::v16i8, 17},
- {ISD::AND, MVT::v4i16, 7},
- {ISD::AND, MVT::v8i16, 9},
- {ISD::AND, MVT::v2i32, 3},
- {ISD::AND, MVT::v4i32, 5},
- {ISD::AND, MVT::v2i64, 3},
- };
- switch (ISD) {
- default:
- break;
- case ISD::ADD:
- if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
- return (LT.first - 1) + Entry->Cost;
- break;
- case ISD::XOR:
- case ISD::AND:
- case ISD::OR:
- const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy);
- if (!Entry)
- break;
- auto *ValVTy = cast<FixedVectorType>(ValTy);
- if (!ValVTy->getElementType()->isIntegerTy(1) &&
- MTy.getVectorNumElements() <= ValVTy->getNumElements() &&
- isPowerOf2_32(ValVTy->getNumElements())) {
- InstructionCost ExtraCost = 0;
- if (LT.first != 1) {
- // Type needs to be split, so there is an extra cost of LT.first - 1
- // arithmetic ops.
- auto *Ty = FixedVectorType::get(ValTy->getElementType(),
- MTy.getVectorNumElements());
- ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
- ExtraCost *= LT.first - 1;
- }
- return Entry->Cost + ExtraCost;
- }
- break;
- }
- return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
- }
- InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) {
- static const CostTblEntry ShuffleTbl[] = {
- { TTI::SK_Splice, MVT::nxv16i8, 1 },
- { TTI::SK_Splice, MVT::nxv8i16, 1 },
- { TTI::SK_Splice, MVT::nxv4i32, 1 },
- { TTI::SK_Splice, MVT::nxv2i64, 1 },
- { TTI::SK_Splice, MVT::nxv2f16, 1 },
- { TTI::SK_Splice, MVT::nxv4f16, 1 },
- { TTI::SK_Splice, MVT::nxv8f16, 1 },
- { TTI::SK_Splice, MVT::nxv2bf16, 1 },
- { TTI::SK_Splice, MVT::nxv4bf16, 1 },
- { TTI::SK_Splice, MVT::nxv8bf16, 1 },
- { TTI::SK_Splice, MVT::nxv2f32, 1 },
- { TTI::SK_Splice, MVT::nxv4f32, 1 },
- { TTI::SK_Splice, MVT::nxv2f64, 1 },
- };
- // The code-generator is currently not able to handle scalable vectors
- // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
- // it. This change will be removed when code-generation for these types is
- // sufficiently reliable.
- if (Tp->getElementCount() == ElementCount::getScalable(1))
- return InstructionCost::getInvalid();
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
- Type *LegalVTy = EVT(LT.second).getTypeForEVT(Tp->getContext());
- TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
- EVT PromotedVT = LT.second.getScalarType() == MVT::i1
- ? TLI->getPromotedVTForPredicate(EVT(LT.second))
- : LT.second;
- Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Tp->getContext());
- InstructionCost LegalizationCost = 0;
- if (Index < 0) {
- LegalizationCost =
- getCmpSelInstrCost(Instruction::ICmp, PromotedVTy, PromotedVTy,
- CmpInst::BAD_ICMP_PREDICATE, CostKind) +
- getCmpSelInstrCost(Instruction::Select, PromotedVTy, LegalVTy,
- CmpInst::BAD_ICMP_PREDICATE, CostKind);
- }
- // Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp
- // Cost performed on a promoted type.
- if (LT.second.getScalarType() == MVT::i1) {
- LegalizationCost +=
- getCastInstrCost(Instruction::ZExt, PromotedVTy, LegalVTy,
- TTI::CastContextHint::None, CostKind) +
- getCastInstrCost(Instruction::Trunc, LegalVTy, PromotedVTy,
- TTI::CastContextHint::None, CostKind);
- }
- const auto *Entry =
- CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT());
- assert(Entry && "Illegal Type for Splice");
- LegalizationCost += Entry->Cost;
- return LegalizationCost * LT.first;
- }
- InstructionCost AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
- VectorType *Tp,
- ArrayRef<int> Mask,
- TTI::TargetCostKind CostKind,
- int Index, VectorType *SubTp,
- ArrayRef<const Value *> Args) {
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
- // If we have a Mask, and the LT is being legalized somehow, split the Mask
- // into smaller vectors and sum the cost of each shuffle.
- if (!Mask.empty() && isa<FixedVectorType>(Tp) && LT.second.isVector() &&
- Tp->getScalarSizeInBits() == LT.second.getScalarSizeInBits() &&
- cast<FixedVectorType>(Tp)->getNumElements() >
- LT.second.getVectorNumElements() &&
- !Index && !SubTp) {
- unsigned TpNumElts = cast<FixedVectorType>(Tp)->getNumElements();
- assert(Mask.size() == TpNumElts && "Expected Mask and Tp size to match!");
- unsigned LTNumElts = LT.second.getVectorNumElements();
- unsigned NumVecs = (TpNumElts + LTNumElts - 1) / LTNumElts;
- VectorType *NTp =
- VectorType::get(Tp->getScalarType(), LT.second.getVectorElementCount());
- InstructionCost Cost;
- for (unsigned N = 0; N < NumVecs; N++) {
- SmallVector<int> NMask;
- // Split the existing mask into chunks of size LTNumElts. Track the source
- // sub-vectors to ensure the result has at most 2 inputs.
- unsigned Source1, Source2;
- unsigned NumSources = 0;
- for (unsigned E = 0; E < LTNumElts; E++) {
- int MaskElt = (N * LTNumElts + E < TpNumElts) ? Mask[N * LTNumElts + E]
- : UndefMaskElem;
- if (MaskElt < 0) {
- NMask.push_back(UndefMaskElem);
- continue;
- }
- // Calculate which source from the input this comes from and whether it
- // is new to us.
- unsigned Source = MaskElt / LTNumElts;
- if (NumSources == 0) {
- Source1 = Source;
- NumSources = 1;
- } else if (NumSources == 1 && Source != Source1) {
- Source2 = Source;
- NumSources = 2;
- } else if (NumSources >= 2 && Source != Source1 && Source != Source2) {
- NumSources++;
- }
- // Add to the new mask. For the NumSources>2 case these are not correct,
- // but are only used for the modular lane number.
- if (Source == Source1)
- NMask.push_back(MaskElt % LTNumElts);
- else if (Source == Source2)
- NMask.push_back(MaskElt % LTNumElts + LTNumElts);
- else
- NMask.push_back(MaskElt % LTNumElts);
- }
- // If the sub-mask has at most 2 input sub-vectors then re-cost it using
- // getShuffleCost. If not then cost it using the worst case.
- if (NumSources <= 2)
- Cost += getShuffleCost(NumSources <= 1 ? TTI::SK_PermuteSingleSrc
- : TTI::SK_PermuteTwoSrc,
- NTp, NMask, CostKind, 0, nullptr, Args);
- else if (any_of(enumerate(NMask), [&](const auto &ME) {
- return ME.value() % LTNumElts == ME.index();
- }))
- Cost += LTNumElts - 1;
- else
- Cost += LTNumElts;
- }
- return Cost;
- }
- Kind = improveShuffleKindFromMask(Kind, Mask);
- // Check for broadcast loads.
- if (Kind == TTI::SK_Broadcast) {
- bool IsLoad = !Args.empty() && isa<LoadInst>(Args[0]);
- if (IsLoad && LT.second.isVector() &&
- isLegalBroadcastLoad(Tp->getElementType(),
- LT.second.getVectorElementCount()))
- return 0; // broadcast is handled by ld1r
- }
- // If we have 4 elements for the shuffle and a Mask, get the cost straight
- // from the perfect shuffle tables.
- if (Mask.size() == 4 && Tp->getElementCount() == ElementCount::getFixed(4) &&
- (Tp->getScalarSizeInBits() == 16 || Tp->getScalarSizeInBits() == 32) &&
- all_of(Mask, [](int E) { return E < 8; }))
- return getPerfectShuffleCost(Mask);
- if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
- Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc ||
- Kind == TTI::SK_Reverse || Kind == TTI::SK_Splice) {
- static const CostTblEntry ShuffleTbl[] = {
- // Broadcast shuffle kinds can be performed with 'dup'.
- {TTI::SK_Broadcast, MVT::v8i8, 1},
- {TTI::SK_Broadcast, MVT::v16i8, 1},
- {TTI::SK_Broadcast, MVT::v4i16, 1},
- {TTI::SK_Broadcast, MVT::v8i16, 1},
- {TTI::SK_Broadcast, MVT::v2i32, 1},
- {TTI::SK_Broadcast, MVT::v4i32, 1},
- {TTI::SK_Broadcast, MVT::v2i64, 1},
- {TTI::SK_Broadcast, MVT::v2f32, 1},
- {TTI::SK_Broadcast, MVT::v4f32, 1},
- {TTI::SK_Broadcast, MVT::v2f64, 1},
- // Transpose shuffle kinds can be performed with 'trn1/trn2' and
- // 'zip1/zip2' instructions.
- {TTI::SK_Transpose, MVT::v8i8, 1},
- {TTI::SK_Transpose, MVT::v16i8, 1},
- {TTI::SK_Transpose, MVT::v4i16, 1},
- {TTI::SK_Transpose, MVT::v8i16, 1},
- {TTI::SK_Transpose, MVT::v2i32, 1},
- {TTI::SK_Transpose, MVT::v4i32, 1},
- {TTI::SK_Transpose, MVT::v2i64, 1},
- {TTI::SK_Transpose, MVT::v2f32, 1},
- {TTI::SK_Transpose, MVT::v4f32, 1},
- {TTI::SK_Transpose, MVT::v2f64, 1},
- // Select shuffle kinds.
- // TODO: handle vXi8/vXi16.
- {TTI::SK_Select, MVT::v2i32, 1}, // mov.
- {TTI::SK_Select, MVT::v4i32, 2}, // rev+trn (or similar).
- {TTI::SK_Select, MVT::v2i64, 1}, // mov.
- {TTI::SK_Select, MVT::v2f32, 1}, // mov.
- {TTI::SK_Select, MVT::v4f32, 2}, // rev+trn (or similar).
- {TTI::SK_Select, MVT::v2f64, 1}, // mov.
- // PermuteSingleSrc shuffle kinds.
- {TTI::SK_PermuteSingleSrc, MVT::v2i32, 1}, // mov.
- {TTI::SK_PermuteSingleSrc, MVT::v4i32, 3}, // perfectshuffle worst case.
- {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // mov.
- {TTI::SK_PermuteSingleSrc, MVT::v2f32, 1}, // mov.
- {TTI::SK_PermuteSingleSrc, MVT::v4f32, 3}, // perfectshuffle worst case.
- {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // mov.
- {TTI::SK_PermuteSingleSrc, MVT::v4i16, 3}, // perfectshuffle worst case.
- {TTI::SK_PermuteSingleSrc, MVT::v4f16, 3}, // perfectshuffle worst case.
- {TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3}, // same
- {TTI::SK_PermuteSingleSrc, MVT::v8i16, 8}, // constpool + load + tbl
- {TTI::SK_PermuteSingleSrc, MVT::v8f16, 8}, // constpool + load + tbl
- {TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8}, // constpool + load + tbl
- {TTI::SK_PermuteSingleSrc, MVT::v8i8, 8}, // constpool + load + tbl
- {TTI::SK_PermuteSingleSrc, MVT::v16i8, 8}, // constpool + load + tbl
- // Reverse can be lowered with `rev`.
- {TTI::SK_Reverse, MVT::v2i32, 1}, // REV64
- {TTI::SK_Reverse, MVT::v4i32, 2}, // REV64; EXT
- {TTI::SK_Reverse, MVT::v2i64, 1}, // EXT
- {TTI::SK_Reverse, MVT::v2f32, 1}, // REV64
- {TTI::SK_Reverse, MVT::v4f32, 2}, // REV64; EXT
- {TTI::SK_Reverse, MVT::v2f64, 1}, // EXT
- {TTI::SK_Reverse, MVT::v8f16, 2}, // REV64; EXT
- {TTI::SK_Reverse, MVT::v8i16, 2}, // REV64; EXT
- {TTI::SK_Reverse, MVT::v16i8, 2}, // REV64; EXT
- {TTI::SK_Reverse, MVT::v4f16, 1}, // REV64
- {TTI::SK_Reverse, MVT::v4i16, 1}, // REV64
- {TTI::SK_Reverse, MVT::v8i8, 1}, // REV64
- // Splice can all be lowered as `ext`.
- {TTI::SK_Splice, MVT::v2i32, 1},
- {TTI::SK_Splice, MVT::v4i32, 1},
- {TTI::SK_Splice, MVT::v2i64, 1},
- {TTI::SK_Splice, MVT::v2f32, 1},
- {TTI::SK_Splice, MVT::v4f32, 1},
- {TTI::SK_Splice, MVT::v2f64, 1},
- {TTI::SK_Splice, MVT::v8f16, 1},
- {TTI::SK_Splice, MVT::v8bf16, 1},
- {TTI::SK_Splice, MVT::v8i16, 1},
- {TTI::SK_Splice, MVT::v16i8, 1},
- {TTI::SK_Splice, MVT::v4bf16, 1},
- {TTI::SK_Splice, MVT::v4f16, 1},
- {TTI::SK_Splice, MVT::v4i16, 1},
- {TTI::SK_Splice, MVT::v8i8, 1},
- // Broadcast shuffle kinds for scalable vectors
- {TTI::SK_Broadcast, MVT::nxv16i8, 1},
- {TTI::SK_Broadcast, MVT::nxv8i16, 1},
- {TTI::SK_Broadcast, MVT::nxv4i32, 1},
- {TTI::SK_Broadcast, MVT::nxv2i64, 1},
- {TTI::SK_Broadcast, MVT::nxv2f16, 1},
- {TTI::SK_Broadcast, MVT::nxv4f16, 1},
- {TTI::SK_Broadcast, MVT::nxv8f16, 1},
- {TTI::SK_Broadcast, MVT::nxv2bf16, 1},
- {TTI::SK_Broadcast, MVT::nxv4bf16, 1},
- {TTI::SK_Broadcast, MVT::nxv8bf16, 1},
- {TTI::SK_Broadcast, MVT::nxv2f32, 1},
- {TTI::SK_Broadcast, MVT::nxv4f32, 1},
- {TTI::SK_Broadcast, MVT::nxv2f64, 1},
- {TTI::SK_Broadcast, MVT::nxv16i1, 1},
- {TTI::SK_Broadcast, MVT::nxv8i1, 1},
- {TTI::SK_Broadcast, MVT::nxv4i1, 1},
- {TTI::SK_Broadcast, MVT::nxv2i1, 1},
- // Handle the cases for vector.reverse with scalable vectors
- {TTI::SK_Reverse, MVT::nxv16i8, 1},
- {TTI::SK_Reverse, MVT::nxv8i16, 1},
- {TTI::SK_Reverse, MVT::nxv4i32, 1},
- {TTI::SK_Reverse, MVT::nxv2i64, 1},
- {TTI::SK_Reverse, MVT::nxv2f16, 1},
- {TTI::SK_Reverse, MVT::nxv4f16, 1},
- {TTI::SK_Reverse, MVT::nxv8f16, 1},
- {TTI::SK_Reverse, MVT::nxv2bf16, 1},
- {TTI::SK_Reverse, MVT::nxv4bf16, 1},
- {TTI::SK_Reverse, MVT::nxv8bf16, 1},
- {TTI::SK_Reverse, MVT::nxv2f32, 1},
- {TTI::SK_Reverse, MVT::nxv4f32, 1},
- {TTI::SK_Reverse, MVT::nxv2f64, 1},
- {TTI::SK_Reverse, MVT::nxv16i1, 1},
- {TTI::SK_Reverse, MVT::nxv8i1, 1},
- {TTI::SK_Reverse, MVT::nxv4i1, 1},
- {TTI::SK_Reverse, MVT::nxv2i1, 1},
- };
- if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
- return LT.first * Entry->Cost;
- }
- if (Kind == TTI::SK_Splice && isa<ScalableVectorType>(Tp))
- return getSpliceCost(Tp, Index);
- // Inserting a subvector can often be done with either a D, S or H register
- // move, so long as the inserted vector is "aligned".
- if (Kind == TTI::SK_InsertSubvector && LT.second.isFixedLengthVector() &&
- LT.second.getSizeInBits() <= 128 && SubTp) {
- std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(SubTp);
- if (SubLT.second.isVector()) {
- int NumElts = LT.second.getVectorNumElements();
- int NumSubElts = SubLT.second.getVectorNumElements();
- if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
- return SubLT.first;
- }
- }
- return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp);
- }
- bool AArch64TTIImpl::preferPredicateOverEpilogue(
- Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
- TargetLibraryInfo *TLI, DominatorTree *DT, LoopVectorizationLegality *LVL,
- InterleavedAccessInfo *IAI) {
- if (!ST->hasSVE() || TailFoldingKindLoc == TailFoldingKind::TFDisabled)
- return false;
- // We don't currently support vectorisation with interleaving for SVE - with
- // such loops we're better off not using tail-folding. This gives us a chance
- // to fall back on fixed-width vectorisation using NEON's ld2/st2/etc.
- if (IAI->hasGroups())
- return false;
- TailFoldingKind Required; // Defaults to 0.
- if (LVL->getReductionVars().size())
- Required.add(TailFoldingKind::TFReductions);
- if (LVL->getFixedOrderRecurrences().size())
- Required.add(TailFoldingKind::TFRecurrences);
- if (!Required)
- Required.add(TailFoldingKind::TFSimple);
- return (TailFoldingKindLoc & Required) == Required;
- }
- InstructionCost
- AArch64TTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
- int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale, unsigned AddrSpace) const {
- // Scaling factors are not free at all.
- // Operands | Rt Latency
- // -------------------------------------------
- // Rt, [Xn, Xm] | 4
- // -------------------------------------------
- // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
- // Rt, [Xn, Wm, <extend> #imm] |
- TargetLoweringBase::AddrMode AM;
- AM.BaseGV = BaseGV;
- AM.BaseOffs = BaseOffset;
- AM.HasBaseReg = HasBaseReg;
- AM.Scale = Scale;
- if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace))
- // Scale represents reg2 * scale, thus account for 1 if
- // it is not equal to 0 or 1.
- return AM.Scale != 0 && AM.Scale != 1;
- return -1;
- }
|