123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569 |
- //=- AArch64CallingConv.td - Calling Conventions for AArch64 -*- tablegen -*-=//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This describes the calling conventions for AArch64 architecture.
- //
- //===----------------------------------------------------------------------===//
- /// CCIfBigEndian - Match only if we're in big endian mode.
- class CCIfBigEndian<CCAction A> :
- CCIf<"State.getMachineFunction().getDataLayout().isBigEndian()", A>;
- class CCIfILP32<CCAction A> :
- CCIf<"State.getMachineFunction().getDataLayout().getPointerSize() == 4", A>;
- //===----------------------------------------------------------------------===//
- // ARM AAPCS64 Calling Convention
- //===----------------------------------------------------------------------===//
- let Entry = 1 in
- def CC_AArch64_AAPCS : CallingConv<[
- CCIfType<[iPTR], CCBitConvertToType<i64>>,
- CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
- CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
- // Big endian vectors must be passed as if they were 1-element vectors so that
- // their lanes are in a consistent order.
- CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8],
- CCBitConvertToType<f64>>>,
- CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
- CCBitConvertToType<f128>>>,
- // In AAPCS, an SRet is passed in X8, not X0 like a normal pointer parameter.
- // However, on windows, in some circumstances, the SRet is passed in X0 or X1
- // instead. The presence of the inreg attribute indicates that SRet is
- // passed in the alternative register (X0 or X1), not X8:
- // - X0 for non-instance methods.
- // - X1 for instance methods.
- // The "sret" attribute identifies indirect returns.
- // The "inreg" attribute identifies non-aggregate types.
- // The position of the "sret" attribute identifies instance/non-instance
- // methods.
- // "sret" on argument 0 means non-instance methods.
- // "sret" on argument 1 means instance methods.
- CCIfInReg<CCIfType<[i64],
- CCIfSRet<CCIfType<[i64], CCAssignToReg<[X0, X1]>>>>>,
- CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
- // Put ByVal arguments directly on the stack. Minimum size and alignment of a
- // slot is 64-bit.
- CCIfByVal<CCPassByVal<8, 8>>,
- // The 'nest' parameter, if any, is passed in X18.
- // Darwin uses X18 as the platform register and hence 'nest' isn't currently
- // supported there.
- CCIfNest<CCAssignToReg<[X18]>>,
- // Pass SwiftSelf in a callee saved register.
- CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[X20]>>>,
- // A SwiftError is passed in X21.
- CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
- // Pass SwiftAsync in an otherwise callee saved register so that it will be
- // preserved for normal function calls.
- CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[X22]>>>,
- CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
- CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
- nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
- CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
- CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
- nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
- CCPassIndirect<i64>>,
- CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1],
- CCAssignToReg<[P0, P1, P2, P3]>>,
- CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1],
- CCPassIndirect<i64>>,
- // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
- // up to eight each of GPR and FPR.
- CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
- CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
- // i128 is split to two i64s, we can't fit half to register X7.
- CCIfType<[i64], CCIfSplit<CCAssignToRegWithShadow<[X0, X2, X4, X6],
- [X0, X1, X3, X5]>>>,
- // i128 is split to two i64s, and its stack alignment is 16 bytes.
- CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
- CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
- CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
- CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
- CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
- CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
- CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
- CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
- CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
- CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
- // If more than will fit in registers, pass them on the stack instead.
- CCIfType<[i1, i8, i16, f16, bf16], CCAssignToStack<8, 8>>,
- CCIfType<[i32, f32], CCAssignToStack<8, 8>>,
- CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16],
- CCAssignToStack<8, 8>>,
- CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
- CCAssignToStack<16, 16>>
- ]>;
- let Entry = 1 in
- def RetCC_AArch64_AAPCS : CallingConv<[
- CCIfType<[iPTR], CCBitConvertToType<i64>>,
- CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
- CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
- CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
- CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
- // Big endian vectors must be passed as if they were 1-element vectors so that
- // their lanes are in a consistent order.
- CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8],
- CCBitConvertToType<f64>>>,
- CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
- CCBitConvertToType<f128>>>,
- CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
- CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
- CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
- CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
- CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
- CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
- CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
- CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
- CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
- CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
- CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
- CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
- nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
- CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
- CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1],
- CCAssignToReg<[P0, P1, P2, P3]>>
- ]>;
- // Vararg functions on windows pass floats in integer registers
- let Entry = 1 in
- def CC_AArch64_Win64_VarArg : CallingConv<[
- CCIfType<[f16, bf16], CCBitConvertToType<i16>>,
- CCIfType<[f32], CCBitConvertToType<i32>>,
- CCIfType<[f64], CCBitConvertToType<i64>>,
- CCDelegateTo<CC_AArch64_AAPCS>
- ]>;
- // Vararg functions on Arm64EC ABI use a different convention, using
- // a stack layout compatible with the x64 calling convention.
- let Entry = 1 in
- def CC_AArch64_Arm64EC_VarArg : CallingConv<[
- // Convert small floating-point values to integer.
- CCIfType<[f16, bf16], CCBitConvertToType<i16>>,
- CCIfType<[f32], CCBitConvertToType<i32>>,
- CCIfType<[f64, v1f64, v1i64, v2f32, v2i32, v4i16, v4f16, v4bf16, v8i8, iPTR],
- CCBitConvertToType<i64>>,
- // Larger floating-point/vector values are passed indirectly.
- CCIfType<[f128, v2f64, v2i64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
- CCPassIndirect<i64>>,
- CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
- nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
- CCPassIndirect<i64>>,
- CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
- CCPassIndirect<i64>>,
- // Handle SRet. See comment in CC_AArch64_AAPCS.
- CCIfInReg<CCIfType<[i64],
- CCIfSRet<CCIfType<[i64], CCAssignToReg<[X0, X1]>>>>>,
- CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
- // Put ByVal arguments directly on the stack. Minimum size and alignment of a
- // slot is 64-bit. (Shouldn't normally come up; the Microsoft ABI doesn't
- // use byval.)
- CCIfByVal<CCPassByVal<8, 8>>,
- // Promote small integers to i32
- CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
- // Pass first four arguments in x0-x3.
- CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3]>>,
- CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3]>>,
- // Put remaining arguments on stack.
- CCIfType<[i32, i64], CCAssignToStack<8, 8>>,
- ]>;
- // Windows Control Flow Guard checks take a single argument (the target function
- // address) and have no return value.
- let Entry = 1 in
- def CC_AArch64_Win64_CFGuard_Check : CallingConv<[
- CCIfType<[i64], CCAssignToReg<[X15]>>
- ]>;
- // Darwin uses a calling convention which differs in only two ways
- // from the standard one at this level:
- // + i128s (i.e. split i64s) don't need even registers.
- // + Stack slots are sized as needed rather than being at least 64-bit.
- let Entry = 1 in
- def CC_AArch64_DarwinPCS : CallingConv<[
- CCIfType<[iPTR], CCBitConvertToType<i64>>,
- CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
- CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
- // An SRet is passed in X8, not X0 like a normal pointer parameter.
- CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
- // Put ByVal arguments directly on the stack. Minimum size and alignment of a
- // slot is 64-bit.
- CCIfByVal<CCPassByVal<8, 8>>,
- // Pass SwiftSelf in a callee saved register.
- CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[X20]>>>,
- // A SwiftError is passed in X21.
- CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
- // Pass SwiftAsync in an otherwise callee saved register so that it will be
- // preserved for normal function calls.
- CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[X22]>>>,
- CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
- // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
- // up to eight each of GPR and FPR.
- CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
- CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
- // i128 is split to two i64s, we can't fit half to register X7.
- CCIfType<[i64],
- CCIfSplit<CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6]>>>,
- // i128 is split to two i64s, and its stack alignment is 16 bytes.
- CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
- CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
- CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
- CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
- CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
- CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
- CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
- CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
- CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
- CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
- // If more than will fit in registers, pass them on the stack instead.
- CCIf<"ValVT == MVT::i1 || ValVT == MVT::i8", CCAssignToStack<1, 1>>,
- CCIf<"ValVT == MVT::i16 || ValVT == MVT::f16 || ValVT == MVT::bf16",
- CCAssignToStack<2, 2>>,
- CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
- // Re-demote pointers to 32-bits so we don't end up storing 64-bit
- // values and clobbering neighbouring stack locations. Not very pretty.
- CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
- CCIfPtr<CCIfILP32<CCAssignToStack<4, 4>>>,
- CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16],
- CCAssignToStack<8, 8>>,
- CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
- CCAssignToStack<16, 16>>
- ]>;
- let Entry = 1 in
- def CC_AArch64_DarwinPCS_VarArg : CallingConv<[
- CCIfType<[iPTR], CCBitConvertToType<i64>>,
- CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
- CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
- CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Stack_Block">>,
- // Handle all scalar types as either i64 or f64.
- CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
- CCIfType<[f16, bf16, f32], CCPromoteToType<f64>>,
- // Everything is on the stack.
- // i128 is split to two i64s, and its stack alignment is 16 bytes.
- CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
- CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
- CCAssignToStack<8, 8>>,
- CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
- CCAssignToStack<16, 16>>
- ]>;
- // In the ILP32 world, the minimum stack slot size is 4 bytes. Otherwise the
- // same as the normal Darwin VarArgs handling.
- let Entry = 1 in
- def CC_AArch64_DarwinPCS_ILP32_VarArg : CallingConv<[
- CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
- CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
- // Handle all scalar types as either i32 or f32.
- CCIfType<[i8, i16], CCPromoteToType<i32>>,
- CCIfType<[f16, bf16], CCPromoteToType<f32>>,
- // Everything is on the stack.
- // i128 is split to two i64s, and its stack alignment is 16 bytes.
- CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
- CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
- CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
- CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
- CCAssignToStack<8, 8>>,
- CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
- CCAssignToStack<16, 16>>
- ]>;
- // The WebKit_JS calling convention only passes the first argument (the callee)
- // in register and the remaining arguments on stack. We allow 32bit stack slots,
- // so that WebKit can write partial values in the stack and define the other
- // 32bit quantity as undef.
- let Entry = 1 in
- def CC_AArch64_WebKit_JS : CallingConv<[
- // Handle i1, i8, i16, i32, and i64 passing in register X0 (W0).
- CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
- CCIfType<[i32], CCAssignToReg<[W0]>>,
- CCIfType<[i64], CCAssignToReg<[X0]>>,
- // Pass the remaining arguments on the stack instead.
- CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
- CCIfType<[i64, f64], CCAssignToStack<8, 8>>
- ]>;
- let Entry = 1 in
- def RetCC_AArch64_WebKit_JS : CallingConv<[
- CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
- CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
- CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
- CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>
- ]>;
- //===----------------------------------------------------------------------===//
- // ARM64 Calling Convention for GHC
- //===----------------------------------------------------------------------===//
- // This calling convention is specific to the Glasgow Haskell Compiler.
- // The only documentation is the GHC source code, specifically the C header
- // file:
- //
- // https://github.com/ghc/ghc/blob/master/includes/stg/MachRegs.h
- //
- // which defines the registers for the Spineless Tagless G-Machine (STG) that
- // GHC uses to implement lazy evaluation. The generic STG machine has a set of
- // registers which are mapped to appropriate set of architecture specific
- // registers for each CPU architecture.
- //
- // The STG Machine is documented here:
- //
- // https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/GeneratedCode
- //
- // The AArch64 register mapping is under the heading "The ARMv8/AArch64 ABI
- // register mapping".
- let Entry = 1 in
- def CC_AArch64_GHC : CallingConv<[
- CCIfType<[iPTR], CCBitConvertToType<i64>>,
- // Handle all vector types as either f64 or v2f64.
- CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
- CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, f128], CCBitConvertToType<v2f64>>,
- CCIfType<[v2f64], CCAssignToReg<[Q4, Q5]>>,
- CCIfType<[f32], CCAssignToReg<[S8, S9, S10, S11]>>,
- CCIfType<[f64], CCAssignToReg<[D12, D13, D14, D15]>>,
- // Promote i8/i16/i32 arguments to i64.
- CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
- // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
- CCIfType<[i64], CCAssignToReg<[X19, X20, X21, X22, X23, X24, X25, X26, X27, X28]>>
- ]>;
- // The order of the callee-saves in this file is important, because the
- // FrameLowering code will use this order to determine the layout the
- // callee-save area in the stack frame. As can be observed below, Darwin
- // requires the frame-record (LR, FP) to be at the top the callee-save area,
- // whereas for other platforms they are at the bottom.
- // FIXME: LR is only callee-saved in the sense that *we* preserve it and are
- // presumably a callee to someone. External functions may not do so, but this
- // is currently safe since BL has LR as an implicit-def and what happens after a
- // tail call doesn't matter.
- //
- // It would be better to model its preservation semantics properly (create a
- // vreg on entry, use it in RET & tail call generation; make that vreg def if we
- // end up saving LR as part of a call frame). Watch this space...
- def CSR_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
- X25, X26, X27, X28, LR, FP,
- D8, D9, D10, D11,
- D12, D13, D14, D15)>;
- // A variant for treating X18 as callee saved, when interfacing with
- // code that needs X18 to be preserved.
- def CSR_AArch64_AAPCS_X18 : CalleeSavedRegs<(add X18, CSR_AArch64_AAPCS)>;
- // Win64 has unwinding codes for an (FP,LR) pair, save_fplr and save_fplr_x.
- // We put FP before LR, so that frame lowering logic generates (FP,LR) pairs,
- // and not (LR,FP) pairs.
- def CSR_Win_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
- X25, X26, X27, X28, FP, LR,
- D8, D9, D10, D11,
- D12, D13, D14, D15)>;
- // The Control Flow Guard check call uses a custom calling convention that also
- // preserves X0-X8 and Q0-Q7.
- def CSR_Win_AArch64_CFGuard_Check : CalleeSavedRegs<(add CSR_Win_AArch64_AAPCS,
- (sequence "X%u", 0, 8),
- (sequence "Q%u", 0, 7))>;
- // AArch64 PCS for vector functions (VPCS)
- // must (additionally) preserve full Q8-Q23 registers
- def CSR_AArch64_AAVPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
- X25, X26, X27, X28, LR, FP,
- (sequence "Q%u", 8, 23))>;
- // Functions taking SVE arguments or returning an SVE type
- // must (additionally) preserve full Z8-Z23 and predicate registers P4-P15
- def CSR_AArch64_SVE_AAPCS : CalleeSavedRegs<(add (sequence "Z%u", 8, 23),
- (sequence "P%u", 4, 15),
- X19, X20, X21, X22, X23, X24,
- X25, X26, X27, X28, LR, FP)>;
- // SME ABI support routines such as __arm_tpidr2_save/restore preserve most registers.
- def CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0
- : CalleeSavedRegs<(add (sequence "Z%u", 0, 31),
- (sequence "P%u", 0, 15),
- (sequence "X%u", 0, 13),
- (sequence "X%u",19, 28),
- LR, FP)>;
- // SME ABI support routines __arm_sme_state preserves most registers.
- def CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2
- : CalleeSavedRegs<(add (sequence "Z%u", 0, 31),
- (sequence "P%u", 0, 15),
- (sequence "X%u", 2, 15),
- (sequence "X%u",19, 28),
- LR, FP)>;
- // The SMSTART/SMSTOP instructions preserve only GPR registers.
- def CSR_AArch64_SMStartStop : CalleeSavedRegs<(add (sequence "X%u", 0, 28),
- LR, FP)>;
- def CSR_AArch64_AAPCS_SwiftTail
- : CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X20, X22)>;
- // Constructors and destructors return 'this' in the iOS 64-bit C++ ABI; since
- // 'this' and the pointer return value are both passed in X0 in these cases,
- // this can be partially modelled by treating X0 as a callee-saved register;
- // only the resulting RegMask is used; the SaveList is ignored
- //
- // (For generic ARM 64-bit ABI code, clang will not generate constructors or
- // destructors with 'this' returns, so this RegMask will not be used in that
- // case)
- def CSR_AArch64_AAPCS_ThisReturn : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X0)>;
- def CSR_AArch64_AAPCS_SwiftError
- : CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X21)>;
- // The ELF stub used for TLS-descriptor access saves every feasible
- // register. Only X0 and LR are clobbered.
- def CSR_AArch64_TLS_ELF
- : CalleeSavedRegs<(add (sequence "X%u", 1, 28), FP,
- (sequence "Q%u", 0, 31))>;
- def CSR_AArch64_AllRegs
- : CalleeSavedRegs<(add (sequence "W%u", 0, 30), WSP,
- (sequence "X%u", 0, 28), FP, LR, SP,
- (sequence "B%u", 0, 31), (sequence "H%u", 0, 31),
- (sequence "S%u", 0, 31), (sequence "D%u", 0, 31),
- (sequence "Q%u", 0, 31))>;
- def CSR_AArch64_NoRegs : CalleeSavedRegs<(add)>;
- def CSR_AArch64_RT_MostRegs : CalleeSavedRegs<(add CSR_AArch64_AAPCS,
- (sequence "X%u", 9, 15))>;
- def CSR_AArch64_StackProbe_Windows
- : CalleeSavedRegs<(add (sequence "X%u", 0, 15),
- (sequence "X%u", 18, 28), FP, SP,
- (sequence "Q%u", 0, 31))>;
- // Darwin variants of AAPCS.
- // Darwin puts the frame-record at the top of the callee-save area.
- def CSR_Darwin_AArch64_AAPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21, X22,
- X23, X24, X25, X26, X27, X28,
- D8, D9, D10, D11,
- D12, D13, D14, D15)>;
- def CSR_Darwin_AArch64_AAVPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21,
- X22, X23, X24, X25, X26, X27,
- X28, (sequence "Q%u", 8, 23))>;
- // For Windows calling convention on a non-windows OS, where X18 is treated
- // as reserved, back up X18 when entering non-windows code (marked with the
- // Windows calling convention) and restore when returning regardless of
- // whether the individual function uses it - it might call other functions
- // that clobber it.
- def CSR_Darwin_AArch64_AAPCS_Win64
- : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, X18)>;
- def CSR_Darwin_AArch64_AAPCS_ThisReturn
- : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, X0)>;
- def CSR_Darwin_AArch64_AAPCS_SwiftError
- : CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X21)>;
- def CSR_Darwin_AArch64_AAPCS_SwiftTail
- : CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X20, X22)>;
- // The function used by Darwin to obtain the address of a thread-local variable
- // guarantees more than a normal AAPCS function. x16 and x17 are used on the
- // fast path for calculation, but other registers except X0 (argument/return)
- // and LR (it is a call, after all) are preserved.
- def CSR_Darwin_AArch64_TLS
- : CalleeSavedRegs<(add (sub (sequence "X%u", 1, 28), X16, X17),
- FP,
- (sequence "Q%u", 0, 31))>;
- // We can only handle a register pair with adjacent registers, the register pair
- // should belong to the same class as well. Since the access function on the
- // fast path calls a function that follows CSR_Darwin_AArch64_TLS,
- // CSR_Darwin_AArch64_CXX_TLS should be a subset of CSR_Darwin_AArch64_TLS.
- def CSR_Darwin_AArch64_CXX_TLS
- : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS,
- (sub (sequence "X%u", 1, 28), X9, X15, X16, X17, X18, X19),
- (sequence "D%u", 0, 31))>;
- // CSRs that are handled by prologue, epilogue.
- def CSR_Darwin_AArch64_CXX_TLS_PE
- : CalleeSavedRegs<(add LR, FP)>;
- // CSRs that are handled explicitly via copies.
- def CSR_Darwin_AArch64_CXX_TLS_ViaCopy
- : CalleeSavedRegs<(sub CSR_Darwin_AArch64_CXX_TLS, LR, FP)>;
- def CSR_Darwin_AArch64_RT_MostRegs
- : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, (sequence "X%u", 9, 15))>;
- // Variants of the standard calling conventions for shadow call stack.
- // These all preserve x18 in addition to any other registers.
- def CSR_AArch64_NoRegs_SCS
- : CalleeSavedRegs<(add CSR_AArch64_NoRegs, X18)>;
- def CSR_AArch64_AllRegs_SCS
- : CalleeSavedRegs<(add CSR_AArch64_AllRegs, X18)>;
- def CSR_AArch64_AAPCS_SwiftError_SCS
- : CalleeSavedRegs<(add CSR_AArch64_AAPCS_SwiftError, X18)>;
- def CSR_AArch64_RT_MostRegs_SCS
- : CalleeSavedRegs<(add CSR_AArch64_RT_MostRegs, X18)>;
- def CSR_AArch64_AAVPCS_SCS
- : CalleeSavedRegs<(add CSR_AArch64_AAVPCS, X18)>;
- def CSR_AArch64_SVE_AAPCS_SCS
- : CalleeSavedRegs<(add CSR_AArch64_SVE_AAPCS, X18)>;
- def CSR_AArch64_AAPCS_SCS
- : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X18)>;
|