AArch64CallingConvention.td 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569
  1. //=- AArch64CallingConv.td - Calling Conventions for AArch64 -*- tablegen -*-=//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This describes the calling conventions for AArch64 architecture.
  10. //
  11. //===----------------------------------------------------------------------===//
  12. /// CCIfBigEndian - Match only if we're in big endian mode.
  13. class CCIfBigEndian<CCAction A> :
  14. CCIf<"State.getMachineFunction().getDataLayout().isBigEndian()", A>;
  15. class CCIfILP32<CCAction A> :
  16. CCIf<"State.getMachineFunction().getDataLayout().getPointerSize() == 4", A>;
  17. //===----------------------------------------------------------------------===//
  18. // ARM AAPCS64 Calling Convention
  19. //===----------------------------------------------------------------------===//
  20. let Entry = 1 in
  21. def CC_AArch64_AAPCS : CallingConv<[
  22. CCIfType<[iPTR], CCBitConvertToType<i64>>,
  23. CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
  24. CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
  25. // Big endian vectors must be passed as if they were 1-element vectors so that
  26. // their lanes are in a consistent order.
  27. CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8],
  28. CCBitConvertToType<f64>>>,
  29. CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
  30. CCBitConvertToType<f128>>>,
  31. // In AAPCS, an SRet is passed in X8, not X0 like a normal pointer parameter.
  32. // However, on windows, in some circumstances, the SRet is passed in X0 or X1
  33. // instead. The presence of the inreg attribute indicates that SRet is
  34. // passed in the alternative register (X0 or X1), not X8:
  35. // - X0 for non-instance methods.
  36. // - X1 for instance methods.
  37. // The "sret" attribute identifies indirect returns.
  38. // The "inreg" attribute identifies non-aggregate types.
  39. // The position of the "sret" attribute identifies instance/non-instance
  40. // methods.
  41. // "sret" on argument 0 means non-instance methods.
  42. // "sret" on argument 1 means instance methods.
  43. CCIfInReg<CCIfType<[i64],
  44. CCIfSRet<CCIfType<[i64], CCAssignToReg<[X0, X1]>>>>>,
  45. CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
  46. // Put ByVal arguments directly on the stack. Minimum size and alignment of a
  47. // slot is 64-bit.
  48. CCIfByVal<CCPassByVal<8, 8>>,
  49. // The 'nest' parameter, if any, is passed in X18.
  50. // Darwin uses X18 as the platform register and hence 'nest' isn't currently
  51. // supported there.
  52. CCIfNest<CCAssignToReg<[X18]>>,
  53. // Pass SwiftSelf in a callee saved register.
  54. CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[X20]>>>,
  55. // A SwiftError is passed in X21.
  56. CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
  57. // Pass SwiftAsync in an otherwise callee saved register so that it will be
  58. // preserved for normal function calls.
  59. CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[X22]>>>,
  60. CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
  61. CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
  62. nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
  63. CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
  64. CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
  65. nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
  66. CCPassIndirect<i64>>,
  67. CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1],
  68. CCAssignToReg<[P0, P1, P2, P3]>>,
  69. CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1],
  70. CCPassIndirect<i64>>,
  71. // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
  72. // up to eight each of GPR and FPR.
  73. CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
  74. CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
  75. // i128 is split to two i64s, we can't fit half to register X7.
  76. CCIfType<[i64], CCIfSplit<CCAssignToRegWithShadow<[X0, X2, X4, X6],
  77. [X0, X1, X3, X5]>>>,
  78. // i128 is split to two i64s, and its stack alignment is 16 bytes.
  79. CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
  80. CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
  81. CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
  82. CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
  83. CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
  84. CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
  85. CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
  86. CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
  87. CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
  88. CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
  89. // If more than will fit in registers, pass them on the stack instead.
  90. CCIfType<[i1, i8, i16, f16, bf16], CCAssignToStack<8, 8>>,
  91. CCIfType<[i32, f32], CCAssignToStack<8, 8>>,
  92. CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16],
  93. CCAssignToStack<8, 8>>,
  94. CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
  95. CCAssignToStack<16, 16>>
  96. ]>;
  97. let Entry = 1 in
  98. def RetCC_AArch64_AAPCS : CallingConv<[
  99. CCIfType<[iPTR], CCBitConvertToType<i64>>,
  100. CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
  101. CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
  102. CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
  103. CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
  104. // Big endian vectors must be passed as if they were 1-element vectors so that
  105. // their lanes are in a consistent order.
  106. CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8],
  107. CCBitConvertToType<f64>>>,
  108. CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
  109. CCBitConvertToType<f128>>>,
  110. CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
  111. CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
  112. CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
  113. CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
  114. CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
  115. CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
  116. CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
  117. CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
  118. CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
  119. CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
  120. CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
  121. CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
  122. nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
  123. CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
  124. CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1],
  125. CCAssignToReg<[P0, P1, P2, P3]>>
  126. ]>;
  127. // Vararg functions on windows pass floats in integer registers
  128. let Entry = 1 in
  129. def CC_AArch64_Win64_VarArg : CallingConv<[
  130. CCIfType<[f16, bf16], CCBitConvertToType<i16>>,
  131. CCIfType<[f32], CCBitConvertToType<i32>>,
  132. CCIfType<[f64], CCBitConvertToType<i64>>,
  133. CCDelegateTo<CC_AArch64_AAPCS>
  134. ]>;
  135. // Vararg functions on Arm64EC ABI use a different convention, using
  136. // a stack layout compatible with the x64 calling convention.
  137. let Entry = 1 in
  138. def CC_AArch64_Arm64EC_VarArg : CallingConv<[
  139. // Convert small floating-point values to integer.
  140. CCIfType<[f16, bf16], CCBitConvertToType<i16>>,
  141. CCIfType<[f32], CCBitConvertToType<i32>>,
  142. CCIfType<[f64, v1f64, v1i64, v2f32, v2i32, v4i16, v4f16, v4bf16, v8i8, iPTR],
  143. CCBitConvertToType<i64>>,
  144. // Larger floating-point/vector values are passed indirectly.
  145. CCIfType<[f128, v2f64, v2i64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
  146. CCPassIndirect<i64>>,
  147. CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
  148. nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
  149. CCPassIndirect<i64>>,
  150. CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
  151. CCPassIndirect<i64>>,
  152. // Handle SRet. See comment in CC_AArch64_AAPCS.
  153. CCIfInReg<CCIfType<[i64],
  154. CCIfSRet<CCIfType<[i64], CCAssignToReg<[X0, X1]>>>>>,
  155. CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
  156. // Put ByVal arguments directly on the stack. Minimum size and alignment of a
  157. // slot is 64-bit. (Shouldn't normally come up; the Microsoft ABI doesn't
  158. // use byval.)
  159. CCIfByVal<CCPassByVal<8, 8>>,
  160. // Promote small integers to i32
  161. CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
  162. // Pass first four arguments in x0-x3.
  163. CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3]>>,
  164. CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3]>>,
  165. // Put remaining arguments on stack.
  166. CCIfType<[i32, i64], CCAssignToStack<8, 8>>,
  167. ]>;
  168. // Windows Control Flow Guard checks take a single argument (the target function
  169. // address) and have no return value.
  170. let Entry = 1 in
  171. def CC_AArch64_Win64_CFGuard_Check : CallingConv<[
  172. CCIfType<[i64], CCAssignToReg<[X15]>>
  173. ]>;
  174. // Darwin uses a calling convention which differs in only two ways
  175. // from the standard one at this level:
  176. // + i128s (i.e. split i64s) don't need even registers.
  177. // + Stack slots are sized as needed rather than being at least 64-bit.
  178. let Entry = 1 in
  179. def CC_AArch64_DarwinPCS : CallingConv<[
  180. CCIfType<[iPTR], CCBitConvertToType<i64>>,
  181. CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
  182. CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
  183. // An SRet is passed in X8, not X0 like a normal pointer parameter.
  184. CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
  185. // Put ByVal arguments directly on the stack. Minimum size and alignment of a
  186. // slot is 64-bit.
  187. CCIfByVal<CCPassByVal<8, 8>>,
  188. // Pass SwiftSelf in a callee saved register.
  189. CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[X20]>>>,
  190. // A SwiftError is passed in X21.
  191. CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>,
  192. // Pass SwiftAsync in an otherwise callee saved register so that it will be
  193. // preserved for normal function calls.
  194. CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[X22]>>>,
  195. CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
  196. // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
  197. // up to eight each of GPR and FPR.
  198. CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
  199. CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
  200. // i128 is split to two i64s, we can't fit half to register X7.
  201. CCIfType<[i64],
  202. CCIfSplit<CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6]>>>,
  203. // i128 is split to two i64s, and its stack alignment is 16 bytes.
  204. CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
  205. CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
  206. CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
  207. CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
  208. CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
  209. CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
  210. CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
  211. CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
  212. CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
  213. CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
  214. // If more than will fit in registers, pass them on the stack instead.
  215. CCIf<"ValVT == MVT::i1 || ValVT == MVT::i8", CCAssignToStack<1, 1>>,
  216. CCIf<"ValVT == MVT::i16 || ValVT == MVT::f16 || ValVT == MVT::bf16",
  217. CCAssignToStack<2, 2>>,
  218. CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
  219. // Re-demote pointers to 32-bits so we don't end up storing 64-bit
  220. // values and clobbering neighbouring stack locations. Not very pretty.
  221. CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
  222. CCIfPtr<CCIfILP32<CCAssignToStack<4, 4>>>,
  223. CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16],
  224. CCAssignToStack<8, 8>>,
  225. CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
  226. CCAssignToStack<16, 16>>
  227. ]>;
  228. let Entry = 1 in
  229. def CC_AArch64_DarwinPCS_VarArg : CallingConv<[
  230. CCIfType<[iPTR], CCBitConvertToType<i64>>,
  231. CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
  232. CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
  233. CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Stack_Block">>,
  234. // Handle all scalar types as either i64 or f64.
  235. CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
  236. CCIfType<[f16, bf16, f32], CCPromoteToType<f64>>,
  237. // Everything is on the stack.
  238. // i128 is split to two i64s, and its stack alignment is 16 bytes.
  239. CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
  240. CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
  241. CCAssignToStack<8, 8>>,
  242. CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
  243. CCAssignToStack<16, 16>>
  244. ]>;
  245. // In the ILP32 world, the minimum stack slot size is 4 bytes. Otherwise the
  246. // same as the normal Darwin VarArgs handling.
  247. let Entry = 1 in
  248. def CC_AArch64_DarwinPCS_ILP32_VarArg : CallingConv<[
  249. CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
  250. CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
  251. // Handle all scalar types as either i32 or f32.
  252. CCIfType<[i8, i16], CCPromoteToType<i32>>,
  253. CCIfType<[f16, bf16], CCPromoteToType<f32>>,
  254. // Everything is on the stack.
  255. // i128 is split to two i64s, and its stack alignment is 16 bytes.
  256. CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
  257. CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
  258. CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
  259. CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
  260. CCAssignToStack<8, 8>>,
  261. CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
  262. CCAssignToStack<16, 16>>
  263. ]>;
  264. // The WebKit_JS calling convention only passes the first argument (the callee)
  265. // in register and the remaining arguments on stack. We allow 32bit stack slots,
  266. // so that WebKit can write partial values in the stack and define the other
  267. // 32bit quantity as undef.
  268. let Entry = 1 in
  269. def CC_AArch64_WebKit_JS : CallingConv<[
  270. // Handle i1, i8, i16, i32, and i64 passing in register X0 (W0).
  271. CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
  272. CCIfType<[i32], CCAssignToReg<[W0]>>,
  273. CCIfType<[i64], CCAssignToReg<[X0]>>,
  274. // Pass the remaining arguments on the stack instead.
  275. CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
  276. CCIfType<[i64, f64], CCAssignToStack<8, 8>>
  277. ]>;
  278. let Entry = 1 in
  279. def RetCC_AArch64_WebKit_JS : CallingConv<[
  280. CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>,
  281. CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
  282. CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
  283. CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>
  284. ]>;
  285. //===----------------------------------------------------------------------===//
  286. // ARM64 Calling Convention for GHC
  287. //===----------------------------------------------------------------------===//
  288. // This calling convention is specific to the Glasgow Haskell Compiler.
  289. // The only documentation is the GHC source code, specifically the C header
  290. // file:
  291. //
  292. // https://github.com/ghc/ghc/blob/master/includes/stg/MachRegs.h
  293. //
  294. // which defines the registers for the Spineless Tagless G-Machine (STG) that
  295. // GHC uses to implement lazy evaluation. The generic STG machine has a set of
  296. // registers which are mapped to appropriate set of architecture specific
  297. // registers for each CPU architecture.
  298. //
  299. // The STG Machine is documented here:
  300. //
  301. // https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/GeneratedCode
  302. //
  303. // The AArch64 register mapping is under the heading "The ARMv8/AArch64 ABI
  304. // register mapping".
  305. let Entry = 1 in
  306. def CC_AArch64_GHC : CallingConv<[
  307. CCIfType<[iPTR], CCBitConvertToType<i64>>,
  308. // Handle all vector types as either f64 or v2f64.
  309. CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
  310. CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, f128], CCBitConvertToType<v2f64>>,
  311. CCIfType<[v2f64], CCAssignToReg<[Q4, Q5]>>,
  312. CCIfType<[f32], CCAssignToReg<[S8, S9, S10, S11]>>,
  313. CCIfType<[f64], CCAssignToReg<[D12, D13, D14, D15]>>,
  314. // Promote i8/i16/i32 arguments to i64.
  315. CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
  316. // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
  317. CCIfType<[i64], CCAssignToReg<[X19, X20, X21, X22, X23, X24, X25, X26, X27, X28]>>
  318. ]>;
  319. // The order of the callee-saves in this file is important, because the
  320. // FrameLowering code will use this order to determine the layout the
  321. // callee-save area in the stack frame. As can be observed below, Darwin
  322. // requires the frame-record (LR, FP) to be at the top the callee-save area,
  323. // whereas for other platforms they are at the bottom.
  324. // FIXME: LR is only callee-saved in the sense that *we* preserve it and are
  325. // presumably a callee to someone. External functions may not do so, but this
  326. // is currently safe since BL has LR as an implicit-def and what happens after a
  327. // tail call doesn't matter.
  328. //
  329. // It would be better to model its preservation semantics properly (create a
  330. // vreg on entry, use it in RET & tail call generation; make that vreg def if we
  331. // end up saving LR as part of a call frame). Watch this space...
  332. def CSR_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
  333. X25, X26, X27, X28, LR, FP,
  334. D8, D9, D10, D11,
  335. D12, D13, D14, D15)>;
  336. // A variant for treating X18 as callee saved, when interfacing with
  337. // code that needs X18 to be preserved.
  338. def CSR_AArch64_AAPCS_X18 : CalleeSavedRegs<(add X18, CSR_AArch64_AAPCS)>;
  339. // Win64 has unwinding codes for an (FP,LR) pair, save_fplr and save_fplr_x.
  340. // We put FP before LR, so that frame lowering logic generates (FP,LR) pairs,
  341. // and not (LR,FP) pairs.
  342. def CSR_Win_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
  343. X25, X26, X27, X28, FP, LR,
  344. D8, D9, D10, D11,
  345. D12, D13, D14, D15)>;
  346. // The Control Flow Guard check call uses a custom calling convention that also
  347. // preserves X0-X8 and Q0-Q7.
  348. def CSR_Win_AArch64_CFGuard_Check : CalleeSavedRegs<(add CSR_Win_AArch64_AAPCS,
  349. (sequence "X%u", 0, 8),
  350. (sequence "Q%u", 0, 7))>;
  351. // AArch64 PCS for vector functions (VPCS)
  352. // must (additionally) preserve full Q8-Q23 registers
  353. def CSR_AArch64_AAVPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
  354. X25, X26, X27, X28, LR, FP,
  355. (sequence "Q%u", 8, 23))>;
  356. // Functions taking SVE arguments or returning an SVE type
  357. // must (additionally) preserve full Z8-Z23 and predicate registers P4-P15
  358. def CSR_AArch64_SVE_AAPCS : CalleeSavedRegs<(add (sequence "Z%u", 8, 23),
  359. (sequence "P%u", 4, 15),
  360. X19, X20, X21, X22, X23, X24,
  361. X25, X26, X27, X28, LR, FP)>;
  362. // SME ABI support routines such as __arm_tpidr2_save/restore preserve most registers.
  363. def CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0
  364. : CalleeSavedRegs<(add (sequence "Z%u", 0, 31),
  365. (sequence "P%u", 0, 15),
  366. (sequence "X%u", 0, 13),
  367. (sequence "X%u",19, 28),
  368. LR, FP)>;
  369. // SME ABI support routines __arm_sme_state preserves most registers.
  370. def CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2
  371. : CalleeSavedRegs<(add (sequence "Z%u", 0, 31),
  372. (sequence "P%u", 0, 15),
  373. (sequence "X%u", 2, 15),
  374. (sequence "X%u",19, 28),
  375. LR, FP)>;
  376. // The SMSTART/SMSTOP instructions preserve only GPR registers.
  377. def CSR_AArch64_SMStartStop : CalleeSavedRegs<(add (sequence "X%u", 0, 28),
  378. LR, FP)>;
  379. def CSR_AArch64_AAPCS_SwiftTail
  380. : CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X20, X22)>;
  381. // Constructors and destructors return 'this' in the iOS 64-bit C++ ABI; since
  382. // 'this' and the pointer return value are both passed in X0 in these cases,
  383. // this can be partially modelled by treating X0 as a callee-saved register;
  384. // only the resulting RegMask is used; the SaveList is ignored
  385. //
  386. // (For generic ARM 64-bit ABI code, clang will not generate constructors or
  387. // destructors with 'this' returns, so this RegMask will not be used in that
  388. // case)
  389. def CSR_AArch64_AAPCS_ThisReturn : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X0)>;
  390. def CSR_AArch64_AAPCS_SwiftError
  391. : CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X21)>;
  392. // The ELF stub used for TLS-descriptor access saves every feasible
  393. // register. Only X0 and LR are clobbered.
  394. def CSR_AArch64_TLS_ELF
  395. : CalleeSavedRegs<(add (sequence "X%u", 1, 28), FP,
  396. (sequence "Q%u", 0, 31))>;
  397. def CSR_AArch64_AllRegs
  398. : CalleeSavedRegs<(add (sequence "W%u", 0, 30), WSP,
  399. (sequence "X%u", 0, 28), FP, LR, SP,
  400. (sequence "B%u", 0, 31), (sequence "H%u", 0, 31),
  401. (sequence "S%u", 0, 31), (sequence "D%u", 0, 31),
  402. (sequence "Q%u", 0, 31))>;
  403. def CSR_AArch64_NoRegs : CalleeSavedRegs<(add)>;
  404. def CSR_AArch64_RT_MostRegs : CalleeSavedRegs<(add CSR_AArch64_AAPCS,
  405. (sequence "X%u", 9, 15))>;
  406. def CSR_AArch64_StackProbe_Windows
  407. : CalleeSavedRegs<(add (sequence "X%u", 0, 15),
  408. (sequence "X%u", 18, 28), FP, SP,
  409. (sequence "Q%u", 0, 31))>;
  410. // Darwin variants of AAPCS.
  411. // Darwin puts the frame-record at the top of the callee-save area.
  412. def CSR_Darwin_AArch64_AAPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21, X22,
  413. X23, X24, X25, X26, X27, X28,
  414. D8, D9, D10, D11,
  415. D12, D13, D14, D15)>;
  416. def CSR_Darwin_AArch64_AAVPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21,
  417. X22, X23, X24, X25, X26, X27,
  418. X28, (sequence "Q%u", 8, 23))>;
  419. // For Windows calling convention on a non-windows OS, where X18 is treated
  420. // as reserved, back up X18 when entering non-windows code (marked with the
  421. // Windows calling convention) and restore when returning regardless of
  422. // whether the individual function uses it - it might call other functions
  423. // that clobber it.
  424. def CSR_Darwin_AArch64_AAPCS_Win64
  425. : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, X18)>;
  426. def CSR_Darwin_AArch64_AAPCS_ThisReturn
  427. : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, X0)>;
  428. def CSR_Darwin_AArch64_AAPCS_SwiftError
  429. : CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X21)>;
  430. def CSR_Darwin_AArch64_AAPCS_SwiftTail
  431. : CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X20, X22)>;
  432. // The function used by Darwin to obtain the address of a thread-local variable
  433. // guarantees more than a normal AAPCS function. x16 and x17 are used on the
  434. // fast path for calculation, but other registers except X0 (argument/return)
  435. // and LR (it is a call, after all) are preserved.
  436. def CSR_Darwin_AArch64_TLS
  437. : CalleeSavedRegs<(add (sub (sequence "X%u", 1, 28), X16, X17),
  438. FP,
  439. (sequence "Q%u", 0, 31))>;
  440. // We can only handle a register pair with adjacent registers, the register pair
  441. // should belong to the same class as well. Since the access function on the
  442. // fast path calls a function that follows CSR_Darwin_AArch64_TLS,
  443. // CSR_Darwin_AArch64_CXX_TLS should be a subset of CSR_Darwin_AArch64_TLS.
  444. def CSR_Darwin_AArch64_CXX_TLS
  445. : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS,
  446. (sub (sequence "X%u", 1, 28), X9, X15, X16, X17, X18, X19),
  447. (sequence "D%u", 0, 31))>;
  448. // CSRs that are handled by prologue, epilogue.
  449. def CSR_Darwin_AArch64_CXX_TLS_PE
  450. : CalleeSavedRegs<(add LR, FP)>;
  451. // CSRs that are handled explicitly via copies.
  452. def CSR_Darwin_AArch64_CXX_TLS_ViaCopy
  453. : CalleeSavedRegs<(sub CSR_Darwin_AArch64_CXX_TLS, LR, FP)>;
  454. def CSR_Darwin_AArch64_RT_MostRegs
  455. : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, (sequence "X%u", 9, 15))>;
  456. // Variants of the standard calling conventions for shadow call stack.
  457. // These all preserve x18 in addition to any other registers.
  458. def CSR_AArch64_NoRegs_SCS
  459. : CalleeSavedRegs<(add CSR_AArch64_NoRegs, X18)>;
  460. def CSR_AArch64_AllRegs_SCS
  461. : CalleeSavedRegs<(add CSR_AArch64_AllRegs, X18)>;
  462. def CSR_AArch64_AAPCS_SwiftError_SCS
  463. : CalleeSavedRegs<(add CSR_AArch64_AAPCS_SwiftError, X18)>;
  464. def CSR_AArch64_RT_MostRegs_SCS
  465. : CalleeSavedRegs<(add CSR_AArch64_RT_MostRegs, X18)>;
  466. def CSR_AArch64_AAVPCS_SCS
  467. : CalleeSavedRegs<(add CSR_AArch64_AAVPCS, X18)>;
  468. def CSR_AArch64_SVE_AAPCS_SCS
  469. : CalleeSavedRegs<(add CSR_AArch64_SVE_AAPCS, X18)>;
  470. def CSR_AArch64_AAPCS_SCS
  471. : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X18)>;