COFFReader.cpp 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226
  1. //===- COFFReader.cpp -----------------------------------------------------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. #include "COFFReader.h"
  9. #include "COFFObject.h"
  10. #include "llvm/ADT/ArrayRef.h"
  11. #include "llvm/ADT/StringRef.h"
  12. #include "llvm/BinaryFormat/COFF.h"
  13. #include "llvm/Object/COFF.h"
  14. #include "llvm/Support/ErrorHandling.h"
  15. #include <cstddef>
  16. #include <cstdint>
  17. namespace llvm {
  18. namespace objcopy {
  19. namespace coff {
  20. using namespace object;
  21. using namespace COFF;
  22. Error COFFReader::readExecutableHeaders(Object &Obj) const {
  23. const dos_header *DH = COFFObj.getDOSHeader();
  24. Obj.Is64 = COFFObj.is64();
  25. if (!DH)
  26. return Error::success();
  27. Obj.IsPE = true;
  28. Obj.DosHeader = *DH;
  29. if (DH->AddressOfNewExeHeader > sizeof(*DH))
  30. Obj.DosStub = ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(&DH[1]),
  31. DH->AddressOfNewExeHeader - sizeof(*DH));
  32. if (COFFObj.is64()) {
  33. Obj.PeHeader = *COFFObj.getPE32PlusHeader();
  34. } else {
  35. const pe32_header *PE32 = COFFObj.getPE32Header();
  36. copyPeHeader(Obj.PeHeader, *PE32);
  37. // The pe32plus_header (stored in Object) lacks the BaseOfData field.
  38. Obj.BaseOfData = PE32->BaseOfData;
  39. }
  40. for (size_t I = 0; I < Obj.PeHeader.NumberOfRvaAndSize; I++) {
  41. const data_directory *Dir = COFFObj.getDataDirectory(I);
  42. if (!Dir)
  43. return errorCodeToError(object_error::parse_failed);
  44. Obj.DataDirectories.emplace_back(*Dir);
  45. }
  46. return Error::success();
  47. }
  48. Error COFFReader::readSections(Object &Obj) const {
  49. std::vector<Section> Sections;
  50. // Section indexing starts from 1.
  51. for (size_t I = 1, E = COFFObj.getNumberOfSections(); I <= E; I++) {
  52. Expected<const coff_section *> SecOrErr = COFFObj.getSection(I);
  53. if (!SecOrErr)
  54. return SecOrErr.takeError();
  55. const coff_section *Sec = *SecOrErr;
  56. Sections.push_back(Section());
  57. Section &S = Sections.back();
  58. S.Header = *Sec;
  59. S.Header.Characteristics &= ~COFF::IMAGE_SCN_LNK_NRELOC_OVFL;
  60. ArrayRef<uint8_t> Contents;
  61. if (Error E = COFFObj.getSectionContents(Sec, Contents))
  62. return E;
  63. S.setContentsRef(Contents);
  64. ArrayRef<coff_relocation> Relocs = COFFObj.getRelocations(Sec);
  65. for (const coff_relocation &R : Relocs)
  66. S.Relocs.push_back(R);
  67. if (Expected<StringRef> NameOrErr = COFFObj.getSectionName(Sec))
  68. S.Name = *NameOrErr;
  69. else
  70. return NameOrErr.takeError();
  71. }
  72. Obj.addSections(Sections);
  73. return Error::success();
  74. }
  75. Error COFFReader::readSymbols(Object &Obj, bool IsBigObj) const {
  76. std::vector<Symbol> Symbols;
  77. Symbols.reserve(COFFObj.getNumberOfSymbols());
  78. ArrayRef<Section> Sections = Obj.getSections();
  79. for (uint32_t I = 0, E = COFFObj.getNumberOfSymbols(); I < E;) {
  80. Expected<COFFSymbolRef> SymOrErr = COFFObj.getSymbol(I);
  81. if (!SymOrErr)
  82. return SymOrErr.takeError();
  83. COFFSymbolRef SymRef = *SymOrErr;
  84. Symbols.push_back(Symbol());
  85. Symbol &Sym = Symbols.back();
  86. // Copy symbols from the original form into an intermediate coff_symbol32.
  87. if (IsBigObj)
  88. copySymbol(Sym.Sym,
  89. *reinterpret_cast<const coff_symbol32 *>(SymRef.getRawPtr()));
  90. else
  91. copySymbol(Sym.Sym,
  92. *reinterpret_cast<const coff_symbol16 *>(SymRef.getRawPtr()));
  93. auto NameOrErr = COFFObj.getSymbolName(SymRef);
  94. if (!NameOrErr)
  95. return NameOrErr.takeError();
  96. Sym.Name = *NameOrErr;
  97. ArrayRef<uint8_t> AuxData = COFFObj.getSymbolAuxData(SymRef);
  98. size_t SymSize = IsBigObj ? sizeof(coff_symbol32) : sizeof(coff_symbol16);
  99. assert(AuxData.size() == SymSize * SymRef.getNumberOfAuxSymbols());
  100. // The auxillary symbols are structs of sizeof(coff_symbol16) each.
  101. // In the big object format (where symbols are coff_symbol32), each
  102. // auxillary symbol is padded with 2 bytes at the end. Copy each
  103. // auxillary symbol to the Sym.AuxData vector. For file symbols,
  104. // the whole range of aux symbols are interpreted as one null padded
  105. // string instead.
  106. if (SymRef.isFileRecord())
  107. Sym.AuxFile = StringRef(reinterpret_cast<const char *>(AuxData.data()),
  108. AuxData.size())
  109. .rtrim('\0');
  110. else
  111. for (size_t I = 0; I < SymRef.getNumberOfAuxSymbols(); I++)
  112. Sym.AuxData.push_back(AuxData.slice(I * SymSize, sizeof(AuxSymbol)));
  113. // Find the unique id of the section
  114. if (SymRef.getSectionNumber() <=
  115. 0) // Special symbol (undefined/absolute/debug)
  116. Sym.TargetSectionId = SymRef.getSectionNumber();
  117. else if (static_cast<uint32_t>(SymRef.getSectionNumber() - 1) <
  118. Sections.size())
  119. Sym.TargetSectionId = Sections[SymRef.getSectionNumber() - 1].UniqueId;
  120. else
  121. return createStringError(object_error::parse_failed,
  122. "section number out of range");
  123. // For section definitions, check if it is comdat associative, and if
  124. // it is, find the target section unique id.
  125. const coff_aux_section_definition *SD = SymRef.getSectionDefinition();
  126. const coff_aux_weak_external *WE = SymRef.getWeakExternal();
  127. if (SD && SD->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE) {
  128. int32_t Index = SD->getNumber(IsBigObj);
  129. if (Index <= 0 || static_cast<uint32_t>(Index - 1) >= Sections.size())
  130. return createStringError(object_error::parse_failed,
  131. "unexpected associative section index");
  132. Sym.AssociativeComdatTargetSectionId = Sections[Index - 1].UniqueId;
  133. } else if (WE) {
  134. // This is a raw symbol index for now, but store it in the Symbol
  135. // until we've added them to the Object, which assigns the final
  136. // unique ids.
  137. Sym.WeakTargetSymbolId = WE->TagIndex;
  138. }
  139. I += 1 + SymRef.getNumberOfAuxSymbols();
  140. }
  141. Obj.addSymbols(Symbols);
  142. return Error::success();
  143. }
  144. Error COFFReader::setSymbolTargets(Object &Obj) const {
  145. std::vector<const Symbol *> RawSymbolTable;
  146. for (const Symbol &Sym : Obj.getSymbols()) {
  147. RawSymbolTable.push_back(&Sym);
  148. for (size_t I = 0; I < Sym.Sym.NumberOfAuxSymbols; I++)
  149. RawSymbolTable.push_back(nullptr);
  150. }
  151. for (Symbol &Sym : Obj.getMutableSymbols()) {
  152. // Convert WeakTargetSymbolId from the original raw symbol index to
  153. // a proper unique id.
  154. if (Sym.WeakTargetSymbolId) {
  155. if (*Sym.WeakTargetSymbolId >= RawSymbolTable.size())
  156. return createStringError(object_error::parse_failed,
  157. "weak external reference out of range");
  158. const Symbol *Target = RawSymbolTable[*Sym.WeakTargetSymbolId];
  159. if (Target == nullptr)
  160. return createStringError(object_error::parse_failed,
  161. "invalid SymbolTableIndex");
  162. Sym.WeakTargetSymbolId = Target->UniqueId;
  163. }
  164. }
  165. for (Section &Sec : Obj.getMutableSections()) {
  166. for (Relocation &R : Sec.Relocs) {
  167. if (R.Reloc.SymbolTableIndex >= RawSymbolTable.size())
  168. return createStringError(object_error::parse_failed,
  169. "SymbolTableIndex out of range");
  170. const Symbol *Sym = RawSymbolTable[R.Reloc.SymbolTableIndex];
  171. if (Sym == nullptr)
  172. return createStringError(object_error::parse_failed,
  173. "invalid SymbolTableIndex");
  174. R.Target = Sym->UniqueId;
  175. R.TargetName = Sym->Name;
  176. }
  177. }
  178. return Error::success();
  179. }
  180. Expected<std::unique_ptr<Object>> COFFReader::create() const {
  181. auto Obj = std::make_unique<Object>();
  182. bool IsBigObj = false;
  183. if (const coff_file_header *CFH = COFFObj.getCOFFHeader()) {
  184. Obj->CoffFileHeader = *CFH;
  185. } else {
  186. const coff_bigobj_file_header *CBFH = COFFObj.getCOFFBigObjHeader();
  187. if (!CBFH)
  188. return createStringError(object_error::parse_failed,
  189. "no COFF file header returned");
  190. // Only copying the few fields from the bigobj header that we need
  191. // and won't recreate in the end.
  192. Obj->CoffFileHeader.Machine = CBFH->Machine;
  193. Obj->CoffFileHeader.TimeDateStamp = CBFH->TimeDateStamp;
  194. IsBigObj = true;
  195. }
  196. if (Error E = readExecutableHeaders(*Obj))
  197. return std::move(E);
  198. if (Error E = readSections(*Obj))
  199. return std::move(E);
  200. if (Error E = readSymbols(*Obj, IsBigObj))
  201. return std::move(E);
  202. if (Error E = setSymbolTargets(*Obj))
  203. return std::move(E);
  204. return std::move(Obj);
  205. }
  206. } // end namespace coff
  207. } // end namespace objcopy
  208. } // end namespace llvm