123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569 |
- //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the TargetInstrInfo class.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/BinaryFormat/Dwarf.h"
- #include "llvm/CodeGen/MachineCombinerPattern.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineMemOperand.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/MachineScheduler.h"
- #include "llvm/CodeGen/PseudoSourceValue.h"
- #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
- #include "llvm/CodeGen/StackMaps.h"
- #include "llvm/CodeGen/TargetFrameLowering.h"
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/TargetSchedule.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/MC/MCAsmInfo.h"
- #include "llvm/MC/MCInstrItineraries.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- static cl::opt<bool> DisableHazardRecognizer(
- "disable-sched-hazard", cl::Hidden, cl::init(false),
- cl::desc("Disable hazard detection during preRA scheduling"));
- TargetInstrInfo::~TargetInstrInfo() = default;
- const TargetRegisterClass*
- TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
- const TargetRegisterInfo *TRI,
- const MachineFunction &MF) const {
- if (OpNum >= MCID.getNumOperands())
- return nullptr;
- short RegClass = MCID.operands()[OpNum].RegClass;
- if (MCID.operands()[OpNum].isLookupPtrRegClass())
- return TRI->getPointerRegClass(MF, RegClass);
- // Instructions like INSERT_SUBREG do not have fixed register classes.
- if (RegClass < 0)
- return nullptr;
- // Otherwise just look it up normally.
- return TRI->getRegClass(RegClass);
- }
- /// insertNoop - Insert a noop into the instruction stream at the specified
- /// point.
- void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI) const {
- llvm_unreachable("Target didn't implement insertNoop!");
- }
- /// insertNoops - Insert noops into the instruction stream at the specified
- /// point.
- void TargetInstrInfo::insertNoops(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- unsigned Quantity) const {
- for (unsigned i = 0; i < Quantity; ++i)
- insertNoop(MBB, MI);
- }
- static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
- return strncmp(Str, MAI.getCommentString().data(),
- MAI.getCommentString().size()) == 0;
- }
- /// Measure the specified inline asm to determine an approximation of its
- /// length.
- /// Comments (which run till the next SeparatorString or newline) do not
- /// count as an instruction.
- /// Any other non-whitespace text is considered an instruction, with
- /// multiple instructions separated by SeparatorString or newlines.
- /// Variable-length instructions are not handled here; this function
- /// may be overloaded in the target code to do that.
- /// We implement a special case of the .space directive which takes only a
- /// single integer argument in base 10 that is the size in bytes. This is a
- /// restricted form of the GAS directive in that we only interpret
- /// simple--i.e. not a logical or arithmetic expression--size values without
- /// the optional fill value. This is primarily used for creating arbitrary
- /// sized inline asm blocks for testing purposes.
- unsigned TargetInstrInfo::getInlineAsmLength(
- const char *Str,
- const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const {
- // Count the number of instructions in the asm.
- bool AtInsnStart = true;
- unsigned Length = 0;
- const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
- for (; *Str; ++Str) {
- if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
- strlen(MAI.getSeparatorString())) == 0) {
- AtInsnStart = true;
- } else if (isAsmComment(Str, MAI)) {
- // Stop counting as an instruction after a comment until the next
- // separator.
- AtInsnStart = false;
- }
- if (AtInsnStart && !isSpace(static_cast<unsigned char>(*Str))) {
- unsigned AddLength = MaxInstLength;
- if (strncmp(Str, ".space", 6) == 0) {
- char *EStr;
- int SpaceSize;
- SpaceSize = strtol(Str + 6, &EStr, 10);
- SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
- while (*EStr != '\n' && isSpace(static_cast<unsigned char>(*EStr)))
- ++EStr;
- if (*EStr == '\0' || *EStr == '\n' ||
- isAsmComment(EStr, MAI)) // Successfully parsed .space argument
- AddLength = SpaceSize;
- }
- Length += AddLength;
- AtInsnStart = false;
- }
- }
- return Length;
- }
- /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
- /// after it, replacing it with an unconditional branch to NewDest.
- void
- TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
- MachineBasicBlock *NewDest) const {
- MachineBasicBlock *MBB = Tail->getParent();
- // Remove all the old successors of MBB from the CFG.
- while (!MBB->succ_empty())
- MBB->removeSuccessor(MBB->succ_begin());
- // Save off the debug loc before erasing the instruction.
- DebugLoc DL = Tail->getDebugLoc();
- // Update call site info and remove all the dead instructions
- // from the end of MBB.
- while (Tail != MBB->end()) {
- auto MI = Tail++;
- if (MI->shouldUpdateCallSiteInfo())
- MBB->getParent()->eraseCallSiteInfo(&*MI);
- MBB->erase(MI);
- }
- // If MBB isn't immediately before MBB, insert a branch to it.
- if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
- insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
- MBB->addSuccessor(NewDest);
- }
- MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
- bool NewMI, unsigned Idx1,
- unsigned Idx2) const {
- const MCInstrDesc &MCID = MI.getDesc();
- bool HasDef = MCID.getNumDefs();
- if (HasDef && !MI.getOperand(0).isReg())
- // No idea how to commute this instruction. Target should implement its own.
- return nullptr;
- unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
- unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
- assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
- CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
- "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
- assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
- "This only knows how to commute register operands so far");
- Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
- Register Reg1 = MI.getOperand(Idx1).getReg();
- Register Reg2 = MI.getOperand(Idx2).getReg();
- unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
- unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
- unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
- bool Reg1IsKill = MI.getOperand(Idx1).isKill();
- bool Reg2IsKill = MI.getOperand(Idx2).isKill();
- bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
- bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
- bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
- bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
- // Avoid calling isRenamable for virtual registers since we assert that
- // renamable property is only queried/set for physical registers.
- bool Reg1IsRenamable =
- Reg1.isPhysical() ? MI.getOperand(Idx1).isRenamable() : false;
- bool Reg2IsRenamable =
- Reg2.isPhysical() ? MI.getOperand(Idx2).isRenamable() : false;
- // If destination is tied to either of the commuted source register, then
- // it must be updated.
- if (HasDef && Reg0 == Reg1 &&
- MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
- Reg2IsKill = false;
- Reg0 = Reg2;
- SubReg0 = SubReg2;
- } else if (HasDef && Reg0 == Reg2 &&
- MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
- Reg1IsKill = false;
- Reg0 = Reg1;
- SubReg0 = SubReg1;
- }
- MachineInstr *CommutedMI = nullptr;
- if (NewMI) {
- // Create a new instruction.
- MachineFunction &MF = *MI.getMF();
- CommutedMI = MF.CloneMachineInstr(&MI);
- } else {
- CommutedMI = &MI;
- }
- if (HasDef) {
- CommutedMI->getOperand(0).setReg(Reg0);
- CommutedMI->getOperand(0).setSubReg(SubReg0);
- }
- CommutedMI->getOperand(Idx2).setReg(Reg1);
- CommutedMI->getOperand(Idx1).setReg(Reg2);
- CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
- CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
- CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
- CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
- CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
- CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
- CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
- CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
- // Avoid calling setIsRenamable for virtual registers since we assert that
- // renamable property is only queried/set for physical registers.
- if (Reg1.isPhysical())
- CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
- if (Reg2.isPhysical())
- CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
- return CommutedMI;
- }
- MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
- unsigned OpIdx1,
- unsigned OpIdx2) const {
- // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
- // any commutable operand, which is done in findCommutedOpIndices() method
- // called below.
- if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
- !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
- assert(MI.isCommutable() &&
- "Precondition violation: MI must be commutable.");
- return nullptr;
- }
- return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
- }
- bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
- unsigned &ResultIdx2,
- unsigned CommutableOpIdx1,
- unsigned CommutableOpIdx2) {
- if (ResultIdx1 == CommuteAnyOperandIndex &&
- ResultIdx2 == CommuteAnyOperandIndex) {
- ResultIdx1 = CommutableOpIdx1;
- ResultIdx2 = CommutableOpIdx2;
- } else if (ResultIdx1 == CommuteAnyOperandIndex) {
- if (ResultIdx2 == CommutableOpIdx1)
- ResultIdx1 = CommutableOpIdx2;
- else if (ResultIdx2 == CommutableOpIdx2)
- ResultIdx1 = CommutableOpIdx1;
- else
- return false;
- } else if (ResultIdx2 == CommuteAnyOperandIndex) {
- if (ResultIdx1 == CommutableOpIdx1)
- ResultIdx2 = CommutableOpIdx2;
- else if (ResultIdx1 == CommutableOpIdx2)
- ResultIdx2 = CommutableOpIdx1;
- else
- return false;
- } else
- // Check that the result operand indices match the given commutable
- // operand indices.
- return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
- (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
- return true;
- }
- bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
- unsigned &SrcOpIdx1,
- unsigned &SrcOpIdx2) const {
- assert(!MI.isBundle() &&
- "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
- const MCInstrDesc &MCID = MI.getDesc();
- if (!MCID.isCommutable())
- return false;
- // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
- // is not true, then the target must implement this.
- unsigned CommutableOpIdx1 = MCID.getNumDefs();
- unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
- if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
- CommutableOpIdx1, CommutableOpIdx2))
- return false;
- if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
- // No idea.
- return false;
- return true;
- }
- bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
- if (!MI.isTerminator()) return false;
- // Conditional branch is a special case.
- if (MI.isBranch() && !MI.isBarrier())
- return true;
- if (!MI.isPredicable())
- return true;
- return !isPredicated(MI);
- }
- bool TargetInstrInfo::PredicateInstruction(
- MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
- bool MadeChange = false;
- assert(!MI.isBundle() &&
- "TargetInstrInfo::PredicateInstruction() can't handle bundles");
- const MCInstrDesc &MCID = MI.getDesc();
- if (!MI.isPredicable())
- return false;
- for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
- if (MCID.operands()[i].isPredicate()) {
- MachineOperand &MO = MI.getOperand(i);
- if (MO.isReg()) {
- MO.setReg(Pred[j].getReg());
- MadeChange = true;
- } else if (MO.isImm()) {
- MO.setImm(Pred[j].getImm());
- MadeChange = true;
- } else if (MO.isMBB()) {
- MO.setMBB(Pred[j].getMBB());
- MadeChange = true;
- }
- ++j;
- }
- }
- return MadeChange;
- }
- bool TargetInstrInfo::hasLoadFromStackSlot(
- const MachineInstr &MI,
- SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
- size_t StartSize = Accesses.size();
- for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
- oe = MI.memoperands_end();
- o != oe; ++o) {
- if ((*o)->isLoad() &&
- isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
- Accesses.push_back(*o);
- }
- return Accesses.size() != StartSize;
- }
- bool TargetInstrInfo::hasStoreToStackSlot(
- const MachineInstr &MI,
- SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
- size_t StartSize = Accesses.size();
- for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
- oe = MI.memoperands_end();
- o != oe; ++o) {
- if ((*o)->isStore() &&
- isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
- Accesses.push_back(*o);
- }
- return Accesses.size() != StartSize;
- }
- bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
- unsigned SubIdx, unsigned &Size,
- unsigned &Offset,
- const MachineFunction &MF) const {
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- if (!SubIdx) {
- Size = TRI->getSpillSize(*RC);
- Offset = 0;
- return true;
- }
- unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
- // Convert bit size to byte size.
- if (BitSize % 8)
- return false;
- int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
- if (BitOffset < 0 || BitOffset % 8)
- return false;
- Size = BitSize / 8;
- Offset = (unsigned)BitOffset / 8;
- assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
- if (!MF.getDataLayout().isLittleEndian()) {
- Offset = TRI->getSpillSize(*RC) - (Offset + Size);
- }
- return true;
- }
- void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I,
- Register DestReg, unsigned SubIdx,
- const MachineInstr &Orig,
- const TargetRegisterInfo &TRI) const {
- MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
- MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
- MBB.insert(I, MI);
- }
- bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
- const MachineInstr &MI1,
- const MachineRegisterInfo *MRI) const {
- return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
- }
- MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
- assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
- MachineFunction &MF = *MBB.getParent();
- return MF.cloneMachineInstrBundle(MBB, InsertBefore, Orig);
- }
- // If the COPY instruction in MI can be folded to a stack operation, return
- // the register class to use.
- static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
- unsigned FoldIdx) {
- assert(MI.isCopy() && "MI must be a COPY instruction");
- if (MI.getNumOperands() != 2)
- return nullptr;
- assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
- const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
- const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
- if (FoldOp.getSubReg() || LiveOp.getSubReg())
- return nullptr;
- Register FoldReg = FoldOp.getReg();
- Register LiveReg = LiveOp.getReg();
- assert(FoldReg.isVirtual() && "Cannot fold physregs");
- const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
- const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
- if (LiveOp.getReg().isPhysical())
- return RC->contains(LiveOp.getReg()) ? RC : nullptr;
- if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
- return RC;
- // FIXME: Allow folding when register classes are memory compatible.
- return nullptr;
- }
- MCInst TargetInstrInfo::getNop() const { llvm_unreachable("Not implemented"); }
- std::pair<unsigned, unsigned>
- TargetInstrInfo::getPatchpointUnfoldableRange(const MachineInstr &MI) const {
- switch (MI.getOpcode()) {
- case TargetOpcode::STACKMAP:
- // StackMapLiveValues are foldable
- return std::make_pair(0, StackMapOpers(&MI).getVarIdx());
- case TargetOpcode::PATCHPOINT:
- // For PatchPoint, the call args are not foldable (even if reported in the
- // stackmap e.g. via anyregcc).
- return std::make_pair(0, PatchPointOpers(&MI).getVarIdx());
- case TargetOpcode::STATEPOINT:
- // For statepoints, fold deopt and gc arguments, but not call arguments.
- return std::make_pair(MI.getNumDefs(), StatepointOpers(&MI).getVarIdx());
- default:
- llvm_unreachable("unexpected stackmap opcode");
- }
- }
- static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
- ArrayRef<unsigned> Ops, int FrameIndex,
- const TargetInstrInfo &TII) {
- unsigned StartIdx = 0;
- unsigned NumDefs = 0;
- // getPatchpointUnfoldableRange throws guarantee if MI is not a patchpoint.
- std::tie(NumDefs, StartIdx) = TII.getPatchpointUnfoldableRange(MI);
- unsigned DefToFoldIdx = MI.getNumOperands();
- // Return false if any operands requested for folding are not foldable (not
- // part of the stackmap's live values).
- for (unsigned Op : Ops) {
- if (Op < NumDefs) {
- assert(DefToFoldIdx == MI.getNumOperands() && "Folding multiple defs");
- DefToFoldIdx = Op;
- } else if (Op < StartIdx) {
- return nullptr;
- }
- if (MI.getOperand(Op).isTied())
- return nullptr;
- }
- MachineInstr *NewMI =
- MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
- MachineInstrBuilder MIB(MF, NewMI);
- // No need to fold return, the meta data, and function arguments
- for (unsigned i = 0; i < StartIdx; ++i)
- if (i != DefToFoldIdx)
- MIB.add(MI.getOperand(i));
- for (unsigned i = StartIdx, e = MI.getNumOperands(); i < e; ++i) {
- MachineOperand &MO = MI.getOperand(i);
- unsigned TiedTo = e;
- (void)MI.isRegTiedToDefOperand(i, &TiedTo);
- if (is_contained(Ops, i)) {
- assert(TiedTo == e && "Cannot fold tied operands");
- unsigned SpillSize;
- unsigned SpillOffset;
- // Compute the spill slot size and offset.
- const TargetRegisterClass *RC =
- MF.getRegInfo().getRegClass(MO.getReg());
- bool Valid =
- TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
- if (!Valid)
- report_fatal_error("cannot spill patchpoint subregister operand");
- MIB.addImm(StackMaps::IndirectMemRefOp);
- MIB.addImm(SpillSize);
- MIB.addFrameIndex(FrameIndex);
- MIB.addImm(SpillOffset);
- } else {
- MIB.add(MO);
- if (TiedTo < e) {
- assert(TiedTo < NumDefs && "Bad tied operand");
- if (TiedTo > DefToFoldIdx)
- --TiedTo;
- NewMI->tieOperands(TiedTo, NewMI->getNumOperands() - 1);
- }
- }
- }
- return NewMI;
- }
- MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
- ArrayRef<unsigned> Ops, int FI,
- LiveIntervals *LIS,
- VirtRegMap *VRM) const {
- auto Flags = MachineMemOperand::MONone;
- for (unsigned OpIdx : Ops)
- Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
- : MachineMemOperand::MOLoad;
- MachineBasicBlock *MBB = MI.getParent();
- assert(MBB && "foldMemoryOperand needs an inserted instruction");
- MachineFunction &MF = *MBB->getParent();
- // If we're not folding a load into a subreg, the size of the load is the
- // size of the spill slot. But if we are, we need to figure out what the
- // actual load size is.
- int64_t MemSize = 0;
- const MachineFrameInfo &MFI = MF.getFrameInfo();
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- if (Flags & MachineMemOperand::MOStore) {
- MemSize = MFI.getObjectSize(FI);
- } else {
- for (unsigned OpIdx : Ops) {
- int64_t OpSize = MFI.getObjectSize(FI);
- if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
- unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
- if (SubRegSize > 0 && !(SubRegSize % 8))
- OpSize = SubRegSize / 8;
- }
- MemSize = std::max(MemSize, OpSize);
- }
- }
- assert(MemSize && "Did not expect a zero-sized stack slot");
- MachineInstr *NewMI = nullptr;
- if (MI.getOpcode() == TargetOpcode::STACKMAP ||
- MI.getOpcode() == TargetOpcode::PATCHPOINT ||
- MI.getOpcode() == TargetOpcode::STATEPOINT) {
- // Fold stackmap/patchpoint.
- NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
- if (NewMI)
- MBB->insert(MI, NewMI);
- } else {
- // Ask the target to do the actual folding.
- NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM);
- }
- if (NewMI) {
- NewMI->setMemRefs(MF, MI.memoperands());
- // Add a memory operand, foldMemoryOperandImpl doesn't do that.
- assert((!(Flags & MachineMemOperand::MOStore) ||
- NewMI->mayStore()) &&
- "Folded a def to a non-store!");
- assert((!(Flags & MachineMemOperand::MOLoad) ||
- NewMI->mayLoad()) &&
- "Folded a use to a non-load!");
- assert(MFI.getObjectOffset(FI) != -1);
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
- Flags, MemSize, MFI.getObjectAlign(FI));
- NewMI->addMemOperand(MF, MMO);
- // The pass "x86 speculative load hardening" always attaches symbols to
- // call instructions. We need copy it form old instruction.
- NewMI->cloneInstrSymbols(MF, MI);
- return NewMI;
- }
- // Straight COPY may fold as load/store.
- if (!MI.isCopy() || Ops.size() != 1)
- return nullptr;
- const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
- if (!RC)
- return nullptr;
- const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
- MachineBasicBlock::iterator Pos = MI;
- if (Flags == MachineMemOperand::MOStore)
- storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI,
- Register());
- else
- loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI, Register());
- return &*--Pos;
- }
- MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
- ArrayRef<unsigned> Ops,
- MachineInstr &LoadMI,
- LiveIntervals *LIS) const {
- assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
- #ifndef NDEBUG
- for (unsigned OpIdx : Ops)
- assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
- #endif
- MachineBasicBlock &MBB = *MI.getParent();
- MachineFunction &MF = *MBB.getParent();
- // Ask the target to do the actual folding.
- MachineInstr *NewMI = nullptr;
- int FrameIndex = 0;
- if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
- MI.getOpcode() == TargetOpcode::PATCHPOINT ||
- MI.getOpcode() == TargetOpcode::STATEPOINT) &&
- isLoadFromStackSlot(LoadMI, FrameIndex)) {
- // Fold stackmap/patchpoint.
- NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
- if (NewMI)
- NewMI = &*MBB.insert(MI, NewMI);
- } else {
- // Ask the target to do the actual folding.
- NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
- }
- if (!NewMI)
- return nullptr;
- // Copy the memoperands from the load to the folded instruction.
- if (MI.memoperands_empty()) {
- NewMI->setMemRefs(MF, LoadMI.memoperands());
- } else {
- // Handle the rare case of folding multiple loads.
- NewMI->setMemRefs(MF, MI.memoperands());
- for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
- E = LoadMI.memoperands_end();
- I != E; ++I) {
- NewMI->addMemOperand(MF, *I);
- }
- }
- return NewMI;
- }
- bool TargetInstrInfo::hasReassociableOperands(
- const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
- const MachineOperand &Op1 = Inst.getOperand(1);
- const MachineOperand &Op2 = Inst.getOperand(2);
- const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
- // We need virtual register definitions for the operands that we will
- // reassociate.
- MachineInstr *MI1 = nullptr;
- MachineInstr *MI2 = nullptr;
- if (Op1.isReg() && Op1.getReg().isVirtual())
- MI1 = MRI.getUniqueVRegDef(Op1.getReg());
- if (Op2.isReg() && Op2.getReg().isVirtual())
- MI2 = MRI.getUniqueVRegDef(Op2.getReg());
- // And at least one operand must be defined in MBB.
- return MI1 && MI2 && (MI1->getParent() == MBB || MI2->getParent() == MBB);
- }
- bool TargetInstrInfo::areOpcodesEqualOrInverse(unsigned Opcode1,
- unsigned Opcode2) const {
- return Opcode1 == Opcode2 || getInverseOpcode(Opcode1) == Opcode2;
- }
- bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
- bool &Commuted) const {
- const MachineBasicBlock *MBB = Inst.getParent();
- const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
- MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
- MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
- unsigned Opcode = Inst.getOpcode();
- // If only one operand has the same or inverse opcode and it's the second
- // source operand, the operands must be commuted.
- Commuted = !areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) &&
- areOpcodesEqualOrInverse(Opcode, MI2->getOpcode());
- if (Commuted)
- std::swap(MI1, MI2);
- // 1. The previous instruction must be the same type as Inst.
- // 2. The previous instruction must also be associative/commutative or be the
- // inverse of such an operation (this can be different even for
- // instructions with the same opcode if traits like fast-math-flags are
- // included).
- // 3. The previous instruction must have virtual register definitions for its
- // operands in the same basic block as Inst.
- // 4. The previous instruction's result must only be used by Inst.
- return areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) &&
- (isAssociativeAndCommutative(*MI1) ||
- isAssociativeAndCommutative(*MI1, /* Invert */ true)) &&
- hasReassociableOperands(*MI1, MBB) &&
- MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
- }
- // 1. The operation must be associative and commutative or be the inverse of
- // such an operation.
- // 2. The instruction must have virtual register definitions for its
- // operands in the same basic block.
- // 3. The instruction must have a reassociable sibling.
- bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
- bool &Commuted) const {
- return (isAssociativeAndCommutative(Inst) ||
- isAssociativeAndCommutative(Inst, /* Invert */ true)) &&
- hasReassociableOperands(Inst, Inst.getParent()) &&
- hasReassociableSibling(Inst, Commuted);
- }
- // The concept of the reassociation pass is that these operations can benefit
- // from this kind of transformation:
- //
- // A = ? op ?
- // B = A op X (Prev)
- // C = B op Y (Root)
- // -->
- // A = ? op ?
- // B = X op Y
- // C = A op B
- //
- // breaking the dependency between A and B, allowing them to be executed in
- // parallel (or back-to-back in a pipeline) instead of depending on each other.
- // FIXME: This has the potential to be expensive (compile time) while not
- // improving the code at all. Some ways to limit the overhead:
- // 1. Track successful transforms; bail out if hit rate gets too low.
- // 2. Only enable at -O3 or some other non-default optimization level.
- // 3. Pre-screen pattern candidates here: if an operand of the previous
- // instruction is known to not increase the critical path, then don't match
- // that pattern.
- bool TargetInstrInfo::getMachineCombinerPatterns(
- MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
- bool DoRegPressureReduce) const {
- bool Commute;
- if (isReassociationCandidate(Root, Commute)) {
- // We found a sequence of instructions that may be suitable for a
- // reassociation of operands to increase ILP. Specify each commutation
- // possibility for the Prev instruction in the sequence and let the
- // machine combiner decide if changing the operands is worthwhile.
- if (Commute) {
- Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
- Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
- } else {
- Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
- Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
- }
- return true;
- }
- return false;
- }
- /// Return true when a code sequence can improve loop throughput.
- bool
- TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
- return false;
- }
- std::pair<unsigned, unsigned>
- TargetInstrInfo::getReassociationOpcodes(MachineCombinerPattern Pattern,
- const MachineInstr &Root,
- const MachineInstr &Prev) const {
- bool AssocCommutRoot = isAssociativeAndCommutative(Root);
- bool AssocCommutPrev = isAssociativeAndCommutative(Prev);
- // Early exit if both opcodes are associative and commutative. It's a trivial
- // reassociation when we only change operands order. In this case opcodes are
- // not required to have inverse versions.
- if (AssocCommutRoot && AssocCommutPrev) {
- assert(Root.getOpcode() == Prev.getOpcode() && "Expected to be equal");
- return std::make_pair(Root.getOpcode(), Root.getOpcode());
- }
- // At least one instruction is not associative or commutative.
- // Since we have matched one of the reassociation patterns, we expect that the
- // instructions' opcodes are equal or one of them is the inversion of the
- // other.
- assert(areOpcodesEqualOrInverse(Root.getOpcode(), Prev.getOpcode()) &&
- "Incorrectly matched pattern");
- unsigned AssocCommutOpcode = Root.getOpcode();
- unsigned InverseOpcode = *getInverseOpcode(Root.getOpcode());
- if (!AssocCommutRoot)
- std::swap(AssocCommutOpcode, InverseOpcode);
- // The transformation rule (`+` is any associative and commutative binary
- // operation, `-` is the inverse):
- // REASSOC_AX_BY:
- // (A + X) + Y => A + (X + Y)
- // (A + X) - Y => A + (X - Y)
- // (A - X) + Y => A - (X - Y)
- // (A - X) - Y => A - (X + Y)
- // REASSOC_XA_BY:
- // (X + A) + Y => (X + Y) + A
- // (X + A) - Y => (X - Y) + A
- // (X - A) + Y => (X + Y) - A
- // (X - A) - Y => (X - Y) - A
- // REASSOC_AX_YB:
- // Y + (A + X) => (Y + X) + A
- // Y - (A + X) => (Y - X) - A
- // Y + (A - X) => (Y - X) + A
- // Y - (A - X) => (Y + X) - A
- // REASSOC_XA_YB:
- // Y + (X + A) => (Y + X) + A
- // Y - (X + A) => (Y - X) - A
- // Y + (X - A) => (Y + X) - A
- // Y - (X - A) => (Y - X) + A
- switch (Pattern) {
- default:
- llvm_unreachable("Unexpected pattern");
- case MachineCombinerPattern::REASSOC_AX_BY:
- if (!AssocCommutRoot && AssocCommutPrev)
- return {AssocCommutOpcode, InverseOpcode};
- if (AssocCommutRoot && !AssocCommutPrev)
- return {InverseOpcode, InverseOpcode};
- if (!AssocCommutRoot && !AssocCommutPrev)
- return {InverseOpcode, AssocCommutOpcode};
- break;
- case MachineCombinerPattern::REASSOC_XA_BY:
- if (!AssocCommutRoot && AssocCommutPrev)
- return {AssocCommutOpcode, InverseOpcode};
- if (AssocCommutRoot && !AssocCommutPrev)
- return {InverseOpcode, AssocCommutOpcode};
- if (!AssocCommutRoot && !AssocCommutPrev)
- return {InverseOpcode, InverseOpcode};
- break;
- case MachineCombinerPattern::REASSOC_AX_YB:
- if (!AssocCommutRoot && AssocCommutPrev)
- return {InverseOpcode, InverseOpcode};
- if (AssocCommutRoot && !AssocCommutPrev)
- return {AssocCommutOpcode, InverseOpcode};
- if (!AssocCommutRoot && !AssocCommutPrev)
- return {InverseOpcode, AssocCommutOpcode};
- break;
- case MachineCombinerPattern::REASSOC_XA_YB:
- if (!AssocCommutRoot && AssocCommutPrev)
- return {InverseOpcode, InverseOpcode};
- if (AssocCommutRoot && !AssocCommutPrev)
- return {InverseOpcode, AssocCommutOpcode};
- if (!AssocCommutRoot && !AssocCommutPrev)
- return {AssocCommutOpcode, InverseOpcode};
- break;
- }
- llvm_unreachable("Unhandled combination");
- }
- // Return a pair of boolean flags showing if the new root and new prev operands
- // must be swapped. See visual example of the rule in
- // TargetInstrInfo::getReassociationOpcodes.
- static std::pair<bool, bool> mustSwapOperands(MachineCombinerPattern Pattern) {
- switch (Pattern) {
- default:
- llvm_unreachable("Unexpected pattern");
- case MachineCombinerPattern::REASSOC_AX_BY:
- return {false, false};
- case MachineCombinerPattern::REASSOC_XA_BY:
- return {true, false};
- case MachineCombinerPattern::REASSOC_AX_YB:
- return {true, true};
- case MachineCombinerPattern::REASSOC_XA_YB:
- return {true, true};
- }
- }
- /// Attempt the reassociation transformation to reduce critical path length.
- /// See the above comments before getMachineCombinerPatterns().
- void TargetInstrInfo::reassociateOps(
- MachineInstr &Root, MachineInstr &Prev,
- MachineCombinerPattern Pattern,
- SmallVectorImpl<MachineInstr *> &InsInstrs,
- SmallVectorImpl<MachineInstr *> &DelInstrs,
- DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
- MachineFunction *MF = Root.getMF();
- MachineRegisterInfo &MRI = MF->getRegInfo();
- const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
- const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
- const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
- // This array encodes the operand index for each parameter because the
- // operands may be commuted. Each row corresponds to a pattern value,
- // and each column specifies the index of A, B, X, Y.
- unsigned OpIdx[4][4] = {
- { 1, 1, 2, 2 },
- { 1, 2, 2, 1 },
- { 2, 1, 1, 2 },
- { 2, 2, 1, 1 }
- };
- int Row;
- switch (Pattern) {
- case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
- case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
- case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
- case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
- default: llvm_unreachable("unexpected MachineCombinerPattern");
- }
- MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
- MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
- MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
- MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
- MachineOperand &OpC = Root.getOperand(0);
- Register RegA = OpA.getReg();
- Register RegB = OpB.getReg();
- Register RegX = OpX.getReg();
- Register RegY = OpY.getReg();
- Register RegC = OpC.getReg();
- if (RegA.isVirtual())
- MRI.constrainRegClass(RegA, RC);
- if (RegB.isVirtual())
- MRI.constrainRegClass(RegB, RC);
- if (RegX.isVirtual())
- MRI.constrainRegClass(RegX, RC);
- if (RegY.isVirtual())
- MRI.constrainRegClass(RegY, RC);
- if (RegC.isVirtual())
- MRI.constrainRegClass(RegC, RC);
- // Create a new virtual register for the result of (X op Y) instead of
- // recycling RegB because the MachineCombiner's computation of the critical
- // path requires a new register definition rather than an existing one.
- Register NewVR = MRI.createVirtualRegister(RC);
- InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
- auto [NewRootOpc, NewPrevOpc] = getReassociationOpcodes(Pattern, Root, Prev);
- bool KillA = OpA.isKill();
- bool KillX = OpX.isKill();
- bool KillY = OpY.isKill();
- bool KillNewVR = true;
- auto [SwapRootOperands, SwapPrevOperands] = mustSwapOperands(Pattern);
- if (SwapPrevOperands) {
- std::swap(RegX, RegY);
- std::swap(KillX, KillY);
- }
- // Create new instructions for insertion.
- MachineInstrBuilder MIB1 =
- BuildMI(*MF, MIMetadata(Prev), TII->get(NewPrevOpc), NewVR)
- .addReg(RegX, getKillRegState(KillX))
- .addReg(RegY, getKillRegState(KillY))
- .setMIFlags(Prev.getFlags());
- if (SwapRootOperands) {
- std::swap(RegA, NewVR);
- std::swap(KillA, KillNewVR);
- }
- MachineInstrBuilder MIB2 =
- BuildMI(*MF, MIMetadata(Root), TII->get(NewRootOpc), RegC)
- .addReg(RegA, getKillRegState(KillA))
- .addReg(NewVR, getKillRegState(KillNewVR))
- .setMIFlags(Root.getFlags());
- setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
- // Record new instructions for insertion and old instructions for deletion.
- InsInstrs.push_back(MIB1);
- InsInstrs.push_back(MIB2);
- DelInstrs.push_back(&Prev);
- DelInstrs.push_back(&Root);
- }
- void TargetInstrInfo::genAlternativeCodeSequence(
- MachineInstr &Root, MachineCombinerPattern Pattern,
- SmallVectorImpl<MachineInstr *> &InsInstrs,
- SmallVectorImpl<MachineInstr *> &DelInstrs,
- DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
- MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
- // Select the previous instruction in the sequence based on the input pattern.
- MachineInstr *Prev = nullptr;
- switch (Pattern) {
- case MachineCombinerPattern::REASSOC_AX_BY:
- case MachineCombinerPattern::REASSOC_XA_BY:
- Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
- break;
- case MachineCombinerPattern::REASSOC_AX_YB:
- case MachineCombinerPattern::REASSOC_XA_YB:
- Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
- break;
- default:
- break;
- }
- // Don't reassociate if Prev and Root are in different blocks.
- if (Prev->getParent() != Root.getParent())
- return;
- assert(Prev && "Unknown pattern for machine combiner");
- reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
- }
- bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
- const MachineInstr &MI) const {
- const MachineFunction &MF = *MI.getMF();
- const MachineRegisterInfo &MRI = MF.getRegInfo();
- // Remat clients assume operand 0 is the defined register.
- if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
- return false;
- Register DefReg = MI.getOperand(0).getReg();
- // A sub-register definition can only be rematerialized if the instruction
- // doesn't read the other parts of the register. Otherwise it is really a
- // read-modify-write operation on the full virtual register which cannot be
- // moved safely.
- if (DefReg.isVirtual() && MI.getOperand(0).getSubReg() &&
- MI.readsVirtualRegister(DefReg))
- return false;
- // A load from a fixed stack slot can be rematerialized. This may be
- // redundant with subsequent checks, but it's target-independent,
- // simple, and a common case.
- int FrameIdx = 0;
- if (isLoadFromStackSlot(MI, FrameIdx) &&
- MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
- return true;
- // Avoid instructions obviously unsafe for remat.
- if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() ||
- MI.hasUnmodeledSideEffects())
- return false;
- // Don't remat inline asm. We have no idea how expensive it is
- // even if it's side effect free.
- if (MI.isInlineAsm())
- return false;
- // Avoid instructions which load from potentially varying memory.
- if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad())
- return false;
- // If any of the registers accessed are non-constant, conservatively assume
- // the instruction is not rematerializable.
- for (const MachineOperand &MO : MI.operands()) {
- if (!MO.isReg()) continue;
- Register Reg = MO.getReg();
- if (Reg == 0)
- continue;
- // Check for a well-behaved physical register.
- if (Reg.isPhysical()) {
- if (MO.isUse()) {
- // If the physreg has no defs anywhere, it's just an ambient register
- // and we can freely move its uses. Alternatively, if it's allocatable,
- // it could get allocated to something with a def during allocation.
- if (!MRI.isConstantPhysReg(Reg))
- return false;
- } else {
- // A physreg def. We can't remat it.
- return false;
- }
- continue;
- }
- // Only allow one virtual-register def. There may be multiple defs of the
- // same virtual register, though.
- if (MO.isDef() && Reg != DefReg)
- return false;
- // Don't allow any virtual-register uses. Rematting an instruction with
- // virtual register uses would length the live ranges of the uses, which
- // is not necessarily a good idea, certainly not "trivial".
- if (MO.isUse())
- return false;
- }
- // Everything checked out.
- return true;
- }
- int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
- const MachineFunction *MF = MI.getMF();
- const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
- bool StackGrowsDown =
- TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
- unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
- unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
- if (!isFrameInstr(MI))
- return 0;
- int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
- if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
- (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
- SPAdj = -SPAdj;
- return SPAdj;
- }
- /// isSchedulingBoundary - Test if the given instruction should be
- /// considered a scheduling boundary. This primarily includes labels
- /// and terminators.
- bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
- const MachineBasicBlock *MBB,
- const MachineFunction &MF) const {
- // Terminators and labels can't be scheduled around.
- if (MI.isTerminator() || MI.isPosition())
- return true;
- // INLINEASM_BR can jump to another block
- if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
- return true;
- // Don't attempt to schedule around any instruction that defines
- // a stack-oriented pointer, as it's unlikely to be profitable. This
- // saves compile time, because it doesn't require every single
- // stack slot reference to depend on the instruction that does the
- // modification.
- const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
- }
- // Provide a global flag for disabling the PreRA hazard recognizer that targets
- // may choose to honor.
- bool TargetInstrInfo::usePreRAHazardRecognizer() const {
- return !DisableHazardRecognizer;
- }
- // Default implementation of CreateTargetRAHazardRecognizer.
- ScheduleHazardRecognizer *TargetInstrInfo::
- CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
- const ScheduleDAG *DAG) const {
- // Dummy hazard recognizer allows all instructions to issue.
- return new ScheduleHazardRecognizer();
- }
- // Default implementation of CreateTargetMIHazardRecognizer.
- ScheduleHazardRecognizer *TargetInstrInfo::CreateTargetMIHazardRecognizer(
- const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
- return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler");
- }
- // Default implementation of CreateTargetPostRAHazardRecognizer.
- ScheduleHazardRecognizer *TargetInstrInfo::
- CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
- const ScheduleDAG *DAG) const {
- return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
- }
- // Default implementation of getMemOperandWithOffset.
- bool TargetInstrInfo::getMemOperandWithOffset(
- const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset,
- bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const {
- SmallVector<const MachineOperand *, 4> BaseOps;
- unsigned Width;
- if (!getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, OffsetIsScalable,
- Width, TRI) ||
- BaseOps.size() != 1)
- return false;
- BaseOp = BaseOps.front();
- return true;
- }
- //===----------------------------------------------------------------------===//
- // SelectionDAG latency interface.
- //===----------------------------------------------------------------------===//
- int
- TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
- SDNode *DefNode, unsigned DefIdx,
- SDNode *UseNode, unsigned UseIdx) const {
- if (!ItinData || ItinData->isEmpty())
- return -1;
- if (!DefNode->isMachineOpcode())
- return -1;
- unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
- if (!UseNode->isMachineOpcode())
- return ItinData->getOperandCycle(DefClass, DefIdx);
- unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
- return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
- }
- int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
- SDNode *N) const {
- if (!ItinData || ItinData->isEmpty())
- return 1;
- if (!N->isMachineOpcode())
- return 1;
- return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
- }
- //===----------------------------------------------------------------------===//
- // MachineInstr latency interface.
- //===----------------------------------------------------------------------===//
- unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
- const MachineInstr &MI) const {
- if (!ItinData || ItinData->isEmpty())
- return 1;
- unsigned Class = MI.getDesc().getSchedClass();
- int UOps = ItinData->Itineraries[Class].NumMicroOps;
- if (UOps >= 0)
- return UOps;
- // The # of u-ops is dynamically determined. The specific target should
- // override this function to return the right number.
- return 1;
- }
- /// Return the default expected latency for a def based on it's opcode.
- unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
- const MachineInstr &DefMI) const {
- if (DefMI.isTransient())
- return 0;
- if (DefMI.mayLoad())
- return SchedModel.LoadLatency;
- if (isHighLatencyDef(DefMI.getOpcode()))
- return SchedModel.HighLatency;
- return 1;
- }
- unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
- return 0;
- }
- unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
- const MachineInstr &MI,
- unsigned *PredCost) const {
- // Default to one cycle for no itinerary. However, an "empty" itinerary may
- // still have a MinLatency property, which getStageLatency checks.
- if (!ItinData)
- return MI.mayLoad() ? 2 : 1;
- return ItinData->getStageLatency(MI.getDesc().getSchedClass());
- }
- bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
- const MachineInstr &DefMI,
- unsigned DefIdx) const {
- const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
- if (!ItinData || ItinData->isEmpty())
- return false;
- unsigned DefClass = DefMI.getDesc().getSchedClass();
- int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
- return (DefCycle != -1 && DefCycle <= 1);
- }
- std::optional<ParamLoadedValue>
- TargetInstrInfo::describeLoadedValue(const MachineInstr &MI,
- Register Reg) const {
- const MachineFunction *MF = MI.getMF();
- const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
- DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {});
- int64_t Offset;
- bool OffsetIsScalable;
- // To simplify the sub-register handling, verify that we only need to
- // consider physical registers.
- assert(MF->getProperties().hasProperty(
- MachineFunctionProperties::Property::NoVRegs));
- if (auto DestSrc = isCopyInstr(MI)) {
- Register DestReg = DestSrc->Destination->getReg();
- // If the copy destination is the forwarding reg, describe the forwarding
- // reg using the copy source as the backup location. Example:
- //
- // x0 = MOV x7
- // call callee(x0) ; x0 described as x7
- if (Reg == DestReg)
- return ParamLoadedValue(*DestSrc->Source, Expr);
- // Cases where super- or sub-registers needs to be described should
- // be handled by the target's hook implementation.
- assert(!TRI->isSuperOrSubRegisterEq(Reg, DestReg) &&
- "TargetInstrInfo::describeLoadedValue can't describe super- or "
- "sub-regs for copy instructions");
- return std::nullopt;
- } else if (auto RegImm = isAddImmediate(MI, Reg)) {
- Register SrcReg = RegImm->Reg;
- Offset = RegImm->Imm;
- Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset);
- return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
- } else if (MI.hasOneMemOperand()) {
- // Only describe memory which provably does not escape the function. As
- // described in llvm.org/PR43343, escaped memory may be clobbered by the
- // callee (or by another thread).
- const auto &TII = MF->getSubtarget().getInstrInfo();
- const MachineFrameInfo &MFI = MF->getFrameInfo();
- const MachineMemOperand *MMO = MI.memoperands()[0];
- const PseudoSourceValue *PSV = MMO->getPseudoValue();
- // If the address points to "special" memory (e.g. a spill slot), it's
- // sufficient to check that it isn't aliased by any high-level IR value.
- if (!PSV || PSV->mayAlias(&MFI))
- return std::nullopt;
- const MachineOperand *BaseOp;
- if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable,
- TRI))
- return std::nullopt;
- // FIXME: Scalable offsets are not yet handled in the offset code below.
- if (OffsetIsScalable)
- return std::nullopt;
- // TODO: Can currently only handle mem instructions with a single define.
- // An example from the x86 target:
- // ...
- // DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx
- // ...
- //
- if (MI.getNumExplicitDefs() != 1)
- return std::nullopt;
- // TODO: In what way do we need to take Reg into consideration here?
- SmallVector<uint64_t, 8> Ops;
- DIExpression::appendOffset(Ops, Offset);
- Ops.push_back(dwarf::DW_OP_deref_size);
- Ops.push_back(MMO->getSize());
- Expr = DIExpression::prependOpcodes(Expr, Ops);
- return ParamLoadedValue(*BaseOp, Expr);
- }
- return std::nullopt;
- }
- /// Both DefMI and UseMI must be valid. By default, call directly to the
- /// itinerary. This may be overriden by the target.
- int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
- const MachineInstr &DefMI,
- unsigned DefIdx,
- const MachineInstr &UseMI,
- unsigned UseIdx) const {
- unsigned DefClass = DefMI.getDesc().getSchedClass();
- unsigned UseClass = UseMI.getDesc().getSchedClass();
- return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
- }
- bool TargetInstrInfo::getRegSequenceInputs(
- const MachineInstr &MI, unsigned DefIdx,
- SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
- assert((MI.isRegSequence() ||
- MI.isRegSequenceLike()) && "Instruction do not have the proper type");
- if (!MI.isRegSequence())
- return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
- // We are looking at:
- // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
- assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
- for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
- OpIdx += 2) {
- const MachineOperand &MOReg = MI.getOperand(OpIdx);
- if (MOReg.isUndef())
- continue;
- const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
- assert(MOSubIdx.isImm() &&
- "One of the subindex of the reg_sequence is not an immediate");
- // Record Reg:SubReg, SubIdx.
- InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
- (unsigned)MOSubIdx.getImm()));
- }
- return true;
- }
- bool TargetInstrInfo::getExtractSubregInputs(
- const MachineInstr &MI, unsigned DefIdx,
- RegSubRegPairAndIdx &InputReg) const {
- assert((MI.isExtractSubreg() ||
- MI.isExtractSubregLike()) && "Instruction do not have the proper type");
- if (!MI.isExtractSubreg())
- return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
- // We are looking at:
- // Def = EXTRACT_SUBREG v0.sub1, sub0.
- assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
- const MachineOperand &MOReg = MI.getOperand(1);
- if (MOReg.isUndef())
- return false;
- const MachineOperand &MOSubIdx = MI.getOperand(2);
- assert(MOSubIdx.isImm() &&
- "The subindex of the extract_subreg is not an immediate");
- InputReg.Reg = MOReg.getReg();
- InputReg.SubReg = MOReg.getSubReg();
- InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
- return true;
- }
- bool TargetInstrInfo::getInsertSubregInputs(
- const MachineInstr &MI, unsigned DefIdx,
- RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
- assert((MI.isInsertSubreg() ||
- MI.isInsertSubregLike()) && "Instruction do not have the proper type");
- if (!MI.isInsertSubreg())
- return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
- // We are looking at:
- // Def = INSERT_SEQUENCE v0, v1, sub0.
- assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
- const MachineOperand &MOBaseReg = MI.getOperand(1);
- const MachineOperand &MOInsertedReg = MI.getOperand(2);
- if (MOInsertedReg.isUndef())
- return false;
- const MachineOperand &MOSubIdx = MI.getOperand(3);
- assert(MOSubIdx.isImm() &&
- "One of the subindex of the reg_sequence is not an immediate");
- BaseReg.Reg = MOBaseReg.getReg();
- BaseReg.SubReg = MOBaseReg.getSubReg();
- InsertedReg.Reg = MOInsertedReg.getReg();
- InsertedReg.SubReg = MOInsertedReg.getSubReg();
- InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
- return true;
- }
- // Returns a MIRPrinter comment for this machine operand.
- std::string TargetInstrInfo::createMIROperandComment(
- const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
- const TargetRegisterInfo *TRI) const {
- if (!MI.isInlineAsm())
- return "";
- std::string Flags;
- raw_string_ostream OS(Flags);
- if (OpIdx == InlineAsm::MIOp_ExtraInfo) {
- // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
- unsigned ExtraInfo = Op.getImm();
- bool First = true;
- for (StringRef Info : InlineAsm::getExtraInfoNames(ExtraInfo)) {
- if (!First)
- OS << " ";
- First = false;
- OS << Info;
- }
- return OS.str();
- }
- int FlagIdx = MI.findInlineAsmFlagIdx(OpIdx);
- if (FlagIdx < 0 || (unsigned)FlagIdx != OpIdx)
- return "";
- assert(Op.isImm() && "Expected flag operand to be an immediate");
- // Pretty print the inline asm operand descriptor.
- unsigned Flag = Op.getImm();
- unsigned Kind = InlineAsm::getKind(Flag);
- OS << InlineAsm::getKindName(Kind);
- unsigned RCID = 0;
- if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
- InlineAsm::hasRegClassConstraint(Flag, RCID)) {
- if (TRI) {
- OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
- } else
- OS << ":RC" << RCID;
- }
- if (InlineAsm::isMemKind(Flag)) {
- unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
- OS << ":" << InlineAsm::getMemConstraintName(MCID);
- }
- unsigned TiedTo = 0;
- if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
- OS << " tiedto:$" << TiedTo;
- return OS.str();
- }
- TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() = default;
- void TargetInstrInfo::mergeOutliningCandidateAttributes(
- Function &F, std::vector<outliner::Candidate> &Candidates) const {
- // Include target features from an arbitrary candidate for the outlined
- // function. This makes sure the outlined function knows what kinds of
- // instructions are going into it. This is fine, since all parent functions
- // must necessarily support the instructions that are in the outlined region.
- outliner::Candidate &FirstCand = Candidates.front();
- const Function &ParentFn = FirstCand.getMF()->getFunction();
- if (ParentFn.hasFnAttribute("target-features"))
- F.addFnAttr(ParentFn.getFnAttribute("target-features"));
- if (ParentFn.hasFnAttribute("target-cpu"))
- F.addFnAttr(ParentFn.getFnAttribute("target-cpu"));
- // Set nounwind, so we don't generate eh_frame.
- if (llvm::all_of(Candidates, [](const outliner::Candidate &C) {
- return C.getMF()->getFunction().hasFnAttribute(Attribute::NoUnwind);
- }))
- F.addFnAttr(Attribute::NoUnwind);
- }
- bool TargetInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
- unsigned &Flags) const {
- // Some instrumentations create special TargetOpcode at the start which
- // expands to special code sequences which must be present.
- auto First = MBB.getFirstNonDebugInstr();
- if (First != MBB.end() &&
- (First->getOpcode() == TargetOpcode::FENTRY_CALL ||
- First->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_ENTER))
- return false;
- return true;
- }
|