123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533 |
- //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements the TargetLowering class.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/CodeGen/CallingConvLower.h"
- #include "llvm/CodeGen/CodeGenCommonISel.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineJumpTableInfo.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/MC/MCAsmInfo.h"
- #include "llvm/MC/MCExpr.h"
- #include "llvm/Support/DivisionByConstantInfo.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Target/TargetMachine.h"
- #include <cctype>
- using namespace llvm;
- /// NOTE: The TargetMachine owns TLOF.
- TargetLowering::TargetLowering(const TargetMachine &tm)
- : TargetLoweringBase(tm) {}
- const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
- return nullptr;
- }
- bool TargetLowering::isPositionIndependent() const {
- return getTargetMachine().isPositionIndependent();
- }
- /// Check whether a given call node is in tail position within its function. If
- /// so, it sets Chain to the input chain of the tail call.
- bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
- SDValue &Chain) const {
- const Function &F = DAG.getMachineFunction().getFunction();
- // First, check if tail calls have been disabled in this function.
- if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
- return false;
- // Conservatively require the attributes of the call to match those of
- // the return. Ignore following attributes because they don't affect the
- // call sequence.
- AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
- for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
- Attribute::DereferenceableOrNull, Attribute::NoAlias,
- Attribute::NonNull, Attribute::NoUndef})
- CallerAttrs.removeAttribute(Attr);
- if (CallerAttrs.hasAttributes())
- return false;
- // It's not safe to eliminate the sign / zero extension of the return value.
- if (CallerAttrs.contains(Attribute::ZExt) ||
- CallerAttrs.contains(Attribute::SExt))
- return false;
- // Check if the only use is a function return node.
- return isUsedByReturnOnly(Node, Chain);
- }
- bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
- const uint32_t *CallerPreservedMask,
- const SmallVectorImpl<CCValAssign> &ArgLocs,
- const SmallVectorImpl<SDValue> &OutVals) const {
- for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
- const CCValAssign &ArgLoc = ArgLocs[I];
- if (!ArgLoc.isRegLoc())
- continue;
- MCRegister Reg = ArgLoc.getLocReg();
- // Only look at callee saved registers.
- if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
- continue;
- // Check that we pass the value used for the caller.
- // (We look for a CopyFromReg reading a virtual register that is used
- // for the function live-in value of register Reg)
- SDValue Value = OutVals[I];
- if (Value->getOpcode() == ISD::AssertZext)
- Value = Value.getOperand(0);
- if (Value->getOpcode() != ISD::CopyFromReg)
- return false;
- Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
- if (MRI.getLiveInPhysReg(ArgReg) != Reg)
- return false;
- }
- return true;
- }
- /// Set CallLoweringInfo attribute flags based on a call instruction
- /// and called function attributes.
- void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
- unsigned ArgIdx) {
- IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
- IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
- IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
- IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
- IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
- IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
- IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
- IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
- IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
- IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
- IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
- IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
- Alignment = Call->getParamStackAlign(ArgIdx);
- IndirectType = nullptr;
- assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
- "multiple ABI attributes?");
- if (IsByVal) {
- IndirectType = Call->getParamByValType(ArgIdx);
- if (!Alignment)
- Alignment = Call->getParamAlign(ArgIdx);
- }
- if (IsPreallocated)
- IndirectType = Call->getParamPreallocatedType(ArgIdx);
- if (IsInAlloca)
- IndirectType = Call->getParamInAllocaType(ArgIdx);
- if (IsSRet)
- IndirectType = Call->getParamStructRetType(ArgIdx);
- }
- /// Generate a libcall taking the given operands as arguments and returning a
- /// result of type RetVT.
- std::pair<SDValue, SDValue>
- TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
- ArrayRef<SDValue> Ops,
- MakeLibCallOptions CallOptions,
- const SDLoc &dl,
- SDValue InChain) const {
- if (!InChain)
- InChain = DAG.getEntryNode();
- TargetLowering::ArgListTy Args;
- Args.reserve(Ops.size());
- TargetLowering::ArgListEntry Entry;
- for (unsigned i = 0; i < Ops.size(); ++i) {
- SDValue NewOp = Ops[i];
- Entry.Node = NewOp;
- Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
- Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
- CallOptions.IsSExt);
- Entry.IsZExt = !Entry.IsSExt;
- if (CallOptions.IsSoften &&
- !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
- Entry.IsSExt = Entry.IsZExt = false;
- }
- Args.push_back(Entry);
- }
- if (LC == RTLIB::UNKNOWN_LIBCALL)
- report_fatal_error("Unsupported library call operation!");
- SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
- getPointerTy(DAG.getDataLayout()));
- Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
- TargetLowering::CallLoweringInfo CLI(DAG);
- bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
- bool zeroExtend = !signExtend;
- if (CallOptions.IsSoften &&
- !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
- signExtend = zeroExtend = false;
- }
- CLI.setDebugLoc(dl)
- .setChain(InChain)
- .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
- .setNoReturn(CallOptions.DoesNotReturn)
- .setDiscardResult(!CallOptions.IsReturnValueUsed)
- .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
- .setSExtResult(signExtend)
- .setZExtResult(zeroExtend);
- return LowerCallTo(CLI);
- }
- bool TargetLowering::findOptimalMemOpLowering(
- std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
- unsigned SrcAS, const AttributeList &FuncAttributes) const {
- if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
- Op.getSrcAlign() < Op.getDstAlign())
- return false;
- EVT VT = getOptimalMemOpType(Op, FuncAttributes);
- if (VT == MVT::Other) {
- // Use the largest integer type whose alignment constraints are satisfied.
- // We only need to check DstAlign here as SrcAlign is always greater or
- // equal to DstAlign (or zero).
- VT = MVT::i64;
- if (Op.isFixedDstAlign())
- while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
- !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
- VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
- assert(VT.isInteger());
- // Find the largest legal integer type.
- MVT LVT = MVT::i64;
- while (!isTypeLegal(LVT))
- LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
- assert(LVT.isInteger());
- // If the type we've chosen is larger than the largest legal integer type
- // then use that instead.
- if (VT.bitsGT(LVT))
- VT = LVT;
- }
- unsigned NumMemOps = 0;
- uint64_t Size = Op.size();
- while (Size) {
- unsigned VTSize = VT.getSizeInBits() / 8;
- while (VTSize > Size) {
- // For now, only use non-vector load / store's for the left-over pieces.
- EVT NewVT = VT;
- unsigned NewVTSize;
- bool Found = false;
- if (VT.isVector() || VT.isFloatingPoint()) {
- NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
- if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
- isSafeMemOpType(NewVT.getSimpleVT()))
- Found = true;
- else if (NewVT == MVT::i64 &&
- isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
- isSafeMemOpType(MVT::f64)) {
- // i64 is usually not legal on 32-bit targets, but f64 may be.
- NewVT = MVT::f64;
- Found = true;
- }
- }
- if (!Found) {
- do {
- NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
- if (NewVT == MVT::i8)
- break;
- } while (!isSafeMemOpType(NewVT.getSimpleVT()));
- }
- NewVTSize = NewVT.getSizeInBits() / 8;
- // If the new VT cannot cover all of the remaining bits, then consider
- // issuing a (or a pair of) unaligned and overlapping load / store.
- unsigned Fast;
- if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
- allowsMisalignedMemoryAccesses(
- VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
- MachineMemOperand::MONone, &Fast) &&
- Fast)
- VTSize = Size;
- else {
- VT = NewVT;
- VTSize = NewVTSize;
- }
- }
- if (++NumMemOps > Limit)
- return false;
- MemOps.push_back(VT);
- Size -= VTSize;
- }
- return true;
- }
- /// Soften the operands of a comparison. This code is shared among BR_CC,
- /// SELECT_CC, and SETCC handlers.
- void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
- SDValue &NewLHS, SDValue &NewRHS,
- ISD::CondCode &CCCode,
- const SDLoc &dl, const SDValue OldLHS,
- const SDValue OldRHS) const {
- SDValue Chain;
- return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
- OldRHS, Chain);
- }
- void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
- SDValue &NewLHS, SDValue &NewRHS,
- ISD::CondCode &CCCode,
- const SDLoc &dl, const SDValue OldLHS,
- const SDValue OldRHS,
- SDValue &Chain,
- bool IsSignaling) const {
- // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
- // not supporting it. We can update this code when libgcc provides such
- // functions.
- assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
- && "Unsupported setcc type!");
- // Expand into one or more soft-fp libcall(s).
- RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
- bool ShouldInvertCC = false;
- switch (CCCode) {
- case ISD::SETEQ:
- case ISD::SETOEQ:
- LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
- (VT == MVT::f64) ? RTLIB::OEQ_F64 :
- (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
- break;
- case ISD::SETNE:
- case ISD::SETUNE:
- LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
- (VT == MVT::f64) ? RTLIB::UNE_F64 :
- (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
- break;
- case ISD::SETGE:
- case ISD::SETOGE:
- LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
- (VT == MVT::f64) ? RTLIB::OGE_F64 :
- (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
- break;
- case ISD::SETLT:
- case ISD::SETOLT:
- LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
- (VT == MVT::f64) ? RTLIB::OLT_F64 :
- (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
- break;
- case ISD::SETLE:
- case ISD::SETOLE:
- LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
- (VT == MVT::f64) ? RTLIB::OLE_F64 :
- (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
- break;
- case ISD::SETGT:
- case ISD::SETOGT:
- LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
- (VT == MVT::f64) ? RTLIB::OGT_F64 :
- (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
- break;
- case ISD::SETO:
- ShouldInvertCC = true;
- [[fallthrough]];
- case ISD::SETUO:
- LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
- (VT == MVT::f64) ? RTLIB::UO_F64 :
- (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
- break;
- case ISD::SETONE:
- // SETONE = O && UNE
- ShouldInvertCC = true;
- [[fallthrough]];
- case ISD::SETUEQ:
- LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
- (VT == MVT::f64) ? RTLIB::UO_F64 :
- (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
- LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
- (VT == MVT::f64) ? RTLIB::OEQ_F64 :
- (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
- break;
- default:
- // Invert CC for unordered comparisons
- ShouldInvertCC = true;
- switch (CCCode) {
- case ISD::SETULT:
- LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
- (VT == MVT::f64) ? RTLIB::OGE_F64 :
- (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
- break;
- case ISD::SETULE:
- LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
- (VT == MVT::f64) ? RTLIB::OGT_F64 :
- (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
- break;
- case ISD::SETUGT:
- LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
- (VT == MVT::f64) ? RTLIB::OLE_F64 :
- (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
- break;
- case ISD::SETUGE:
- LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
- (VT == MVT::f64) ? RTLIB::OLT_F64 :
- (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
- break;
- default: llvm_unreachable("Do not know how to soften this setcc!");
- }
- }
- // Use the target specific return value for comparison lib calls.
- EVT RetVT = getCmpLibcallReturnType();
- SDValue Ops[2] = {NewLHS, NewRHS};
- TargetLowering::MakeLibCallOptions CallOptions;
- EVT OpsVT[2] = { OldLHS.getValueType(),
- OldRHS.getValueType() };
- CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
- auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
- NewLHS = Call.first;
- NewRHS = DAG.getConstant(0, dl, RetVT);
- CCCode = getCmpLibcallCC(LC1);
- if (ShouldInvertCC) {
- assert(RetVT.isInteger());
- CCCode = getSetCCInverse(CCCode, RetVT);
- }
- if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
- // Update Chain.
- Chain = Call.second;
- } else {
- EVT SetCCVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
- SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
- auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
- CCCode = getCmpLibcallCC(LC2);
- if (ShouldInvertCC)
- CCCode = getSetCCInverse(CCCode, RetVT);
- NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
- if (Chain)
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
- Call2.second);
- NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
- Tmp.getValueType(), Tmp, NewLHS);
- NewRHS = SDValue();
- }
- }
- /// Return the entry encoding for a jump table in the current function. The
- /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
- unsigned TargetLowering::getJumpTableEncoding() const {
- // In non-pic modes, just use the address of a block.
- if (!isPositionIndependent())
- return MachineJumpTableInfo::EK_BlockAddress;
- // In PIC mode, if the target supports a GPRel32 directive, use it.
- if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
- return MachineJumpTableInfo::EK_GPRel32BlockAddress;
- // Otherwise, use a label difference.
- return MachineJumpTableInfo::EK_LabelDifference32;
- }
- SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
- SelectionDAG &DAG) const {
- // If our PIC model is GP relative, use the global offset table as the base.
- unsigned JTEncoding = getJumpTableEncoding();
- if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
- (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
- return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
- return Table;
- }
- /// This returns the relocation base for the given PIC jumptable, the same as
- /// getPICJumpTableRelocBase, but as an MCExpr.
- const MCExpr *
- TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
- unsigned JTI,MCContext &Ctx) const{
- // The normal PIC reloc base is the label at the start of the jump table.
- return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
- }
- bool
- TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
- const TargetMachine &TM = getTargetMachine();
- const GlobalValue *GV = GA->getGlobal();
- // If the address is not even local to this DSO we will have to load it from
- // a got and then add the offset.
- if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
- return false;
- // If the code is position independent we will have to add a base register.
- if (isPositionIndependent())
- return false;
- // Otherwise we can do it.
- return true;
- }
- //===----------------------------------------------------------------------===//
- // Optimization Methods
- //===----------------------------------------------------------------------===//
- /// If the specified instruction has a constant integer operand and there are
- /// bits set in that constant that are not demanded, then clear those bits and
- /// return true.
- bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
- const APInt &DemandedBits,
- const APInt &DemandedElts,
- TargetLoweringOpt &TLO) const {
- SDLoc DL(Op);
- unsigned Opcode = Op.getOpcode();
- // Do target-specific constant optimization.
- if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
- return TLO.New.getNode();
- // FIXME: ISD::SELECT, ISD::SELECT_CC
- switch (Opcode) {
- default:
- break;
- case ISD::XOR:
- case ISD::AND:
- case ISD::OR: {
- auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
- if (!Op1C || Op1C->isOpaque())
- return false;
- // If this is a 'not' op, don't touch it because that's a canonical form.
- const APInt &C = Op1C->getAPIntValue();
- if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
- return false;
- if (!C.isSubsetOf(DemandedBits)) {
- EVT VT = Op.getValueType();
- SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
- SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
- return TLO.CombineTo(Op, NewOp);
- }
- break;
- }
- }
- return false;
- }
- bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
- const APInt &DemandedBits,
- TargetLoweringOpt &TLO) const {
- EVT VT = Op.getValueType();
- APInt DemandedElts = VT.isVector()
- ? APInt::getAllOnes(VT.getVectorNumElements())
- : APInt(1, 1);
- return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
- }
- /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
- /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
- /// generalized for targets with other types of implicit widening casts.
- bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
- const APInt &Demanded,
- TargetLoweringOpt &TLO) const {
- assert(Op.getNumOperands() == 2 &&
- "ShrinkDemandedOp only supports binary operators!");
- assert(Op.getNode()->getNumValues() == 1 &&
- "ShrinkDemandedOp only supports nodes with one result!");
- SelectionDAG &DAG = TLO.DAG;
- SDLoc dl(Op);
- // Early return, as this function cannot handle vector types.
- if (Op.getValueType().isVector())
- return false;
- // Don't do this if the node has another user, which may require the
- // full value.
- if (!Op.getNode()->hasOneUse())
- return false;
- // Search for the smallest integer type with free casts to and from
- // Op's type. For expedience, just check power-of-2 integer types.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- unsigned DemandedSize = Demanded.getActiveBits();
- unsigned SmallVTBits = DemandedSize;
- if (!isPowerOf2_32(SmallVTBits))
- SmallVTBits = NextPowerOf2(SmallVTBits);
- for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
- EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
- if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
- TLI.isZExtFree(SmallVT, Op.getValueType())) {
- // We found a type with free casts.
- SDValue X = DAG.getNode(
- Op.getOpcode(), dl, SmallVT,
- DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
- DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
- assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
- SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
- return TLO.CombineTo(Op, Z);
- }
- }
- return false;
- }
- bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
- DAGCombinerInfo &DCI) const {
- SelectionDAG &DAG = DCI.DAG;
- TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
- !DCI.isBeforeLegalizeOps());
- KnownBits Known;
- bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
- if (Simplified) {
- DCI.AddToWorklist(Op.getNode());
- DCI.CommitTargetLoweringOpt(TLO);
- }
- return Simplified;
- }
- bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
- const APInt &DemandedElts,
- DAGCombinerInfo &DCI) const {
- SelectionDAG &DAG = DCI.DAG;
- TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
- !DCI.isBeforeLegalizeOps());
- KnownBits Known;
- bool Simplified =
- SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
- if (Simplified) {
- DCI.AddToWorklist(Op.getNode());
- DCI.CommitTargetLoweringOpt(TLO);
- }
- return Simplified;
- }
- bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
- KnownBits &Known,
- TargetLoweringOpt &TLO,
- unsigned Depth,
- bool AssumeSingleUse) const {
- EVT VT = Op.getValueType();
- // Since the number of lanes in a scalable vector is unknown at compile time,
- // we track one bit which is implicitly broadcast to all lanes. This means
- // that all lanes in a scalable vector are considered demanded.
- APInt DemandedElts = VT.isFixedLengthVector()
- ? APInt::getAllOnes(VT.getVectorNumElements())
- : APInt(1, 1);
- return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
- AssumeSingleUse);
- }
- // TODO: Under what circumstances can we create nodes? Constant folding?
- SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
- SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
- SelectionDAG &DAG, unsigned Depth) const {
- EVT VT = Op.getValueType();
- // Limit search depth.
- if (Depth >= SelectionDAG::MaxRecursionDepth)
- return SDValue();
- // Ignore UNDEFs.
- if (Op.isUndef())
- return SDValue();
- // Not demanding any bits/elts from Op.
- if (DemandedBits == 0 || DemandedElts == 0)
- return DAG.getUNDEF(VT);
- bool IsLE = DAG.getDataLayout().isLittleEndian();
- unsigned NumElts = DemandedElts.getBitWidth();
- unsigned BitWidth = DemandedBits.getBitWidth();
- KnownBits LHSKnown, RHSKnown;
- switch (Op.getOpcode()) {
- case ISD::BITCAST: {
- if (VT.isScalableVector())
- return SDValue();
- SDValue Src = peekThroughBitcasts(Op.getOperand(0));
- EVT SrcVT = Src.getValueType();
- EVT DstVT = Op.getValueType();
- if (SrcVT == DstVT)
- return Src;
- unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
- unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
- if (NumSrcEltBits == NumDstEltBits)
- if (SDValue V = SimplifyMultipleUseDemandedBits(
- Src, DemandedBits, DemandedElts, DAG, Depth + 1))
- return DAG.getBitcast(DstVT, V);
- if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
- unsigned Scale = NumDstEltBits / NumSrcEltBits;
- unsigned NumSrcElts = SrcVT.getVectorNumElements();
- APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
- APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
- for (unsigned i = 0; i != Scale; ++i) {
- unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
- unsigned BitOffset = EltOffset * NumSrcEltBits;
- APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
- if (!Sub.isZero()) {
- DemandedSrcBits |= Sub;
- for (unsigned j = 0; j != NumElts; ++j)
- if (DemandedElts[j])
- DemandedSrcElts.setBit((j * Scale) + i);
- }
- }
- if (SDValue V = SimplifyMultipleUseDemandedBits(
- Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
- return DAG.getBitcast(DstVT, V);
- }
- // TODO - bigendian once we have test coverage.
- if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
- unsigned Scale = NumSrcEltBits / NumDstEltBits;
- unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
- APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
- APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i]) {
- unsigned Offset = (i % Scale) * NumDstEltBits;
- DemandedSrcBits.insertBits(DemandedBits, Offset);
- DemandedSrcElts.setBit(i / Scale);
- }
- if (SDValue V = SimplifyMultipleUseDemandedBits(
- Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
- return DAG.getBitcast(DstVT, V);
- }
- break;
- }
- case ISD::AND: {
- LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- // If all of the demanded bits are known 1 on one side, return the other.
- // These bits cannot contribute to the result of the 'and' in this
- // context.
- if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
- return Op.getOperand(0);
- if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
- return Op.getOperand(1);
- break;
- }
- case ISD::OR: {
- LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- // If all of the demanded bits are known zero on one side, return the
- // other. These bits cannot contribute to the result of the 'or' in this
- // context.
- if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
- return Op.getOperand(0);
- if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
- return Op.getOperand(1);
- break;
- }
- case ISD::XOR: {
- LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- // If all of the demanded bits are known zero on one side, return the
- // other.
- if (DemandedBits.isSubsetOf(RHSKnown.Zero))
- return Op.getOperand(0);
- if (DemandedBits.isSubsetOf(LHSKnown.Zero))
- return Op.getOperand(1);
- break;
- }
- case ISD::SHL: {
- // If we are only demanding sign bits then we can use the shift source
- // directly.
- if (const APInt *MaxSA =
- DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
- SDValue Op0 = Op.getOperand(0);
- unsigned ShAmt = MaxSA->getZExtValue();
- unsigned NumSignBits =
- DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
- unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
- if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
- return Op0;
- }
- break;
- }
- case ISD::SETCC: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
- // If (1) we only need the sign-bit, (2) the setcc operands are the same
- // width as the setcc result, and (3) the result of a setcc conforms to 0 or
- // -1, we may be able to bypass the setcc.
- if (DemandedBits.isSignMask() &&
- Op0.getScalarValueSizeInBits() == BitWidth &&
- getBooleanContents(Op0.getValueType()) ==
- BooleanContent::ZeroOrNegativeOneBooleanContent) {
- // If we're testing X < 0, then this compare isn't needed - just use X!
- // FIXME: We're limiting to integer types here, but this should also work
- // if we don't care about FP signed-zero. The use of SETLT with FP means
- // that we don't care about NaNs.
- if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
- (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
- return Op0;
- }
- break;
- }
- case ISD::SIGN_EXTEND_INREG: {
- // If none of the extended bits are demanded, eliminate the sextinreg.
- SDValue Op0 = Op.getOperand(0);
- EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- unsigned ExBits = ExVT.getScalarSizeInBits();
- if (DemandedBits.getActiveBits() <= ExBits)
- return Op0;
- // If the input is already sign extended, just drop the extension.
- unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
- if (NumSignBits >= (BitWidth - ExBits + 1))
- return Op0;
- break;
- }
- case ISD::ANY_EXTEND_VECTOR_INREG:
- case ISD::SIGN_EXTEND_VECTOR_INREG:
- case ISD::ZERO_EXTEND_VECTOR_INREG: {
- if (VT.isScalableVector())
- return SDValue();
- // If we only want the lowest element and none of extended bits, then we can
- // return the bitcasted source vector.
- SDValue Src = Op.getOperand(0);
- EVT SrcVT = Src.getValueType();
- EVT DstVT = Op.getValueType();
- if (IsLE && DemandedElts == 1 &&
- DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
- DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
- return DAG.getBitcast(DstVT, Src);
- }
- break;
- }
- case ISD::INSERT_VECTOR_ELT: {
- if (VT.isScalableVector())
- return SDValue();
- // If we don't demand the inserted element, return the base vector.
- SDValue Vec = Op.getOperand(0);
- auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
- EVT VecVT = Vec.getValueType();
- if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
- !DemandedElts[CIdx->getZExtValue()])
- return Vec;
- break;
- }
- case ISD::INSERT_SUBVECTOR: {
- if (VT.isScalableVector())
- return SDValue();
- SDValue Vec = Op.getOperand(0);
- SDValue Sub = Op.getOperand(1);
- uint64_t Idx = Op.getConstantOperandVal(2);
- unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
- APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
- // If we don't demand the inserted subvector, return the base vector.
- if (DemandedSubElts == 0)
- return Vec;
- // If this simply widens the lowest subvector, see if we can do it earlier.
- // TODO: REMOVE ME - SimplifyMultipleUseDemandedBits shouldn't be creating
- // general nodes like this.
- if (Idx == 0 && Vec.isUndef()) {
- if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
- Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
- return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
- Op.getOperand(0), NewSub, Op.getOperand(2));
- }
- break;
- }
- case ISD::VECTOR_SHUFFLE: {
- assert(!VT.isScalableVector());
- ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
- // If all the demanded elts are from one operand and are inline,
- // then we can use the operand directly.
- bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
- for (unsigned i = 0; i != NumElts; ++i) {
- int M = ShuffleMask[i];
- if (M < 0 || !DemandedElts[i])
- continue;
- AllUndef = false;
- IdentityLHS &= (M == (int)i);
- IdentityRHS &= ((M - NumElts) == i);
- }
- if (AllUndef)
- return DAG.getUNDEF(Op.getValueType());
- if (IdentityLHS)
- return Op.getOperand(0);
- if (IdentityRHS)
- return Op.getOperand(1);
- break;
- }
- default:
- // TODO: Probably okay to remove after audit; here to reduce change size
- // in initial enablement patch for scalable vectors
- if (VT.isScalableVector())
- return SDValue();
- if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
- if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
- Op, DemandedBits, DemandedElts, DAG, Depth))
- return V;
- break;
- }
- return SDValue();
- }
- SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
- SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
- unsigned Depth) const {
- EVT VT = Op.getValueType();
- // Since the number of lanes in a scalable vector is unknown at compile time,
- // we track one bit which is implicitly broadcast to all lanes. This means
- // that all lanes in a scalable vector are considered demanded.
- APInt DemandedElts = VT.isFixedLengthVector()
- ? APInt::getAllOnes(VT.getVectorNumElements())
- : APInt(1, 1);
- return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
- Depth);
- }
- SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
- SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
- unsigned Depth) const {
- APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
- return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
- Depth);
- }
- // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
- // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
- static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI,
- const APInt &DemandedBits,
- const APInt &DemandedElts,
- unsigned Depth) {
- assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
- "SRL or SRA node is required here!");
- // Is the right shift using an immediate value of 1?
- ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
- if (!N1C || !N1C->isOne())
- return SDValue();
- // We are looking for an avgfloor
- // add(ext, ext)
- // or one of these as a avgceil
- // add(add(ext, ext), 1)
- // add(add(ext, 1), ext)
- // add(ext, add(ext, 1))
- SDValue Add = Op.getOperand(0);
- if (Add.getOpcode() != ISD::ADD)
- return SDValue();
- SDValue ExtOpA = Add.getOperand(0);
- SDValue ExtOpB = Add.getOperand(1);
- auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
- ConstantSDNode *ConstOp;
- if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
- ConstOp->isOne()) {
- ExtOpA = Op2;
- ExtOpB = Op3;
- return true;
- }
- if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
- ConstOp->isOne()) {
- ExtOpA = Op1;
- ExtOpB = Op3;
- return true;
- }
- if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
- ConstOp->isOne()) {
- ExtOpA = Op1;
- ExtOpB = Op2;
- return true;
- }
- return false;
- };
- bool IsCeil =
- (ExtOpA.getOpcode() == ISD::ADD &&
- MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
- (ExtOpB.getOpcode() == ISD::ADD &&
- MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
- // If the shift is signed (sra):
- // - Needs >= 2 sign bit for both operands.
- // - Needs >= 2 zero bits.
- // If the shift is unsigned (srl):
- // - Needs >= 1 zero bit for both operands.
- // - Needs 1 demanded bit zero and >= 2 sign bits.
- unsigned ShiftOpc = Op.getOpcode();
- bool IsSigned = false;
- unsigned KnownBits;
- unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
- unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
- unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
- unsigned NumZeroA =
- DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
- unsigned NumZeroB =
- DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
- unsigned NumZero = std::min(NumZeroA, NumZeroB);
- switch (ShiftOpc) {
- default:
- llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
- case ISD::SRA: {
- if (NumZero >= 2 && NumSigned < NumZero) {
- IsSigned = false;
- KnownBits = NumZero;
- break;
- }
- if (NumSigned >= 1) {
- IsSigned = true;
- KnownBits = NumSigned;
- break;
- }
- return SDValue();
- }
- case ISD::SRL: {
- if (NumZero >= 1 && NumSigned < NumZero) {
- IsSigned = false;
- KnownBits = NumZero;
- break;
- }
- if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
- IsSigned = true;
- KnownBits = NumSigned;
- break;
- }
- return SDValue();
- }
- }
- unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
- : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
- // Find the smallest power-2 type that is legal for this vector size and
- // operation, given the original type size and the number of known sign/zero
- // bits.
- EVT VT = Op.getValueType();
- unsigned MinWidth =
- std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
- EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
- if (VT.isVector())
- NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
- if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
- return SDValue();
- SDLoc DL(Op);
- SDValue ResultAVG =
- DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
- DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
- return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
- ResultAVG);
- }
- /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
- /// result of Op are ever used downstream. If we can use this information to
- /// simplify Op, create a new simplified DAG node and return true, returning the
- /// original and new nodes in Old and New. Otherwise, analyze the expression and
- /// return a mask of Known bits for the expression (used to simplify the
- /// caller). The Known bits may only be accurate for those bits in the
- /// OriginalDemandedBits and OriginalDemandedElts.
- bool TargetLowering::SimplifyDemandedBits(
- SDValue Op, const APInt &OriginalDemandedBits,
- const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
- unsigned Depth, bool AssumeSingleUse) const {
- unsigned BitWidth = OriginalDemandedBits.getBitWidth();
- assert(Op.getScalarValueSizeInBits() == BitWidth &&
- "Mask size mismatches value type size!");
- // Don't know anything.
- Known = KnownBits(BitWidth);
- EVT VT = Op.getValueType();
- bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
- unsigned NumElts = OriginalDemandedElts.getBitWidth();
- assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) &&
- "Unexpected vector size");
- APInt DemandedBits = OriginalDemandedBits;
- APInt DemandedElts = OriginalDemandedElts;
- SDLoc dl(Op);
- auto &DL = TLO.DAG.getDataLayout();
- // Undef operand.
- if (Op.isUndef())
- return false;
- // We can't simplify target constants.
- if (Op.getOpcode() == ISD::TargetConstant)
- return false;
- if (Op.getOpcode() == ISD::Constant) {
- // We know all of the bits for a constant!
- Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
- return false;
- }
- if (Op.getOpcode() == ISD::ConstantFP) {
- // We know all of the bits for a floating point constant!
- Known = KnownBits::makeConstant(
- cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
- return false;
- }
- // Other users may use these bits.
- bool HasMultiUse = false;
- if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) {
- if (Depth >= SelectionDAG::MaxRecursionDepth) {
- // Limit search depth.
- return false;
- }
- // Allow multiple uses, just set the DemandedBits/Elts to all bits.
- DemandedBits = APInt::getAllOnes(BitWidth);
- DemandedElts = APInt::getAllOnes(NumElts);
- HasMultiUse = true;
- } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
- // Not demanding any bits/elts from Op.
- return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
- } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
- // Limit search depth.
- return false;
- }
- KnownBits Known2;
- switch (Op.getOpcode()) {
- case ISD::SCALAR_TO_VECTOR: {
- if (VT.isScalableVector())
- return false;
- if (!DemandedElts[0])
- return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
- KnownBits SrcKnown;
- SDValue Src = Op.getOperand(0);
- unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
- APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
- if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
- return true;
- // Upper elements are undef, so only get the knownbits if we just demand
- // the bottom element.
- if (DemandedElts == 1)
- Known = SrcKnown.anyextOrTrunc(BitWidth);
- break;
- }
- case ISD::BUILD_VECTOR:
- // Collect the known bits that are shared by every demanded element.
- // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
- Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
- return false; // Don't fall through, will infinitely loop.
- case ISD::LOAD: {
- auto *LD = cast<LoadSDNode>(Op);
- if (getTargetConstantFromLoad(LD)) {
- Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
- return false; // Don't fall through, will infinitely loop.
- }
- if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
- // If this is a ZEXTLoad and we are looking at the loaded value.
- EVT MemVT = LD->getMemoryVT();
- unsigned MemBits = MemVT.getScalarSizeInBits();
- Known.Zero.setBitsFrom(MemBits);
- return false; // Don't fall through, will infinitely loop.
- }
- break;
- }
- case ISD::INSERT_VECTOR_ELT: {
- if (VT.isScalableVector())
- return false;
- SDValue Vec = Op.getOperand(0);
- SDValue Scl = Op.getOperand(1);
- auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
- EVT VecVT = Vec.getValueType();
- // If index isn't constant, assume we need all vector elements AND the
- // inserted element.
- APInt DemandedVecElts(DemandedElts);
- if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
- unsigned Idx = CIdx->getZExtValue();
- DemandedVecElts.clearBit(Idx);
- // Inserted element is not required.
- if (!DemandedElts[Idx])
- return TLO.CombineTo(Op, Vec);
- }
- KnownBits KnownScl;
- unsigned NumSclBits = Scl.getScalarValueSizeInBits();
- APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
- if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
- return true;
- Known = KnownScl.anyextOrTrunc(BitWidth);
- KnownBits KnownVec;
- if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
- Depth + 1))
- return true;
- if (!!DemandedVecElts)
- Known = KnownBits::commonBits(Known, KnownVec);
- return false;
- }
- case ISD::INSERT_SUBVECTOR: {
- if (VT.isScalableVector())
- return false;
- // Demand any elements from the subvector and the remainder from the src its
- // inserted into.
- SDValue Src = Op.getOperand(0);
- SDValue Sub = Op.getOperand(1);
- uint64_t Idx = Op.getConstantOperandVal(2);
- unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
- APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
- APInt DemandedSrcElts = DemandedElts;
- DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
- KnownBits KnownSub, KnownSrc;
- if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
- Depth + 1))
- return true;
- if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
- Depth + 1))
- return true;
- Known.Zero.setAllBits();
- Known.One.setAllBits();
- if (!!DemandedSubElts)
- Known = KnownBits::commonBits(Known, KnownSub);
- if (!!DemandedSrcElts)
- Known = KnownBits::commonBits(Known, KnownSrc);
- // Attempt to avoid multi-use src if we don't need anything from it.
- if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
- !DemandedSrcElts.isAllOnes()) {
- SDValue NewSub = SimplifyMultipleUseDemandedBits(
- Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
- SDValue NewSrc = SimplifyMultipleUseDemandedBits(
- Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
- if (NewSub || NewSrc) {
- NewSub = NewSub ? NewSub : Sub;
- NewSrc = NewSrc ? NewSrc : Src;
- SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
- Op.getOperand(2));
- return TLO.CombineTo(Op, NewOp);
- }
- }
- break;
- }
- case ISD::EXTRACT_SUBVECTOR: {
- if (VT.isScalableVector())
- return false;
- // Offset the demanded elts by the subvector index.
- SDValue Src = Op.getOperand(0);
- if (Src.getValueType().isScalableVector())
- break;
- uint64_t Idx = Op.getConstantOperandVal(1);
- unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
- APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
- if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
- Depth + 1))
- return true;
- // Attempt to avoid multi-use src if we don't need anything from it.
- if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
- SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
- Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
- if (DemandedSrc) {
- SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
- Op.getOperand(1));
- return TLO.CombineTo(Op, NewOp);
- }
- }
- break;
- }
- case ISD::CONCAT_VECTORS: {
- if (VT.isScalableVector())
- return false;
- Known.Zero.setAllBits();
- Known.One.setAllBits();
- EVT SubVT = Op.getOperand(0).getValueType();
- unsigned NumSubVecs = Op.getNumOperands();
- unsigned NumSubElts = SubVT.getVectorNumElements();
- for (unsigned i = 0; i != NumSubVecs; ++i) {
- APInt DemandedSubElts =
- DemandedElts.extractBits(NumSubElts, i * NumSubElts);
- if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
- Known2, TLO, Depth + 1))
- return true;
- // Known bits are shared by every demanded subvector element.
- if (!!DemandedSubElts)
- Known = KnownBits::commonBits(Known, Known2);
- }
- break;
- }
- case ISD::VECTOR_SHUFFLE: {
- assert(!VT.isScalableVector());
- ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
- // Collect demanded elements from shuffle operands..
- APInt DemandedLHS, DemandedRHS;
- if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS,
- DemandedRHS))
- break;
- if (!!DemandedLHS || !!DemandedRHS) {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- Known.Zero.setAllBits();
- Known.One.setAllBits();
- if (!!DemandedLHS) {
- if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
- Depth + 1))
- return true;
- Known = KnownBits::commonBits(Known, Known2);
- }
- if (!!DemandedRHS) {
- if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
- Depth + 1))
- return true;
- Known = KnownBits::commonBits(Known, Known2);
- }
- // Attempt to avoid multi-use ops if we don't need anything from them.
- SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
- Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
- SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
- Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
- if (DemandedOp0 || DemandedOp1) {
- Op0 = DemandedOp0 ? DemandedOp0 : Op0;
- Op1 = DemandedOp1 ? DemandedOp1 : Op1;
- SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
- return TLO.CombineTo(Op, NewOp);
- }
- }
- break;
- }
- case ISD::AND: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- // If the RHS is a constant, check to see if the LHS would be zero without
- // using the bits from the RHS. Below, we use knowledge about the RHS to
- // simplify the LHS, here we're using information from the LHS to simplify
- // the RHS.
- if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
- // Do not increment Depth here; that can cause an infinite loop.
- KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
- // If the LHS already has zeros where RHSC does, this 'and' is dead.
- if ((LHSKnown.Zero & DemandedBits) ==
- (~RHSC->getAPIntValue() & DemandedBits))
- return TLO.CombineTo(Op, Op0);
- // If any of the set bits in the RHS are known zero on the LHS, shrink
- // the constant.
- if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
- DemandedElts, TLO))
- return true;
- // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
- // constant, but if this 'and' is only clearing bits that were just set by
- // the xor, then this 'and' can be eliminated by shrinking the mask of
- // the xor. For example, for a 32-bit X:
- // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
- if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
- LHSKnown.One == ~RHSC->getAPIntValue()) {
- SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
- return TLO.CombineTo(Op, Xor);
- }
- }
- // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
- // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
- if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() &&
- (Op0.getOperand(0).isUndef() ||
- ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
- Op0->hasOneUse()) {
- unsigned NumSubElts =
- Op0.getOperand(1).getValueType().getVectorNumElements();
- unsigned SubIdx = Op0.getConstantOperandVal(2);
- APInt DemandedSub =
- APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
- KnownBits KnownSubMask =
- TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
- if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
- SDValue NewAnd =
- TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
- SDValue NewInsert =
- TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
- Op0.getOperand(1), Op0.getOperand(2));
- return TLO.CombineTo(Op, NewInsert);
- }
- }
- if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
- Known2, TLO, Depth + 1))
- return true;
- assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
- // If all of the demanded bits are known one on one side, return the other.
- // These bits cannot contribute to the result of the 'and'.
- if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
- return TLO.CombineTo(Op, Op0);
- if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
- return TLO.CombineTo(Op, Op1);
- // If all of the demanded bits in the inputs are known zeros, return zero.
- if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
- return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
- // If the RHS is a constant, see if we can simplify it.
- if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
- TLO))
- return true;
- // If the operation can be done in a smaller type, do so.
- if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
- return true;
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
- SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
- Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
- SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
- Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
- if (DemandedOp0 || DemandedOp1) {
- Op0 = DemandedOp0 ? DemandedOp0 : Op0;
- Op1 = DemandedOp1 ? DemandedOp1 : Op1;
- SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
- return TLO.CombineTo(Op, NewOp);
- }
- }
- Known &= Known2;
- break;
- }
- case ISD::OR: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
- Known2, TLO, Depth + 1))
- return true;
- assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
- // If all of the demanded bits are known zero on one side, return the other.
- // These bits cannot contribute to the result of the 'or'.
- if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
- return TLO.CombineTo(Op, Op0);
- if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
- return TLO.CombineTo(Op, Op1);
- // If the RHS is a constant, see if we can simplify it.
- if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
- return true;
- // If the operation can be done in a smaller type, do so.
- if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
- return true;
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
- SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
- Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
- SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
- Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
- if (DemandedOp0 || DemandedOp1) {
- Op0 = DemandedOp0 ? DemandedOp0 : Op0;
- Op1 = DemandedOp1 ? DemandedOp1 : Op1;
- SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
- return TLO.CombineTo(Op, NewOp);
- }
- }
- // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2))
- // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks.
- if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND &&
- Op0->hasOneUse() && Op1->hasOneUse()) {
- // Attempt to match all commutations - m_c_Or would've been useful!
- for (int I = 0; I != 2; ++I) {
- SDValue X = Op.getOperand(I).getOperand(0);
- SDValue C1 = Op.getOperand(I).getOperand(1);
- SDValue Alt = Op.getOperand(1 - I).getOperand(0);
- SDValue C2 = Op.getOperand(1 - I).getOperand(1);
- if (Alt.getOpcode() == ISD::OR) {
- for (int J = 0; J != 2; ++J) {
- if (X == Alt.getOperand(J)) {
- SDValue Y = Alt.getOperand(1 - J);
- if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT,
- {C1, C2})) {
- SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12);
- SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2);
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY));
- }
- }
- }
- }
- }
- }
- Known |= Known2;
- break;
- }
- case ISD::XOR: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
- Depth + 1))
- return true;
- assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
- // If all of the demanded bits are known zero on one side, return the other.
- // These bits cannot contribute to the result of the 'xor'.
- if (DemandedBits.isSubsetOf(Known.Zero))
- return TLO.CombineTo(Op, Op0);
- if (DemandedBits.isSubsetOf(Known2.Zero))
- return TLO.CombineTo(Op, Op1);
- // If the operation can be done in a smaller type, do so.
- if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
- return true;
- // If all of the unknown bits are known to be zero on one side or the other
- // turn this into an *inclusive* or.
- // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
- if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
- ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
- if (C) {
- // If one side is a constant, and all of the set bits in the constant are
- // also known set on the other side, turn this into an AND, as we know
- // the bits will be cleared.
- // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
- // NB: it is okay if more bits are known than are requested
- if (C->getAPIntValue() == Known2.One) {
- SDValue ANDC =
- TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
- }
- // If the RHS is a constant, see if we can change it. Don't alter a -1
- // constant because that's a 'not' op, and that is better for combining
- // and codegen.
- if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
- // We're flipping all demanded bits. Flip the undemanded bits too.
- SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
- return TLO.CombineTo(Op, New);
- }
- unsigned Op0Opcode = Op0.getOpcode();
- if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
- if (ConstantSDNode *ShiftC =
- isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
- // Don't crash on an oversized shift. We can not guarantee that a
- // bogus shift has been simplified to undef.
- if (ShiftC->getAPIntValue().ult(BitWidth)) {
- uint64_t ShiftAmt = ShiftC->getZExtValue();
- APInt Ones = APInt::getAllOnes(BitWidth);
- Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
- : Ones.lshr(ShiftAmt);
- const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
- if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
- TLI.isDesirableToCommuteXorWithShift(Op.getNode())) {
- // If the xor constant is a demanded mask, do a 'not' before the
- // shift:
- // xor (X << ShiftC), XorC --> (not X) << ShiftC
- // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
- SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
- return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
- Op0.getOperand(1)));
- }
- }
- }
- }
- }
- // If we can't turn this into a 'not', try to shrink the constant.
- if (!C || !C->isAllOnes())
- if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
- return true;
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
- SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
- Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
- SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
- Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
- if (DemandedOp0 || DemandedOp1) {
- Op0 = DemandedOp0 ? DemandedOp0 : Op0;
- Op1 = DemandedOp1 ? DemandedOp1 : Op1;
- SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
- return TLO.CombineTo(Op, NewOp);
- }
- }
- Known ^= Known2;
- break;
- }
- case ISD::SELECT:
- if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
- Depth + 1))
- return true;
- if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
- // If the operands are constants, see if we can simplify them.
- if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
- return true;
- // Only known if known in both the LHS and RHS.
- Known = KnownBits::commonBits(Known, Known2);
- break;
- case ISD::VSELECT:
- if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
- Known, TLO, Depth + 1))
- return true;
- if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
- Known2, TLO, Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
- // Only known if known in both the LHS and RHS.
- Known = KnownBits::commonBits(Known, Known2);
- break;
- case ISD::SELECT_CC:
- if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
- Depth + 1))
- return true;
- if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
- // If the operands are constants, see if we can simplify them.
- if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
- return true;
- // Only known if known in both the LHS and RHS.
- Known = KnownBits::commonBits(Known, Known2);
- break;
- case ISD::SETCC: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
- // If (1) we only need the sign-bit, (2) the setcc operands are the same
- // width as the setcc result, and (3) the result of a setcc conforms to 0 or
- // -1, we may be able to bypass the setcc.
- if (DemandedBits.isSignMask() &&
- Op0.getScalarValueSizeInBits() == BitWidth &&
- getBooleanContents(Op0.getValueType()) ==
- BooleanContent::ZeroOrNegativeOneBooleanContent) {
- // If we're testing X < 0, then this compare isn't needed - just use X!
- // FIXME: We're limiting to integer types here, but this should also work
- // if we don't care about FP signed-zero. The use of SETLT with FP means
- // that we don't care about NaNs.
- if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
- (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
- return TLO.CombineTo(Op, Op0);
- // TODO: Should we check for other forms of sign-bit comparisons?
- // Examples: X <= -1, X >= 0
- }
- if (getBooleanContents(Op0.getValueType()) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- BitWidth > 1)
- Known.Zero.setBitsFrom(1);
- break;
- }
- case ISD::SHL: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- EVT ShiftVT = Op1.getValueType();
- if (const APInt *SA =
- TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
- unsigned ShAmt = SA->getZExtValue();
- if (ShAmt == 0)
- return TLO.CombineTo(Op, Op0);
- // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
- // single shift. We can do this if the bottom bits (which are shifted
- // out) are never demanded.
- // TODO - support non-uniform vector amounts.
- if (Op0.getOpcode() == ISD::SRL) {
- if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
- if (const APInt *SA2 =
- TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
- unsigned C1 = SA2->getZExtValue();
- unsigned Opc = ISD::SHL;
- int Diff = ShAmt - C1;
- if (Diff < 0) {
- Diff = -Diff;
- Opc = ISD::SRL;
- }
- SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
- }
- }
- }
- // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
- // are not demanded. This will likely allow the anyext to be folded away.
- // TODO - support non-uniform vector amounts.
- if (Op0.getOpcode() == ISD::ANY_EXTEND) {
- SDValue InnerOp = Op0.getOperand(0);
- EVT InnerVT = InnerOp.getValueType();
- unsigned InnerBits = InnerVT.getScalarSizeInBits();
- if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
- isTypeDesirableForOp(ISD::SHL, InnerVT)) {
- EVT ShTy = getShiftAmountTy(InnerVT, DL);
- if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
- ShTy = InnerVT;
- SDValue NarrowShl =
- TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
- TLO.DAG.getConstant(ShAmt, dl, ShTy));
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
- }
- // Repeat the SHL optimization above in cases where an extension
- // intervenes: (shl (anyext (shr x, c1)), c2) to
- // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
- // aren't demanded (as above) and that the shifted upper c1 bits of
- // x aren't demanded.
- // TODO - support non-uniform vector amounts.
- if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() &&
- InnerOp.hasOneUse()) {
- if (const APInt *SA2 =
- TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
- unsigned InnerShAmt = SA2->getZExtValue();
- if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
- DemandedBits.getActiveBits() <=
- (InnerBits - InnerShAmt + ShAmt) &&
- DemandedBits.countTrailingZeros() >= ShAmt) {
- SDValue NewSA =
- TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
- SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
- InnerOp.getOperand(0));
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
- }
- }
- }
- }
- APInt InDemandedMask = DemandedBits.lshr(ShAmt);
- if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- Known.Zero <<= ShAmt;
- Known.One <<= ShAmt;
- // low bits known zero.
- Known.Zero.setLowBits(ShAmt);
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
- SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
- Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
- if (DemandedOp0) {
- SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
- return TLO.CombineTo(Op, NewOp);
- }
- }
- // Try shrinking the operation as long as the shift amount will still be
- // in range.
- if ((ShAmt < DemandedBits.getActiveBits()) &&
- ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
- return true;
- } else {
- // This is a variable shift, so we can't shift the demand mask by a known
- // amount. But if we are not demanding high bits, then we are not
- // demanding those bits from the pre-shifted operand either.
- if (unsigned CTLZ = DemandedBits.countLeadingZeros()) {
- APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
- if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
- Depth + 1)) {
- SDNodeFlags Flags = Op.getNode()->getFlags();
- if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
- // Disable the nsw and nuw flags. We can no longer guarantee that we
- // won't wrap after simplification.
- Flags.setNoSignedWrap(false);
- Flags.setNoUnsignedWrap(false);
- Op->setFlags(Flags);
- }
- return true;
- }
- Known.resetAll();
- }
- }
- // If we are only demanding sign bits then we can use the shift source
- // directly.
- if (const APInt *MaxSA =
- TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
- unsigned ShAmt = MaxSA->getZExtValue();
- unsigned NumSignBits =
- TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
- unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
- if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
- return TLO.CombineTo(Op, Op0);
- }
- break;
- }
- case ISD::SRL: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- EVT ShiftVT = Op1.getValueType();
- // Try to match AVG patterns.
- if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
- DemandedElts, Depth + 1))
- return TLO.CombineTo(Op, AVG);
- if (const APInt *SA =
- TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
- unsigned ShAmt = SA->getZExtValue();
- if (ShAmt == 0)
- return TLO.CombineTo(Op, Op0);
- // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
- // single shift. We can do this if the top bits (which are shifted out)
- // are never demanded.
- // TODO - support non-uniform vector amounts.
- if (Op0.getOpcode() == ISD::SHL) {
- if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
- if (const APInt *SA2 =
- TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
- unsigned C1 = SA2->getZExtValue();
- unsigned Opc = ISD::SRL;
- int Diff = ShAmt - C1;
- if (Diff < 0) {
- Diff = -Diff;
- Opc = ISD::SHL;
- }
- SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
- }
- }
- }
- APInt InDemandedMask = (DemandedBits << ShAmt);
- // If the shift is exact, then it does demand the low bits (and knows that
- // they are zero).
- if (Op->getFlags().hasExact())
- InDemandedMask.setLowBits(ShAmt);
- // Compute the new bits that are at the top now.
- if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- Known.Zero.lshrInPlace(ShAmt);
- Known.One.lshrInPlace(ShAmt);
- // High bits known zero.
- Known.Zero.setHighBits(ShAmt);
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
- SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
- Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
- if (DemandedOp0) {
- SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1);
- return TLO.CombineTo(Op, NewOp);
- }
- }
- }
- break;
- }
- case ISD::SRA: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- EVT ShiftVT = Op1.getValueType();
- // If we only want bits that already match the signbit then we don't need
- // to shift.
- unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
- if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
- NumHiDemandedBits)
- return TLO.CombineTo(Op, Op0);
- // If this is an arithmetic shift right and only the low-bit is set, we can
- // always convert this into a logical shr, even if the shift amount is
- // variable. The low bit of the shift cannot be an input sign bit unless
- // the shift amount is >= the size of the datatype, which is undefined.
- if (DemandedBits.isOne())
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
- // Try to match AVG patterns.
- if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
- DemandedElts, Depth + 1))
- return TLO.CombineTo(Op, AVG);
- if (const APInt *SA =
- TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
- unsigned ShAmt = SA->getZExtValue();
- if (ShAmt == 0)
- return TLO.CombineTo(Op, Op0);
- APInt InDemandedMask = (DemandedBits << ShAmt);
- // If the shift is exact, then it does demand the low bits (and knows that
- // they are zero).
- if (Op->getFlags().hasExact())
- InDemandedMask.setLowBits(ShAmt);
- // If any of the demanded bits are produced by the sign extension, we also
- // demand the input sign bit.
- if (DemandedBits.countLeadingZeros() < ShAmt)
- InDemandedMask.setSignBit();
- if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- Known.Zero.lshrInPlace(ShAmt);
- Known.One.lshrInPlace(ShAmt);
- // If the input sign bit is known to be zero, or if none of the top bits
- // are demanded, turn this into an unsigned shift right.
- if (Known.Zero[BitWidth - ShAmt - 1] ||
- DemandedBits.countLeadingZeros() >= ShAmt) {
- SDNodeFlags Flags;
- Flags.setExact(Op->getFlags().hasExact());
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
- }
- int Log2 = DemandedBits.exactLogBase2();
- if (Log2 >= 0) {
- // The bit must come from the sign.
- SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
- }
- if (Known.One[BitWidth - ShAmt - 1])
- // New bits are known one.
- Known.One.setHighBits(ShAmt);
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
- SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
- Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
- if (DemandedOp0) {
- SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
- return TLO.CombineTo(Op, NewOp);
- }
- }
- }
- break;
- }
- case ISD::FSHL:
- case ISD::FSHR: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- SDValue Op2 = Op.getOperand(2);
- bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
- if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
- unsigned Amt = SA->getAPIntValue().urem(BitWidth);
- // For fshl, 0-shift returns the 1st arg.
- // For fshr, 0-shift returns the 2nd arg.
- if (Amt == 0) {
- if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
- Known, TLO, Depth + 1))
- return true;
- break;
- }
- // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
- // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
- APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
- APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
- if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
- Depth + 1))
- return true;
- if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
- Depth + 1))
- return true;
- Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
- Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
- Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
- Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
- Known.One |= Known2.One;
- Known.Zero |= Known2.Zero;
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
- !DemandedElts.isAllOnes()) {
- SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
- Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
- SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
- Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
- if (DemandedOp0 || DemandedOp1) {
- DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
- DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
- SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
- DemandedOp1, Op2);
- return TLO.CombineTo(Op, NewOp);
- }
- }
- }
- // For pow-2 bitwidths we only demand the bottom modulo amt bits.
- if (isPowerOf2_32(BitWidth)) {
- APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
- if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
- Known2, TLO, Depth + 1))
- return true;
- }
- break;
- }
- case ISD::ROTL:
- case ISD::ROTR: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- bool IsROTL = (Op.getOpcode() == ISD::ROTL);
- // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
- if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
- return TLO.CombineTo(Op, Op0);
- if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
- unsigned Amt = SA->getAPIntValue().urem(BitWidth);
- unsigned RevAmt = BitWidth - Amt;
- // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
- // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
- APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
- if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
- Depth + 1))
- return true;
- // rot*(x, 0) --> x
- if (Amt == 0)
- return TLO.CombineTo(Op, Op0);
- // See if we don't demand either half of the rotated bits.
- if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
- DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
- Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
- }
- if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
- DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
- Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
- }
- }
- // For pow-2 bitwidths we only demand the bottom modulo amt bits.
- if (isPowerOf2_32(BitWidth)) {
- APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
- if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
- Depth + 1))
- return true;
- }
- break;
- }
- case ISD::UMIN: {
- // Check if one arg is always less than (or equal) to the other arg.
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
- KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
- Known = KnownBits::umin(Known0, Known1);
- if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1))
- return TLO.CombineTo(Op, *IsULE ? Op0 : Op1);
- if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1))
- return TLO.CombineTo(Op, *IsULT ? Op0 : Op1);
- break;
- }
- case ISD::UMAX: {
- // Check if one arg is always greater than (or equal) to the other arg.
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
- KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
- Known = KnownBits::umax(Known0, Known1);
- if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
- return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1);
- if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
- return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1);
- break;
- }
- case ISD::BITREVERSE: {
- SDValue Src = Op.getOperand(0);
- APInt DemandedSrcBits = DemandedBits.reverseBits();
- if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
- Depth + 1))
- return true;
- Known.One = Known2.One.reverseBits();
- Known.Zero = Known2.Zero.reverseBits();
- break;
- }
- case ISD::BSWAP: {
- SDValue Src = Op.getOperand(0);
- // If the only bits demanded come from one byte of the bswap result,
- // just shift the input byte into position to eliminate the bswap.
- unsigned NLZ = DemandedBits.countLeadingZeros();
- unsigned NTZ = DemandedBits.countTrailingZeros();
- // Round NTZ down to the next byte. If we have 11 trailing zeros, then
- // we need all the bits down to bit 8. Likewise, round NLZ. If we
- // have 14 leading zeros, round to 8.
- NLZ = alignDown(NLZ, 8);
- NTZ = alignDown(NTZ, 8);
- // If we need exactly one byte, we can do this transformation.
- if (BitWidth - NLZ - NTZ == 8) {
- // Replace this with either a left or right shift to get the byte into
- // the right place.
- unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
- if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
- EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
- unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
- SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
- SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
- return TLO.CombineTo(Op, NewOp);
- }
- }
- APInt DemandedSrcBits = DemandedBits.byteSwap();
- if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
- Depth + 1))
- return true;
- Known.One = Known2.One.byteSwap();
- Known.Zero = Known2.Zero.byteSwap();
- break;
- }
- case ISD::CTPOP: {
- // If only 1 bit is demanded, replace with PARITY as long as we're before
- // op legalization.
- // FIXME: Limit to scalars for now.
- if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
- Op.getOperand(0)));
- Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
- break;
- }
- case ISD::SIGN_EXTEND_INREG: {
- SDValue Op0 = Op.getOperand(0);
- EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- unsigned ExVTBits = ExVT.getScalarSizeInBits();
- // If we only care about the highest bit, don't bother shifting right.
- if (DemandedBits.isSignMask()) {
- unsigned MinSignedBits =
- TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
- bool AlreadySignExtended = ExVTBits >= MinSignedBits;
- // However if the input is already sign extended we expect the sign
- // extension to be dropped altogether later and do not simplify.
- if (!AlreadySignExtended) {
- // Compute the correct shift amount type, which must be getShiftAmountTy
- // for scalar types after legalization.
- SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
- getShiftAmountTy(VT, DL));
- return TLO.CombineTo(Op,
- TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
- }
- }
- // If none of the extended bits are demanded, eliminate the sextinreg.
- if (DemandedBits.getActiveBits() <= ExVTBits)
- return TLO.CombineTo(Op, Op0);
- APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
- // Since the sign extended bits are demanded, we know that the sign
- // bit is demanded.
- InputDemandedBits.setBit(ExVTBits - 1);
- if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- // If the sign bit of the input is known set or clear, then we know the
- // top bits of the result.
- // If the input sign bit is known zero, convert this into a zero extension.
- if (Known.Zero[ExVTBits - 1])
- return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
- APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
- if (Known.One[ExVTBits - 1]) { // Input sign bit known set
- Known.One.setBitsFrom(ExVTBits);
- Known.Zero &= Mask;
- } else { // Input sign bit unknown
- Known.Zero &= Mask;
- Known.One &= Mask;
- }
- break;
- }
- case ISD::BUILD_PAIR: {
- EVT HalfVT = Op.getOperand(0).getValueType();
- unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
- APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
- APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
- KnownBits KnownLo, KnownHi;
- if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
- return true;
- if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
- return true;
- Known = KnownHi.concat(KnownLo);
- break;
- }
- case ISD::ZERO_EXTEND_VECTOR_INREG:
- if (VT.isScalableVector())
- return false;
- [[fallthrough]];
- case ISD::ZERO_EXTEND: {
- SDValue Src = Op.getOperand(0);
- EVT SrcVT = Src.getValueType();
- unsigned InBits = SrcVT.getScalarSizeInBits();
- unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
- bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
- // If none of the top bits are demanded, convert this into an any_extend.
- if (DemandedBits.getActiveBits() <= InBits) {
- // If we only need the non-extended bits of the bottom element
- // then we can just bitcast to the result.
- if (IsLE && IsVecInReg && DemandedElts == 1 &&
- VT.getSizeInBits() == SrcVT.getSizeInBits())
- return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
- unsigned Opc =
- IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
- if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
- return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
- }
- APInt InDemandedBits = DemandedBits.trunc(InBits);
- APInt InDemandedElts = DemandedElts.zext(InElts);
- if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- assert(Known.getBitWidth() == InBits && "Src width has changed?");
- Known = Known.zext(BitWidth);
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
- Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
- return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
- break;
- }
- case ISD::SIGN_EXTEND_VECTOR_INREG:
- if (VT.isScalableVector())
- return false;
- [[fallthrough]];
- case ISD::SIGN_EXTEND: {
- SDValue Src = Op.getOperand(0);
- EVT SrcVT = Src.getValueType();
- unsigned InBits = SrcVT.getScalarSizeInBits();
- unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
- bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
- // If none of the top bits are demanded, convert this into an any_extend.
- if (DemandedBits.getActiveBits() <= InBits) {
- // If we only need the non-extended bits of the bottom element
- // then we can just bitcast to the result.
- if (IsLE && IsVecInReg && DemandedElts == 1 &&
- VT.getSizeInBits() == SrcVT.getSizeInBits())
- return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
- unsigned Opc =
- IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
- if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
- return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
- }
- APInt InDemandedBits = DemandedBits.trunc(InBits);
- APInt InDemandedElts = DemandedElts.zext(InElts);
- // Since some of the sign extended bits are demanded, we know that the sign
- // bit is demanded.
- InDemandedBits.setBit(InBits - 1);
- if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- assert(Known.getBitWidth() == InBits && "Src width has changed?");
- // If the sign bit is known one, the top bits match.
- Known = Known.sext(BitWidth);
- // If the sign bit is known zero, convert this to a zero extend.
- if (Known.isNonNegative()) {
- unsigned Opc =
- IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
- if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
- return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
- }
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
- Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
- return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
- break;
- }
- case ISD::ANY_EXTEND_VECTOR_INREG:
- if (VT.isScalableVector())
- return false;
- [[fallthrough]];
- case ISD::ANY_EXTEND: {
- SDValue Src = Op.getOperand(0);
- EVT SrcVT = Src.getValueType();
- unsigned InBits = SrcVT.getScalarSizeInBits();
- unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
- bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
- // If we only need the bottom element then we can just bitcast.
- // TODO: Handle ANY_EXTEND?
- if (IsLE && IsVecInReg && DemandedElts == 1 &&
- VT.getSizeInBits() == SrcVT.getSizeInBits())
- return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
- APInt InDemandedBits = DemandedBits.trunc(InBits);
- APInt InDemandedElts = DemandedElts.zext(InElts);
- if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- assert(Known.getBitWidth() == InBits && "Src width has changed?");
- Known = Known.anyext(BitWidth);
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
- Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
- return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
- break;
- }
- case ISD::TRUNCATE: {
- SDValue Src = Op.getOperand(0);
- // Simplify the input, using demanded bit information, and compute the known
- // zero/one bits live out.
- unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
- APInt TruncMask = DemandedBits.zext(OperandBitWidth);
- if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
- Depth + 1))
- return true;
- Known = Known.trunc(BitWidth);
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
- Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
- // If the input is only used by this truncate, see if we can shrink it based
- // on the known demanded bits.
- switch (Src.getOpcode()) {
- default:
- break;
- case ISD::SRL:
- // Shrink SRL by a constant if none of the high bits shifted in are
- // demanded.
- if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
- // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
- // undesirable.
- break;
- if (Src.getNode()->hasOneUse()) {
- const APInt *ShAmtC =
- TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
- if (!ShAmtC || ShAmtC->uge(BitWidth))
- break;
- uint64_t ShVal = ShAmtC->getZExtValue();
- APInt HighBits =
- APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
- HighBits.lshrInPlace(ShVal);
- HighBits = HighBits.trunc(BitWidth);
- if (!(HighBits & DemandedBits)) {
- // None of the shifted in bits are needed. Add a truncate of the
- // shift input, then shift it.
- SDValue NewShAmt = TLO.DAG.getConstant(
- ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
- SDValue NewTrunc =
- TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
- }
- }
- break;
- }
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- break;
- }
- case ISD::AssertZext: {
- // AssertZext demands all of the high bits, plus any of the low bits
- // demanded by its users.
- EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
- if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
- TLO, Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- Known.Zero |= ~InMask;
- Known.One &= (~Known.Zero);
- break;
- }
- case ISD::EXTRACT_VECTOR_ELT: {
- SDValue Src = Op.getOperand(0);
- SDValue Idx = Op.getOperand(1);
- ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
- unsigned EltBitWidth = Src.getScalarValueSizeInBits();
- if (SrcEltCnt.isScalable())
- return false;
- // Demand the bits from every vector element without a constant index.
- unsigned NumSrcElts = SrcEltCnt.getFixedValue();
- APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
- if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
- if (CIdx->getAPIntValue().ult(NumSrcElts))
- DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
- // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
- // anything about the extended bits.
- APInt DemandedSrcBits = DemandedBits;
- if (BitWidth > EltBitWidth)
- DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
- if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
- Depth + 1))
- return true;
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
- if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
- Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
- SDValue NewOp =
- TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
- return TLO.CombineTo(Op, NewOp);
- }
- }
- Known = Known2;
- if (BitWidth > EltBitWidth)
- Known = Known.anyext(BitWidth);
- break;
- }
- case ISD::BITCAST: {
- if (VT.isScalableVector())
- return false;
- SDValue Src = Op.getOperand(0);
- EVT SrcVT = Src.getValueType();
- unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
- // If this is an FP->Int bitcast and if the sign bit is the only
- // thing demanded, turn this into a FGETSIGN.
- if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
- DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
- SrcVT.isFloatingPoint()) {
- bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
- bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
- if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
- SrcVT != MVT::f128) {
- // Cannot eliminate/lower SHL for f128 yet.
- EVT Ty = OpVTLegal ? VT : MVT::i32;
- // Make a FGETSIGN + SHL to move the sign bit into the appropriate
- // place. We expect the SHL to be eliminated by other optimizations.
- SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
- unsigned OpVTSizeInBits = Op.getValueSizeInBits();
- if (!OpVTLegal && OpVTSizeInBits > 32)
- Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
- unsigned ShVal = Op.getValueSizeInBits() - 1;
- SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
- return TLO.CombineTo(Op,
- TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
- }
- }
- // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
- // Demand the elt/bit if any of the original elts/bits are demanded.
- if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
- unsigned Scale = BitWidth / NumSrcEltBits;
- unsigned NumSrcElts = SrcVT.getVectorNumElements();
- APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
- APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
- for (unsigned i = 0; i != Scale; ++i) {
- unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
- unsigned BitOffset = EltOffset * NumSrcEltBits;
- APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
- if (!Sub.isZero()) {
- DemandedSrcBits |= Sub;
- for (unsigned j = 0; j != NumElts; ++j)
- if (DemandedElts[j])
- DemandedSrcElts.setBit((j * Scale) + i);
- }
- }
- APInt KnownSrcUndef, KnownSrcZero;
- if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
- KnownSrcZero, TLO, Depth + 1))
- return true;
- KnownBits KnownSrcBits;
- if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
- KnownSrcBits, TLO, Depth + 1))
- return true;
- } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
- // TODO - bigendian once we have test coverage.
- unsigned Scale = NumSrcEltBits / BitWidth;
- unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
- APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
- APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i]) {
- unsigned Offset = (i % Scale) * BitWidth;
- DemandedSrcBits.insertBits(DemandedBits, Offset);
- DemandedSrcElts.setBit(i / Scale);
- }
- if (SrcVT.isVector()) {
- APInt KnownSrcUndef, KnownSrcZero;
- if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
- KnownSrcZero, TLO, Depth + 1))
- return true;
- }
- KnownBits KnownSrcBits;
- if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
- KnownSrcBits, TLO, Depth + 1))
- return true;
- }
- // If this is a bitcast, let computeKnownBits handle it. Only do this on a
- // recursive call where Known may be useful to the caller.
- if (Depth > 0) {
- Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
- return false;
- }
- break;
- }
- case ISD::MUL:
- if (DemandedBits.isPowerOf2()) {
- // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
- // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
- // odd (has LSB set), then the left-shifted low bit of X is the answer.
- unsigned CTZ = DemandedBits.countTrailingZeros();
- ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
- if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
- EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
- SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
- SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
- return TLO.CombineTo(Op, Shl);
- }
- }
- // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
- // X * X is odd iff X is odd.
- // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
- if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
- SDValue One = TLO.DAG.getConstant(1, dl, VT);
- SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
- return TLO.CombineTo(Op, And1);
- }
- [[fallthrough]];
- case ISD::ADD:
- case ISD::SUB: {
- // Add, Sub, and Mul don't demand any bits in positions beyond that
- // of the highest bit demanded of them.
- SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
- SDNodeFlags Flags = Op.getNode()->getFlags();
- unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
- APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
- if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
- Depth + 1) ||
- SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
- Depth + 1) ||
- // See if the operation should be performed at a smaller bit width.
- ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
- if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
- // Disable the nsw and nuw flags. We can no longer guarantee that we
- // won't wrap after simplification.
- Flags.setNoSignedWrap(false);
- Flags.setNoUnsignedWrap(false);
- Op->setFlags(Flags);
- }
- return true;
- }
- // neg x with only low bit demanded is simply x.
- if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() &&
- isa<ConstantSDNode>(Op0) && cast<ConstantSDNode>(Op0)->isZero())
- return TLO.CombineTo(Op, Op1);
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
- SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
- Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
- SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
- Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
- if (DemandedOp0 || DemandedOp1) {
- Flags.setNoSignedWrap(false);
- Flags.setNoUnsignedWrap(false);
- Op0 = DemandedOp0 ? DemandedOp0 : Op0;
- Op1 = DemandedOp1 ? DemandedOp1 : Op1;
- SDValue NewOp =
- TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
- return TLO.CombineTo(Op, NewOp);
- }
- }
- // If we have a constant operand, we may be able to turn it into -1 if we
- // do not demand the high bits. This can make the constant smaller to
- // encode, allow more general folding, or match specialized instruction
- // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
- // is probably not useful (and could be detrimental).
- ConstantSDNode *C = isConstOrConstSplat(Op1);
- APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
- if (C && !C->isAllOnes() && !C->isOne() &&
- (C->getAPIntValue() | HighMask).isAllOnes()) {
- SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
- // Disable the nsw and nuw flags. We can no longer guarantee that we
- // won't wrap after simplification.
- Flags.setNoSignedWrap(false);
- Flags.setNoUnsignedWrap(false);
- SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
- return TLO.CombineTo(Op, NewOp);
- }
- // Match a multiply with a disguised negated-power-of-2 and convert to a
- // an equivalent shift-left amount.
- // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
- auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
- if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
- return 0;
- // Don't touch opaque constants. Also, ignore zero and power-of-2
- // multiplies. Those will get folded later.
- ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
- if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
- !MulC->getAPIntValue().isPowerOf2()) {
- APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
- if (UnmaskedC.isNegatedPowerOf2())
- return (-UnmaskedC).logBase2();
- }
- return 0;
- };
- auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) {
- EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
- SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
- SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
- SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
- return TLO.CombineTo(Op, Res);
- };
- if (isOperationLegalOrCustom(ISD::SHL, VT)) {
- if (Op.getOpcode() == ISD::ADD) {
- // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
- if (unsigned ShAmt = getShiftLeftAmt(Op0))
- return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
- // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
- if (unsigned ShAmt = getShiftLeftAmt(Op1))
- return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
- }
- if (Op.getOpcode() == ISD::SUB) {
- // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
- if (unsigned ShAmt = getShiftLeftAmt(Op1))
- return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
- }
- }
- [[fallthrough]];
- }
- default:
- // We also ask the target about intrinsics (which could be specific to it).
- if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
- // TODO: Probably okay to remove after audit; here to reduce change size
- // in initial enablement patch for scalable vectors
- if (Op.getValueType().isScalableVector())
- break;
- if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
- Known, TLO, Depth))
- return true;
- break;
- }
- // Just use computeKnownBits to compute output bits.
- Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
- break;
- }
- // If we know the value of all of the demanded bits, return this as a
- // constant.
- if (!isTargetCanonicalConstantNode(Op) &&
- DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
- // Avoid folding to a constant if any OpaqueConstant is involved.
- const SDNode *N = Op.getNode();
- for (SDNode *Op :
- llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
- if (C->isOpaque())
- return false;
- }
- if (VT.isInteger())
- return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
- if (VT.isFloatingPoint())
- return TLO.CombineTo(
- Op,
- TLO.DAG.getConstantFP(
- APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
- }
- // A multi use 'all demanded elts' simplify failed to find any knownbits.
- // Try again just for the original demanded elts.
- // Ensure we do this AFTER constant folding above.
- if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes())
- Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth);
- return false;
- }
- bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
- const APInt &DemandedElts,
- DAGCombinerInfo &DCI) const {
- SelectionDAG &DAG = DCI.DAG;
- TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
- !DCI.isBeforeLegalizeOps());
- APInt KnownUndef, KnownZero;
- bool Simplified =
- SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
- if (Simplified) {
- DCI.AddToWorklist(Op.getNode());
- DCI.CommitTargetLoweringOpt(TLO);
- }
- return Simplified;
- }
- /// Given a vector binary operation and known undefined elements for each input
- /// operand, compute whether each element of the output is undefined.
- static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
- const APInt &UndefOp0,
- const APInt &UndefOp1) {
- EVT VT = BO.getValueType();
- assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
- "Vector binop only");
- EVT EltVT = VT.getVectorElementType();
- unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1;
- assert(UndefOp0.getBitWidth() == NumElts &&
- UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
- auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
- const APInt &UndefVals) {
- if (UndefVals[Index])
- return DAG.getUNDEF(EltVT);
- if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
- // Try hard to make sure that the getNode() call is not creating temporary
- // nodes. Ignore opaque integers because they do not constant fold.
- SDValue Elt = BV->getOperand(Index);
- auto *C = dyn_cast<ConstantSDNode>(Elt);
- if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
- return Elt;
- }
- return SDValue();
- };
- APInt KnownUndef = APInt::getZero(NumElts);
- for (unsigned i = 0; i != NumElts; ++i) {
- // If both inputs for this element are either constant or undef and match
- // the element type, compute the constant/undef result for this element of
- // the vector.
- // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
- // not handle FP constants. The code within getNode() should be refactored
- // to avoid the danger of creating a bogus temporary node here.
- SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
- SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
- if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
- if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
- KnownUndef.setBit(i);
- }
- return KnownUndef;
- }
- bool TargetLowering::SimplifyDemandedVectorElts(
- SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
- APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
- bool AssumeSingleUse) const {
- EVT VT = Op.getValueType();
- unsigned Opcode = Op.getOpcode();
- APInt DemandedElts = OriginalDemandedElts;
- unsigned NumElts = DemandedElts.getBitWidth();
- assert(VT.isVector() && "Expected vector op");
- KnownUndef = KnownZero = APInt::getZero(NumElts);
- const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
- if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
- return false;
- // TODO: For now we assume we know nothing about scalable vectors.
- if (VT.isScalableVector())
- return false;
- assert(VT.getVectorNumElements() == NumElts &&
- "Mask size mismatches value type element count!");
- // Undef operand.
- if (Op.isUndef()) {
- KnownUndef.setAllBits();
- return false;
- }
- // If Op has other users, assume that all elements are needed.
- if (!AssumeSingleUse && !Op.getNode()->hasOneUse())
- DemandedElts.setAllBits();
- // Not demanding any elements from Op.
- if (DemandedElts == 0) {
- KnownUndef.setAllBits();
- return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
- }
- // Limit search depth.
- if (Depth >= SelectionDAG::MaxRecursionDepth)
- return false;
- SDLoc DL(Op);
- unsigned EltSizeInBits = VT.getScalarSizeInBits();
- bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
- // Helper for demanding the specified elements and all the bits of both binary
- // operands.
- auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
- SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
- TLO.DAG, Depth + 1);
- SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
- TLO.DAG, Depth + 1);
- if (NewOp0 || NewOp1) {
- SDValue NewOp = TLO.DAG.getNode(
- Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
- return TLO.CombineTo(Op, NewOp);
- }
- return false;
- };
- switch (Opcode) {
- case ISD::SCALAR_TO_VECTOR: {
- if (!DemandedElts[0]) {
- KnownUndef.setAllBits();
- return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
- }
- SDValue ScalarSrc = Op.getOperand(0);
- if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
- SDValue Src = ScalarSrc.getOperand(0);
- SDValue Idx = ScalarSrc.getOperand(1);
- EVT SrcVT = Src.getValueType();
- ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
- if (SrcEltCnt.isScalable())
- return false;
- unsigned NumSrcElts = SrcEltCnt.getFixedValue();
- if (isNullConstant(Idx)) {
- APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
- APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
- APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
- if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
- TLO, Depth + 1))
- return true;
- }
- }
- KnownUndef.setHighBits(NumElts - 1);
- break;
- }
- case ISD::BITCAST: {
- SDValue Src = Op.getOperand(0);
- EVT SrcVT = Src.getValueType();
- // We only handle vectors here.
- // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
- if (!SrcVT.isVector())
- break;
- // Fast handling of 'identity' bitcasts.
- unsigned NumSrcElts = SrcVT.getVectorNumElements();
- if (NumSrcElts == NumElts)
- return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
- KnownZero, TLO, Depth + 1);
- APInt SrcDemandedElts, SrcZero, SrcUndef;
- // Bitcast from 'large element' src vector to 'small element' vector, we
- // must demand a source element if any DemandedElt maps to it.
- if ((NumElts % NumSrcElts) == 0) {
- unsigned Scale = NumElts / NumSrcElts;
- SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
- if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
- TLO, Depth + 1))
- return true;
- // Try calling SimplifyDemandedBits, converting demanded elts to the bits
- // of the large element.
- // TODO - bigendian once we have test coverage.
- if (IsLE) {
- unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
- APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i]) {
- unsigned Ofs = (i % Scale) * EltSizeInBits;
- SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
- }
- KnownBits Known;
- if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
- TLO, Depth + 1))
- return true;
- // The bitcast has split each wide element into a number of
- // narrow subelements. We have just computed the Known bits
- // for wide elements. See if element splitting results in
- // some subelements being zero. Only for demanded elements!
- for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
- if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
- .isAllOnes())
- continue;
- for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
- unsigned Elt = Scale * SrcElt + SubElt;
- if (DemandedElts[Elt])
- KnownZero.setBit(Elt);
- }
- }
- }
- // If the src element is zero/undef then all the output elements will be -
- // only demanded elements are guaranteed to be correct.
- for (unsigned i = 0; i != NumSrcElts; ++i) {
- if (SrcDemandedElts[i]) {
- if (SrcZero[i])
- KnownZero.setBits(i * Scale, (i + 1) * Scale);
- if (SrcUndef[i])
- KnownUndef.setBits(i * Scale, (i + 1) * Scale);
- }
- }
- }
- // Bitcast from 'small element' src vector to 'large element' vector, we
- // demand all smaller source elements covered by the larger demanded element
- // of this vector.
- if ((NumSrcElts % NumElts) == 0) {
- unsigned Scale = NumSrcElts / NumElts;
- SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
- if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
- TLO, Depth + 1))
- return true;
- // If all the src elements covering an output element are zero/undef, then
- // the output element will be as well, assuming it was demanded.
- for (unsigned i = 0; i != NumElts; ++i) {
- if (DemandedElts[i]) {
- if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
- KnownZero.setBit(i);
- if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
- KnownUndef.setBit(i);
- }
- }
- }
- break;
- }
- case ISD::BUILD_VECTOR: {
- // Check all elements and simplify any unused elements with UNDEF.
- if (!DemandedElts.isAllOnes()) {
- // Don't simplify BROADCASTS.
- if (llvm::any_of(Op->op_values(),
- [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
- SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
- bool Updated = false;
- for (unsigned i = 0; i != NumElts; ++i) {
- if (!DemandedElts[i] && !Ops[i].isUndef()) {
- Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
- KnownUndef.setBit(i);
- Updated = true;
- }
- }
- if (Updated)
- return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
- }
- }
- for (unsigned i = 0; i != NumElts; ++i) {
- SDValue SrcOp = Op.getOperand(i);
- if (SrcOp.isUndef()) {
- KnownUndef.setBit(i);
- } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
- (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
- KnownZero.setBit(i);
- }
- }
- break;
- }
- case ISD::CONCAT_VECTORS: {
- EVT SubVT = Op.getOperand(0).getValueType();
- unsigned NumSubVecs = Op.getNumOperands();
- unsigned NumSubElts = SubVT.getVectorNumElements();
- for (unsigned i = 0; i != NumSubVecs; ++i) {
- SDValue SubOp = Op.getOperand(i);
- APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
- APInt SubUndef, SubZero;
- if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
- Depth + 1))
- return true;
- KnownUndef.insertBits(SubUndef, i * NumSubElts);
- KnownZero.insertBits(SubZero, i * NumSubElts);
- }
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (!DemandedElts.isAllOnes()) {
- bool FoundNewSub = false;
- SmallVector<SDValue, 2> DemandedSubOps;
- for (unsigned i = 0; i != NumSubVecs; ++i) {
- SDValue SubOp = Op.getOperand(i);
- APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
- SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
- SubOp, SubElts, TLO.DAG, Depth + 1);
- DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
- FoundNewSub = NewSubOp ? true : FoundNewSub;
- }
- if (FoundNewSub) {
- SDValue NewOp =
- TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
- return TLO.CombineTo(Op, NewOp);
- }
- }
- break;
- }
- case ISD::INSERT_SUBVECTOR: {
- // Demand any elements from the subvector and the remainder from the src its
- // inserted into.
- SDValue Src = Op.getOperand(0);
- SDValue Sub = Op.getOperand(1);
- uint64_t Idx = Op.getConstantOperandVal(2);
- unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
- APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
- APInt DemandedSrcElts = DemandedElts;
- DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
- APInt SubUndef, SubZero;
- if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
- Depth + 1))
- return true;
- // If none of the src operand elements are demanded, replace it with undef.
- if (!DemandedSrcElts && !Src.isUndef())
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
- TLO.DAG.getUNDEF(VT), Sub,
- Op.getOperand(2)));
- if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
- TLO, Depth + 1))
- return true;
- KnownUndef.insertBits(SubUndef, Idx);
- KnownZero.insertBits(SubZero, Idx);
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
- SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
- Src, DemandedSrcElts, TLO.DAG, Depth + 1);
- SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
- Sub, DemandedSubElts, TLO.DAG, Depth + 1);
- if (NewSrc || NewSub) {
- NewSrc = NewSrc ? NewSrc : Src;
- NewSub = NewSub ? NewSub : Sub;
- SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
- NewSub, Op.getOperand(2));
- return TLO.CombineTo(Op, NewOp);
- }
- }
- break;
- }
- case ISD::EXTRACT_SUBVECTOR: {
- // Offset the demanded elts by the subvector index.
- SDValue Src = Op.getOperand(0);
- if (Src.getValueType().isScalableVector())
- break;
- uint64_t Idx = Op.getConstantOperandVal(1);
- unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
- APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
- APInt SrcUndef, SrcZero;
- if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
- Depth + 1))
- return true;
- KnownUndef = SrcUndef.extractBits(NumElts, Idx);
- KnownZero = SrcZero.extractBits(NumElts, Idx);
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (!DemandedElts.isAllOnes()) {
- SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
- Src, DemandedSrcElts, TLO.DAG, Depth + 1);
- if (NewSrc) {
- SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
- Op.getOperand(1));
- return TLO.CombineTo(Op, NewOp);
- }
- }
- break;
- }
- case ISD::INSERT_VECTOR_ELT: {
- SDValue Vec = Op.getOperand(0);
- SDValue Scl = Op.getOperand(1);
- auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
- // For a legal, constant insertion index, if we don't need this insertion
- // then strip it, else remove it from the demanded elts.
- if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
- unsigned Idx = CIdx->getZExtValue();
- if (!DemandedElts[Idx])
- return TLO.CombineTo(Op, Vec);
- APInt DemandedVecElts(DemandedElts);
- DemandedVecElts.clearBit(Idx);
- if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
- KnownZero, TLO, Depth + 1))
- return true;
- KnownUndef.setBitVal(Idx, Scl.isUndef());
- KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
- break;
- }
- APInt VecUndef, VecZero;
- if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
- Depth + 1))
- return true;
- // Without knowing the insertion index we can't set KnownUndef/KnownZero.
- break;
- }
- case ISD::VSELECT: {
- SDValue Sel = Op.getOperand(0);
- SDValue LHS = Op.getOperand(1);
- SDValue RHS = Op.getOperand(2);
- // Try to transform the select condition based on the current demanded
- // elements.
- APInt UndefSel, UndefZero;
- if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, UndefZero, TLO,
- Depth + 1))
- return true;
- // See if we can simplify either vselect operand.
- APInt DemandedLHS(DemandedElts);
- APInt DemandedRHS(DemandedElts);
- APInt UndefLHS, ZeroLHS;
- APInt UndefRHS, ZeroRHS;
- if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
- Depth + 1))
- return true;
- if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
- Depth + 1))
- return true;
- KnownUndef = UndefLHS & UndefRHS;
- KnownZero = ZeroLHS & ZeroRHS;
- // If we know that the selected element is always zero, we don't need the
- // select value element.
- APInt DemandedSel = DemandedElts & ~KnownZero;
- if (DemandedSel != DemandedElts)
- if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, UndefZero, TLO,
- Depth + 1))
- return true;
- break;
- }
- case ISD::VECTOR_SHUFFLE: {
- SDValue LHS = Op.getOperand(0);
- SDValue RHS = Op.getOperand(1);
- ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
- // Collect demanded elements from shuffle operands..
- APInt DemandedLHS(NumElts, 0);
- APInt DemandedRHS(NumElts, 0);
- for (unsigned i = 0; i != NumElts; ++i) {
- int M = ShuffleMask[i];
- if (M < 0 || !DemandedElts[i])
- continue;
- assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
- if (M < (int)NumElts)
- DemandedLHS.setBit(M);
- else
- DemandedRHS.setBit(M - NumElts);
- }
- // See if we can simplify either shuffle operand.
- APInt UndefLHS, ZeroLHS;
- APInt UndefRHS, ZeroRHS;
- if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
- Depth + 1))
- return true;
- if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
- Depth + 1))
- return true;
- // Simplify mask using undef elements from LHS/RHS.
- bool Updated = false;
- bool IdentityLHS = true, IdentityRHS = true;
- SmallVector<int, 32> NewMask(ShuffleMask);
- for (unsigned i = 0; i != NumElts; ++i) {
- int &M = NewMask[i];
- if (M < 0)
- continue;
- if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
- (M >= (int)NumElts && UndefRHS[M - NumElts])) {
- Updated = true;
- M = -1;
- }
- IdentityLHS &= (M < 0) || (M == (int)i);
- IdentityRHS &= (M < 0) || ((M - NumElts) == i);
- }
- // Update legal shuffle masks based on demanded elements if it won't reduce
- // to Identity which can cause premature removal of the shuffle mask.
- if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
- SDValue LegalShuffle =
- buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG);
- if (LegalShuffle)
- return TLO.CombineTo(Op, LegalShuffle);
- }
- // Propagate undef/zero elements from LHS/RHS.
- for (unsigned i = 0; i != NumElts; ++i) {
- int M = ShuffleMask[i];
- if (M < 0) {
- KnownUndef.setBit(i);
- } else if (M < (int)NumElts) {
- if (UndefLHS[M])
- KnownUndef.setBit(i);
- if (ZeroLHS[M])
- KnownZero.setBit(i);
- } else {
- if (UndefRHS[M - NumElts])
- KnownUndef.setBit(i);
- if (ZeroRHS[M - NumElts])
- KnownZero.setBit(i);
- }
- }
- break;
- }
- case ISD::ANY_EXTEND_VECTOR_INREG:
- case ISD::SIGN_EXTEND_VECTOR_INREG:
- case ISD::ZERO_EXTEND_VECTOR_INREG: {
- APInt SrcUndef, SrcZero;
- SDValue Src = Op.getOperand(0);
- unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
- APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
- if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
- Depth + 1))
- return true;
- KnownZero = SrcZero.zextOrTrunc(NumElts);
- KnownUndef = SrcUndef.zextOrTrunc(NumElts);
- if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
- Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
- DemandedSrcElts == 1) {
- // aext - if we just need the bottom element then we can bitcast.
- return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
- }
- if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
- // zext(undef) upper bits are guaranteed to be zero.
- if (DemandedElts.isSubsetOf(KnownUndef))
- return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
- KnownUndef.clearAllBits();
- // zext - if we just need the bottom element then we can mask:
- // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
- if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
- Op->isOnlyUserOf(Src.getNode()) &&
- Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
- SDLoc DL(Op);
- EVT SrcVT = Src.getValueType();
- EVT SrcSVT = SrcVT.getScalarType();
- SmallVector<SDValue> MaskElts;
- MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
- MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
- SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
- if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
- ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
- Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
- return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
- }
- }
- }
- break;
- }
- // TODO: There are more binop opcodes that could be handled here - MIN,
- // MAX, saturated math, etc.
- case ISD::ADD: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
- APInt UndefLHS, ZeroLHS;
- if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
- Depth + 1, /*AssumeSingleUse*/ true))
- return true;
- }
- [[fallthrough]];
- }
- case ISD::OR:
- case ISD::XOR:
- case ISD::SUB:
- case ISD::FADD:
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FREM: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- APInt UndefRHS, ZeroRHS;
- if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
- Depth + 1))
- return true;
- APInt UndefLHS, ZeroLHS;
- if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
- Depth + 1))
- return true;
- KnownZero = ZeroLHS & ZeroRHS;
- KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
- // Attempt to avoid multi-use ops if we don't need anything from them.
- // TODO - use KnownUndef to relax the demandedelts?
- if (!DemandedElts.isAllOnes())
- if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
- return true;
- break;
- }
- case ISD::SHL:
- case ISD::SRL:
- case ISD::SRA:
- case ISD::ROTL:
- case ISD::ROTR: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- APInt UndefRHS, ZeroRHS;
- if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
- Depth + 1))
- return true;
- APInt UndefLHS, ZeroLHS;
- if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
- Depth + 1))
- return true;
- KnownZero = ZeroLHS;
- KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
- // Attempt to avoid multi-use ops if we don't need anything from them.
- // TODO - use KnownUndef to relax the demandedelts?
- if (!DemandedElts.isAllOnes())
- if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
- return true;
- break;
- }
- case ISD::MUL:
- case ISD::MULHU:
- case ISD::MULHS:
- case ISD::AND: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- APInt SrcUndef, SrcZero;
- if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
- Depth + 1))
- return true;
- // If we know that a demanded element was zero in Op1 we don't need to
- // demand it in Op0 - its guaranteed to be zero.
- APInt DemandedElts0 = DemandedElts & ~SrcZero;
- if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero,
- TLO, Depth + 1))
- return true;
- KnownUndef &= DemandedElts0;
- KnownZero &= DemandedElts0;
- // If every element pair has a zero/undef then just fold to zero.
- // fold (and x, undef) -> 0 / (and x, 0) -> 0
- // fold (mul x, undef) -> 0 / (mul x, 0) -> 0
- if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
- return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
- // If either side has a zero element, then the result element is zero, even
- // if the other is an UNDEF.
- // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
- // and then handle 'and' nodes with the rest of the binop opcodes.
- KnownZero |= SrcZero;
- KnownUndef &= SrcUndef;
- KnownUndef &= ~KnownZero;
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (!DemandedElts.isAllOnes())
- if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
- return true;
- break;
- }
- case ISD::TRUNCATE:
- case ISD::SIGN_EXTEND:
- case ISD::ZERO_EXTEND:
- if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
- KnownZero, TLO, Depth + 1))
- return true;
- if (Op.getOpcode() == ISD::ZERO_EXTEND) {
- // zext(undef) upper bits are guaranteed to be zero.
- if (DemandedElts.isSubsetOf(KnownUndef))
- return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
- KnownUndef.clearAllBits();
- }
- break;
- default: {
- if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
- if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
- KnownZero, TLO, Depth))
- return true;
- } else {
- KnownBits Known;
- APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
- if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
- TLO, Depth, AssumeSingleUse))
- return true;
- }
- break;
- }
- }
- assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
- // Constant fold all undef cases.
- // TODO: Handle zero cases as well.
- if (DemandedElts.isSubsetOf(KnownUndef))
- return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
- return false;
- }
- /// Determine which of the bits specified in Mask are known to be either zero or
- /// one and return them in the Known.
- void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
- KnownBits &Known,
- const APInt &DemandedElts,
- const SelectionDAG &DAG,
- unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use MaskedValueIsZero if you don't know whether Op"
- " is a target node!");
- Known.resetAll();
- }
- void TargetLowering::computeKnownBitsForTargetInstr(
- GISelKnownBits &Analysis, Register R, KnownBits &Known,
- const APInt &DemandedElts, const MachineRegisterInfo &MRI,
- unsigned Depth) const {
- Known.resetAll();
- }
- void TargetLowering::computeKnownBitsForFrameIndex(
- const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
- // The low bits are known zero if the pointer is aligned.
- Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
- }
- Align TargetLowering::computeKnownAlignForTargetInstr(
- GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
- unsigned Depth) const {
- return Align(1);
- }
- /// This method can be implemented by targets that want to expose additional
- /// information about sign bits to the DAG Combiner.
- unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
- const APInt &,
- const SelectionDAG &,
- unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use ComputeNumSignBits if you don't know whether Op"
- " is a target node!");
- return 1;
- }
- unsigned TargetLowering::computeNumSignBitsForTargetInstr(
- GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
- const MachineRegisterInfo &MRI, unsigned Depth) const {
- return 1;
- }
- bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
- SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
- TargetLoweringOpt &TLO, unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use SimplifyDemandedVectorElts if you don't know whether Op"
- " is a target node!");
- return false;
- }
- bool TargetLowering::SimplifyDemandedBitsForTargetNode(
- SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
- KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use SimplifyDemandedBits if you don't know whether Op"
- " is a target node!");
- computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
- return false;
- }
- SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
- SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
- SelectionDAG &DAG, unsigned Depth) const {
- assert(
- (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
- " is a target node!");
- return SDValue();
- }
- SDValue
- TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
- SDValue N1, MutableArrayRef<int> Mask,
- SelectionDAG &DAG) const {
- bool LegalMask = isShuffleMaskLegal(Mask, VT);
- if (!LegalMask) {
- std::swap(N0, N1);
- ShuffleVectorSDNode::commuteMask(Mask);
- LegalMask = isShuffleMaskLegal(Mask, VT);
- }
- if (!LegalMask)
- return SDValue();
- return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
- }
- const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
- return nullptr;
- }
- bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
- SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
- bool PoisonOnly, unsigned Depth) const {
- assert(
- (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
- " is a target node!");
- return false;
- }
- bool TargetLowering::canCreateUndefOrPoisonForTargetNode(
- SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
- bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use canCreateUndefOrPoison if you don't know whether Op"
- " is a target node!");
- // Be conservative and return true.
- return true;
- }
- bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
- const SelectionDAG &DAG,
- bool SNaN,
- unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use isKnownNeverNaN if you don't know whether Op"
- " is a target node!");
- return false;
- }
- bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
- const APInt &DemandedElts,
- APInt &UndefElts,
- const SelectionDAG &DAG,
- unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use isSplatValue if you don't know whether Op"
- " is a target node!");
- return false;
- }
- // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
- // work with truncating build vectors and vectors with elements of less than
- // 8 bits.
- bool TargetLowering::isConstTrueVal(SDValue N) const {
- if (!N)
- return false;
- unsigned EltWidth;
- APInt CVal;
- if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
- /*AllowTruncation=*/true)) {
- CVal = CN->getAPIntValue();
- EltWidth = N.getValueType().getScalarSizeInBits();
- } else
- return false;
- // If this is a truncating splat, truncate the splat value.
- // Otherwise, we may fail to match the expected values below.
- if (EltWidth < CVal.getBitWidth())
- CVal = CVal.trunc(EltWidth);
- switch (getBooleanContents(N.getValueType())) {
- case UndefinedBooleanContent:
- return CVal[0];
- case ZeroOrOneBooleanContent:
- return CVal.isOne();
- case ZeroOrNegativeOneBooleanContent:
- return CVal.isAllOnes();
- }
- llvm_unreachable("Invalid boolean contents");
- }
- bool TargetLowering::isConstFalseVal(SDValue N) const {
- if (!N)
- return false;
- const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
- if (!CN) {
- const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
- if (!BV)
- return false;
- // Only interested in constant splats, we don't care about undef
- // elements in identifying boolean constants and getConstantSplatNode
- // returns NULL if all ops are undef;
- CN = BV->getConstantSplatNode();
- if (!CN)
- return false;
- }
- if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
- return !CN->getAPIntValue()[0];
- return CN->isZero();
- }
- bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
- bool SExt) const {
- if (VT == MVT::i1)
- return N->isOne();
- TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
- switch (Cnt) {
- case TargetLowering::ZeroOrOneBooleanContent:
- // An extended value of 1 is always true, unless its original type is i1,
- // in which case it will be sign extended to -1.
- return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
- case TargetLowering::UndefinedBooleanContent:
- case TargetLowering::ZeroOrNegativeOneBooleanContent:
- return N->isAllOnes() && SExt;
- }
- llvm_unreachable("Unexpected enumeration.");
- }
- /// This helper function of SimplifySetCC tries to optimize the comparison when
- /// either operand of the SetCC node is a bitwise-and instruction.
- SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
- ISD::CondCode Cond, const SDLoc &DL,
- DAGCombinerInfo &DCI) const {
- if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
- std::swap(N0, N1);
- SelectionDAG &DAG = DCI.DAG;
- EVT OpVT = N0.getValueType();
- if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
- (Cond != ISD::SETEQ && Cond != ISD::SETNE))
- return SDValue();
- // (X & Y) != 0 --> zextOrTrunc(X & Y)
- // iff everything but LSB is known zero:
- if (Cond == ISD::SETNE && isNullConstant(N1) &&
- (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
- getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
- unsigned NumEltBits = OpVT.getScalarSizeInBits();
- APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
- if (DAG.MaskedValueIsZero(N0, UpperBits))
- return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
- }
- // Try to eliminate a power-of-2 mask constant by converting to a signbit
- // test in a narrow type that we can truncate to with no cost. Examples:
- // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0
- // (i32 X & 32768) != 0 --> (trunc X to i16) < 0
- // TODO: This conservatively checks for type legality on the source and
- // destination types. That may inhibit optimizations, but it also
- // allows setcc->shift transforms that may be more beneficial.
- auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
- if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
- isTypeLegal(OpVT) && N0.hasOneUse()) {
- EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(),
- AndC->getAPIntValue().getActiveBits());
- if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) {
- SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT);
- SDValue Zero = DAG.getConstant(0, DL, NarrowVT);
- return DAG.getSetCC(DL, VT, Trunc, Zero,
- Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT);
- }
- }
- // Match these patterns in any of their permutations:
- // (X & Y) == Y
- // (X & Y) != Y
- SDValue X, Y;
- if (N0.getOperand(0) == N1) {
- X = N0.getOperand(1);
- Y = N0.getOperand(0);
- } else if (N0.getOperand(1) == N1) {
- X = N0.getOperand(0);
- Y = N0.getOperand(1);
- } else {
- return SDValue();
- }
- SDValue Zero = DAG.getConstant(0, DL, OpVT);
- if (DAG.isKnownToBeAPowerOfTwo(Y)) {
- // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
- // Note that where Y is variable and is known to have at most one bit set
- // (for example, if it is Z & 1) we cannot do this; the expressions are not
- // equivalent when Y == 0.
- assert(OpVT.isInteger());
- Cond = ISD::getSetCCInverse(Cond, OpVT);
- if (DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(Cond, N0.getSimpleValueType()))
- return DAG.getSetCC(DL, VT, N0, Zero, Cond);
- } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
- // If the target supports an 'and-not' or 'and-complement' logic operation,
- // try to use that to make a comparison operation more efficient.
- // But don't do this transform if the mask is a single bit because there are
- // more efficient ways to deal with that case (for example, 'bt' on x86 or
- // 'rlwinm' on PPC).
- // Bail out if the compare operand that we want to turn into a zero is
- // already a zero (otherwise, infinite loop).
- auto *YConst = dyn_cast<ConstantSDNode>(Y);
- if (YConst && YConst->isZero())
- return SDValue();
- // Transform this into: ~X & Y == 0.
- SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
- SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
- return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
- }
- return SDValue();
- }
- /// There are multiple IR patterns that could be checking whether certain
- /// truncation of a signed number would be lossy or not. The pattern which is
- /// best at IR level, may not lower optimally. Thus, we want to unfold it.
- /// We are looking for the following pattern: (KeptBits is a constant)
- /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
- /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
- /// KeptBits also can't be 1, that would have been folded to %x dstcond 0
- /// We will unfold it into the natural trunc+sext pattern:
- /// ((%x << C) a>> C) dstcond %x
- /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
- SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
- EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
- const SDLoc &DL) const {
- // We must be comparing with a constant.
- ConstantSDNode *C1;
- if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
- return SDValue();
- // N0 should be: add %x, (1 << (KeptBits-1))
- if (N0->getOpcode() != ISD::ADD)
- return SDValue();
- // And we must be 'add'ing a constant.
- ConstantSDNode *C01;
- if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
- return SDValue();
- SDValue X = N0->getOperand(0);
- EVT XVT = X.getValueType();
- // Validate constants ...
- APInt I1 = C1->getAPIntValue();
- ISD::CondCode NewCond;
- if (Cond == ISD::CondCode::SETULT) {
- NewCond = ISD::CondCode::SETEQ;
- } else if (Cond == ISD::CondCode::SETULE) {
- NewCond = ISD::CondCode::SETEQ;
- // But need to 'canonicalize' the constant.
- I1 += 1;
- } else if (Cond == ISD::CondCode::SETUGT) {
- NewCond = ISD::CondCode::SETNE;
- // But need to 'canonicalize' the constant.
- I1 += 1;
- } else if (Cond == ISD::CondCode::SETUGE) {
- NewCond = ISD::CondCode::SETNE;
- } else
- return SDValue();
- APInt I01 = C01->getAPIntValue();
- auto checkConstants = [&I1, &I01]() -> bool {
- // Both of them must be power-of-two, and the constant from setcc is bigger.
- return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
- };
- if (checkConstants()) {
- // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
- } else {
- // What if we invert constants? (and the target predicate)
- I1.negate();
- I01.negate();
- assert(XVT.isInteger());
- NewCond = getSetCCInverse(NewCond, XVT);
- if (!checkConstants())
- return SDValue();
- // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
- }
- // They are power-of-two, so which bit is set?
- const unsigned KeptBits = I1.logBase2();
- const unsigned KeptBitsMinusOne = I01.logBase2();
- // Magic!
- if (KeptBits != (KeptBitsMinusOne + 1))
- return SDValue();
- assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
- // We don't want to do this in every single case.
- SelectionDAG &DAG = DCI.DAG;
- if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
- XVT, KeptBits))
- return SDValue();
- const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
- assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
- // Unfold into: ((%x << C) a>> C) cond %x
- // Where 'cond' will be either 'eq' or 'ne'.
- SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
- SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
- SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
- SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
- return T2;
- }
- // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
- SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
- EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
- DAGCombinerInfo &DCI, const SDLoc &DL) const {
- assert(isConstOrConstSplat(N1C) &&
- isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
- "Should be a comparison with 0.");
- assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- "Valid only for [in]equality comparisons.");
- unsigned NewShiftOpcode;
- SDValue X, C, Y;
- SelectionDAG &DAG = DCI.DAG;
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // Look for '(C l>>/<< Y)'.
- auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
- // The shift should be one-use.
- if (!V.hasOneUse())
- return false;
- unsigned OldShiftOpcode = V.getOpcode();
- switch (OldShiftOpcode) {
- case ISD::SHL:
- NewShiftOpcode = ISD::SRL;
- break;
- case ISD::SRL:
- NewShiftOpcode = ISD::SHL;
- break;
- default:
- return false; // must be a logical shift.
- }
- // We should be shifting a constant.
- // FIXME: best to use isConstantOrConstantVector().
- C = V.getOperand(0);
- ConstantSDNode *CC =
- isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
- if (!CC)
- return false;
- Y = V.getOperand(1);
- ConstantSDNode *XC =
- isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
- return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
- X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
- };
- // LHS of comparison should be an one-use 'and'.
- if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
- return SDValue();
- X = N0.getOperand(0);
- SDValue Mask = N0.getOperand(1);
- // 'and' is commutative!
- if (!Match(Mask)) {
- std::swap(X, Mask);
- if (!Match(Mask))
- return SDValue();
- }
- EVT VT = X.getValueType();
- // Produce:
- // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
- SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
- SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
- SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
- return T2;
- }
- /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
- /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
- /// handle the commuted versions of these patterns.
- SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
- ISD::CondCode Cond, const SDLoc &DL,
- DAGCombinerInfo &DCI) const {
- unsigned BOpcode = N0.getOpcode();
- assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
- "Unexpected binop");
- assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
- // (X + Y) == X --> Y == 0
- // (X - Y) == X --> Y == 0
- // (X ^ Y) == X --> Y == 0
- SelectionDAG &DAG = DCI.DAG;
- EVT OpVT = N0.getValueType();
- SDValue X = N0.getOperand(0);
- SDValue Y = N0.getOperand(1);
- if (X == N1)
- return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
- if (Y != N1)
- return SDValue();
- // (X + Y) == Y --> X == 0
- // (X ^ Y) == Y --> X == 0
- if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
- return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
- // The shift would not be valid if the operands are boolean (i1).
- if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
- return SDValue();
- // (X - Y) == Y --> X == Y << 1
- EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
- !DCI.isBeforeLegalize());
- SDValue One = DAG.getConstant(1, DL, ShiftVT);
- SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(YShl1.getNode());
- return DAG.getSetCC(DL, VT, X, YShl1, Cond);
- }
- static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
- SDValue N0, const APInt &C1,
- ISD::CondCode Cond, const SDLoc &dl,
- SelectionDAG &DAG) {
- // Look through truncs that don't change the value of a ctpop.
- // FIXME: Add vector support? Need to be careful with setcc result type below.
- SDValue CTPOP = N0;
- if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
- N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
- CTPOP = N0.getOperand(0);
- if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
- return SDValue();
- EVT CTVT = CTPOP.getValueType();
- SDValue CTOp = CTPOP.getOperand(0);
- // Expand a power-of-2-or-zero comparison based on ctpop:
- // (ctpop x) u< 2 -> (x & x-1) == 0
- // (ctpop x) u> 1 -> (x & x-1) != 0
- if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
- // Keep the CTPOP if it is a legal vector op.
- if (CTVT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
- return SDValue();
- unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
- if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
- return SDValue();
- if (C1 == 0 && (Cond == ISD::SETULT))
- return SDValue(); // This is handled elsewhere.
- unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
- SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
- SDValue Result = CTOp;
- for (unsigned i = 0; i < Passes; i++) {
- SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
- Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
- }
- ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
- return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
- }
- // Expand a power-of-2 comparison based on ctpop:
- // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
- // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
- // Keep the CTPOP if it is legal.
- if (TLI.isOperationLegal(ISD::CTPOP, CTVT))
- return SDValue();
- SDValue Zero = DAG.getConstant(0, dl, CTVT);
- SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
- assert(CTVT.isInteger());
- ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
- SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
- SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
- SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
- SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
- unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
- return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
- }
- return SDValue();
- }
- static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
- ISD::CondCode Cond, const SDLoc &dl,
- SelectionDAG &DAG) {
- if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
- return SDValue();
- auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
- if (!C1 || !(C1->isZero() || C1->isAllOnes()))
- return SDValue();
- auto getRotateSource = [](SDValue X) {
- if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
- return X.getOperand(0);
- return SDValue();
- };
- // Peek through a rotated value compared against 0 or -1:
- // (rot X, Y) == 0/-1 --> X == 0/-1
- // (rot X, Y) != 0/-1 --> X != 0/-1
- if (SDValue R = getRotateSource(N0))
- return DAG.getSetCC(dl, VT, R, N1, Cond);
- // Peek through an 'or' of a rotated value compared against 0:
- // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
- // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
- //
- // TODO: Add the 'and' with -1 sibling.
- // TODO: Recurse through a series of 'or' ops to find the rotate.
- EVT OpVT = N0.getValueType();
- if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
- if (SDValue R = getRotateSource(N0.getOperand(0))) {
- SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
- return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
- }
- if (SDValue R = getRotateSource(N0.getOperand(1))) {
- SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
- return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
- }
- }
- return SDValue();
- }
- static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
- ISD::CondCode Cond, const SDLoc &dl,
- SelectionDAG &DAG) {
- // If we are testing for all-bits-clear, we might be able to do that with
- // less shifting since bit-order does not matter.
- if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
- return SDValue();
- auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
- if (!C1 || !C1->isZero())
- return SDValue();
- if (!N0.hasOneUse() ||
- (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
- return SDValue();
- unsigned BitWidth = N0.getScalarValueSizeInBits();
- auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
- if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
- return SDValue();
- // Canonicalize fshr as fshl to reduce pattern-matching.
- unsigned ShAmt = ShAmtC->getZExtValue();
- if (N0.getOpcode() == ISD::FSHR)
- ShAmt = BitWidth - ShAmt;
- // Match an 'or' with a specific operand 'Other' in either commuted variant.
- SDValue X, Y;
- auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
- if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
- return false;
- if (Or.getOperand(0) == Other) {
- X = Or.getOperand(0);
- Y = Or.getOperand(1);
- return true;
- }
- if (Or.getOperand(1) == Other) {
- X = Or.getOperand(1);
- Y = Or.getOperand(0);
- return true;
- }
- return false;
- };
- EVT OpVT = N0.getValueType();
- EVT ShAmtVT = N0.getOperand(2).getValueType();
- SDValue F0 = N0.getOperand(0);
- SDValue F1 = N0.getOperand(1);
- if (matchOr(F0, F1)) {
- // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
- SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
- SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
- SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
- return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
- }
- if (matchOr(F1, F0)) {
- // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
- SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
- SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
- SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
- return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
- }
- return SDValue();
- }
- /// Try to simplify a setcc built with the specified operands and cc. If it is
- /// unable to simplify it, return a null SDValue.
- SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
- ISD::CondCode Cond, bool foldBooleans,
- DAGCombinerInfo &DCI,
- const SDLoc &dl) const {
- SelectionDAG &DAG = DCI.DAG;
- const DataLayout &Layout = DAG.getDataLayout();
- EVT OpVT = N0.getValueType();
- AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
- // Constant fold or commute setcc.
- if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
- return Fold;
- bool N0ConstOrSplat =
- isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
- bool N1ConstOrSplat =
- isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
- // Ensure that the constant occurs on the RHS and fold constant comparisons.
- // TODO: Handle non-splat vector constants. All undef causes trouble.
- // FIXME: We can't yet fold constant scalable vector splats, so avoid an
- // infinite loop here when we encounter one.
- ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
- if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
- (DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
- return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
- // If we have a subtract with the same 2 non-constant operands as this setcc
- // -- but in reverse order -- then try to commute the operands of this setcc
- // to match. A matching pair of setcc (cmp) and sub may be combined into 1
- // instruction on some targets.
- if (!N0ConstOrSplat && !N1ConstOrSplat &&
- (DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
- DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
- !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
- return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
- if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
- return V;
- if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
- return V;
- if (auto *N1C = isConstOrConstSplat(N1)) {
- const APInt &C1 = N1C->getAPIntValue();
- // Optimize some CTPOP cases.
- if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
- return V;
- // For equality to 0 of a no-wrap multiply, decompose and test each op:
- // X * Y == 0 --> (X == 0) || (Y == 0)
- // X * Y != 0 --> (X != 0) && (Y != 0)
- // TODO: This bails out if minsize is set, but if the target doesn't have a
- // single instruction multiply for this type, it would likely be
- // smaller to decompose.
- if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- N0.getOpcode() == ISD::MUL && N0.hasOneUse() &&
- (N0->getFlags().hasNoUnsignedWrap() ||
- N0->getFlags().hasNoSignedWrap()) &&
- !Attr.hasFnAttr(Attribute::MinSize)) {
- SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
- SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond);
- unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND;
- return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero);
- }
- // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
- // equality comparison, then we're just comparing whether X itself is
- // zero.
- if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
- N0.getOperand(0).getOpcode() == ISD::CTLZ &&
- isPowerOf2_32(N0.getScalarValueSizeInBits())) {
- if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
- if ((C1 == 0) == (Cond == ISD::SETEQ)) {
- // (srl (ctlz x), 5) == 0 -> X != 0
- // (srl (ctlz x), 5) != 1 -> X != 0
- Cond = ISD::SETNE;
- } else {
- // (srl (ctlz x), 5) != 0 -> X == 0
- // (srl (ctlz x), 5) == 1 -> X == 0
- Cond = ISD::SETEQ;
- }
- SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
- return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
- Cond);
- }
- }
- }
- }
- // FIXME: Support vectors.
- if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
- const APInt &C1 = N1C->getAPIntValue();
- // (zext x) == C --> x == (trunc C)
- // (sext x) == C --> x == (trunc C)
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- DCI.isBeforeLegalize() && N0->hasOneUse()) {
- unsigned MinBits = N0.getValueSizeInBits();
- SDValue PreExt;
- bool Signed = false;
- if (N0->getOpcode() == ISD::ZERO_EXTEND) {
- // ZExt
- MinBits = N0->getOperand(0).getValueSizeInBits();
- PreExt = N0->getOperand(0);
- } else if (N0->getOpcode() == ISD::AND) {
- // DAGCombine turns costly ZExts into ANDs
- if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
- if ((C->getAPIntValue()+1).isPowerOf2()) {
- MinBits = C->getAPIntValue().countTrailingOnes();
- PreExt = N0->getOperand(0);
- }
- } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
- // SExt
- MinBits = N0->getOperand(0).getValueSizeInBits();
- PreExt = N0->getOperand(0);
- Signed = true;
- } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
- // ZEXTLOAD / SEXTLOAD
- if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
- MinBits = LN0->getMemoryVT().getSizeInBits();
- PreExt = N0;
- } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
- Signed = true;
- MinBits = LN0->getMemoryVT().getSizeInBits();
- PreExt = N0;
- }
- }
- // Figure out how many bits we need to preserve this constant.
- unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
- // Make sure we're not losing bits from the constant.
- if (MinBits > 0 &&
- MinBits < C1.getBitWidth() &&
- MinBits >= ReqdBits) {
- EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
- if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
- // Will get folded away.
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
- if (MinBits == 1 && C1 == 1)
- // Invert the condition.
- return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
- Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
- SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
- return DAG.getSetCC(dl, VT, Trunc, C, Cond);
- }
- // If truncating the setcc operands is not desirable, we can still
- // simplify the expression in some cases:
- // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
- // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
- // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
- // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
- // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
- // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
- SDValue TopSetCC = N0->getOperand(0);
- unsigned N0Opc = N0->getOpcode();
- bool SExt = (N0Opc == ISD::SIGN_EXTEND);
- if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
- TopSetCC.getOpcode() == ISD::SETCC &&
- (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
- (isConstFalseVal(N1) ||
- isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
- bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
- (!N1C->isZero() && Cond == ISD::SETNE);
- if (!Inverse)
- return TopSetCC;
- ISD::CondCode InvCond = ISD::getSetCCInverse(
- cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
- TopSetCC.getOperand(0).getValueType());
- return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
- TopSetCC.getOperand(1),
- InvCond);
- }
- }
- }
- // If the LHS is '(and load, const)', the RHS is 0, the test is for
- // equality or unsigned, and all 1 bits of the const are in the same
- // partial word, see if we can shorten the load.
- if (DCI.isBeforeLegalize() &&
- !ISD::isSignedIntSetCC(Cond) &&
- N0.getOpcode() == ISD::AND && C1 == 0 &&
- N0.getNode()->hasOneUse() &&
- isa<LoadSDNode>(N0.getOperand(0)) &&
- N0.getOperand(0).getNode()->hasOneUse() &&
- isa<ConstantSDNode>(N0.getOperand(1))) {
- LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
- APInt bestMask;
- unsigned bestWidth = 0, bestOffset = 0;
- if (Lod->isSimple() && Lod->isUnindexed()) {
- unsigned origWidth = N0.getValueSizeInBits();
- unsigned maskWidth = origWidth;
- // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
- // 8 bits, but have to be careful...
- if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
- origWidth = Lod->getMemoryVT().getSizeInBits();
- const APInt &Mask = N0.getConstantOperandAPInt(1);
- for (unsigned width = origWidth / 2; width>=8; width /= 2) {
- APInt newMask = APInt::getLowBitsSet(maskWidth, width);
- for (unsigned offset=0; offset<origWidth/width; offset++) {
- if (Mask.isSubsetOf(newMask)) {
- if (Layout.isLittleEndian())
- bestOffset = (uint64_t)offset * (width/8);
- else
- bestOffset = (origWidth/width - offset - 1) * (width/8);
- bestMask = Mask.lshr(offset * (width/8) * 8);
- bestWidth = width;
- break;
- }
- newMask <<= width;
- }
- }
- }
- if (bestWidth) {
- EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
- if (newVT.isRound() &&
- shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
- SDValue Ptr = Lod->getBasePtr();
- if (bestOffset != 0)
- Ptr =
- DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
- SDValue NewLoad =
- DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
- Lod->getPointerInfo().getWithOffset(bestOffset),
- Lod->getOriginalAlign());
- return DAG.getSetCC(dl, VT,
- DAG.getNode(ISD::AND, dl, newVT, NewLoad,
- DAG.getConstant(bestMask.trunc(bestWidth),
- dl, newVT)),
- DAG.getConstant(0LL, dl, newVT), Cond);
- }
- }
- }
- // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
- if (N0.getOpcode() == ISD::ZERO_EXTEND) {
- unsigned InSize = N0.getOperand(0).getValueSizeInBits();
- // If the comparison constant has bits in the upper part, the
- // zero-extended value could never match.
- if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
- C1.getBitWidth() - InSize))) {
- switch (Cond) {
- case ISD::SETUGT:
- case ISD::SETUGE:
- case ISD::SETEQ:
- return DAG.getConstant(0, dl, VT);
- case ISD::SETULT:
- case ISD::SETULE:
- case ISD::SETNE:
- return DAG.getConstant(1, dl, VT);
- case ISD::SETGT:
- case ISD::SETGE:
- // True if the sign bit of C1 is set.
- return DAG.getConstant(C1.isNegative(), dl, VT);
- case ISD::SETLT:
- case ISD::SETLE:
- // True if the sign bit of C1 isn't set.
- return DAG.getConstant(C1.isNonNegative(), dl, VT);
- default:
- break;
- }
- }
- // Otherwise, we can perform the comparison with the low bits.
- switch (Cond) {
- case ISD::SETEQ:
- case ISD::SETNE:
- case ISD::SETUGT:
- case ISD::SETUGE:
- case ISD::SETULT:
- case ISD::SETULE: {
- EVT newVT = N0.getOperand(0).getValueType();
- if (DCI.isBeforeLegalizeOps() ||
- (isOperationLegal(ISD::SETCC, newVT) &&
- isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
- EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
- SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
- SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
- NewConst, Cond);
- return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
- }
- break;
- }
- default:
- break; // todo, be more careful with signed comparisons
- }
- } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
- OpVT)) {
- EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
- unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
- EVT ExtDstTy = N0.getValueType();
- unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
- // If the constant doesn't fit into the number of bits for the source of
- // the sign extension, it is impossible for both sides to be equal.
- if (C1.getMinSignedBits() > ExtSrcTyBits)
- return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
- assert(ExtDstTy == N0.getOperand(0).getValueType() &&
- ExtDstTy != ExtSrcTy && "Unexpected types!");
- APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
- SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
- DAG.getConstant(Imm, dl, ExtDstTy));
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(ZextOp.getNode());
- // Otherwise, make this a use of a zext.
- return DAG.getSetCC(dl, VT, ZextOp,
- DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
- } else if ((N1C->isZero() || N1C->isOne()) &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
- // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
- if (N0.getOpcode() == ISD::SETCC &&
- isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
- (N0.getValueType() == MVT::i1 ||
- getBooleanContents(N0.getOperand(0).getValueType()) ==
- ZeroOrOneBooleanContent)) {
- bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
- if (TrueWhenTrue)
- return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
- // Invert the condition.
- ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
- CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
- if (DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
- }
- if ((N0.getOpcode() == ISD::XOR ||
- (N0.getOpcode() == ISD::AND &&
- N0.getOperand(0).getOpcode() == ISD::XOR &&
- N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
- isOneConstant(N0.getOperand(1))) {
- // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
- // can only do this if the top bits are known zero.
- unsigned BitWidth = N0.getValueSizeInBits();
- if (DAG.MaskedValueIsZero(N0,
- APInt::getHighBitsSet(BitWidth,
- BitWidth-1))) {
- // Okay, get the un-inverted input value.
- SDValue Val;
- if (N0.getOpcode() == ISD::XOR) {
- Val = N0.getOperand(0);
- } else {
- assert(N0.getOpcode() == ISD::AND &&
- N0.getOperand(0).getOpcode() == ISD::XOR);
- // ((X^1)&1)^1 -> X & 1
- Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
- N0.getOperand(0).getOperand(0),
- N0.getOperand(1));
- }
- return DAG.getSetCC(dl, VT, Val, N1,
- Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
- }
- } else if (N1C->isOne()) {
- SDValue Op0 = N0;
- if (Op0.getOpcode() == ISD::TRUNCATE)
- Op0 = Op0.getOperand(0);
- if ((Op0.getOpcode() == ISD::XOR) &&
- Op0.getOperand(0).getOpcode() == ISD::SETCC &&
- Op0.getOperand(1).getOpcode() == ISD::SETCC) {
- SDValue XorLHS = Op0.getOperand(0);
- SDValue XorRHS = Op0.getOperand(1);
- // Ensure that the input setccs return an i1 type or 0/1 value.
- if (Op0.getValueType() == MVT::i1 ||
- (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
- ZeroOrOneBooleanContent &&
- getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
- ZeroOrOneBooleanContent)) {
- // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
- Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
- return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
- }
- }
- if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
- // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
- if (Op0.getValueType().bitsGT(VT))
- Op0 = DAG.getNode(ISD::AND, dl, VT,
- DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
- DAG.getConstant(1, dl, VT));
- else if (Op0.getValueType().bitsLT(VT))
- Op0 = DAG.getNode(ISD::AND, dl, VT,
- DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
- DAG.getConstant(1, dl, VT));
- return DAG.getSetCC(dl, VT, Op0,
- DAG.getConstant(0, dl, Op0.getValueType()),
- Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
- }
- if (Op0.getOpcode() == ISD::AssertZext &&
- cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
- return DAG.getSetCC(dl, VT, Op0,
- DAG.getConstant(0, dl, Op0.getValueType()),
- Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
- }
- }
- // Given:
- // icmp eq/ne (urem %x, %y), 0
- // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
- // icmp eq/ne %x, 0
- if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
- KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
- KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
- if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
- }
- // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
- // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
- N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
- N1C && N1C->isAllOnes()) {
- return DAG.getSetCC(dl, VT, N0.getOperand(0),
- DAG.getConstant(0, dl, OpVT),
- Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
- }
- if (SDValue V =
- optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
- return V;
- }
- // These simplifications apply to splat vectors as well.
- // TODO: Handle more splat vector cases.
- if (auto *N1C = isConstOrConstSplat(N1)) {
- const APInt &C1 = N1C->getAPIntValue();
- APInt MinVal, MaxVal;
- unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
- if (ISD::isSignedIntSetCC(Cond)) {
- MinVal = APInt::getSignedMinValue(OperandBitSize);
- MaxVal = APInt::getSignedMaxValue(OperandBitSize);
- } else {
- MinVal = APInt::getMinValue(OperandBitSize);
- MaxVal = APInt::getMaxValue(OperandBitSize);
- }
- // Canonicalize GE/LE comparisons to use GT/LT comparisons.
- if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
- // X >= MIN --> true
- if (C1 == MinVal)
- return DAG.getBoolConstant(true, dl, VT, OpVT);
- if (!VT.isVector()) { // TODO: Support this for vectors.
- // X >= C0 --> X > (C0 - 1)
- APInt C = C1 - 1;
- ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
- if ((DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
- (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
- isLegalICmpImmediate(C.getSExtValue())))) {
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(C, dl, N1.getValueType()),
- NewCC);
- }
- }
- }
- if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
- // X <= MAX --> true
- if (C1 == MaxVal)
- return DAG.getBoolConstant(true, dl, VT, OpVT);
- // X <= C0 --> X < (C0 + 1)
- if (!VT.isVector()) { // TODO: Support this for vectors.
- APInt C = C1 + 1;
- ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
- if ((DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
- (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
- isLegalICmpImmediate(C.getSExtValue())))) {
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(C, dl, N1.getValueType()),
- NewCC);
- }
- }
- }
- if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
- if (C1 == MinVal)
- return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
- // TODO: Support this for vectors after legalize ops.
- if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
- // Canonicalize setlt X, Max --> setne X, Max
- if (C1 == MaxVal)
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
- // If we have setult X, 1, turn it into seteq X, 0
- if (C1 == MinVal+1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(MinVal, dl, N0.getValueType()),
- ISD::SETEQ);
- }
- }
- if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
- if (C1 == MaxVal)
- return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
- // TODO: Support this for vectors after legalize ops.
- if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
- // Canonicalize setgt X, Min --> setne X, Min
- if (C1 == MinVal)
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
- // If we have setugt X, Max-1, turn it into seteq X, Max
- if (C1 == MaxVal-1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(MaxVal, dl, N0.getValueType()),
- ISD::SETEQ);
- }
- }
- if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
- // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
- if (C1.isZero())
- if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
- VT, N0, N1, Cond, DCI, dl))
- return CC;
- // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
- // For example, when high 32-bits of i64 X are known clear:
- // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0
- // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1
- bool CmpZero = N1C->getAPIntValue().isZero();
- bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
- if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
- // Match or(lo,shl(hi,bw/2)) pattern.
- auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
- unsigned EltBits = V.getScalarValueSizeInBits();
- if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
- return false;
- SDValue LHS = V.getOperand(0);
- SDValue RHS = V.getOperand(1);
- APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
- // Unshifted element must have zero upperbits.
- if (RHS.getOpcode() == ISD::SHL &&
- isa<ConstantSDNode>(RHS.getOperand(1)) &&
- RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
- DAG.MaskedValueIsZero(LHS, HiBits)) {
- Lo = LHS;
- Hi = RHS.getOperand(0);
- return true;
- }
- if (LHS.getOpcode() == ISD::SHL &&
- isa<ConstantSDNode>(LHS.getOperand(1)) &&
- LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
- DAG.MaskedValueIsZero(RHS, HiBits)) {
- Lo = RHS;
- Hi = LHS.getOperand(0);
- return true;
- }
- return false;
- };
- auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
- unsigned EltBits = N0.getScalarValueSizeInBits();
- unsigned HalfBits = EltBits / 2;
- APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
- SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
- SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
- SDValue NewN0 =
- DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
- SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
- return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
- };
- SDValue Lo, Hi;
- if (IsConcat(N0, Lo, Hi))
- return MergeConcat(Lo, Hi);
- if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
- SDValue Lo0, Lo1, Hi0, Hi1;
- if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
- IsConcat(N0.getOperand(1), Lo1, Hi1)) {
- return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
- DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
- }
- }
- }
- }
- // If we have "setcc X, C0", check to see if we can shrink the immediate
- // by changing cc.
- // TODO: Support this for vectors after legalize ops.
- if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
- // SETUGT X, SINTMAX -> SETLT X, 0
- // SETUGE X, SINTMIN -> SETLT X, 0
- if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
- (Cond == ISD::SETUGE && C1.isMinSignedValue()))
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(0, dl, N1.getValueType()),
- ISD::SETLT);
- // SETULT X, SINTMIN -> SETGT X, -1
- // SETULE X, SINTMAX -> SETGT X, -1
- if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
- (Cond == ISD::SETULE && C1.isMaxSignedValue()))
- return DAG.getSetCC(dl, VT, N0,
- DAG.getAllOnesConstant(dl, N1.getValueType()),
- ISD::SETGT);
- }
- }
- // Back to non-vector simplifications.
- // TODO: Can we do these for vector splats?
- if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- const APInt &C1 = N1C->getAPIntValue();
- EVT ShValTy = N0.getValueType();
- // Fold bit comparisons when we can. This will result in an
- // incorrect value when boolean false is negative one, unless
- // the bitsize is 1 in which case the false value is the same
- // in practice regardless of the representation.
- if ((VT.getSizeInBits() == 1 ||
- getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
- N0.getOpcode() == ISD::AND) {
- if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- EVT ShiftTy =
- getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
- if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
- // Perform the xform if the AND RHS is a single bit.
- unsigned ShCt = AndRHS->getAPIntValue().logBase2();
- if (AndRHS->getAPIntValue().isPowerOf2() &&
- !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
- return DAG.getNode(ISD::TRUNCATE, dl, VT,
- DAG.getNode(ISD::SRL, dl, ShValTy, N0,
- DAG.getConstant(ShCt, dl, ShiftTy)));
- }
- } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
- // (X & 8) == 8 --> (X & 8) >> 3
- // Perform the xform if C1 is a single bit.
- unsigned ShCt = C1.logBase2();
- if (C1.isPowerOf2() &&
- !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
- return DAG.getNode(ISD::TRUNCATE, dl, VT,
- DAG.getNode(ISD::SRL, dl, ShValTy, N0,
- DAG.getConstant(ShCt, dl, ShiftTy)));
- }
- }
- }
- }
- if (C1.getMinSignedBits() <= 64 &&
- !isLegalICmpImmediate(C1.getSExtValue())) {
- EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
- // (X & -256) == 256 -> (X >> 8) == 1
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
- if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- const APInt &AndRHSC = AndRHS->getAPIntValue();
- if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
- unsigned ShiftBits = AndRHSC.countTrailingZeros();
- if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
- SDValue Shift =
- DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
- DAG.getConstant(ShiftBits, dl, ShiftTy));
- SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
- return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
- }
- }
- }
- } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
- Cond == ISD::SETULE || Cond == ISD::SETUGT) {
- bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
- // X < 0x100000000 -> (X >> 32) < 1
- // X >= 0x100000000 -> (X >> 32) >= 1
- // X <= 0x0ffffffff -> (X >> 32) < 1
- // X > 0x0ffffffff -> (X >> 32) >= 1
- unsigned ShiftBits;
- APInt NewC = C1;
- ISD::CondCode NewCond = Cond;
- if (AdjOne) {
- ShiftBits = C1.countTrailingOnes();
- NewC = NewC + 1;
- NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
- } else {
- ShiftBits = C1.countTrailingZeros();
- }
- NewC.lshrInPlace(ShiftBits);
- if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
- isLegalICmpImmediate(NewC.getSExtValue()) &&
- !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
- SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
- DAG.getConstant(ShiftBits, dl, ShiftTy));
- SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
- return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
- }
- }
- }
- }
- if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
- auto *CFP = cast<ConstantFPSDNode>(N1);
- assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
- // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
- // constant if knowing that the operand is non-nan is enough. We prefer to
- // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
- // materialize 0.0.
- if (Cond == ISD::SETO || Cond == ISD::SETUO)
- return DAG.getSetCC(dl, VT, N0, N0, Cond);
- // setcc (fneg x), C -> setcc swap(pred) x, -C
- if (N0.getOpcode() == ISD::FNEG) {
- ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
- if (DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
- SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
- return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
- }
- }
- // If the condition is not legal, see if we can find an equivalent one
- // which is legal.
- if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
- // If the comparison was an awkward floating-point == or != and one of
- // the comparison operands is infinity or negative infinity, convert the
- // condition to a less-awkward <= or >=.
- if (CFP->getValueAPF().isInfinity()) {
- bool IsNegInf = CFP->getValueAPF().isNegative();
- ISD::CondCode NewCond = ISD::SETCC_INVALID;
- switch (Cond) {
- case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
- case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
- case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
- case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
- default: break;
- }
- if (NewCond != ISD::SETCC_INVALID &&
- isCondCodeLegal(NewCond, N0.getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, NewCond);
- }
- }
- }
- if (N0 == N1) {
- // The sext(setcc()) => setcc() optimization relies on the appropriate
- // constant being emitted.
- assert(!N0.getValueType().isInteger() &&
- "Integer types should be handled by FoldSetCC");
- bool EqTrue = ISD::isTrueWhenEqual(Cond);
- unsigned UOF = ISD::getUnorderedFlavor(Cond);
- if (UOF == 2) // FP operators that are undefined on NaNs.
- return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
- if (UOF == unsigned(EqTrue))
- return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
- // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
- // if it is not already.
- ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
- if (NewCond != Cond &&
- (DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(NewCond, N0.getSimpleValueType())))
- return DAG.getSetCC(dl, VT, N0, N1, NewCond);
- }
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- N0.getValueType().isInteger()) {
- if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
- N0.getOpcode() == ISD::XOR) {
- // Simplify (X+Y) == (X+Z) --> Y == Z
- if (N0.getOpcode() == N1.getOpcode()) {
- if (N0.getOperand(0) == N1.getOperand(0))
- return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
- if (N0.getOperand(1) == N1.getOperand(1))
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
- if (isCommutativeBinOp(N0.getOpcode())) {
- // If X op Y == Y op X, try other combinations.
- if (N0.getOperand(0) == N1.getOperand(1))
- return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
- Cond);
- if (N0.getOperand(1) == N1.getOperand(0))
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
- Cond);
- }
- }
- // If RHS is a legal immediate value for a compare instruction, we need
- // to be careful about increasing register pressure needlessly.
- bool LegalRHSImm = false;
- if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
- if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- // Turn (X+C1) == C2 --> X == C2-C1
- if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
- return DAG.getSetCC(
- dl, VT, N0.getOperand(0),
- DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
- dl, N0.getValueType()),
- Cond);
- // Turn (X^C1) == C2 --> X == C1^C2
- if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
- return DAG.getSetCC(
- dl, VT, N0.getOperand(0),
- DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
- dl, N0.getValueType()),
- Cond);
- }
- // Turn (C1-X) == C2 --> X == C1-C2
- if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
- if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
- return DAG.getSetCC(
- dl, VT, N0.getOperand(1),
- DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
- dl, N0.getValueType()),
- Cond);
- // Could RHSC fold directly into a compare?
- if (RHSC->getValueType(0).getSizeInBits() <= 64)
- LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
- }
- // (X+Y) == X --> Y == 0 and similar folds.
- // Don't do this if X is an immediate that can fold into a cmp
- // instruction and X+Y has other uses. It could be an induction variable
- // chain, and the transform would increase register pressure.
- if (!LegalRHSImm || N0.hasOneUse())
- if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
- return V;
- }
- if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
- N1.getOpcode() == ISD::XOR)
- if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
- return V;
- if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
- return V;
- }
- // Fold remainder of division by a constant.
- if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
- N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
- // When division is cheap or optimizing for minimum size,
- // fall through to DIVREM creation by skipping this fold.
- if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
- if (N0.getOpcode() == ISD::UREM) {
- if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
- return Folded;
- } else if (N0.getOpcode() == ISD::SREM) {
- if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
- return Folded;
- }
- }
- }
- // Fold away ALL boolean setcc's.
- if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
- SDValue Temp;
- switch (Cond) {
- default: llvm_unreachable("Unknown integer setcc!");
- case ISD::SETEQ: // X == Y -> ~(X^Y)
- Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
- N0 = DAG.getNOT(dl, Temp, OpVT);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETNE: // X != Y --> (X^Y)
- N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
- break;
- case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
- case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
- Temp = DAG.getNOT(dl, N0, OpVT);
- N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
- case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
- Temp = DAG.getNOT(dl, N1, OpVT);
- N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
- case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
- Temp = DAG.getNOT(dl, N0, OpVT);
- N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
- case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
- Temp = DAG.getNOT(dl, N1, OpVT);
- N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
- break;
- }
- if (VT.getScalarType() != MVT::i1) {
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(N0.getNode());
- // FIXME: If running after legalize, we probably can't do this.
- ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
- N0 = DAG.getNode(ExtendCode, dl, VT, N0);
- }
- return N0;
- }
- // Could not fold it.
- return SDValue();
- }
- /// Returns true (and the GlobalValue and the offset) if the node is a
- /// GlobalAddress + offset.
- bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
- int64_t &Offset) const {
- SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
- if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
- GA = GASD->getGlobal();
- Offset += GASD->getOffset();
- return true;
- }
- if (N->getOpcode() == ISD::ADD) {
- SDValue N1 = N->getOperand(0);
- SDValue N2 = N->getOperand(1);
- if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
- if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
- Offset += V->getSExtValue();
- return true;
- }
- } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
- if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
- Offset += V->getSExtValue();
- return true;
- }
- }
- }
- return false;
- }
- SDValue TargetLowering::PerformDAGCombine(SDNode *N,
- DAGCombinerInfo &DCI) const {
- // Default implementation: no optimization.
- return SDValue();
- }
- //===----------------------------------------------------------------------===//
- // Inline Assembler Implementation Methods
- //===----------------------------------------------------------------------===//
- TargetLowering::ConstraintType
- TargetLowering::getConstraintType(StringRef Constraint) const {
- unsigned S = Constraint.size();
- if (S == 1) {
- switch (Constraint[0]) {
- default: break;
- case 'r':
- return C_RegisterClass;
- case 'm': // memory
- case 'o': // offsetable
- case 'V': // not offsetable
- return C_Memory;
- case 'p': // Address.
- return C_Address;
- case 'n': // Simple Integer
- case 'E': // Floating Point Constant
- case 'F': // Floating Point Constant
- return C_Immediate;
- case 'i': // Simple Integer or Relocatable Constant
- case 's': // Relocatable Constant
- case 'X': // Allow ANY value.
- case 'I': // Target registers.
- case 'J':
- case 'K':
- case 'L':
- case 'M':
- case 'N':
- case 'O':
- case 'P':
- case '<':
- case '>':
- return C_Other;
- }
- }
- if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
- if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
- return C_Memory;
- return C_Register;
- }
- return C_Unknown;
- }
- /// Try to replace an X constraint, which matches anything, with another that
- /// has more specific requirements based on the type of the corresponding
- /// operand.
- const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
- if (ConstraintVT.isInteger())
- return "r";
- if (ConstraintVT.isFloatingPoint())
- return "f"; // works for many targets
- return nullptr;
- }
- SDValue TargetLowering::LowerAsmOutputForConstraint(
- SDValue &Chain, SDValue &Flag, const SDLoc &DL,
- const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
- return SDValue();
- }
- /// Lower the specified operand into the Ops vector.
- /// If it is invalid, don't add anything to Ops.
- void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
- std::string &Constraint,
- std::vector<SDValue> &Ops,
- SelectionDAG &DAG) const {
- if (Constraint.length() > 1) return;
- char ConstraintLetter = Constraint[0];
- switch (ConstraintLetter) {
- default: break;
- case 'X': // Allows any operand
- case 'i': // Simple Integer or Relocatable Constant
- case 'n': // Simple Integer
- case 's': { // Relocatable Constant
- ConstantSDNode *C;
- uint64_t Offset = 0;
- // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
- // etc., since getelementpointer is variadic. We can't use
- // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
- // while in this case the GA may be furthest from the root node which is
- // likely an ISD::ADD.
- while (true) {
- if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
- // gcc prints these as sign extended. Sign extend value to 64 bits
- // now; without this it would get ZExt'd later in
- // ScheduleDAGSDNodes::EmitNode, which is very generic.
- bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
- BooleanContent BCont = getBooleanContents(MVT::i64);
- ISD::NodeType ExtOpc =
- IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
- int64_t ExtVal =
- ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
- Ops.push_back(
- DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
- return;
- }
- if (ConstraintLetter != 'n') {
- if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
- Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
- GA->getValueType(0),
- Offset + GA->getOffset()));
- return;
- }
- if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
- Ops.push_back(DAG.getTargetBlockAddress(
- BA->getBlockAddress(), BA->getValueType(0),
- Offset + BA->getOffset(), BA->getTargetFlags()));
- return;
- }
- if (isa<BasicBlockSDNode>(Op)) {
- Ops.push_back(Op);
- return;
- }
- }
- const unsigned OpCode = Op.getOpcode();
- if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
- if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
- Op = Op.getOperand(1);
- // Subtraction is not commutative.
- else if (OpCode == ISD::ADD &&
- (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
- Op = Op.getOperand(0);
- else
- return;
- Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
- continue;
- }
- return;
- }
- break;
- }
- }
- }
- void TargetLowering::CollectTargetIntrinsicOperands(const CallInst &I,
- SmallVectorImpl<SDValue> &Ops,
- SelectionDAG &DAG) const {
- return;
- }
- std::pair<unsigned, const TargetRegisterClass *>
- TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
- StringRef Constraint,
- MVT VT) const {
- if (Constraint.empty() || Constraint[0] != '{')
- return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
- assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
- // Remove the braces from around the name.
- StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
- std::pair<unsigned, const TargetRegisterClass *> R =
- std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
- // Figure out which register class contains this reg.
- for (const TargetRegisterClass *RC : RI->regclasses()) {
- // If none of the value types for this register class are valid, we
- // can't use it. For example, 64-bit reg classes on 32-bit targets.
- if (!isLegalRC(*RI, *RC))
- continue;
- for (const MCPhysReg &PR : *RC) {
- if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
- std::pair<unsigned, const TargetRegisterClass *> S =
- std::make_pair(PR, RC);
- // If this register class has the requested value type, return it,
- // otherwise keep searching and return the first class found
- // if no other is found which explicitly has the requested type.
- if (RI->isTypeLegalForClass(*RC, VT))
- return S;
- if (!R.second)
- R = S;
- }
- }
- }
- return R;
- }
- //===----------------------------------------------------------------------===//
- // Constraint Selection.
- /// Return true of this is an input operand that is a matching constraint like
- /// "4".
- bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
- assert(!ConstraintCode.empty() && "No known constraint!");
- return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
- }
- /// If this is an input matching constraint, this method returns the output
- /// operand it matches.
- unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
- assert(!ConstraintCode.empty() && "No known constraint!");
- return atoi(ConstraintCode.c_str());
- }
- /// Split up the constraint string from the inline assembly value into the
- /// specific constraints and their prefixes, and also tie in the associated
- /// operand values.
- /// If this returns an empty vector, and if the constraint string itself
- /// isn't empty, there was an error parsing.
- TargetLowering::AsmOperandInfoVector
- TargetLowering::ParseConstraints(const DataLayout &DL,
- const TargetRegisterInfo *TRI,
- const CallBase &Call) const {
- /// Information about all of the constraints.
- AsmOperandInfoVector ConstraintOperands;
- const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
- unsigned maCount = 0; // Largest number of multiple alternative constraints.
- // Do a prepass over the constraints, canonicalizing them, and building up the
- // ConstraintOperands list.
- unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
- unsigned ResNo = 0; // ResNo - The result number of the next output.
- unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
- for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
- ConstraintOperands.emplace_back(std::move(CI));
- AsmOperandInfo &OpInfo = ConstraintOperands.back();
- // Update multiple alternative constraint count.
- if (OpInfo.multipleAlternatives.size() > maCount)
- maCount = OpInfo.multipleAlternatives.size();
- OpInfo.ConstraintVT = MVT::Other;
- // Compute the value type for each operand.
- switch (OpInfo.Type) {
- case InlineAsm::isOutput:
- // Indirect outputs just consume an argument.
- if (OpInfo.isIndirect) {
- OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
- break;
- }
- // The return value of the call is this value. As such, there is no
- // corresponding argument.
- assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
- if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
- OpInfo.ConstraintVT =
- getSimpleValueType(DL, STy->getElementType(ResNo));
- } else {
- assert(ResNo == 0 && "Asm only has one result!");
- OpInfo.ConstraintVT =
- getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
- }
- ++ResNo;
- break;
- case InlineAsm::isInput:
- OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
- break;
- case InlineAsm::isLabel:
- OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo);
- ++LabelNo;
- continue;
- case InlineAsm::isClobber:
- // Nothing to do.
- break;
- }
- if (OpInfo.CallOperandVal) {
- llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
- if (OpInfo.isIndirect) {
- OpTy = Call.getParamElementType(ArgNo);
- assert(OpTy && "Indirect operand must have elementtype attribute");
- }
- // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
- if (StructType *STy = dyn_cast<StructType>(OpTy))
- if (STy->getNumElements() == 1)
- OpTy = STy->getElementType(0);
- // If OpTy is not a single value, it may be a struct/union that we
- // can tile with integers.
- if (!OpTy->isSingleValueType() && OpTy->isSized()) {
- unsigned BitSize = DL.getTypeSizeInBits(OpTy);
- switch (BitSize) {
- default: break;
- case 1:
- case 8:
- case 16:
- case 32:
- case 64:
- case 128:
- OpTy = IntegerType::get(OpTy->getContext(), BitSize);
- break;
- }
- }
- EVT VT = getAsmOperandValueType(DL, OpTy, true);
- OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
- ArgNo++;
- }
- }
- // If we have multiple alternative constraints, select the best alternative.
- if (!ConstraintOperands.empty()) {
- if (maCount) {
- unsigned bestMAIndex = 0;
- int bestWeight = -1;
- // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
- int weight = -1;
- unsigned maIndex;
- // Compute the sums of the weights for each alternative, keeping track
- // of the best (highest weight) one so far.
- for (maIndex = 0; maIndex < maCount; ++maIndex) {
- int weightSum = 0;
- for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
- cIndex != eIndex; ++cIndex) {
- AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
- if (OpInfo.Type == InlineAsm::isClobber)
- continue;
- // If this is an output operand with a matching input operand,
- // look up the matching input. If their types mismatch, e.g. one
- // is an integer, the other is floating point, or their sizes are
- // different, flag it as an maCantMatch.
- if (OpInfo.hasMatchingInput()) {
- AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
- if (OpInfo.ConstraintVT != Input.ConstraintVT) {
- if ((OpInfo.ConstraintVT.isInteger() !=
- Input.ConstraintVT.isInteger()) ||
- (OpInfo.ConstraintVT.getSizeInBits() !=
- Input.ConstraintVT.getSizeInBits())) {
- weightSum = -1; // Can't match.
- break;
- }
- }
- }
- weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
- if (weight == -1) {
- weightSum = -1;
- break;
- }
- weightSum += weight;
- }
- // Update best.
- if (weightSum > bestWeight) {
- bestWeight = weightSum;
- bestMAIndex = maIndex;
- }
- }
- // Now select chosen alternative in each constraint.
- for (AsmOperandInfo &cInfo : ConstraintOperands)
- if (cInfo.Type != InlineAsm::isClobber)
- cInfo.selectAlternative(bestMAIndex);
- }
- }
- // Check and hook up tied operands, choose constraint code to use.
- for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
- cIndex != eIndex; ++cIndex) {
- AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
- // If this is an output operand with a matching input operand, look up the
- // matching input. If their types mismatch, e.g. one is an integer, the
- // other is floating point, or their sizes are different, flag it as an
- // error.
- if (OpInfo.hasMatchingInput()) {
- AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
- if (OpInfo.ConstraintVT != Input.ConstraintVT) {
- std::pair<unsigned, const TargetRegisterClass *> MatchRC =
- getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
- std::pair<unsigned, const TargetRegisterClass *> InputRC =
- getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
- Input.ConstraintVT);
- if ((OpInfo.ConstraintVT.isInteger() !=
- Input.ConstraintVT.isInteger()) ||
- (MatchRC.second != InputRC.second)) {
- report_fatal_error("Unsupported asm: input constraint"
- " with a matching output constraint of"
- " incompatible type!");
- }
- }
- }
- }
- return ConstraintOperands;
- }
- /// Return an integer indicating how general CT is.
- static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
- switch (CT) {
- case TargetLowering::C_Immediate:
- case TargetLowering::C_Other:
- case TargetLowering::C_Unknown:
- return 0;
- case TargetLowering::C_Register:
- return 1;
- case TargetLowering::C_RegisterClass:
- return 2;
- case TargetLowering::C_Memory:
- case TargetLowering::C_Address:
- return 3;
- }
- llvm_unreachable("Invalid constraint type");
- }
- /// Examine constraint type and operand type and determine a weight value.
- /// This object must already have been set up with the operand type
- /// and the current alternative constraint selected.
- TargetLowering::ConstraintWeight
- TargetLowering::getMultipleConstraintMatchWeight(
- AsmOperandInfo &info, int maIndex) const {
- InlineAsm::ConstraintCodeVector *rCodes;
- if (maIndex >= (int)info.multipleAlternatives.size())
- rCodes = &info.Codes;
- else
- rCodes = &info.multipleAlternatives[maIndex].Codes;
- ConstraintWeight BestWeight = CW_Invalid;
- // Loop over the options, keeping track of the most general one.
- for (const std::string &rCode : *rCodes) {
- ConstraintWeight weight =
- getSingleConstraintMatchWeight(info, rCode.c_str());
- if (weight > BestWeight)
- BestWeight = weight;
- }
- return BestWeight;
- }
- /// Examine constraint type and operand type and determine a weight value.
- /// This object must already have been set up with the operand type
- /// and the current alternative constraint selected.
- TargetLowering::ConstraintWeight
- TargetLowering::getSingleConstraintMatchWeight(
- AsmOperandInfo &info, const char *constraint) const {
- ConstraintWeight weight = CW_Invalid;
- Value *CallOperandVal = info.CallOperandVal;
- // If we don't have a value, we can't do a match,
- // but allow it at the lowest weight.
- if (!CallOperandVal)
- return CW_Default;
- // Look at the constraint type.
- switch (*constraint) {
- case 'i': // immediate integer.
- case 'n': // immediate integer with a known value.
- if (isa<ConstantInt>(CallOperandVal))
- weight = CW_Constant;
- break;
- case 's': // non-explicit intregal immediate.
- if (isa<GlobalValue>(CallOperandVal))
- weight = CW_Constant;
- break;
- case 'E': // immediate float if host format.
- case 'F': // immediate float.
- if (isa<ConstantFP>(CallOperandVal))
- weight = CW_Constant;
- break;
- case '<': // memory operand with autodecrement.
- case '>': // memory operand with autoincrement.
- case 'm': // memory operand.
- case 'o': // offsettable memory operand
- case 'V': // non-offsettable memory operand
- weight = CW_Memory;
- break;
- case 'r': // general register.
- case 'g': // general register, memory operand or immediate integer.
- // note: Clang converts "g" to "imr".
- if (CallOperandVal->getType()->isIntegerTy())
- weight = CW_Register;
- break;
- case 'X': // any operand.
- default:
- weight = CW_Default;
- break;
- }
- return weight;
- }
- /// If there are multiple different constraints that we could pick for this
- /// operand (e.g. "imr") try to pick the 'best' one.
- /// This is somewhat tricky: constraints fall into four classes:
- /// Other -> immediates and magic values
- /// Register -> one specific register
- /// RegisterClass -> a group of regs
- /// Memory -> memory
- /// Ideally, we would pick the most specific constraint possible: if we have
- /// something that fits into a register, we would pick it. The problem here
- /// is that if we have something that could either be in a register or in
- /// memory that use of the register could cause selection of *other*
- /// operands to fail: they might only succeed if we pick memory. Because of
- /// this the heuristic we use is:
- ///
- /// 1) If there is an 'other' constraint, and if the operand is valid for
- /// that constraint, use it. This makes us take advantage of 'i'
- /// constraints when available.
- /// 2) Otherwise, pick the most general constraint present. This prefers
- /// 'm' over 'r', for example.
- ///
- static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
- const TargetLowering &TLI,
- SDValue Op, SelectionDAG *DAG) {
- assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
- unsigned BestIdx = 0;
- TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
- int BestGenerality = -1;
- // Loop over the options, keeping track of the most general one.
- for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
- TargetLowering::ConstraintType CType =
- TLI.getConstraintType(OpInfo.Codes[i]);
- // Indirect 'other' or 'immediate' constraints are not allowed.
- if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
- CType == TargetLowering::C_Register ||
- CType == TargetLowering::C_RegisterClass))
- continue;
- // If this is an 'other' or 'immediate' constraint, see if the operand is
- // valid for it. For example, on X86 we might have an 'rI' constraint. If
- // the operand is an integer in the range [0..31] we want to use I (saving a
- // load of a register), otherwise we must use 'r'.
- if ((CType == TargetLowering::C_Other ||
- CType == TargetLowering::C_Immediate) && Op.getNode()) {
- assert(OpInfo.Codes[i].size() == 1 &&
- "Unhandled multi-letter 'other' constraint");
- std::vector<SDValue> ResultOps;
- TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
- ResultOps, *DAG);
- if (!ResultOps.empty()) {
- BestType = CType;
- BestIdx = i;
- break;
- }
- }
- // Things with matching constraints can only be registers, per gcc
- // documentation. This mainly affects "g" constraints.
- if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
- continue;
- // This constraint letter is more general than the previous one, use it.
- int Generality = getConstraintGenerality(CType);
- if (Generality > BestGenerality) {
- BestType = CType;
- BestIdx = i;
- BestGenerality = Generality;
- }
- }
- OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
- OpInfo.ConstraintType = BestType;
- }
- /// Determines the constraint code and constraint type to use for the specific
- /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
- void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
- SDValue Op,
- SelectionDAG *DAG) const {
- assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
- // Single-letter constraints ('r') are very common.
- if (OpInfo.Codes.size() == 1) {
- OpInfo.ConstraintCode = OpInfo.Codes[0];
- OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
- } else {
- ChooseConstraint(OpInfo, *this, Op, DAG);
- }
- // 'X' matches anything.
- if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
- // Constants are handled elsewhere. For Functions, the type here is the
- // type of the result, which is not what we want to look at; leave them
- // alone.
- Value *v = OpInfo.CallOperandVal;
- if (isa<ConstantInt>(v) || isa<Function>(v)) {
- return;
- }
- if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
- OpInfo.ConstraintCode = "i";
- return;
- }
- // Otherwise, try to resolve it to something we know about by looking at
- // the actual operand type.
- if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
- OpInfo.ConstraintCode = Repl;
- OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
- }
- }
- }
- /// Given an exact SDIV by a constant, create a multiplication
- /// with the multiplicative inverse of the constant.
- static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
- const SDLoc &dl, SelectionDAG &DAG,
- SmallVectorImpl<SDNode *> &Created) {
- SDValue Op0 = N->getOperand(0);
- SDValue Op1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- EVT SVT = VT.getScalarType();
- EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
- EVT ShSVT = ShVT.getScalarType();
- bool UseSRA = false;
- SmallVector<SDValue, 16> Shifts, Factors;
- auto BuildSDIVPattern = [&](ConstantSDNode *C) {
- if (C->isZero())
- return false;
- APInt Divisor = C->getAPIntValue();
- unsigned Shift = Divisor.countTrailingZeros();
- if (Shift) {
- Divisor.ashrInPlace(Shift);
- UseSRA = true;
- }
- // Calculate the multiplicative inverse, using Newton's method.
- APInt t;
- APInt Factor = Divisor;
- while ((t = Divisor * Factor) != 1)
- Factor *= APInt(Divisor.getBitWidth(), 2) - t;
- Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
- Factors.push_back(DAG.getConstant(Factor, dl, SVT));
- return true;
- };
- // Collect all magic values from the build vector.
- if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
- return SDValue();
- SDValue Shift, Factor;
- if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
- Shift = DAG.getBuildVector(ShVT, dl, Shifts);
- Factor = DAG.getBuildVector(VT, dl, Factors);
- } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
- assert(Shifts.size() == 1 && Factors.size() == 1 &&
- "Expected matchUnaryPredicate to return one element for scalable "
- "vectors");
- Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
- Factor = DAG.getSplatVector(VT, dl, Factors[0]);
- } else {
- assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
- Shift = Shifts[0];
- Factor = Factors[0];
- }
- SDValue Res = Op0;
- // Shift the value upfront if it is even, so the LSB is one.
- if (UseSRA) {
- // TODO: For UDIV use SRL instead of SRA.
- SDNodeFlags Flags;
- Flags.setExact(true);
- Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
- Created.push_back(Res.getNode());
- }
- return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
- }
- SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
- SelectionDAG &DAG,
- SmallVectorImpl<SDNode *> &Created) const {
- AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (TLI.isIntDivCheap(N->getValueType(0), Attr))
- return SDValue(N, 0); // Lower SDIV as SDIV
- return SDValue();
- }
- SDValue
- TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
- SelectionDAG &DAG,
- SmallVectorImpl<SDNode *> &Created) const {
- AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (TLI.isIntDivCheap(N->getValueType(0), Attr))
- return SDValue(N, 0); // Lower SREM as SREM
- return SDValue();
- }
- /// Given an ISD::SDIV node expressing a divide by constant,
- /// return a DAG expression to select that will generate the same value by
- /// multiplying by a magic number.
- /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
- SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
- bool IsAfterLegalization,
- SmallVectorImpl<SDNode *> &Created) const {
- SDLoc dl(N);
- EVT VT = N->getValueType(0);
- EVT SVT = VT.getScalarType();
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- EVT ShSVT = ShVT.getScalarType();
- unsigned EltBits = VT.getScalarSizeInBits();
- EVT MulVT;
- // Check to see if we can do this.
- // FIXME: We should be more aggressive here.
- if (!isTypeLegal(VT)) {
- // Limit this to simple scalars for now.
- if (VT.isVector() || !VT.isSimple())
- return SDValue();
- // If this type will be promoted to a large enough type with a legal
- // multiply operation, we can go ahead and do this transform.
- if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
- return SDValue();
- MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
- if (MulVT.getSizeInBits() < (2 * EltBits) ||
- !isOperationLegal(ISD::MUL, MulVT))
- return SDValue();
- }
- // If the sdiv has an 'exact' bit we can use a simpler lowering.
- if (N->getFlags().hasExact())
- return BuildExactSDIV(*this, N, dl, DAG, Created);
- SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
- auto BuildSDIVPattern = [&](ConstantSDNode *C) {
- if (C->isZero())
- return false;
- const APInt &Divisor = C->getAPIntValue();
- SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
- int NumeratorFactor = 0;
- int ShiftMask = -1;
- if (Divisor.isOne() || Divisor.isAllOnes()) {
- // If d is +1/-1, we just multiply the numerator by +1/-1.
- NumeratorFactor = Divisor.getSExtValue();
- magics.Magic = 0;
- magics.ShiftAmount = 0;
- ShiftMask = 0;
- } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
- // If d > 0 and m < 0, add the numerator.
- NumeratorFactor = 1;
- } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
- // If d < 0 and m > 0, subtract the numerator.
- NumeratorFactor = -1;
- }
- MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
- Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
- Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
- ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
- return true;
- };
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- // Collect the shifts / magic values from each element.
- if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
- return SDValue();
- SDValue MagicFactor, Factor, Shift, ShiftMask;
- if (N1.getOpcode() == ISD::BUILD_VECTOR) {
- MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
- Factor = DAG.getBuildVector(VT, dl, Factors);
- Shift = DAG.getBuildVector(ShVT, dl, Shifts);
- ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
- } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
- assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
- Shifts.size() == 1 && ShiftMasks.size() == 1 &&
- "Expected matchUnaryPredicate to return one element for scalable "
- "vectors");
- MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
- Factor = DAG.getSplatVector(VT, dl, Factors[0]);
- Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
- ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
- } else {
- assert(isa<ConstantSDNode>(N1) && "Expected a constant");
- MagicFactor = MagicFactors[0];
- Factor = Factors[0];
- Shift = Shifts[0];
- ShiftMask = ShiftMasks[0];
- }
- // Multiply the numerator (operand 0) by the magic value.
- // FIXME: We should support doing a MUL in a wider type.
- auto GetMULHS = [&](SDValue X, SDValue Y) {
- // If the type isn't legal, use a wider mul of the the type calculated
- // earlier.
- if (!isTypeLegal(VT)) {
- X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
- Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
- Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
- Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
- DAG.getShiftAmountConstant(EltBits, MulVT, dl));
- return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
- }
- if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
- return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
- if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
- SDValue LoHi =
- DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
- return SDValue(LoHi.getNode(), 1);
- }
- return SDValue();
- };
- SDValue Q = GetMULHS(N0, MagicFactor);
- if (!Q)
- return SDValue();
- Created.push_back(Q.getNode());
- // (Optionally) Add/subtract the numerator using Factor.
- Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
- Created.push_back(Factor.getNode());
- Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
- Created.push_back(Q.getNode());
- // Shift right algebraic by shift value.
- Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
- Created.push_back(Q.getNode());
- // Extract the sign bit, mask it and add it to the quotient.
- SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
- SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
- Created.push_back(T.getNode());
- T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
- Created.push_back(T.getNode());
- return DAG.getNode(ISD::ADD, dl, VT, Q, T);
- }
- /// Given an ISD::UDIV node expressing a divide by constant,
- /// return a DAG expression to select that will generate the same value by
- /// multiplying by a magic number.
- /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
- SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
- bool IsAfterLegalization,
- SmallVectorImpl<SDNode *> &Created) const {
- SDLoc dl(N);
- EVT VT = N->getValueType(0);
- EVT SVT = VT.getScalarType();
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- EVT ShSVT = ShVT.getScalarType();
- unsigned EltBits = VT.getScalarSizeInBits();
- EVT MulVT;
- // Check to see if we can do this.
- // FIXME: We should be more aggressive here.
- if (!isTypeLegal(VT)) {
- // Limit this to simple scalars for now.
- if (VT.isVector() || !VT.isSimple())
- return SDValue();
- // If this type will be promoted to a large enough type with a legal
- // multiply operation, we can go ahead and do this transform.
- if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
- return SDValue();
- MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
- if (MulVT.getSizeInBits() < (2 * EltBits) ||
- !isOperationLegal(ISD::MUL, MulVT))
- return SDValue();
- }
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- // Try to use leading zeros of the dividend to reduce the multiplier and
- // avoid expensive fixups.
- // TODO: Support vectors.
- unsigned LeadingZeros = 0;
- if (!VT.isVector() && isa<ConstantSDNode>(N1)) {
- assert(!isOneConstant(N1) && "Unexpected divisor");
- LeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros();
- // UnsignedDivisionByConstantInfo doesn't work correctly if leading zeros in
- // the dividend exceeds the leading zeros for the divisor.
- LeadingZeros =
- std::min(LeadingZeros,
- cast<ConstantSDNode>(N1)->getAPIntValue().countLeadingZeros());
- }
- bool UseNPQ = false, UsePreShift = false, UsePostShift = false;
- SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
- auto BuildUDIVPattern = [&](ConstantSDNode *C) {
- if (C->isZero())
- return false;
- const APInt& Divisor = C->getAPIntValue();
- SDValue PreShift, MagicFactor, NPQFactor, PostShift;
- // Magic algorithm doesn't work for division by 1. We need to emit a select
- // at the end.
- if (Divisor.isOne()) {
- PreShift = PostShift = DAG.getUNDEF(ShSVT);
- MagicFactor = NPQFactor = DAG.getUNDEF(SVT);
- } else {
- UnsignedDivisionByConstantInfo magics =
- UnsignedDivisionByConstantInfo::get(Divisor, LeadingZeros);
- MagicFactor = DAG.getConstant(magics.Magic, dl, SVT);
- assert(magics.PreShift < Divisor.getBitWidth() &&
- "We shouldn't generate an undefined shift!");
- assert(magics.PostShift < Divisor.getBitWidth() &&
- "We shouldn't generate an undefined shift!");
- assert((!magics.IsAdd || magics.PreShift == 0) &&
- "Unexpected pre-shift");
- PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT);
- PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT);
- NPQFactor = DAG.getConstant(
- magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1)
- : APInt::getZero(EltBits),
- dl, SVT);
- UseNPQ |= magics.IsAdd;
- UsePreShift |= magics.PreShift != 0;
- UsePostShift |= magics.PostShift != 0;
- }
- PreShifts.push_back(PreShift);
- MagicFactors.push_back(MagicFactor);
- NPQFactors.push_back(NPQFactor);
- PostShifts.push_back(PostShift);
- return true;
- };
- // Collect the shifts/magic values from each element.
- if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
- return SDValue();
- SDValue PreShift, PostShift, MagicFactor, NPQFactor;
- if (N1.getOpcode() == ISD::BUILD_VECTOR) {
- PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
- MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
- NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
- PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
- } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
- assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
- NPQFactors.size() == 1 && PostShifts.size() == 1 &&
- "Expected matchUnaryPredicate to return one for scalable vectors");
- PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
- MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
- NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
- PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
- } else {
- assert(isa<ConstantSDNode>(N1) && "Expected a constant");
- PreShift = PreShifts[0];
- MagicFactor = MagicFactors[0];
- PostShift = PostShifts[0];
- }
- SDValue Q = N0;
- if (UsePreShift) {
- Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
- Created.push_back(Q.getNode());
- }
- // FIXME: We should support doing a MUL in a wider type.
- auto GetMULHU = [&](SDValue X, SDValue Y) {
- // If the type isn't legal, use a wider mul of the the type calculated
- // earlier.
- if (!isTypeLegal(VT)) {
- X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
- Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
- Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
- Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
- DAG.getShiftAmountConstant(EltBits, MulVT, dl));
- return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
- }
- if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
- return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
- if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
- SDValue LoHi =
- DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
- return SDValue(LoHi.getNode(), 1);
- }
- return SDValue(); // No mulhu or equivalent
- };
- // Multiply the numerator (operand 0) by the magic value.
- Q = GetMULHU(Q, MagicFactor);
- if (!Q)
- return SDValue();
- Created.push_back(Q.getNode());
- if (UseNPQ) {
- SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
- Created.push_back(NPQ.getNode());
- // For vectors we might have a mix of non-NPQ/NPQ paths, so use
- // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
- if (VT.isVector())
- NPQ = GetMULHU(NPQ, NPQFactor);
- else
- NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
- Created.push_back(NPQ.getNode());
- Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
- Created.push_back(Q.getNode());
- }
- if (UsePostShift) {
- Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
- Created.push_back(Q.getNode());
- }
- EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- SDValue One = DAG.getConstant(1, dl, VT);
- SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
- return DAG.getSelect(dl, VT, IsOne, N0, Q);
- }
- /// If all values in Values that *don't* match the predicate are same 'splat'
- /// value, then replace all values with that splat value.
- /// Else, if AlternativeReplacement was provided, then replace all values that
- /// do match predicate with AlternativeReplacement value.
- static void
- turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
- std::function<bool(SDValue)> Predicate,
- SDValue AlternativeReplacement = SDValue()) {
- SDValue Replacement;
- // Is there a value for which the Predicate does *NOT* match? What is it?
- auto SplatValue = llvm::find_if_not(Values, Predicate);
- if (SplatValue != Values.end()) {
- // Does Values consist only of SplatValue's and values matching Predicate?
- if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
- return Value == *SplatValue || Predicate(Value);
- })) // Then we shall replace values matching predicate with SplatValue.
- Replacement = *SplatValue;
- }
- if (!Replacement) {
- // Oops, we did not find the "baseline" splat value.
- if (!AlternativeReplacement)
- return; // Nothing to do.
- // Let's replace with provided value then.
- Replacement = AlternativeReplacement;
- }
- std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
- }
- /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
- /// where the divisor is constant and the comparison target is zero,
- /// return a DAG expression that will generate the same comparison result
- /// using only multiplications, additions and shifts/rotations.
- /// Ref: "Hacker's Delight" 10-17.
- SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
- SDValue CompTargetNode,
- ISD::CondCode Cond,
- DAGCombinerInfo &DCI,
- const SDLoc &DL) const {
- SmallVector<SDNode *, 5> Built;
- if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
- DCI, DL, Built)) {
- for (SDNode *N : Built)
- DCI.AddToWorklist(N);
- return Folded;
- }
- return SDValue();
- }
- SDValue
- TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
- SDValue CompTargetNode, ISD::CondCode Cond,
- DAGCombinerInfo &DCI, const SDLoc &DL,
- SmallVectorImpl<SDNode *> &Created) const {
- // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
- // - D must be constant, with D = D0 * 2^K where D0 is odd
- // - P is the multiplicative inverse of D0 modulo 2^W
- // - Q = floor(((2^W) - 1) / D)
- // where W is the width of the common type of N and D.
- assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- "Only applicable for (in)equality comparisons.");
- SelectionDAG &DAG = DCI.DAG;
- EVT VT = REMNode.getValueType();
- EVT SVT = VT.getScalarType();
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
- EVT ShSVT = ShVT.getScalarType();
- // If MUL is unavailable, we cannot proceed in any case.
- if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
- return SDValue();
- bool ComparingWithAllZeros = true;
- bool AllComparisonsWithNonZerosAreTautological = true;
- bool HadTautologicalLanes = false;
- bool AllLanesAreTautological = true;
- bool HadEvenDivisor = false;
- bool AllDivisorsArePowerOfTwo = true;
- bool HadTautologicalInvertedLanes = false;
- SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
- auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
- // Division by 0 is UB. Leave it to be constant-folded elsewhere.
- if (CDiv->isZero())
- return false;
- const APInt &D = CDiv->getAPIntValue();
- const APInt &Cmp = CCmp->getAPIntValue();
- ComparingWithAllZeros &= Cmp.isZero();
- // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
- // if C2 is not less than C1, the comparison is always false.
- // But we will only be able to produce the comparison that will give the
- // opposive tautological answer. So this lane would need to be fixed up.
- bool TautologicalInvertedLane = D.ule(Cmp);
- HadTautologicalInvertedLanes |= TautologicalInvertedLane;
- // If all lanes are tautological (either all divisors are ones, or divisor
- // is not greater than the constant we are comparing with),
- // we will prefer to avoid the fold.
- bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
- HadTautologicalLanes |= TautologicalLane;
- AllLanesAreTautological &= TautologicalLane;
- // If we are comparing with non-zero, we need'll need to subtract said
- // comparison value from the LHS. But there is no point in doing that if
- // every lane where we are comparing with non-zero is tautological..
- if (!Cmp.isZero())
- AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
- // Decompose D into D0 * 2^K
- unsigned K = D.countTrailingZeros();
- assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
- APInt D0 = D.lshr(K);
- // D is even if it has trailing zeros.
- HadEvenDivisor |= (K != 0);
- // D is a power-of-two if D0 is one.
- // If all divisors are power-of-two, we will prefer to avoid the fold.
- AllDivisorsArePowerOfTwo &= D0.isOne();
- // P = inv(D0, 2^W)
- // 2^W requires W + 1 bits, so we have to extend and then truncate.
- unsigned W = D.getBitWidth();
- APInt P = D0.zext(W + 1)
- .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
- .trunc(W);
- assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
- assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
- // Q = floor((2^W - 1) u/ D)
- // R = ((2^W - 1) u% D)
- APInt Q, R;
- APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
- // If we are comparing with zero, then that comparison constant is okay,
- // else it may need to be one less than that.
- if (Cmp.ugt(R))
- Q -= 1;
- assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
- "We are expecting that K is always less than all-ones for ShSVT");
- // If the lane is tautological the result can be constant-folded.
- if (TautologicalLane) {
- // Set P and K amount to a bogus values so we can try to splat them.
- P = 0;
- K = -1;
- // And ensure that comparison constant is tautological,
- // it will always compare true/false.
- Q = -1;
- }
- PAmts.push_back(DAG.getConstant(P, DL, SVT));
- KAmts.push_back(
- DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
- QAmts.push_back(DAG.getConstant(Q, DL, SVT));
- return true;
- };
- SDValue N = REMNode.getOperand(0);
- SDValue D = REMNode.getOperand(1);
- // Collect the values from each element.
- if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
- return SDValue();
- // If all lanes are tautological, the result can be constant-folded.
- if (AllLanesAreTautological)
- return SDValue();
- // If this is a urem by a powers-of-two, avoid the fold since it can be
- // best implemented as a bit test.
- if (AllDivisorsArePowerOfTwo)
- return SDValue();
- SDValue PVal, KVal, QVal;
- if (D.getOpcode() == ISD::BUILD_VECTOR) {
- if (HadTautologicalLanes) {
- // Try to turn PAmts into a splat, since we don't care about the values
- // that are currently '0'. If we can't, just keep '0'`s.
- turnVectorIntoSplatVector(PAmts, isNullConstant);
- // Try to turn KAmts into a splat, since we don't care about the values
- // that are currently '-1'. If we can't, change them to '0'`s.
- turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
- DAG.getConstant(0, DL, ShSVT));
- }
- PVal = DAG.getBuildVector(VT, DL, PAmts);
- KVal = DAG.getBuildVector(ShVT, DL, KAmts);
- QVal = DAG.getBuildVector(VT, DL, QAmts);
- } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
- assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
- "Expected matchBinaryPredicate to return one element for "
- "SPLAT_VECTORs");
- PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
- KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
- QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
- } else {
- PVal = PAmts[0];
- KVal = KAmts[0];
- QVal = QAmts[0];
- }
- if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
- if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
- return SDValue(); // FIXME: Could/should use `ISD::ADD`?
- assert(CompTargetNode.getValueType() == N.getValueType() &&
- "Expecting that the types on LHS and RHS of comparisons match.");
- N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
- }
- // (mul N, P)
- SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
- Created.push_back(Op0.getNode());
- // Rotate right only if any divisor was even. We avoid rotates for all-odd
- // divisors as a performance improvement, since rotating by 0 is a no-op.
- if (HadEvenDivisor) {
- // We need ROTR to do this.
- if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
- return SDValue();
- // UREM: (rotr (mul N, P), K)
- Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
- Created.push_back(Op0.getNode());
- }
- // UREM: (setule/setugt (rotr (mul N, P), K), Q)
- SDValue NewCC =
- DAG.getSetCC(DL, SETCCVT, Op0, QVal,
- ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
- if (!HadTautologicalInvertedLanes)
- return NewCC;
- // If any lanes previously compared always-false, the NewCC will give
- // always-true result for them, so we need to fixup those lanes.
- // Or the other way around for inequality predicate.
- assert(VT.isVector() && "Can/should only get here for vectors.");
- Created.push_back(NewCC.getNode());
- // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
- // if C2 is not less than C1, the comparison is always false.
- // But we have produced the comparison that will give the
- // opposive tautological answer. So these lanes would need to be fixed up.
- SDValue TautologicalInvertedChannels =
- DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
- Created.push_back(TautologicalInvertedChannels.getNode());
- // NOTE: we avoid letting illegal types through even if we're before legalize
- // ops – legalization has a hard time producing good code for this.
- if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
- // If we have a vector select, let's replace the comparison results in the
- // affected lanes with the correct tautological result.
- SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
- DL, SETCCVT, SETCCVT);
- return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
- Replacement, NewCC);
- }
- // Else, we can just invert the comparison result in the appropriate lanes.
- //
- // NOTE: see the note above VSELECT above.
- if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
- return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
- TautologicalInvertedChannels);
- return SDValue(); // Don't know how to lower.
- }
- /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
- /// where the divisor is constant and the comparison target is zero,
- /// return a DAG expression that will generate the same comparison result
- /// using only multiplications, additions and shifts/rotations.
- /// Ref: "Hacker's Delight" 10-17.
- SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
- SDValue CompTargetNode,
- ISD::CondCode Cond,
- DAGCombinerInfo &DCI,
- const SDLoc &DL) const {
- SmallVector<SDNode *, 7> Built;
- if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
- DCI, DL, Built)) {
- assert(Built.size() <= 7 && "Max size prediction failed.");
- for (SDNode *N : Built)
- DCI.AddToWorklist(N);
- return Folded;
- }
- return SDValue();
- }
- SDValue
- TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
- SDValue CompTargetNode, ISD::CondCode Cond,
- DAGCombinerInfo &DCI, const SDLoc &DL,
- SmallVectorImpl<SDNode *> &Created) const {
- // Fold:
- // (seteq/ne (srem N, D), 0)
- // To:
- // (setule/ugt (rotr (add (mul N, P), A), K), Q)
- //
- // - D must be constant, with D = D0 * 2^K where D0 is odd
- // - P is the multiplicative inverse of D0 modulo 2^W
- // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
- // - Q = floor((2 * A) / (2^K))
- // where W is the width of the common type of N and D.
- assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- "Only applicable for (in)equality comparisons.");
- SelectionDAG &DAG = DCI.DAG;
- EVT VT = REMNode.getValueType();
- EVT SVT = VT.getScalarType();
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
- EVT ShSVT = ShVT.getScalarType();
- // If we are after ops legalization, and MUL is unavailable, we can not
- // proceed.
- if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
- return SDValue();
- // TODO: Could support comparing with non-zero too.
- ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
- if (!CompTarget || !CompTarget->isZero())
- return SDValue();
- bool HadIntMinDivisor = false;
- bool HadOneDivisor = false;
- bool AllDivisorsAreOnes = true;
- bool HadEvenDivisor = false;
- bool NeedToApplyOffset = false;
- bool AllDivisorsArePowerOfTwo = true;
- SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
- auto BuildSREMPattern = [&](ConstantSDNode *C) {
- // Division by 0 is UB. Leave it to be constant-folded elsewhere.
- if (C->isZero())
- return false;
- // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
- // WARNING: this fold is only valid for positive divisors!
- APInt D = C->getAPIntValue();
- if (D.isNegative())
- D.negate(); // `rem %X, -C` is equivalent to `rem %X, C`
- HadIntMinDivisor |= D.isMinSignedValue();
- // If all divisors are ones, we will prefer to avoid the fold.
- HadOneDivisor |= D.isOne();
- AllDivisorsAreOnes &= D.isOne();
- // Decompose D into D0 * 2^K
- unsigned K = D.countTrailingZeros();
- assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
- APInt D0 = D.lshr(K);
- if (!D.isMinSignedValue()) {
- // D is even if it has trailing zeros; unless it's INT_MIN, in which case
- // we don't care about this lane in this fold, we'll special-handle it.
- HadEvenDivisor |= (K != 0);
- }
- // D is a power-of-two if D0 is one. This includes INT_MIN.
- // If all divisors are power-of-two, we will prefer to avoid the fold.
- AllDivisorsArePowerOfTwo &= D0.isOne();
- // P = inv(D0, 2^W)
- // 2^W requires W + 1 bits, so we have to extend and then truncate.
- unsigned W = D.getBitWidth();
- APInt P = D0.zext(W + 1)
- .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
- .trunc(W);
- assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
- assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
- // A = floor((2^(W - 1) - 1) / D0) & -2^K
- APInt A = APInt::getSignedMaxValue(W).udiv(D0);
- A.clearLowBits(K);
- if (!D.isMinSignedValue()) {
- // If divisor INT_MIN, then we don't care about this lane in this fold,
- // we'll special-handle it.
- NeedToApplyOffset |= A != 0;
- }
- // Q = floor((2 * A) / (2^K))
- APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
- assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
- "We are expecting that A is always less than all-ones for SVT");
- assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
- "We are expecting that K is always less than all-ones for ShSVT");
- // If the divisor is 1 the result can be constant-folded. Likewise, we
- // don't care about INT_MIN lanes, those can be set to undef if appropriate.
- if (D.isOne()) {
- // Set P, A and K to a bogus values so we can try to splat them.
- P = 0;
- A = -1;
- K = -1;
- // x ?% 1 == 0 <--> true <--> x u<= -1
- Q = -1;
- }
- PAmts.push_back(DAG.getConstant(P, DL, SVT));
- AAmts.push_back(DAG.getConstant(A, DL, SVT));
- KAmts.push_back(
- DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
- QAmts.push_back(DAG.getConstant(Q, DL, SVT));
- return true;
- };
- SDValue N = REMNode.getOperand(0);
- SDValue D = REMNode.getOperand(1);
- // Collect the values from each element.
- if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
- return SDValue();
- // If this is a srem by a one, avoid the fold since it can be constant-folded.
- if (AllDivisorsAreOnes)
- return SDValue();
- // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
- // since it can be best implemented as a bit test.
- if (AllDivisorsArePowerOfTwo)
- return SDValue();
- SDValue PVal, AVal, KVal, QVal;
- if (D.getOpcode() == ISD::BUILD_VECTOR) {
- if (HadOneDivisor) {
- // Try to turn PAmts into a splat, since we don't care about the values
- // that are currently '0'. If we can't, just keep '0'`s.
- turnVectorIntoSplatVector(PAmts, isNullConstant);
- // Try to turn AAmts into a splat, since we don't care about the
- // values that are currently '-1'. If we can't, change them to '0'`s.
- turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
- DAG.getConstant(0, DL, SVT));
- // Try to turn KAmts into a splat, since we don't care about the values
- // that are currently '-1'. If we can't, change them to '0'`s.
- turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
- DAG.getConstant(0, DL, ShSVT));
- }
- PVal = DAG.getBuildVector(VT, DL, PAmts);
- AVal = DAG.getBuildVector(VT, DL, AAmts);
- KVal = DAG.getBuildVector(ShVT, DL, KAmts);
- QVal = DAG.getBuildVector(VT, DL, QAmts);
- } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
- assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
- QAmts.size() == 1 &&
- "Expected matchUnaryPredicate to return one element for scalable "
- "vectors");
- PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
- AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
- KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
- QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
- } else {
- assert(isa<ConstantSDNode>(D) && "Expected a constant");
- PVal = PAmts[0];
- AVal = AAmts[0];
- KVal = KAmts[0];
- QVal = QAmts[0];
- }
- // (mul N, P)
- SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
- Created.push_back(Op0.getNode());
- if (NeedToApplyOffset) {
- // We need ADD to do this.
- if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
- return SDValue();
- // (add (mul N, P), A)
- Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
- Created.push_back(Op0.getNode());
- }
- // Rotate right only if any divisor was even. We avoid rotates for all-odd
- // divisors as a performance improvement, since rotating by 0 is a no-op.
- if (HadEvenDivisor) {
- // We need ROTR to do this.
- if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
- return SDValue();
- // SREM: (rotr (add (mul N, P), A), K)
- Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
- Created.push_back(Op0.getNode());
- }
- // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
- SDValue Fold =
- DAG.getSetCC(DL, SETCCVT, Op0, QVal,
- ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
- // If we didn't have lanes with INT_MIN divisor, then we're done.
- if (!HadIntMinDivisor)
- return Fold;
- // That fold is only valid for positive divisors. Which effectively means,
- // it is invalid for INT_MIN divisors. So if we have such a lane,
- // we must fix-up results for said lanes.
- assert(VT.isVector() && "Can/should only get here for vectors.");
- // NOTE: we avoid letting illegal types through even if we're before legalize
- // ops – legalization has a hard time producing good code for the code that
- // follows.
- if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
- !isOperationLegalOrCustom(ISD::AND, VT) ||
- !isOperationLegalOrCustom(Cond, VT) ||
- !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
- return SDValue();
- Created.push_back(Fold.getNode());
- SDValue IntMin = DAG.getConstant(
- APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
- SDValue IntMax = DAG.getConstant(
- APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
- SDValue Zero =
- DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
- // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
- SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
- Created.push_back(DivisorIsIntMin.getNode());
- // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0
- SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
- Created.push_back(Masked.getNode());
- SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
- Created.push_back(MaskedIsZero.getNode());
- // To produce final result we need to blend 2 vectors: 'SetCC' and
- // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
- // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
- // constant-folded, select can get lowered to a shuffle with constant mask.
- SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
- MaskedIsZero, Fold);
- return Blended;
- }
- bool TargetLowering::
- verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
- if (!isa<ConstantSDNode>(Op.getOperand(0))) {
- DAG.getContext()->emitError("argument to '__builtin_return_address' must "
- "be a constant integer");
- return true;
- }
- return false;
- }
- SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
- const DenormalMode &Mode) const {
- SDLoc DL(Op);
- EVT VT = Op.getValueType();
- EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
- // Testing it with denormal inputs to avoid wrong estimate.
- if (Mode.Input == DenormalMode::IEEE) {
- // This is specifically a check for the handling of denormal inputs,
- // not the result.
- // Test = fabs(X) < SmallestNormal
- const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
- APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
- SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
- SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
- return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
- }
- // Test = X == 0.0
- return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
- }
- SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
- bool LegalOps, bool OptForSize,
- NegatibleCost &Cost,
- unsigned Depth) const {
- // fneg is removable even if it has multiple uses.
- if (Op.getOpcode() == ISD::FNEG) {
- Cost = NegatibleCost::Cheaper;
- return Op.getOperand(0);
- }
- // Don't recurse exponentially.
- if (Depth > SelectionDAG::MaxRecursionDepth)
- return SDValue();
- // Pre-increment recursion depth for use in recursive calls.
- ++Depth;
- const SDNodeFlags Flags = Op->getFlags();
- const TargetOptions &Options = DAG.getTarget().Options;
- EVT VT = Op.getValueType();
- unsigned Opcode = Op.getOpcode();
- // Don't allow anything with multiple uses unless we know it is free.
- if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
- bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
- isFPExtFree(VT, Op.getOperand(0).getValueType());
- if (!IsFreeExtend)
- return SDValue();
- }
- auto RemoveDeadNode = [&](SDValue N) {
- if (N && N.getNode()->use_empty())
- DAG.RemoveDeadNode(N.getNode());
- };
- SDLoc DL(Op);
- // Because getNegatedExpression can delete nodes we need a handle to keep
- // temporary nodes alive in case the recursion manages to create an identical
- // node.
- std::list<HandleSDNode> Handles;
- switch (Opcode) {
- case ISD::ConstantFP: {
- // Don't invert constant FP values after legalization unless the target says
- // the negated constant is legal.
- bool IsOpLegal =
- isOperationLegal(ISD::ConstantFP, VT) ||
- isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
- OptForSize);
- if (LegalOps && !IsOpLegal)
- break;
- APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
- V.changeSign();
- SDValue CFP = DAG.getConstantFP(V, DL, VT);
- // If we already have the use of the negated floating constant, it is free
- // to negate it even it has multiple uses.
- if (!Op.hasOneUse() && CFP.use_empty())
- break;
- Cost = NegatibleCost::Neutral;
- return CFP;
- }
- case ISD::BUILD_VECTOR: {
- // Only permit BUILD_VECTOR of constants.
- if (llvm::any_of(Op->op_values(), [&](SDValue N) {
- return !N.isUndef() && !isa<ConstantFPSDNode>(N);
- }))
- break;
- bool IsOpLegal =
- (isOperationLegal(ISD::ConstantFP, VT) &&
- isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
- llvm::all_of(Op->op_values(), [&](SDValue N) {
- return N.isUndef() ||
- isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
- OptForSize);
- });
- if (LegalOps && !IsOpLegal)
- break;
- SmallVector<SDValue, 4> Ops;
- for (SDValue C : Op->op_values()) {
- if (C.isUndef()) {
- Ops.push_back(C);
- continue;
- }
- APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
- V.changeSign();
- Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
- }
- Cost = NegatibleCost::Neutral;
- return DAG.getBuildVector(VT, DL, Ops);
- }
- case ISD::FADD: {
- if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
- break;
- // After operation legalization, it might not be legal to create new FSUBs.
- if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
- break;
- SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
- // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
- NegatibleCost CostX = NegatibleCost::Expensive;
- SDValue NegX =
- getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
- // Prevent this node from being deleted by the next call.
- if (NegX)
- Handles.emplace_back(NegX);
- // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
- NegatibleCost CostY = NegatibleCost::Expensive;
- SDValue NegY =
- getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
- // We're done with the handles.
- Handles.clear();
- // Negate the X if its cost is less or equal than Y.
- if (NegX && (CostX <= CostY)) {
- Cost = CostX;
- SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
- if (NegY != N)
- RemoveDeadNode(NegY);
- return N;
- }
- // Negate the Y if it is not expensive.
- if (NegY) {
- Cost = CostY;
- SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
- if (NegX != N)
- RemoveDeadNode(NegX);
- return N;
- }
- break;
- }
- case ISD::FSUB: {
- // We can't turn -(A-B) into B-A when we honor signed zeros.
- if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
- break;
- SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
- // fold (fneg (fsub 0, Y)) -> Y
- if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
- if (C->isZero()) {
- Cost = NegatibleCost::Cheaper;
- return Y;
- }
- // fold (fneg (fsub X, Y)) -> (fsub Y, X)
- Cost = NegatibleCost::Neutral;
- return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
- }
- case ISD::FMUL:
- case ISD::FDIV: {
- SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
- // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
- NegatibleCost CostX = NegatibleCost::Expensive;
- SDValue NegX =
- getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
- // Prevent this node from being deleted by the next call.
- if (NegX)
- Handles.emplace_back(NegX);
- // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
- NegatibleCost CostY = NegatibleCost::Expensive;
- SDValue NegY =
- getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
- // We're done with the handles.
- Handles.clear();
- // Negate the X if its cost is less or equal than Y.
- if (NegX && (CostX <= CostY)) {
- Cost = CostX;
- SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
- if (NegY != N)
- RemoveDeadNode(NegY);
- return N;
- }
- // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
- if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
- if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
- break;
- // Negate the Y if it is not expensive.
- if (NegY) {
- Cost = CostY;
- SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
- if (NegX != N)
- RemoveDeadNode(NegX);
- return N;
- }
- break;
- }
- case ISD::FMA:
- case ISD::FMAD: {
- if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
- break;
- SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
- NegatibleCost CostZ = NegatibleCost::Expensive;
- SDValue NegZ =
- getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
- // Give up if fail to negate the Z.
- if (!NegZ)
- break;
- // Prevent this node from being deleted by the next two calls.
- Handles.emplace_back(NegZ);
- // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
- NegatibleCost CostX = NegatibleCost::Expensive;
- SDValue NegX =
- getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
- // Prevent this node from being deleted by the next call.
- if (NegX)
- Handles.emplace_back(NegX);
- // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
- NegatibleCost CostY = NegatibleCost::Expensive;
- SDValue NegY =
- getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
- // We're done with the handles.
- Handles.clear();
- // Negate the X if its cost is less or equal than Y.
- if (NegX && (CostX <= CostY)) {
- Cost = std::min(CostX, CostZ);
- SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
- if (NegY != N)
- RemoveDeadNode(NegY);
- return N;
- }
- // Negate the Y if it is not expensive.
- if (NegY) {
- Cost = std::min(CostY, CostZ);
- SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
- if (NegX != N)
- RemoveDeadNode(NegX);
- return N;
- }
- break;
- }
- case ISD::FP_EXTEND:
- case ISD::FSIN:
- if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
- OptForSize, Cost, Depth))
- return DAG.getNode(Opcode, DL, VT, NegV);
- break;
- case ISD::FP_ROUND:
- if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
- OptForSize, Cost, Depth))
- return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
- break;
- case ISD::SELECT:
- case ISD::VSELECT: {
- // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS))
- // iff at least one cost is cheaper and the other is neutral/cheaper
- SDValue LHS = Op.getOperand(1);
- NegatibleCost CostLHS = NegatibleCost::Expensive;
- SDValue NegLHS =
- getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth);
- if (!NegLHS || CostLHS > NegatibleCost::Neutral) {
- RemoveDeadNode(NegLHS);
- break;
- }
- // Prevent this node from being deleted by the next call.
- Handles.emplace_back(NegLHS);
- SDValue RHS = Op.getOperand(2);
- NegatibleCost CostRHS = NegatibleCost::Expensive;
- SDValue NegRHS =
- getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth);
- // We're done with the handles.
- Handles.clear();
- if (!NegRHS || CostRHS > NegatibleCost::Neutral ||
- (CostLHS != NegatibleCost::Cheaper &&
- CostRHS != NegatibleCost::Cheaper)) {
- RemoveDeadNode(NegLHS);
- RemoveDeadNode(NegRHS);
- break;
- }
- Cost = std::min(CostLHS, CostRHS);
- return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS);
- }
- }
- return SDValue();
- }
- //===----------------------------------------------------------------------===//
- // Legalization Utilities
- //===----------------------------------------------------------------------===//
- bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
- SDValue LHS, SDValue RHS,
- SmallVectorImpl<SDValue> &Result,
- EVT HiLoVT, SelectionDAG &DAG,
- MulExpansionKind Kind, SDValue LL,
- SDValue LH, SDValue RL, SDValue RH) const {
- assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
- Opcode == ISD::SMUL_LOHI);
- bool HasMULHS = (Kind == MulExpansionKind::Always) ||
- isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
- bool HasMULHU = (Kind == MulExpansionKind::Always) ||
- isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
- bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
- isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
- bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
- isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
- if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
- return false;
- unsigned OuterBitSize = VT.getScalarSizeInBits();
- unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
- // LL, LH, RL, and RH must be either all NULL or all set to a value.
- assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
- (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
- SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
- auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
- bool Signed) -> bool {
- if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
- Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
- Hi = SDValue(Lo.getNode(), 1);
- return true;
- }
- if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
- Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
- Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
- return true;
- }
- return false;
- };
- SDValue Lo, Hi;
- if (!LL.getNode() && !RL.getNode() &&
- isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
- LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
- RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
- }
- if (!LL.getNode())
- return false;
- APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
- if (DAG.MaskedValueIsZero(LHS, HighMask) &&
- DAG.MaskedValueIsZero(RHS, HighMask)) {
- // The inputs are both zero-extended.
- if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
- Result.push_back(Lo);
- Result.push_back(Hi);
- if (Opcode != ISD::MUL) {
- SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
- Result.push_back(Zero);
- Result.push_back(Zero);
- }
- return true;
- }
- }
- if (!VT.isVector() && Opcode == ISD::MUL &&
- DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize &&
- DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) {
- // The input values are both sign-extended.
- // TODO non-MUL case?
- if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
- Result.push_back(Lo);
- Result.push_back(Hi);
- return true;
- }
- }
- unsigned ShiftAmount = OuterBitSize - InnerBitSize;
- SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
- if (!LH.getNode() && !RH.getNode() &&
- isOperationLegalOrCustom(ISD::SRL, VT) &&
- isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
- LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
- LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
- RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
- RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
- }
- if (!LH.getNode())
- return false;
- if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
- return false;
- Result.push_back(Lo);
- if (Opcode == ISD::MUL) {
- RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
- LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
- Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
- Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
- Result.push_back(Hi);
- return true;
- }
- // Compute the full width result.
- auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
- Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
- Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
- Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
- return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
- };
- SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
- if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
- return false;
- // This is effectively the add part of a multiply-add of half-sized operands,
- // so it cannot overflow.
- Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
- if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
- return false;
- SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
- EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
- isOperationLegalOrCustom(ISD::ADDE, VT));
- if (UseGlue)
- Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
- Merge(Lo, Hi));
- else
- Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
- Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
- SDValue Carry = Next.getValue(1);
- Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
- Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
- if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
- return false;
- if (UseGlue)
- Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
- Carry);
- else
- Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
- Zero, Carry);
- Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
- if (Opcode == ISD::SMUL_LOHI) {
- SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
- DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
- Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
- NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
- DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
- Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
- }
- Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
- Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
- Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
- return true;
- }
- bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
- SelectionDAG &DAG, MulExpansionKind Kind,
- SDValue LL, SDValue LH, SDValue RL,
- SDValue RH) const {
- SmallVector<SDValue, 2> Result;
- bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
- N->getOperand(0), N->getOperand(1), Result, HiLoVT,
- DAG, Kind, LL, LH, RL, RH);
- if (Ok) {
- assert(Result.size() == 2);
- Lo = Result[0];
- Hi = Result[1];
- }
- return Ok;
- }
- // Optimize unsigned division or remainder by constants for types twice as large
- // as a legal VT.
- //
- // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder
- // can be computed
- // as:
- // Sum += __builtin_uadd_overflow(Lo, High, &Sum);
- // Remainder = Sum % Constant
- // This is based on "Remainder by Summing Digits" from Hacker's Delight.
- //
- // For division, we can compute the remainder using the algorithm described
- // above, subtract it from the dividend to get an exact multiple of Constant.
- // Then multiply that extact multiply by the multiplicative inverse modulo
- // (1 << (BitWidth / 2)) to get the quotient.
- // If Constant is even, we can shift right the dividend and the divisor by the
- // number of trailing zeros in Constant before applying the remainder algorithm.
- // If we're after the quotient, we can subtract this value from the shifted
- // dividend and multiply by the multiplicative inverse of the shifted divisor.
- // If we want the remainder, we shift the value left by the number of trailing
- // zeros and add the bits that were shifted out of the dividend.
- bool TargetLowering::expandDIVREMByConstant(SDNode *N,
- SmallVectorImpl<SDValue> &Result,
- EVT HiLoVT, SelectionDAG &DAG,
- SDValue LL, SDValue LH) const {
- unsigned Opcode = N->getOpcode();
- EVT VT = N->getValueType(0);
- // TODO: Support signed division/remainder.
- if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM)
- return false;
- assert(
- (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) &&
- "Unexpected opcode");
- auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1));
- if (!CN)
- return false;
- APInt Divisor = CN->getAPIntValue();
- unsigned BitWidth = Divisor.getBitWidth();
- unsigned HBitWidth = BitWidth / 2;
- assert(VT.getScalarSizeInBits() == BitWidth &&
- HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs");
- // Divisor needs to less than (1 << HBitWidth).
- APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth);
- if (Divisor.uge(HalfMaxPlus1))
- return false;
- // We depend on the UREM by constant optimization in DAGCombiner that requires
- // high multiply.
- if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) &&
- !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT))
- return false;
- // Don't expand if optimizing for size.
- if (DAG.shouldOptForSize())
- return false;
- // Early out for 0 or 1 divisors.
- if (Divisor.ule(1))
- return false;
- // If the divisor is even, shift it until it becomes odd.
- unsigned TrailingZeros = 0;
- if (!Divisor[0]) {
- TrailingZeros = Divisor.countTrailingZeros();
- Divisor.lshrInPlace(TrailingZeros);
- }
- SDLoc dl(N);
- SDValue Sum;
- SDValue PartialRem;
- // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and
- // then add in the carry.
- // TODO: If we can't split it in half, we might be able to split into 3 or
- // more pieces using a smaller bit width.
- if (HalfMaxPlus1.urem(Divisor).isOneValue()) {
- assert(!LL == !LH && "Expected both input halves or no input halves!");
- if (!LL) {
- LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HiLoVT, N->getOperand(0),
- DAG.getIntPtrConstant(0, dl));
- LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HiLoVT, N->getOperand(0),
- DAG.getIntPtrConstant(1, dl));
- }
- // Shift the input by the number of TrailingZeros in the divisor. The
- // shifted out bits will be added to the remainder later.
- if (TrailingZeros) {
- // Save the shifted off bits if we need the remainder.
- if (Opcode != ISD::UDIV) {
- APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
- PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL,
- DAG.getConstant(Mask, dl, HiLoVT));
- }
- LL = DAG.getNode(
- ISD::OR, dl, HiLoVT,
- DAG.getNode(ISD::SRL, dl, HiLoVT, LL,
- DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)),
- DAG.getNode(ISD::SHL, dl, HiLoVT, LH,
- DAG.getShiftAmountConstant(HBitWidth - TrailingZeros,
- HiLoVT, dl)));
- LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH,
- DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
- }
- // Use addcarry if we can, otherwise use a compare to detect overflow.
- EVT SetCCType =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT);
- if (isOperationLegalOrCustom(ISD::ADDCARRY, HiLoVT)) {
- SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType);
- Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH);
- Sum = DAG.getNode(ISD::ADDCARRY, dl, VTList, Sum,
- DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1));
- } else {
- Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH);
- SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT);
- // If the boolean for the target is 0 or 1, we can add the setcc result
- // directly.
- if (getBooleanContents(HiLoVT) ==
- TargetLoweringBase::ZeroOrOneBooleanContent)
- Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT);
- else
- Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT),
- DAG.getConstant(0, dl, HiLoVT));
- Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry);
- }
- }
- // If we didn't find a sum, we can't do the expansion.
- if (!Sum)
- return false;
- // Perform a HiLoVT urem on the Sum using truncated divisor.
- SDValue RemL =
- DAG.getNode(ISD::UREM, dl, HiLoVT, Sum,
- DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT));
- SDValue RemH = DAG.getConstant(0, dl, HiLoVT);
- if (Opcode != ISD::UREM) {
- // Subtract the remainder from the shifted dividend.
- SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH);
- SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH);
- Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem);
- // Multiply by the multiplicative inverse of the divisor modulo
- // (1 << BitWidth).
- APInt Mod = APInt::getSignedMinValue(BitWidth + 1);
- APInt MulFactor = Divisor.zext(BitWidth + 1);
- MulFactor = MulFactor.multiplicativeInverse(Mod);
- MulFactor = MulFactor.trunc(BitWidth);
- SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend,
- DAG.getConstant(MulFactor, dl, VT));
- // Split the quotient into low and high parts.
- SDValue QuotL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HiLoVT, Quotient,
- DAG.getIntPtrConstant(0, dl));
- SDValue QuotH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HiLoVT, Quotient,
- DAG.getIntPtrConstant(1, dl));
- Result.push_back(QuotL);
- Result.push_back(QuotH);
- }
- if (Opcode != ISD::UDIV) {
- // If we shifted the input, shift the remainder left and add the bits we
- // shifted off the input.
- if (TrailingZeros) {
- APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
- RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL,
- DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
- RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem);
- }
- Result.push_back(RemL);
- Result.push_back(DAG.getConstant(0, dl, HiLoVT));
- }
- return true;
- }
- // Check that (every element of) Z is undef or not an exact multiple of BW.
- static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
- return ISD::matchUnaryPredicate(
- Z,
- [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
- true);
- }
- static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) {
- EVT VT = Node->getValueType(0);
- SDValue ShX, ShY;
- SDValue ShAmt, InvShAmt;
- SDValue X = Node->getOperand(0);
- SDValue Y = Node->getOperand(1);
- SDValue Z = Node->getOperand(2);
- SDValue Mask = Node->getOperand(3);
- SDValue VL = Node->getOperand(4);
- unsigned BW = VT.getScalarSizeInBits();
- bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL;
- SDLoc DL(SDValue(Node, 0));
- EVT ShVT = Z.getValueType();
- if (isNonZeroModBitWidthOrUndef(Z, BW)) {
- // fshl: X << C | Y >> (BW - C)
- // fshr: X << (BW - C) | Y >> C
- // where C = Z % BW is not zero
- SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
- ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
- InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL);
- ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask,
- VL);
- ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask,
- VL);
- } else {
- // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
- // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
- SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT);
- if (isPowerOf2_32(BW)) {
- // Z % BW -> Z & (BW - 1)
- ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL);
- // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
- SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z,
- DAG.getAllOnesConstant(DL, ShVT), Mask, VL);
- InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL);
- } else {
- SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
- ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
- InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL);
- }
- SDValue One = DAG.getConstant(1, DL, ShVT);
- if (IsFSHL) {
- ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL);
- SDValue ShY1 = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, One, Mask, VL);
- ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, ShY1, InvShAmt, Mask, VL);
- } else {
- SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL);
- ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL);
- ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, ShAmt, Mask, VL);
- }
- }
- return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL);
- }
- SDValue TargetLowering::expandFunnelShift(SDNode *Node,
- SelectionDAG &DAG) const {
- if (Node->isVPOpcode())
- return expandVPFunnelShift(Node, DAG);
- EVT VT = Node->getValueType(0);
- if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
- !isOperationLegalOrCustom(ISD::SRL, VT) ||
- !isOperationLegalOrCustom(ISD::SUB, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
- return SDValue();
- SDValue X = Node->getOperand(0);
- SDValue Y = Node->getOperand(1);
- SDValue Z = Node->getOperand(2);
- unsigned BW = VT.getScalarSizeInBits();
- bool IsFSHL = Node->getOpcode() == ISD::FSHL;
- SDLoc DL(SDValue(Node, 0));
- EVT ShVT = Z.getValueType();
- // If a funnel shift in the other direction is more supported, use it.
- unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
- if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
- isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
- if (isNonZeroModBitWidthOrUndef(Z, BW)) {
- // fshl X, Y, Z -> fshr X, Y, -Z
- // fshr X, Y, Z -> fshl X, Y, -Z
- SDValue Zero = DAG.getConstant(0, DL, ShVT);
- Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
- } else {
- // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
- // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
- SDValue One = DAG.getConstant(1, DL, ShVT);
- if (IsFSHL) {
- Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
- X = DAG.getNode(ISD::SRL, DL, VT, X, One);
- } else {
- X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
- Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
- }
- Z = DAG.getNOT(DL, Z, ShVT);
- }
- return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
- }
- SDValue ShX, ShY;
- SDValue ShAmt, InvShAmt;
- if (isNonZeroModBitWidthOrUndef(Z, BW)) {
- // fshl: X << C | Y >> (BW - C)
- // fshr: X << (BW - C) | Y >> C
- // where C = Z % BW is not zero
- SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
- ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
- InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
- ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
- ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
- } else {
- // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
- // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
- SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
- if (isPowerOf2_32(BW)) {
- // Z % BW -> Z & (BW - 1)
- ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
- // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
- InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
- } else {
- SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
- ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
- InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
- }
- SDValue One = DAG.getConstant(1, DL, ShVT);
- if (IsFSHL) {
- ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
- SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
- ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
- } else {
- SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
- ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
- ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
- }
- }
- return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
- }
- // TODO: Merge with expandFunnelShift.
- SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
- SelectionDAG &DAG) const {
- EVT VT = Node->getValueType(0);
- unsigned EltSizeInBits = VT.getScalarSizeInBits();
- bool IsLeft = Node->getOpcode() == ISD::ROTL;
- SDValue Op0 = Node->getOperand(0);
- SDValue Op1 = Node->getOperand(1);
- SDLoc DL(SDValue(Node, 0));
- EVT ShVT = Op1.getValueType();
- SDValue Zero = DAG.getConstant(0, DL, ShVT);
- // If a rotate in the other direction is more supported, use it.
- unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
- if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
- isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
- SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
- return DAG.getNode(RevRot, DL, VT, Op0, Sub);
- }
- if (!AllowVectorOps && VT.isVector() &&
- (!isOperationLegalOrCustom(ISD::SHL, VT) ||
- !isOperationLegalOrCustom(ISD::SRL, VT) ||
- !isOperationLegalOrCustom(ISD::SUB, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
- return SDValue();
- unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
- unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
- SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
- SDValue ShVal;
- SDValue HsVal;
- if (isPowerOf2_32(EltSizeInBits)) {
- // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
- // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
- SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
- SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
- ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
- SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
- HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
- } else {
- // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
- // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
- SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
- SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
- ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
- SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
- SDValue One = DAG.getConstant(1, DL, ShVT);
- HsVal =
- DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
- }
- return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
- }
- void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
- SelectionDAG &DAG) const {
- assert(Node->getNumOperands() == 3 && "Not a double-shift!");
- EVT VT = Node->getValueType(0);
- unsigned VTBits = VT.getScalarSizeInBits();
- assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
- bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
- bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
- SDValue ShOpLo = Node->getOperand(0);
- SDValue ShOpHi = Node->getOperand(1);
- SDValue ShAmt = Node->getOperand(2);
- EVT ShAmtVT = ShAmt.getValueType();
- EVT ShAmtCCVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
- SDLoc dl(Node);
- // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
- // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
- // away during isel.
- SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
- DAG.getConstant(VTBits - 1, dl, ShAmtVT));
- SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
- DAG.getConstant(VTBits - 1, dl, ShAmtVT))
- : DAG.getConstant(0, dl, VT);
- SDValue Tmp2, Tmp3;
- if (IsSHL) {
- Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
- Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
- } else {
- Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
- Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
- }
- // If the shift amount is larger or equal than the width of a part we don't
- // use the result from the FSHL/FSHR. Insert a test and select the appropriate
- // values for large shift amounts.
- SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
- DAG.getConstant(VTBits, dl, ShAmtVT));
- SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
- DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
- if (IsSHL) {
- Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
- Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
- } else {
- Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
- Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
- }
- }
- bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
- SelectionDAG &DAG) const {
- unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
- SDValue Src = Node->getOperand(OpNo);
- EVT SrcVT = Src.getValueType();
- EVT DstVT = Node->getValueType(0);
- SDLoc dl(SDValue(Node, 0));
- // FIXME: Only f32 to i64 conversions are supported.
- if (SrcVT != MVT::f32 || DstVT != MVT::i64)
- return false;
- if (Node->isStrictFPOpcode())
- // When a NaN is converted to an integer a trap is allowed. We can't
- // use this expansion here because it would eliminate that trap. Other
- // traps are also allowed and cannot be eliminated. See
- // IEEE 754-2008 sec 5.8.
- return false;
- // Expand f32 -> i64 conversion
- // This algorithm comes from compiler-rt's implementation of fixsfdi:
- // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
- unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
- EVT IntVT = SrcVT.changeTypeToInteger();
- EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
- SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
- SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
- SDValue Bias = DAG.getConstant(127, dl, IntVT);
- SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
- SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
- SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
- SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
- SDValue ExponentBits = DAG.getNode(
- ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
- DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
- SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
- SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
- DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
- DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
- Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
- SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
- DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
- DAG.getConstant(0x00800000, dl, IntVT));
- R = DAG.getZExtOrTrunc(R, dl, DstVT);
- R = DAG.getSelectCC(
- dl, Exponent, ExponentLoBit,
- DAG.getNode(ISD::SHL, dl, DstVT, R,
- DAG.getZExtOrTrunc(
- DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
- dl, IntShVT)),
- DAG.getNode(ISD::SRL, dl, DstVT, R,
- DAG.getZExtOrTrunc(
- DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
- dl, IntShVT)),
- ISD::SETGT);
- SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
- DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
- Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
- DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
- return true;
- }
- bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
- SDValue &Chain,
- SelectionDAG &DAG) const {
- SDLoc dl(SDValue(Node, 0));
- unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
- SDValue Src = Node->getOperand(OpNo);
- EVT SrcVT = Src.getValueType();
- EVT DstVT = Node->getValueType(0);
- EVT SetCCVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
- EVT DstSetCCVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
- // Only expand vector types if we have the appropriate vector bit operations.
- unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
- ISD::FP_TO_SINT;
- if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
- !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
- return false;
- // If the maximum float value is smaller then the signed integer range,
- // the destination signmask can't be represented by the float, so we can
- // just use FP_TO_SINT directly.
- const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
- APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
- APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
- if (APFloat::opOverflow &
- APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
- if (Node->isStrictFPOpcode()) {
- Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
- { Node->getOperand(0), Src });
- Chain = Result.getValue(1);
- } else
- Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
- return true;
- }
- // Don't expand it if there isn't cheap fsub instruction.
- if (!isOperationLegalOrCustom(
- Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
- return false;
- SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
- SDValue Sel;
- if (Node->isStrictFPOpcode()) {
- Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
- Node->getOperand(0), /*IsSignaling*/ true);
- Chain = Sel.getValue(1);
- } else {
- Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
- }
- bool Strict = Node->isStrictFPOpcode() ||
- shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
- if (Strict) {
- // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
- // signmask then offset (the result of which should be fully representable).
- // Sel = Src < 0x8000000000000000
- // FltOfs = select Sel, 0, 0x8000000000000000
- // IntOfs = select Sel, 0, 0x8000000000000000
- // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
- // TODO: Should any fast-math-flags be set for the FSUB?
- SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
- DAG.getConstantFP(0.0, dl, SrcVT), Cst);
- Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
- SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
- DAG.getConstant(0, dl, DstVT),
- DAG.getConstant(SignMask, dl, DstVT));
- SDValue SInt;
- if (Node->isStrictFPOpcode()) {
- SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
- { Chain, Src, FltOfs });
- SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
- { Val.getValue(1), Val });
- Chain = SInt.getValue(1);
- } else {
- SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
- SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
- }
- Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
- } else {
- // Expand based on maximum range of FP_TO_SINT:
- // True = fp_to_sint(Src)
- // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
- // Result = select (Src < 0x8000000000000000), True, False
- SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
- // TODO: Should any fast-math-flags be set for the FSUB?
- SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
- DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
- False = DAG.getNode(ISD::XOR, dl, DstVT, False,
- DAG.getConstant(SignMask, dl, DstVT));
- Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
- Result = DAG.getSelect(dl, DstVT, Sel, True, False);
- }
- return true;
- }
- bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
- SDValue &Chain,
- SelectionDAG &DAG) const {
- // This transform is not correct for converting 0 when rounding mode is set
- // to round toward negative infinity which will produce -0.0. So disable under
- // strictfp.
- if (Node->isStrictFPOpcode())
- return false;
- SDValue Src = Node->getOperand(0);
- EVT SrcVT = Src.getValueType();
- EVT DstVT = Node->getValueType(0);
- if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
- return false;
- // Only expand vector types if we have the appropriate vector bit operations.
- if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
- !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
- !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
- !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
- !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
- return false;
- SDLoc dl(SDValue(Node, 0));
- EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
- // Implementation of unsigned i64 to f64 following the algorithm in
- // __floatundidf in compiler_rt. This implementation performs rounding
- // correctly in all rounding modes with the exception of converting 0
- // when rounding toward negative infinity. In that case the fsub will produce
- // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
- SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
- SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
- BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
- SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
- SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
- SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
- SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
- SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
- SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
- SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
- SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
- SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
- SDValue HiSub =
- DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
- Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
- return true;
- }
- SDValue
- TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
- SelectionDAG &DAG) const {
- unsigned Opcode = Node->getOpcode();
- assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
- Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
- "Wrong opcode");
- if (Node->getFlags().hasNoNaNs()) {
- ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
- SDValue Op1 = Node->getOperand(0);
- SDValue Op2 = Node->getOperand(1);
- SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
- // Copy FMF flags, but always set the no-signed-zeros flag
- // as this is implied by the FMINNUM/FMAXNUM semantics.
- SDNodeFlags Flags = Node->getFlags();
- Flags.setNoSignedZeros(true);
- SelCC->setFlags(Flags);
- return SelCC;
- }
- return SDValue();
- }
- SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
- SelectionDAG &DAG) const {
- SDLoc dl(Node);
- unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
- ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
- EVT VT = Node->getValueType(0);
- if (VT.isScalableVector())
- report_fatal_error(
- "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
- if (isOperationLegalOrCustom(NewOp, VT)) {
- SDValue Quiet0 = Node->getOperand(0);
- SDValue Quiet1 = Node->getOperand(1);
- if (!Node->getFlags().hasNoNaNs()) {
- // Insert canonicalizes if it's possible we need to quiet to get correct
- // sNaN behavior.
- if (!DAG.isKnownNeverSNaN(Quiet0)) {
- Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
- Node->getFlags());
- }
- if (!DAG.isKnownNeverSNaN(Quiet1)) {
- Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
- Node->getFlags());
- }
- }
- return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
- }
- // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
- // instead if there are no NaNs.
- if (Node->getFlags().hasNoNaNs()) {
- unsigned IEEE2018Op =
- Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
- if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
- return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
- Node->getOperand(1), Node->getFlags());
- }
- }
- if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
- return SelCC;
- return SDValue();
- }
- SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
- unsigned Test, SDNodeFlags Flags,
- const SDLoc &DL,
- SelectionDAG &DAG) const {
- EVT OperandVT = Op.getValueType();
- assert(OperandVT.isFloatingPoint());
- // Degenerated cases.
- if (Test == 0)
- return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
- if ((Test & fcAllFlags) == fcAllFlags)
- return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
- // PPC double double is a pair of doubles, of which the higher part determines
- // the value class.
- if (OperandVT == MVT::ppcf128) {
- Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
- DAG.getConstant(1, DL, MVT::i32));
- OperandVT = MVT::f64;
- }
- // Some checks may be represented as inversion of simpler check, for example
- // "inf|normal|subnormal|zero" => !"nan".
- bool IsInverted = false;
- if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) {
- IsInverted = true;
- Test = InvertedCheck;
- }
- // Floating-point type properties.
- EVT ScalarFloatVT = OperandVT.getScalarType();
- const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
- const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
- bool IsF80 = (ScalarFloatVT == MVT::f80);
- // Some checks can be implemented using float comparisons, if floating point
- // exceptions are ignored.
- if (Flags.hasNoFPExcept() &&
- isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
- if (Test == fcZero)
- return DAG.getSetCC(DL, ResultVT, Op,
- DAG.getConstantFP(0.0, DL, OperandVT),
- IsInverted ? ISD::SETUNE : ISD::SETOEQ);
- if (Test == fcNan)
- return DAG.getSetCC(DL, ResultVT, Op, Op,
- IsInverted ? ISD::SETO : ISD::SETUO);
- }
- // In the general case use integer operations.
- unsigned BitSize = OperandVT.getScalarSizeInBits();
- EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
- if (OperandVT.isVector())
- IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
- OperandVT.getVectorElementCount());
- SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
- // Various masks.
- APInt SignBit = APInt::getSignMask(BitSize);
- APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign.
- APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
- const unsigned ExplicitIntBitInF80 = 63;
- APInt ExpMask = Inf;
- if (IsF80)
- ExpMask.clearBit(ExplicitIntBitInF80);
- APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
- APInt QNaNBitMask =
- APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
- APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits());
- SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
- SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
- SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
- SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
- SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
- SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
- SDValue Res;
- const auto appendResult = [&](SDValue PartialRes) {
- if (PartialRes) {
- if (Res)
- Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
- else
- Res = PartialRes;
- }
- };
- SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
- const auto getIntBitIsSet = [&]() -> SDValue {
- if (!IntBitIsSetV) {
- APInt IntBitMask(BitSize, 0);
- IntBitMask.setBit(ExplicitIntBitInF80);
- SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
- SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
- IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
- }
- return IntBitIsSetV;
- };
- // Split the value into sign bit and absolute value.
- SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
- SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
- DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
- // Tests that involve more than one class should be processed first.
- SDValue PartialRes;
- if (IsF80)
- ; // Detect finite numbers of f80 by checking individual classes because
- // they have different settings of the explicit integer bit.
- else if ((Test & fcFinite) == fcFinite) {
- // finite(V) ==> abs(V) < exp_mask
- PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
- Test &= ~fcFinite;
- } else if ((Test & fcFinite) == fcPosFinite) {
- // finite(V) && V > 0 ==> V < exp_mask
- PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
- Test &= ~fcPosFinite;
- } else if ((Test & fcFinite) == fcNegFinite) {
- // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
- PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
- PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
- Test &= ~fcNegFinite;
- }
- appendResult(PartialRes);
- // Check for individual classes.
- if (unsigned PartialCheck = Test & fcZero) {
- if (PartialCheck == fcPosZero)
- PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
- else if (PartialCheck == fcZero)
- PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
- else // ISD::fcNegZero
- PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
- appendResult(PartialRes);
- }
- if (unsigned PartialCheck = Test & fcInf) {
- if (PartialCheck == fcPosInf)
- PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
- else if (PartialCheck == fcInf)
- PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
- else { // ISD::fcNegInf
- APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
- SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
- PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
- }
- appendResult(PartialRes);
- }
- if (unsigned PartialCheck = Test & fcNan) {
- APInt InfWithQnanBit = Inf | QNaNBitMask;
- SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
- if (PartialCheck == fcNan) {
- // isnan(V) ==> abs(V) > int(inf)
- PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
- if (IsF80) {
- // Recognize unsupported values as NaNs for compatibility with glibc.
- // In them (exp(V)==0) == int_bit.
- SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
- SDValue ExpIsZero =
- DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
- SDValue IsPseudo =
- DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
- PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
- }
- } else if (PartialCheck == fcQNan) {
- // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
- PartialRes =
- DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
- } else { // ISD::fcSNan
- // issignaling(V) ==> abs(V) > unsigned(Inf) &&
- // abs(V) < (unsigned(Inf) | quiet_bit)
- SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
- SDValue IsNotQnan =
- DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
- PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
- }
- appendResult(PartialRes);
- }
- if (unsigned PartialCheck = Test & fcSubnormal) {
- // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
- // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
- SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
- SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
- SDValue VMinusOneV =
- DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
- PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
- if (PartialCheck == fcNegSubnormal)
- PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
- appendResult(PartialRes);
- }
- if (unsigned PartialCheck = Test & fcNormal) {
- // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
- APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
- SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
- SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
- APInt ExpLimit = ExpMask - ExpLSB;
- SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
- PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
- if (PartialCheck == fcNegNormal)
- PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
- else if (PartialCheck == fcPosNormal) {
- SDValue PosSignV =
- DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
- PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
- }
- if (IsF80)
- PartialRes =
- DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
- appendResult(PartialRes);
- }
- if (!Res)
- return DAG.getConstant(IsInverted, DL, ResultVT);
- if (IsInverted)
- Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
- return Res;
- }
- // Only expand vector types if we have the appropriate vector bit operations.
- static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
- assert(VT.isVector() && "Expected vector type");
- unsigned Len = VT.getScalarSizeInBits();
- return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
- TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
- TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
- (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
- TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
- }
- SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
- SDLoc dl(Node);
- EVT VT = Node->getValueType(0);
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- SDValue Op = Node->getOperand(0);
- unsigned Len = VT.getScalarSizeInBits();
- assert(VT.isInteger() && "CTPOP not implemented for this type.");
- // TODO: Add support for irregular type lengths.
- if (!(Len <= 128 && Len % 8 == 0))
- return SDValue();
- // Only expand vector types if we have the appropriate vector bit operations.
- if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
- return SDValue();
- // This is the "best" algorithm from
- // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
- SDValue Mask55 =
- DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
- SDValue Mask33 =
- DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
- SDValue Mask0F =
- DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
- // v = v - ((v >> 1) & 0x55555555...)
- Op = DAG.getNode(ISD::SUB, dl, VT, Op,
- DAG.getNode(ISD::AND, dl, VT,
- DAG.getNode(ISD::SRL, dl, VT, Op,
- DAG.getConstant(1, dl, ShVT)),
- Mask55));
- // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
- Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
- DAG.getNode(ISD::AND, dl, VT,
- DAG.getNode(ISD::SRL, dl, VT, Op,
- DAG.getConstant(2, dl, ShVT)),
- Mask33));
- // v = (v + (v >> 4)) & 0x0F0F0F0F...
- Op = DAG.getNode(ISD::AND, dl, VT,
- DAG.getNode(ISD::ADD, dl, VT, Op,
- DAG.getNode(ISD::SRL, dl, VT, Op,
- DAG.getConstant(4, dl, ShVT))),
- Mask0F);
- if (Len <= 8)
- return Op;
- // Avoid the multiply if we only have 2 bytes to add.
- // TODO: Only doing this for scalars because vectors weren't as obviously
- // improved.
- if (Len == 16 && !VT.isVector()) {
- // v = (v + (v >> 8)) & 0x00FF;
- return DAG.getNode(ISD::AND, dl, VT,
- DAG.getNode(ISD::ADD, dl, VT, Op,
- DAG.getNode(ISD::SRL, dl, VT, Op,
- DAG.getConstant(8, dl, ShVT))),
- DAG.getConstant(0xFF, dl, VT));
- }
- // v = (v * 0x01010101...) >> (Len - 8)
- SDValue Mask01 =
- DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
- return DAG.getNode(ISD::SRL, dl, VT,
- DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
- DAG.getConstant(Len - 8, dl, ShVT));
- }
- SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const {
- SDLoc dl(Node);
- EVT VT = Node->getValueType(0);
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- SDValue Op = Node->getOperand(0);
- SDValue Mask = Node->getOperand(1);
- SDValue VL = Node->getOperand(2);
- unsigned Len = VT.getScalarSizeInBits();
- assert(VT.isInteger() && "VP_CTPOP not implemented for this type.");
- // TODO: Add support for irregular type lengths.
- if (!(Len <= 128 && Len % 8 == 0))
- return SDValue();
- // This is same algorithm of expandCTPOP from
- // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
- SDValue Mask55 =
- DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
- SDValue Mask33 =
- DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
- SDValue Mask0F =
- DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
- SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
- // v = v - ((v >> 1) & 0x55555555...)
- Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT,
- DAG.getNode(ISD::VP_LSHR, dl, VT, Op,
- DAG.getConstant(1, dl, ShVT), Mask, VL),
- Mask55, Mask, VL);
- Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL);
- // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
- Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL);
- Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT,
- DAG.getNode(ISD::VP_LSHR, dl, VT, Op,
- DAG.getConstant(2, dl, ShVT), Mask, VL),
- Mask33, Mask, VL);
- Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
- // v = (v + (v >> 4)) & 0x0F0F0F0F...
- Tmp4 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(4, dl, ShVT),
- Mask, VL),
- Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL);
- Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
- if (Len <= 8)
- return Op;
- // v = (v * 0x01010101...) >> (Len - 8)
- SDValue Mask01 =
- DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
- return DAG.getNode(ISD::VP_LSHR, dl, VT,
- DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL),
- DAG.getConstant(Len - 8, dl, ShVT), Mask, VL);
- }
- SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
- SDLoc dl(Node);
- EVT VT = Node->getValueType(0);
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- SDValue Op = Node->getOperand(0);
- unsigned NumBitsPerElt = VT.getScalarSizeInBits();
- // If the non-ZERO_UNDEF version is supported we can use that instead.
- if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
- isOperationLegalOrCustom(ISD::CTLZ, VT))
- return DAG.getNode(ISD::CTLZ, dl, VT, Op);
- // If the ZERO_UNDEF version is supported use that and handle the zero case.
- if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
- EVT SetCCVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
- SDValue Zero = DAG.getConstant(0, dl, VT);
- SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
- return DAG.getSelect(dl, VT, SrcIsZero,
- DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
- }
- // Only expand vector types if we have the appropriate vector bit operations.
- // This includes the operations needed to expand CTPOP if it isn't supported.
- if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
- (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
- !canExpandVectorCTPOP(*this, VT)) ||
- !isOperationLegalOrCustom(ISD::SRL, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
- return SDValue();
- // for now, we do this:
- // x = x | (x >> 1);
- // x = x | (x >> 2);
- // ...
- // x = x | (x >>16);
- // x = x | (x >>32); // for 64-bit input
- // return popcount(~x);
- //
- // Ref: "Hacker's Delight" by Henry Warren
- for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
- SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
- Op = DAG.getNode(ISD::OR, dl, VT, Op,
- DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
- }
- Op = DAG.getNOT(dl, Op, VT);
- return DAG.getNode(ISD::CTPOP, dl, VT, Op);
- }
- SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const {
- SDLoc dl(Node);
- EVT VT = Node->getValueType(0);
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- SDValue Op = Node->getOperand(0);
- SDValue Mask = Node->getOperand(1);
- SDValue VL = Node->getOperand(2);
- unsigned NumBitsPerElt = VT.getScalarSizeInBits();
- // do this:
- // x = x | (x >> 1);
- // x = x | (x >> 2);
- // ...
- // x = x | (x >>16);
- // x = x | (x >>32); // for 64-bit input
- // return popcount(~x);
- for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
- SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
- Op = DAG.getNode(ISD::VP_OR, dl, VT, Op,
- DAG.getNode(ISD::VP_LSHR, dl, VT, Op, Tmp, Mask, VL), Mask,
- VL);
- }
- Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getConstant(-1, dl, VT), Mask,
- VL);
- return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL);
- }
- SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG,
- const SDLoc &DL, EVT VT, SDValue Op,
- unsigned BitWidth) const {
- if (BitWidth != 32 && BitWidth != 64)
- return SDValue();
- APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U)
- : APInt(64, 0x0218A392CD3D5DBFULL);
- const DataLayout &TD = DAG.getDataLayout();
- MachinePointerInfo PtrInfo =
- MachinePointerInfo::getConstantPool(DAG.getMachineFunction());
- unsigned ShiftAmt = BitWidth - Log2_32(BitWidth);
- SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
- SDValue Lookup = DAG.getNode(
- ISD::SRL, DL, VT,
- DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg),
- DAG.getConstant(DeBruijn, DL, VT)),
- DAG.getConstant(ShiftAmt, DL, VT));
- Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD));
- SmallVector<uint8_t> Table(BitWidth, 0);
- for (unsigned i = 0; i < BitWidth; i++) {
- APInt Shl = DeBruijn.shl(i);
- APInt Lshr = Shl.lshr(ShiftAmt);
- Table[Lshr.getZExtValue()] = i;
- }
- // Create a ConstantArray in Constant Pool
- auto *CA = ConstantDataArray::get(*DAG.getContext(), Table);
- SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD),
- TD.getPrefTypeAlign(CA->getType()));
- SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(),
- DAG.getMemBasePlusOffset(CPIdx, Lookup, DL),
- PtrInfo, MVT::i8);
- if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
- return ExtLoad;
- EVT SetCCVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- SDValue Zero = DAG.getConstant(0, DL, VT);
- SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ);
- return DAG.getSelect(DL, VT, SrcIsZero,
- DAG.getConstant(BitWidth, DL, VT), ExtLoad);
- }
- SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
- SDLoc dl(Node);
- EVT VT = Node->getValueType(0);
- SDValue Op = Node->getOperand(0);
- unsigned NumBitsPerElt = VT.getScalarSizeInBits();
- // If the non-ZERO_UNDEF version is supported we can use that instead.
- if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
- isOperationLegalOrCustom(ISD::CTTZ, VT))
- return DAG.getNode(ISD::CTTZ, dl, VT, Op);
- // If the ZERO_UNDEF version is supported use that and handle the zero case.
- if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
- EVT SetCCVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
- SDValue Zero = DAG.getConstant(0, dl, VT);
- SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
- return DAG.getSelect(dl, VT, SrcIsZero,
- DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
- }
- // Only expand vector types if we have the appropriate vector bit operations.
- // This includes the operations needed to expand CTPOP if it isn't supported.
- if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
- (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
- !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
- !canExpandVectorCTPOP(*this, VT)) ||
- !isOperationLegalOrCustom(ISD::SUB, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
- return SDValue();
- // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal.
- if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) &&
- !isOperationLegal(ISD::CTLZ, VT))
- if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt))
- return V;
- // for now, we use: { return popcount(~x & (x - 1)); }
- // unless the target has ctlz but not ctpop, in which case we use:
- // { return 32 - nlz(~x & (x-1)); }
- // Ref: "Hacker's Delight" by Henry Warren
- SDValue Tmp = DAG.getNode(
- ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
- DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
- // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
- if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
- return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
- DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
- }
- return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
- }
- SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const {
- SDValue Op = Node->getOperand(0);
- SDValue Mask = Node->getOperand(1);
- SDValue VL = Node->getOperand(2);
- SDLoc dl(Node);
- EVT VT = Node->getValueType(0);
- // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1))
- SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op,
- DAG.getConstant(-1, dl, VT), Mask, VL);
- SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op,
- DAG.getConstant(1, dl, VT), Mask, VL);
- SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL);
- return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
- }
- SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
- bool IsNegative) const {
- SDLoc dl(N);
- EVT VT = N->getValueType(0);
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- SDValue Op = N->getOperand(0);
- // abs(x) -> smax(x,sub(0,x))
- if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
- isOperationLegal(ISD::SMAX, VT)) {
- SDValue Zero = DAG.getConstant(0, dl, VT);
- return DAG.getNode(ISD::SMAX, dl, VT, Op,
- DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
- }
- // abs(x) -> umin(x,sub(0,x))
- if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
- isOperationLegal(ISD::UMIN, VT)) {
- SDValue Zero = DAG.getConstant(0, dl, VT);
- Op = DAG.getFreeze(Op);
- return DAG.getNode(ISD::UMIN, dl, VT, Op,
- DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
- }
- // 0 - abs(x) -> smin(x, sub(0,x))
- if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
- isOperationLegal(ISD::SMIN, VT)) {
- Op = DAG.getFreeze(Op);
- SDValue Zero = DAG.getConstant(0, dl, VT);
- return DAG.getNode(ISD::SMIN, dl, VT, Op,
- DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
- }
- // Only expand vector types if we have the appropriate vector operations.
- if (VT.isVector() &&
- (!isOperationLegalOrCustom(ISD::SRA, VT) ||
- (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
- (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
- !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
- return SDValue();
- Op = DAG.getFreeze(Op);
- SDValue Shift =
- DAG.getNode(ISD::SRA, dl, VT, Op,
- DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
- SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
- // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
- if (!IsNegative)
- return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
- // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
- return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
- }
- SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
- SDLoc dl(N);
- EVT VT = N->getValueType(0);
- SDValue Op = N->getOperand(0);
- if (!VT.isSimple())
- return SDValue();
- EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
- SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
- switch (VT.getSimpleVT().getScalarType().SimpleTy) {
- default:
- return SDValue();
- case MVT::i16:
- // Use a rotate by 8. This can be further expanded if necessary.
- return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
- case MVT::i32:
- Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
- Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op,
- DAG.getConstant(0xFF00, dl, VT));
- Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT));
- Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
- Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
- Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
- Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
- Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
- return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
- case MVT::i64:
- Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
- Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op,
- DAG.getConstant(255ULL<<8, dl, VT));
- Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT));
- Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op,
- DAG.getConstant(255ULL<<16, dl, VT));
- Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT));
- Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op,
- DAG.getConstant(255ULL<<24, dl, VT));
- Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT));
- Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
- Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
- DAG.getConstant(255ULL<<24, dl, VT));
- Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
- Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
- DAG.getConstant(255ULL<<16, dl, VT));
- Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
- Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
- DAG.getConstant(255ULL<<8, dl, VT));
- Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
- Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
- Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
- Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
- Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
- Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
- Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
- return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
- }
- }
- SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const {
- SDLoc dl(N);
- EVT VT = N->getValueType(0);
- SDValue Op = N->getOperand(0);
- SDValue Mask = N->getOperand(1);
- SDValue EVL = N->getOperand(2);
- if (!VT.isSimple())
- return SDValue();
- EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
- SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
- switch (VT.getSimpleVT().getScalarType().SimpleTy) {
- default:
- return SDValue();
- case MVT::i16:
- Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
- Mask, EVL);
- Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
- Mask, EVL);
- return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
- case MVT::i32:
- Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
- Mask, EVL);
- Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT),
- Mask, EVL);
- Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT),
- Mask, EVL);
- Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
- Mask, EVL);
- Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
- DAG.getConstant(0xFF00, dl, VT), Mask, EVL);
- Tmp1 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
- Mask, EVL);
- Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
- Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
- return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
- case MVT::i64:
- Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
- Mask, EVL);
- Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
- DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
- Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT),
- Mask, EVL);
- Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
- DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
- Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT),
- Mask, EVL);
- Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
- DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
- Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT),
- Mask, EVL);
- Tmp4 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
- Mask, EVL);
- Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4,
- DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
- Tmp3 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
- Mask, EVL);
- Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3,
- DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
- Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(40, dl, SHVT),
- Mask, EVL);
- Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
- DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
- Tmp1 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
- Mask, EVL);
- Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
- Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
- Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
- Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
- Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
- Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
- return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
- }
- }
- SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
- SDLoc dl(N);
- EVT VT = N->getValueType(0);
- SDValue Op = N->getOperand(0);
- EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
- unsigned Sz = VT.getScalarSizeInBits();
- SDValue Tmp, Tmp2, Tmp3;
- // If we can, perform BSWAP first and then the mask+swap the i4, then i2
- // and finally the i1 pairs.
- // TODO: We can easily support i4/i2 legal types if any target ever does.
- if (Sz >= 8 && isPowerOf2_32(Sz)) {
- // Create the masks - repeating the pattern every byte.
- APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
- APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
- APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
- // BSWAP if the type is wider than a single byte.
- Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
- // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
- Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
- Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
- Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
- Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
- Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
- // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
- Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
- Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
- Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
- Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
- Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
- // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
- Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
- Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
- Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
- Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
- Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
- return Tmp;
- }
- Tmp = DAG.getConstant(0, dl, VT);
- for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
- if (I < J)
- Tmp2 =
- DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
- else
- Tmp2 =
- DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
- APInt Shift(Sz, 1);
- Shift <<= J;
- Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
- Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
- }
- return Tmp;
- }
- SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
- assert(N->getOpcode() == ISD::VP_BITREVERSE);
- SDLoc dl(N);
- EVT VT = N->getValueType(0);
- SDValue Op = N->getOperand(0);
- SDValue Mask = N->getOperand(1);
- SDValue EVL = N->getOperand(2);
- EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
- unsigned Sz = VT.getScalarSizeInBits();
- SDValue Tmp, Tmp2, Tmp3;
- // If we can, perform BSWAP first and then the mask+swap the i4, then i2
- // and finally the i1 pairs.
- // TODO: We can easily support i4/i2 legal types if any target ever does.
- if (Sz >= 8 && isPowerOf2_32(Sz)) {
- // Create the masks - repeating the pattern every byte.
- APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
- APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
- APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
- // BSWAP if the type is wider than a single byte.
- Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op);
- // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
- Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT),
- Mask, EVL);
- Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
- DAG.getConstant(Mask4, dl, VT), Mask, EVL);
- Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT),
- Mask, EVL);
- Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT),
- Mask, EVL);
- Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
- // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
- Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT),
- Mask, EVL);
- Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
- DAG.getConstant(Mask2, dl, VT), Mask, EVL);
- Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT),
- Mask, EVL);
- Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT),
- Mask, EVL);
- Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
- // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
- Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT),
- Mask, EVL);
- Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
- DAG.getConstant(Mask1, dl, VT), Mask, EVL);
- Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT),
- Mask, EVL);
- Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT),
- Mask, EVL);
- Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
- return Tmp;
- }
- return SDValue();
- }
- std::pair<SDValue, SDValue>
- TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
- SelectionDAG &DAG) const {
- SDLoc SL(LD);
- SDValue Chain = LD->getChain();
- SDValue BasePTR = LD->getBasePtr();
- EVT SrcVT = LD->getMemoryVT();
- EVT DstVT = LD->getValueType(0);
- ISD::LoadExtType ExtType = LD->getExtensionType();
- if (SrcVT.isScalableVector())
- report_fatal_error("Cannot scalarize scalable vector loads");
- unsigned NumElem = SrcVT.getVectorNumElements();
- EVT SrcEltVT = SrcVT.getScalarType();
- EVT DstEltVT = DstVT.getScalarType();
- // A vector must always be stored in memory as-is, i.e. without any padding
- // between the elements, since various code depend on it, e.g. in the
- // handling of a bitcast of a vector type to int, which may be done with a
- // vector store followed by an integer load. A vector that does not have
- // elements that are byte-sized must therefore be stored as an integer
- // built out of the extracted vector elements.
- if (!SrcEltVT.isByteSized()) {
- unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
- EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
- unsigned NumSrcBits = SrcVT.getSizeInBits();
- EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
- unsigned SrcEltBits = SrcEltVT.getSizeInBits();
- SDValue SrcEltBitMask = DAG.getConstant(
- APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
- // Load the whole vector and avoid masking off the top bits as it makes
- // the codegen worse.
- SDValue Load =
- DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
- LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
- LD->getMemOperand()->getFlags(), LD->getAAInfo());
- SmallVector<SDValue, 8> Vals;
- for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
- unsigned ShiftIntoIdx =
- (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
- SDValue ShiftAmount =
- DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
- LoadVT, SL, /*LegalTypes=*/false);
- SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
- SDValue Elt =
- DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
- SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
- if (ExtType != ISD::NON_EXTLOAD) {
- unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
- Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
- }
- Vals.push_back(Scalar);
- }
- SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
- return std::make_pair(Value, Load.getValue(1));
- }
- unsigned Stride = SrcEltVT.getSizeInBits() / 8;
- assert(SrcEltVT.isByteSized());
- SmallVector<SDValue, 8> Vals;
- SmallVector<SDValue, 8> LoadChains;
- for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
- SDValue ScalarLoad =
- DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
- LD->getPointerInfo().getWithOffset(Idx * Stride),
- SrcEltVT, LD->getOriginalAlign(),
- LD->getMemOperand()->getFlags(), LD->getAAInfo());
- BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
- Vals.push_back(ScalarLoad.getValue(0));
- LoadChains.push_back(ScalarLoad.getValue(1));
- }
- SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
- SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
- return std::make_pair(Value, NewChain);
- }
- SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
- SelectionDAG &DAG) const {
- SDLoc SL(ST);
- SDValue Chain = ST->getChain();
- SDValue BasePtr = ST->getBasePtr();
- SDValue Value = ST->getValue();
- EVT StVT = ST->getMemoryVT();
- if (StVT.isScalableVector())
- report_fatal_error("Cannot scalarize scalable vector stores");
- // The type of the data we want to save
- EVT RegVT = Value.getValueType();
- EVT RegSclVT = RegVT.getScalarType();
- // The type of data as saved in memory.
- EVT MemSclVT = StVT.getScalarType();
- unsigned NumElem = StVT.getVectorNumElements();
- // A vector must always be stored in memory as-is, i.e. without any padding
- // between the elements, since various code depend on it, e.g. in the
- // handling of a bitcast of a vector type to int, which may be done with a
- // vector store followed by an integer load. A vector that does not have
- // elements that are byte-sized must therefore be stored as an integer
- // built out of the extracted vector elements.
- if (!MemSclVT.isByteSized()) {
- unsigned NumBits = StVT.getSizeInBits();
- EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
- SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
- for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
- SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
- DAG.getVectorIdxConstant(Idx, SL));
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
- SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
- unsigned ShiftIntoIdx =
- (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
- SDValue ShiftAmount =
- DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
- SDValue ShiftedElt =
- DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
- CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
- }
- return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
- ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
- ST->getAAInfo());
- }
- // Store Stride in bytes
- unsigned Stride = MemSclVT.getSizeInBits() / 8;
- assert(Stride && "Zero stride!");
- // Extract each of the elements from the original vector and save them into
- // memory individually.
- SmallVector<SDValue, 8> Stores;
- for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
- SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
- DAG.getVectorIdxConstant(Idx, SL));
- SDValue Ptr =
- DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
- // This scalar TruncStore may be illegal, but we legalize it later.
- SDValue Store = DAG.getTruncStore(
- Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
- MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
- ST->getAAInfo());
- Stores.push_back(Store);
- }
- return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
- }
- std::pair<SDValue, SDValue>
- TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
- assert(LD->getAddressingMode() == ISD::UNINDEXED &&
- "unaligned indexed loads not implemented!");
- SDValue Chain = LD->getChain();
- SDValue Ptr = LD->getBasePtr();
- EVT VT = LD->getValueType(0);
- EVT LoadedVT = LD->getMemoryVT();
- SDLoc dl(LD);
- auto &MF = DAG.getMachineFunction();
- if (VT.isFloatingPoint() || VT.isVector()) {
- EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
- if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
- if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
- LoadedVT.isVector()) {
- // Scalarize the load and let the individual components be handled.
- return scalarizeVectorLoad(LD, DAG);
- }
- // Expand to a (misaligned) integer load of the same size,
- // then bitconvert to floating point or vector.
- SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
- LD->getMemOperand());
- SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
- if (LoadedVT != VT)
- Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
- ISD::ANY_EXTEND, dl, VT, Result);
- return std::make_pair(Result, newLoad.getValue(1));
- }
- // Copy the value to a (aligned) stack slot using (unaligned) integer
- // loads and stores, then do a (aligned) load from the stack slot.
- MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
- unsigned LoadedBytes = LoadedVT.getStoreSize();
- unsigned RegBytes = RegVT.getSizeInBits() / 8;
- unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
- // Make sure the stack slot is also aligned for the register type.
- SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
- auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
- SmallVector<SDValue, 8> Stores;
- SDValue StackPtr = StackBase;
- unsigned Offset = 0;
- EVT PtrVT = Ptr.getValueType();
- EVT StackPtrVT = StackPtr.getValueType();
- SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
- SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
- // Do all but one copies using the full register width.
- for (unsigned i = 1; i < NumRegs; i++) {
- // Load one integer register's worth from the original location.
- SDValue Load = DAG.getLoad(
- RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
- LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
- LD->getAAInfo());
- // Follow the load with a store to the stack slot. Remember the store.
- Stores.push_back(DAG.getStore(
- Load.getValue(1), dl, Load, StackPtr,
- MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
- // Increment the pointers.
- Offset += RegBytes;
- Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
- StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
- }
- // The last copy may be partial. Do an extending load.
- EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
- 8 * (LoadedBytes - Offset));
- SDValue Load =
- DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
- LD->getPointerInfo().getWithOffset(Offset), MemVT,
- LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
- LD->getAAInfo());
- // Follow the load with a store to the stack slot. Remember the store.
- // On big-endian machines this requires a truncating store to ensure
- // that the bits end up in the right place.
- Stores.push_back(DAG.getTruncStore(
- Load.getValue(1), dl, Load, StackPtr,
- MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
- // The order of the stores doesn't matter - say it with a TokenFactor.
- SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
- // Finally, perform the original load only redirected to the stack slot.
- Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
- MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
- LoadedVT);
- // Callers expect a MERGE_VALUES node.
- return std::make_pair(Load, TF);
- }
- assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
- "Unaligned load of unsupported type.");
- // Compute the new VT that is half the size of the old one. This is an
- // integer MVT.
- unsigned NumBits = LoadedVT.getSizeInBits();
- EVT NewLoadedVT;
- NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
- NumBits >>= 1;
- Align Alignment = LD->getOriginalAlign();
- unsigned IncrementSize = NumBits / 8;
- ISD::LoadExtType HiExtType = LD->getExtensionType();
- // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
- if (HiExtType == ISD::NON_EXTLOAD)
- HiExtType = ISD::ZEXTLOAD;
- // Load the value in two parts
- SDValue Lo, Hi;
- if (DAG.getDataLayout().isLittleEndian()) {
- Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
- NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
- LD->getAAInfo());
- Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
- Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
- LD->getPointerInfo().getWithOffset(IncrementSize),
- NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
- LD->getAAInfo());
- } else {
- Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
- NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
- LD->getAAInfo());
- Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
- Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
- LD->getPointerInfo().getWithOffset(IncrementSize),
- NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
- LD->getAAInfo());
- }
- // aggregate the two parts
- SDValue ShiftAmount =
- DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
- DAG.getDataLayout()));
- SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
- Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
- SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
- Hi.getValue(1));
- return std::make_pair(Result, TF);
- }
- SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
- SelectionDAG &DAG) const {
- assert(ST->getAddressingMode() == ISD::UNINDEXED &&
- "unaligned indexed stores not implemented!");
- SDValue Chain = ST->getChain();
- SDValue Ptr = ST->getBasePtr();
- SDValue Val = ST->getValue();
- EVT VT = Val.getValueType();
- Align Alignment = ST->getOriginalAlign();
- auto &MF = DAG.getMachineFunction();
- EVT StoreMemVT = ST->getMemoryVT();
- SDLoc dl(ST);
- if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
- EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
- if (isTypeLegal(intVT)) {
- if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
- StoreMemVT.isVector()) {
- // Scalarize the store and let the individual components be handled.
- SDValue Result = scalarizeVectorStore(ST, DAG);
- return Result;
- }
- // Expand to a bitconvert of the value to the integer type of the
- // same size, then a (misaligned) int store.
- // FIXME: Does not handle truncating floating point stores!
- SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
- Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
- Alignment, ST->getMemOperand()->getFlags());
- return Result;
- }
- // Do a (aligned) store to a stack slot, then copy from the stack slot
- // to the final destination using (unaligned) integer loads and stores.
- MVT RegVT = getRegisterType(
- *DAG.getContext(),
- EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
- EVT PtrVT = Ptr.getValueType();
- unsigned StoredBytes = StoreMemVT.getStoreSize();
- unsigned RegBytes = RegVT.getSizeInBits() / 8;
- unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
- // Make sure the stack slot is also aligned for the register type.
- SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
- auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
- // Perform the original store, only redirected to the stack slot.
- SDValue Store = DAG.getTruncStore(
- Chain, dl, Val, StackPtr,
- MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
- EVT StackPtrVT = StackPtr.getValueType();
- SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
- SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
- SmallVector<SDValue, 8> Stores;
- unsigned Offset = 0;
- // Do all but one copies using the full register width.
- for (unsigned i = 1; i < NumRegs; i++) {
- // Load one integer register's worth from the stack slot.
- SDValue Load = DAG.getLoad(
- RegVT, dl, Store, StackPtr,
- MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
- // Store it to the final location. Remember the store.
- Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
- ST->getPointerInfo().getWithOffset(Offset),
- ST->getOriginalAlign(),
- ST->getMemOperand()->getFlags()));
- // Increment the pointers.
- Offset += RegBytes;
- StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
- Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
- }
- // The last store may be partial. Do a truncating store. On big-endian
- // machines this requires an extending load from the stack slot to ensure
- // that the bits are in the right place.
- EVT LoadMemVT =
- EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
- // Load from the stack slot.
- SDValue Load = DAG.getExtLoad(
- ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
- MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
- Stores.push_back(
- DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
- ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
- ST->getOriginalAlign(),
- ST->getMemOperand()->getFlags(), ST->getAAInfo()));
- // The order of the stores doesn't matter - say it with a TokenFactor.
- SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
- return Result;
- }
- assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
- "Unaligned store of unknown type.");
- // Get the half-size VT
- EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
- unsigned NumBits = NewStoredVT.getFixedSizeInBits();
- unsigned IncrementSize = NumBits / 8;
- // Divide the stored value in two parts.
- SDValue ShiftAmount = DAG.getConstant(
- NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
- SDValue Lo = Val;
- SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
- // Store the two parts
- SDValue Store1, Store2;
- Store1 = DAG.getTruncStore(Chain, dl,
- DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
- Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
- ST->getMemOperand()->getFlags());
- Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
- Store2 = DAG.getTruncStore(
- Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
- ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
- ST->getMemOperand()->getFlags(), ST->getAAInfo());
- SDValue Result =
- DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
- return Result;
- }
- SDValue
- TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
- const SDLoc &DL, EVT DataVT,
- SelectionDAG &DAG,
- bool IsCompressedMemory) const {
- SDValue Increment;
- EVT AddrVT = Addr.getValueType();
- EVT MaskVT = Mask.getValueType();
- assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
- "Incompatible types of Data and Mask");
- if (IsCompressedMemory) {
- if (DataVT.isScalableVector())
- report_fatal_error(
- "Cannot currently handle compressed memory with scalable vectors");
- // Incrementing the pointer according to number of '1's in the mask.
- EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
- SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
- if (MaskIntVT.getSizeInBits() < 32) {
- MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
- MaskIntVT = MVT::i32;
- }
- // Count '1's with POPCNT.
- Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
- Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
- // Scale is an element size in bytes.
- SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
- AddrVT);
- Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
- } else if (DataVT.isScalableVector()) {
- Increment = DAG.getVScale(DL, AddrVT,
- APInt(AddrVT.getFixedSizeInBits(),
- DataVT.getStoreSize().getKnownMinValue()));
- } else
- Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
- return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
- }
- static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
- EVT VecVT, const SDLoc &dl,
- ElementCount SubEC) {
- assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
- "Cannot index a scalable vector within a fixed-width vector");
- unsigned NElts = VecVT.getVectorMinNumElements();
- unsigned NumSubElts = SubEC.getKnownMinValue();
- EVT IdxVT = Idx.getValueType();
- if (VecVT.isScalableVector() && !SubEC.isScalable()) {
- // If this is a constant index and we know the value plus the number of the
- // elements in the subvector minus one is less than the minimum number of
- // elements then it's safe to return Idx.
- if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
- if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
- return Idx;
- SDValue VS =
- DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
- unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
- SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
- DAG.getConstant(NumSubElts, dl, IdxVT));
- return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
- }
- if (isPowerOf2_32(NElts) && NumSubElts == 1) {
- APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
- return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
- DAG.getConstant(Imm, dl, IdxVT));
- }
- unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
- return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
- DAG.getConstant(MaxIndex, dl, IdxVT));
- }
- SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
- SDValue VecPtr, EVT VecVT,
- SDValue Index) const {
- return getVectorSubVecPointer(
- DAG, VecPtr, VecVT,
- EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
- Index);
- }
- SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
- SDValue VecPtr, EVT VecVT,
- EVT SubVecVT,
- SDValue Index) const {
- SDLoc dl(Index);
- // Make sure the index type is big enough to compute in.
- Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
- EVT EltVT = VecVT.getVectorElementType();
- // Calculate the element offset and add it to the pointer.
- unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
- assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
- "Converting bits to bytes lost precision");
- assert(SubVecVT.getVectorElementType() == EltVT &&
- "Sub-vector must be a vector with matching element type");
- Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
- SubVecVT.getVectorElementCount());
- EVT IdxVT = Index.getValueType();
- if (SubVecVT.isScalableVector())
- Index =
- DAG.getNode(ISD::MUL, dl, IdxVT, Index,
- DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
- Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
- DAG.getConstant(EltSize, dl, IdxVT));
- return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
- }
- //===----------------------------------------------------------------------===//
- // Implementation of Emulated TLS Model
- //===----------------------------------------------------------------------===//
- SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
- SelectionDAG &DAG) const {
- // Access to address of TLS varialbe xyz is lowered to a function call:
- // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
- EVT PtrVT = getPointerTy(DAG.getDataLayout());
- PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
- SDLoc dl(GA);
- ArgListTy Args;
- ArgListEntry Entry;
- std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
- Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
- StringRef EmuTlsVarName(NameString);
- GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
- assert(EmuTlsVar && "Cannot find EmuTlsVar ");
- Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
- Entry.Ty = VoidPtrType;
- Args.push_back(Entry);
- SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
- TargetLowering::CallLoweringInfo CLI(DAG);
- CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
- CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
- std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
- // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
- // At last for X86 targets, maybe good for other targets too?
- MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
- MFI.setAdjustsStack(true); // Is this only for X86 target?
- MFI.setHasCalls(true);
- assert((GA->getOffset() == 0) &&
- "Emulated TLS must have zero offset in GlobalAddressSDNode");
- return CallResult.first;
- }
- SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
- SelectionDAG &DAG) const {
- assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
- if (!isCtlzFast())
- return SDValue();
- ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
- SDLoc dl(Op);
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- if (C->isZero() && CC == ISD::SETEQ) {
- EVT VT = Op.getOperand(0).getValueType();
- SDValue Zext = Op.getOperand(0);
- if (VT.bitsLT(MVT::i32)) {
- VT = MVT::i32;
- Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
- }
- unsigned Log2b = Log2_32(VT.getSizeInBits());
- SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
- SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
- DAG.getConstant(Log2b, dl, MVT::i32));
- return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
- }
- }
- return SDValue();
- }
- SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
- SDValue Op0 = Node->getOperand(0);
- SDValue Op1 = Node->getOperand(1);
- EVT VT = Op0.getValueType();
- unsigned Opcode = Node->getOpcode();
- SDLoc DL(Node);
- // umin(x,y) -> sub(x,usubsat(x,y))
- if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
- isOperationLegal(ISD::USUBSAT, VT)) {
- return DAG.getNode(ISD::SUB, DL, VT, Op0,
- DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
- }
- // umax(x,y) -> add(x,usubsat(y,x))
- if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
- isOperationLegal(ISD::USUBSAT, VT)) {
- return DAG.getNode(ISD::ADD, DL, VT, Op0,
- DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
- }
- // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
- ISD::CondCode CC;
- switch (Opcode) {
- default: llvm_unreachable("How did we get here?");
- case ISD::SMAX: CC = ISD::SETGT; break;
- case ISD::SMIN: CC = ISD::SETLT; break;
- case ISD::UMAX: CC = ISD::SETUGT; break;
- case ISD::UMIN: CC = ISD::SETULT; break;
- }
- // FIXME: Should really try to split the vector in case it's legal on a
- // subvector.
- if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
- return DAG.UnrollVectorOp(Node);
- EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
- return DAG.getSelect(DL, VT, Cond, Op0, Op1);
- }
- SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
- unsigned Opcode = Node->getOpcode();
- SDValue LHS = Node->getOperand(0);
- SDValue RHS = Node->getOperand(1);
- EVT VT = LHS.getValueType();
- SDLoc dl(Node);
- assert(VT == RHS.getValueType() && "Expected operands to be the same type");
- assert(VT.isInteger() && "Expected operands to be integers");
- // usub.sat(a, b) -> umax(a, b) - b
- if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
- SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
- return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
- }
- // uadd.sat(a, b) -> umin(a, ~b) + b
- if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
- SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
- SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
- return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
- }
- unsigned OverflowOp;
- switch (Opcode) {
- case ISD::SADDSAT:
- OverflowOp = ISD::SADDO;
- break;
- case ISD::UADDSAT:
- OverflowOp = ISD::UADDO;
- break;
- case ISD::SSUBSAT:
- OverflowOp = ISD::SSUBO;
- break;
- case ISD::USUBSAT:
- OverflowOp = ISD::USUBO;
- break;
- default:
- llvm_unreachable("Expected method to receive signed or unsigned saturation "
- "addition or subtraction node.");
- }
- // FIXME: Should really try to split the vector in case it's legal on a
- // subvector.
- if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
- return DAG.UnrollVectorOp(Node);
- unsigned BitWidth = LHS.getScalarValueSizeInBits();
- EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
- SDValue SumDiff = Result.getValue(0);
- SDValue Overflow = Result.getValue(1);
- SDValue Zero = DAG.getConstant(0, dl, VT);
- SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
- if (Opcode == ISD::UADDSAT) {
- if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
- // (LHS + RHS) | OverflowMask
- SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
- return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
- }
- // Overflow ? 0xffff.... : (LHS + RHS)
- return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
- }
- if (Opcode == ISD::USUBSAT) {
- if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
- // (LHS - RHS) & ~OverflowMask
- SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
- SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
- return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
- }
- // Overflow ? 0 : (LHS - RHS)
- return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
- }
- // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
- APInt MinVal = APInt::getSignedMinValue(BitWidth);
- SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
- SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
- DAG.getConstant(BitWidth - 1, dl, VT));
- Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
- return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
- }
- SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
- unsigned Opcode = Node->getOpcode();
- bool IsSigned = Opcode == ISD::SSHLSAT;
- SDValue LHS = Node->getOperand(0);
- SDValue RHS = Node->getOperand(1);
- EVT VT = LHS.getValueType();
- SDLoc dl(Node);
- assert((Node->getOpcode() == ISD::SSHLSAT ||
- Node->getOpcode() == ISD::USHLSAT) &&
- "Expected a SHLSAT opcode");
- assert(VT == RHS.getValueType() && "Expected operands to be the same type");
- assert(VT.isInteger() && "Expected operands to be integers");
- if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
- return DAG.UnrollVectorOp(Node);
- // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
- unsigned BW = VT.getScalarSizeInBits();
- EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
- SDValue Orig =
- DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
- SDValue SatVal;
- if (IsSigned) {
- SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
- SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
- SDValue Cond =
- DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT);
- SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax);
- } else {
- SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
- }
- SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE);
- return DAG.getSelect(dl, VT, Cond, SatVal, Result);
- }
- SDValue
- TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
- assert((Node->getOpcode() == ISD::SMULFIX ||
- Node->getOpcode() == ISD::UMULFIX ||
- Node->getOpcode() == ISD::SMULFIXSAT ||
- Node->getOpcode() == ISD::UMULFIXSAT) &&
- "Expected a fixed point multiplication opcode");
- SDLoc dl(Node);
- SDValue LHS = Node->getOperand(0);
- SDValue RHS = Node->getOperand(1);
- EVT VT = LHS.getValueType();
- unsigned Scale = Node->getConstantOperandVal(2);
- bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
- Node->getOpcode() == ISD::UMULFIXSAT);
- bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
- Node->getOpcode() == ISD::SMULFIXSAT);
- EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- unsigned VTSize = VT.getScalarSizeInBits();
- if (!Scale) {
- // [us]mul.fix(a, b, 0) -> mul(a, b)
- if (!Saturating) {
- if (isOperationLegalOrCustom(ISD::MUL, VT))
- return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
- } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
- SDValue Result =
- DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
- SDValue Product = Result.getValue(0);
- SDValue Overflow = Result.getValue(1);
- SDValue Zero = DAG.getConstant(0, dl, VT);
- APInt MinVal = APInt::getSignedMinValue(VTSize);
- APInt MaxVal = APInt::getSignedMaxValue(VTSize);
- SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
- SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
- // Xor the inputs, if resulting sign bit is 0 the product will be
- // positive, else negative.
- SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
- SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
- Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
- return DAG.getSelect(dl, VT, Overflow, Result, Product);
- } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
- SDValue Result =
- DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
- SDValue Product = Result.getValue(0);
- SDValue Overflow = Result.getValue(1);
- APInt MaxVal = APInt::getMaxValue(VTSize);
- SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
- return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
- }
- }
- assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
- "Expected scale to be less than the number of bits if signed or at "
- "most the number of bits if unsigned.");
- assert(LHS.getValueType() == RHS.getValueType() &&
- "Expected both operands to be the same type");
- // Get the upper and lower bits of the result.
- SDValue Lo, Hi;
- unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
- unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
- if (isOperationLegalOrCustom(LoHiOp, VT)) {
- SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
- Lo = Result.getValue(0);
- Hi = Result.getValue(1);
- } else if (isOperationLegalOrCustom(HiOp, VT)) {
- Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
- Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
- } else if (VT.isVector()) {
- return SDValue();
- } else {
- report_fatal_error("Unable to expand fixed point multiplication.");
- }
- if (Scale == VTSize)
- // Result is just the top half since we'd be shifting by the width of the
- // operand. Overflow impossible so this works for both UMULFIX and
- // UMULFIXSAT.
- return Hi;
- // The result will need to be shifted right by the scale since both operands
- // are scaled. The result is given to us in 2 halves, so we only want part of
- // both in the result.
- EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
- SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
- DAG.getConstant(Scale, dl, ShiftTy));
- if (!Saturating)
- return Result;
- if (!Signed) {
- // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
- // widened multiplication) aren't all zeroes.
- // Saturate to max if ((Hi >> Scale) != 0),
- // which is the same as if (Hi > ((1 << Scale) - 1))
- APInt MaxVal = APInt::getMaxValue(VTSize);
- SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
- dl, VT);
- Result = DAG.getSelectCC(dl, Hi, LowMask,
- DAG.getConstant(MaxVal, dl, VT), Result,
- ISD::SETUGT);
- return Result;
- }
- // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
- // widened multiplication) aren't all ones or all zeroes.
- SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
- SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
- if (Scale == 0) {
- SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
- DAG.getConstant(VTSize - 1, dl, ShiftTy));
- SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
- // Saturated to SatMin if wide product is negative, and SatMax if wide
- // product is positive ...
- SDValue Zero = DAG.getConstant(0, dl, VT);
- SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
- ISD::SETLT);
- // ... but only if we overflowed.
- return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
- }
- // We handled Scale==0 above so all the bits to examine is in Hi.
- // Saturate to max if ((Hi >> (Scale - 1)) > 0),
- // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
- SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
- dl, VT);
- Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
- // Saturate to min if (Hi >> (Scale - 1)) < -1),
- // which is the same as if (HI < (-1 << (Scale - 1))
- SDValue HighMask =
- DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
- dl, VT);
- Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
- return Result;
- }
- SDValue
- TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
- SDValue LHS, SDValue RHS,
- unsigned Scale, SelectionDAG &DAG) const {
- assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
- Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
- "Expected a fixed point division opcode");
- EVT VT = LHS.getValueType();
- bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
- bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
- EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- // If there is enough room in the type to upscale the LHS or downscale the
- // RHS before the division, we can perform it in this type without having to
- // resize. For signed operations, the LHS headroom is the number of
- // redundant sign bits, and for unsigned ones it is the number of zeroes.
- // The headroom for the RHS is the number of trailing zeroes.
- unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
- : DAG.computeKnownBits(LHS).countMinLeadingZeros();
- unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
- // For signed saturating operations, we need to be able to detect true integer
- // division overflow; that is, when you have MIN / -EPS. However, this
- // is undefined behavior and if we emit divisions that could take such
- // values it may cause undesired behavior (arithmetic exceptions on x86, for
- // example).
- // Avoid this by requiring an extra bit so that we never get this case.
- // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
- // signed saturating division, we need to emit a whopping 32-bit division.
- if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
- return SDValue();
- unsigned LHSShift = std::min(LHSLead, Scale);
- unsigned RHSShift = Scale - LHSShift;
- // At this point, we know that if we shift the LHS up by LHSShift and the
- // RHS down by RHSShift, we can emit a regular division with a final scaling
- // factor of Scale.
- EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
- if (LHSShift)
- LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
- DAG.getConstant(LHSShift, dl, ShiftTy));
- if (RHSShift)
- RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
- DAG.getConstant(RHSShift, dl, ShiftTy));
- SDValue Quot;
- if (Signed) {
- // For signed operations, if the resulting quotient is negative and the
- // remainder is nonzero, subtract 1 from the quotient to round towards
- // negative infinity.
- SDValue Rem;
- // FIXME: Ideally we would always produce an SDIVREM here, but if the
- // type isn't legal, SDIVREM cannot be expanded. There is no reason why
- // we couldn't just form a libcall, but the type legalizer doesn't do it.
- if (isTypeLegal(VT) &&
- isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
- Quot = DAG.getNode(ISD::SDIVREM, dl,
- DAG.getVTList(VT, VT),
- LHS, RHS);
- Rem = Quot.getValue(1);
- Quot = Quot.getValue(0);
- } else {
- Quot = DAG.getNode(ISD::SDIV, dl, VT,
- LHS, RHS);
- Rem = DAG.getNode(ISD::SREM, dl, VT,
- LHS, RHS);
- }
- SDValue Zero = DAG.getConstant(0, dl, VT);
- SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
- SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
- SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
- SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
- SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
- DAG.getConstant(1, dl, VT));
- Quot = DAG.getSelect(dl, VT,
- DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
- Sub1, Quot);
- } else
- Quot = DAG.getNode(ISD::UDIV, dl, VT,
- LHS, RHS);
- return Quot;
- }
- void TargetLowering::expandUADDSUBO(
- SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
- SDLoc dl(Node);
- SDValue LHS = Node->getOperand(0);
- SDValue RHS = Node->getOperand(1);
- bool IsAdd = Node->getOpcode() == ISD::UADDO;
- // If ADD/SUBCARRY is legal, use that instead.
- unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
- if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
- SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
- SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
- { LHS, RHS, CarryIn });
- Result = SDValue(NodeCarry.getNode(), 0);
- Overflow = SDValue(NodeCarry.getNode(), 1);
- return;
- }
- Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
- LHS.getValueType(), LHS, RHS);
- EVT ResultType = Node->getValueType(1);
- EVT SetCCType = getSetCCResultType(
- DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
- SDValue SetCC;
- if (IsAdd && isOneConstant(RHS)) {
- // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
- // the live range of X. We assume comparing with 0 is cheap.
- // The general case (X + C) < C is not necessarily beneficial. Although we
- // reduce the live range of X, we may introduce the materialization of
- // constant C.
- SetCC =
- DAG.getSetCC(dl, SetCCType, Result,
- DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
- } else {
- ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
- SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
- }
- Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
- }
- void TargetLowering::expandSADDSUBO(
- SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
- SDLoc dl(Node);
- SDValue LHS = Node->getOperand(0);
- SDValue RHS = Node->getOperand(1);
- bool IsAdd = Node->getOpcode() == ISD::SADDO;
- Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
- LHS.getValueType(), LHS, RHS);
- EVT ResultType = Node->getValueType(1);
- EVT OType = getSetCCResultType(
- DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
- // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
- unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
- if (isOperationLegal(OpcSat, LHS.getValueType())) {
- SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
- SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
- Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
- return;
- }
- SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
- // For an addition, the result should be less than one of the operands (LHS)
- // if and only if the other operand (RHS) is negative, otherwise there will
- // be overflow.
- // For a subtraction, the result should be less than one of the operands
- // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
- // otherwise there will be overflow.
- SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
- SDValue ConditionRHS =
- DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
- Overflow = DAG.getBoolExtOrTrunc(
- DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
- ResultType, ResultType);
- }
- bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
- SDValue &Overflow, SelectionDAG &DAG) const {
- SDLoc dl(Node);
- EVT VT = Node->getValueType(0);
- EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- SDValue LHS = Node->getOperand(0);
- SDValue RHS = Node->getOperand(1);
- bool isSigned = Node->getOpcode() == ISD::SMULO;
- // For power-of-two multiplications we can use a simpler shift expansion.
- if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
- const APInt &C = RHSC->getAPIntValue();
- // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
- if (C.isPowerOf2()) {
- // smulo(x, signed_min) is same as umulo(x, signed_min).
- bool UseArithShift = isSigned && !C.isMinSignedValue();
- EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
- SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
- Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
- Overflow = DAG.getSetCC(dl, SetCCVT,
- DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
- dl, VT, Result, ShiftAmt),
- LHS, ISD::SETNE);
- return true;
- }
- }
- EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
- if (VT.isVector())
- WideVT =
- EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
- SDValue BottomHalf;
- SDValue TopHalf;
- static const unsigned Ops[2][3] =
- { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
- { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
- if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
- BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
- TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
- } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
- BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
- RHS);
- TopHalf = BottomHalf.getValue(1);
- } else if (isTypeLegal(WideVT)) {
- LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
- RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
- SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
- BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
- SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
- getShiftAmountTy(WideVT, DAG.getDataLayout()));
- TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
- DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
- } else {
- if (VT.isVector())
- return false;
- // We can fall back to a libcall with an illegal type for the MUL if we
- // have a libcall big enough.
- // Also, we can fall back to a division in some cases, but that's a big
- // performance hit in the general case.
- RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
- if (WideVT == MVT::i16)
- LC = RTLIB::MUL_I16;
- else if (WideVT == MVT::i32)
- LC = RTLIB::MUL_I32;
- else if (WideVT == MVT::i64)
- LC = RTLIB::MUL_I64;
- else if (WideVT == MVT::i128)
- LC = RTLIB::MUL_I128;
- assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
- SDValue HiLHS;
- SDValue HiRHS;
- if (isSigned) {
- // The high part is obtained by SRA'ing all but one of the bits of low
- // part.
- unsigned LoSize = VT.getFixedSizeInBits();
- HiLHS =
- DAG.getNode(ISD::SRA, dl, VT, LHS,
- DAG.getConstant(LoSize - 1, dl,
- getPointerTy(DAG.getDataLayout())));
- HiRHS =
- DAG.getNode(ISD::SRA, dl, VT, RHS,
- DAG.getConstant(LoSize - 1, dl,
- getPointerTy(DAG.getDataLayout())));
- } else {
- HiLHS = DAG.getConstant(0, dl, VT);
- HiRHS = DAG.getConstant(0, dl, VT);
- }
- // Here we're passing the 2 arguments explicitly as 4 arguments that are
- // pre-lowered to the correct types. This all depends upon WideVT not
- // being a legal type for the architecture and thus has to be split to
- // two arguments.
- SDValue Ret;
- TargetLowering::MakeLibCallOptions CallOptions;
- CallOptions.setSExt(isSigned);
- CallOptions.setIsPostTypeLegalization(true);
- if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
- // Halves of WideVT are packed into registers in different order
- // depending on platform endianness. This is usually handled by
- // the C calling convention, but we can't defer to it in
- // the legalizer.
- SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
- Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
- } else {
- SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
- Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
- }
- assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
- "Ret value is a collection of constituent nodes holding result.");
- if (DAG.getDataLayout().isLittleEndian()) {
- // Same as above.
- BottomHalf = Ret.getOperand(0);
- TopHalf = Ret.getOperand(1);
- } else {
- BottomHalf = Ret.getOperand(1);
- TopHalf = Ret.getOperand(0);
- }
- }
- Result = BottomHalf;
- if (isSigned) {
- SDValue ShiftAmt = DAG.getConstant(
- VT.getScalarSizeInBits() - 1, dl,
- getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
- SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
- Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
- } else {
- Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
- DAG.getConstant(0, dl, VT), ISD::SETNE);
- }
- // Truncate the result if SetCC returns a larger type than needed.
- EVT RType = Node->getValueType(1);
- if (RType.bitsLT(Overflow.getValueType()))
- Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
- assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
- "Unexpected result type for S/UMULO legalization");
- return true;
- }
- SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
- SDLoc dl(Node);
- unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
- SDValue Op = Node->getOperand(0);
- EVT VT = Op.getValueType();
- if (VT.isScalableVector())
- report_fatal_error(
- "Expanding reductions for scalable vectors is undefined.");
- // Try to use a shuffle reduction for power of two vectors.
- if (VT.isPow2VectorType()) {
- while (VT.getVectorNumElements() > 1) {
- EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
- if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
- break;
- SDValue Lo, Hi;
- std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
- Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
- VT = HalfVT;
- }
- }
- EVT EltVT = VT.getVectorElementType();
- unsigned NumElts = VT.getVectorNumElements();
- SmallVector<SDValue, 8> Ops;
- DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
- SDValue Res = Ops[0];
- for (unsigned i = 1; i < NumElts; i++)
- Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
- // Result type may be wider than element type.
- if (EltVT != Node->getValueType(0))
- Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
- return Res;
- }
- SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
- SDLoc dl(Node);
- SDValue AccOp = Node->getOperand(0);
- SDValue VecOp = Node->getOperand(1);
- SDNodeFlags Flags = Node->getFlags();
- EVT VT = VecOp.getValueType();
- EVT EltVT = VT.getVectorElementType();
- if (VT.isScalableVector())
- report_fatal_error(
- "Expanding reductions for scalable vectors is undefined.");
- unsigned NumElts = VT.getVectorNumElements();
- SmallVector<SDValue, 8> Ops;
- DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
- unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
- SDValue Res = AccOp;
- for (unsigned i = 0; i < NumElts; i++)
- Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
- return Res;
- }
- bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
- SelectionDAG &DAG) const {
- EVT VT = Node->getValueType(0);
- SDLoc dl(Node);
- bool isSigned = Node->getOpcode() == ISD::SREM;
- unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
- unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
- SDValue Dividend = Node->getOperand(0);
- SDValue Divisor = Node->getOperand(1);
- if (isOperationLegalOrCustom(DivRemOpc, VT)) {
- SDVTList VTs = DAG.getVTList(VT, VT);
- Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
- return true;
- }
- if (isOperationLegalOrCustom(DivOpc, VT)) {
- // X % Y -> X-X/Y*Y
- SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
- SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
- Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
- return true;
- }
- return false;
- }
- SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
- SelectionDAG &DAG) const {
- bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
- SDLoc dl(SDValue(Node, 0));
- SDValue Src = Node->getOperand(0);
- // DstVT is the result type, while SatVT is the size to which we saturate
- EVT SrcVT = Src.getValueType();
- EVT DstVT = Node->getValueType(0);
- EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
- unsigned SatWidth = SatVT.getScalarSizeInBits();
- unsigned DstWidth = DstVT.getScalarSizeInBits();
- assert(SatWidth <= DstWidth &&
- "Expected saturation width smaller than result width");
- // Determine minimum and maximum integer values and their corresponding
- // floating-point values.
- APInt MinInt, MaxInt;
- if (IsSigned) {
- MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
- MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
- } else {
- MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
- MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
- }
- // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
- // libcall emission cannot handle this. Large result types will fail.
- if (SrcVT == MVT::f16) {
- Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
- SrcVT = Src.getValueType();
- }
- APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
- APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
- APFloat::opStatus MinStatus =
- MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
- APFloat::opStatus MaxStatus =
- MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
- bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
- !(MaxStatus & APFloat::opStatus::opInexact);
- SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
- SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
- // If the integer bounds are exactly representable as floats and min/max are
- // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
- // of comparisons and selects.
- bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
- isOperationLegal(ISD::FMAXNUM, SrcVT);
- if (AreExactFloatBounds && MinMaxLegal) {
- SDValue Clamped = Src;
- // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
- Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
- // Clamp by MaxFloat from above. NaN cannot occur.
- Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
- // Convert clamped value to integer.
- SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
- dl, DstVT, Clamped);
- // In the unsigned case we're done, because we mapped NaN to MinFloat,
- // which will cast to zero.
- if (!IsSigned)
- return FpToInt;
- // Otherwise, select 0 if Src is NaN.
- SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
- return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
- ISD::CondCode::SETUO);
- }
- SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
- SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
- // Result of direct conversion. The assumption here is that the operation is
- // non-trapping and it's fine to apply it to an out-of-range value if we
- // select it away later.
- SDValue FpToInt =
- DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
- SDValue Select = FpToInt;
- // If Src ULT MinFloat, select MinInt. In particular, this also selects
- // MinInt if Src is NaN.
- Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
- ISD::CondCode::SETULT);
- // If Src OGT MaxFloat, select MaxInt.
- Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
- ISD::CondCode::SETOGT);
- // In the unsigned case we are done, because we mapped NaN to MinInt, which
- // is already zero.
- if (!IsSigned)
- return Select;
- // Otherwise, select 0 if Src is NaN.
- SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
- return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
- }
- SDValue TargetLowering::expandVectorSplice(SDNode *Node,
- SelectionDAG &DAG) const {
- assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
- assert(Node->getValueType(0).isScalableVector() &&
- "Fixed length vector types expected to use SHUFFLE_VECTOR!");
- EVT VT = Node->getValueType(0);
- SDValue V1 = Node->getOperand(0);
- SDValue V2 = Node->getOperand(1);
- int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
- SDLoc DL(Node);
- // Expand through memory thusly:
- // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
- // Store V1, Ptr
- // Store V2, Ptr + sizeof(V1)
- // If (Imm < 0)
- // TrailingElts = -Imm
- // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
- // else
- // Ptr = Ptr + (Imm * sizeof(VT.Elt))
- // Res = Load Ptr
- Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
- EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
- VT.getVectorElementCount() * 2);
- SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
- EVT PtrVT = StackPtr.getValueType();
- auto &MF = DAG.getMachineFunction();
- auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
- auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
- // Store the lo part of CONCAT_VECTORS(V1, V2)
- SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
- // Store the hi part of CONCAT_VECTORS(V1, V2)
- SDValue OffsetToV2 = DAG.getVScale(
- DL, PtrVT,
- APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue()));
- SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
- SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
- if (Imm >= 0) {
- // Load back the required element. getVectorElementPointer takes care of
- // clamping the index if it's out-of-bounds.
- StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
- // Load the spliced result
- return DAG.getLoad(VT, DL, StoreV2, StackPtr,
- MachinePointerInfo::getUnknownStack(MF));
- }
- uint64_t TrailingElts = -Imm;
- // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
- TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
- SDValue TrailingBytes =
- DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
- if (TrailingElts > VT.getVectorMinNumElements()) {
- SDValue VLBytes =
- DAG.getVScale(DL, PtrVT,
- APInt(PtrVT.getFixedSizeInBits(),
- VT.getStoreSize().getKnownMinValue()));
- TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
- }
- // Calculate the start address of the spliced result.
- StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
- // Load the spliced result
- return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
- MachinePointerInfo::getUnknownStack(MF));
- }
- bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
- SDValue &LHS, SDValue &RHS,
- SDValue &CC, SDValue Mask,
- SDValue EVL, bool &NeedInvert,
- const SDLoc &dl, SDValue &Chain,
- bool IsSignaling) const {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- MVT OpVT = LHS.getSimpleValueType();
- ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
- NeedInvert = false;
- assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
- bool IsNonVP = !EVL;
- switch (TLI.getCondCodeAction(CCCode, OpVT)) {
- default:
- llvm_unreachable("Unknown condition code action!");
- case TargetLowering::Legal:
- // Nothing to do.
- break;
- case TargetLowering::Expand: {
- ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
- if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
- std::swap(LHS, RHS);
- CC = DAG.getCondCode(InvCC);
- return true;
- }
- // Swapping operands didn't work. Try inverting the condition.
- bool NeedSwap = false;
- InvCC = getSetCCInverse(CCCode, OpVT);
- if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
- // If inverting the condition is not enough, try swapping operands
- // on top of it.
- InvCC = ISD::getSetCCSwappedOperands(InvCC);
- NeedSwap = true;
- }
- if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
- CC = DAG.getCondCode(InvCC);
- NeedInvert = true;
- if (NeedSwap)
- std::swap(LHS, RHS);
- return true;
- }
- ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
- unsigned Opc = 0;
- switch (CCCode) {
- default:
- llvm_unreachable("Don't know how to expand this condition!");
- case ISD::SETUO:
- if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
- CC1 = ISD::SETUNE;
- CC2 = ISD::SETUNE;
- Opc = ISD::OR;
- break;
- }
- assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
- "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
- NeedInvert = true;
- [[fallthrough]];
- case ISD::SETO:
- assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
- "If SETO is expanded, SETOEQ must be legal!");
- CC1 = ISD::SETOEQ;
- CC2 = ISD::SETOEQ;
- Opc = ISD::AND;
- break;
- case ISD::SETONE:
- case ISD::SETUEQ:
- // If the SETUO or SETO CC isn't legal, we might be able to use
- // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
- // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
- // the operands.
- CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
- if (!TLI.isCondCodeLegal(CC2, OpVT) &&
- (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
- TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
- CC1 = ISD::SETOGT;
- CC2 = ISD::SETOLT;
- Opc = ISD::OR;
- NeedInvert = ((unsigned)CCCode & 0x8U);
- break;
- }
- [[fallthrough]];
- case ISD::SETOEQ:
- case ISD::SETOGT:
- case ISD::SETOGE:
- case ISD::SETOLT:
- case ISD::SETOLE:
- case ISD::SETUNE:
- case ISD::SETUGT:
- case ISD::SETUGE:
- case ISD::SETULT:
- case ISD::SETULE:
- // If we are floating point, assign and break, otherwise fall through.
- if (!OpVT.isInteger()) {
- // We can use the 4th bit to tell if we are the unordered
- // or ordered version of the opcode.
- CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
- Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
- CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
- break;
- }
- // Fallthrough if we are unsigned integer.
- [[fallthrough]];
- case ISD::SETLE:
- case ISD::SETGT:
- case ISD::SETGE:
- case ISD::SETLT:
- case ISD::SETNE:
- case ISD::SETEQ:
- // If all combinations of inverting the condition and swapping operands
- // didn't work then we have no means to expand the condition.
- llvm_unreachable("Don't know how to expand this condition!");
- }
- SDValue SetCC1, SetCC2;
- if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
- // If we aren't the ordered or unorder operation,
- // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
- if (IsNonVP) {
- SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
- SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
- } else {
- SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
- SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
- }
- } else {
- // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
- if (IsNonVP) {
- SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
- SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
- } else {
- SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
- SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
- }
- }
- if (Chain)
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
- SetCC2.getValue(1));
- if (IsNonVP)
- LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
- else {
- // Transform the binary opcode to the VP equivalent.
- assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
- Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
- LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
- }
- RHS = SDValue();
- CC = SDValue();
- return true;
- }
- }
- return false;
- }
|