123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601 |
- //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements routines for translating from LLVM IR into SelectionDAG IR.
- //
- //===----------------------------------------------------------------------===//
- #include "SelectionDAGBuilder.h"
- #include "SDNodeDbgValue.h"
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/ADT/Triple.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/BranchProbabilityInfo.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/EHPersonalities.h"
- #include "llvm/Analysis/Loads.h"
- #include "llvm/Analysis/MemoryLocation.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/CodeGen/Analysis.h"
- #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
- #include "llvm/CodeGen/CodeGenCommonISel.h"
- #include "llvm/CodeGen/FunctionLoweringInfo.h"
- #include "llvm/CodeGen/GCMetadata.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineInstrBundleIterator.h"
- #include "llvm/CodeGen/MachineMemOperand.h"
- #include "llvm/CodeGen/MachineModuleInfo.h"
- #include "llvm/CodeGen/MachineOperand.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/RuntimeLibcalls.h"
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
- #include "llvm/CodeGen/StackMaps.h"
- #include "llvm/CodeGen/SwiftErrorValueTracking.h"
- #include "llvm/CodeGen/TargetFrameLowering.h"
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/CodeGen/TargetOpcodes.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/CodeGen/WinEHFuncInfo.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/CallingConv.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/DiagnosticInfo.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/IntrinsicsAArch64.h"
- #include "llvm/IR/IntrinsicsWebAssembly.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Statepoint.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/MC/MCContext.h"
- #include "llvm/Support/AtomicOrdering.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetIntrinsicInfo.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Target/TargetOptions.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <cstddef>
- #include <iterator>
- #include <limits>
- #include <optional>
- #include <tuple>
- using namespace llvm;
- using namespace PatternMatch;
- using namespace SwitchCG;
- #define DEBUG_TYPE "isel"
- /// LimitFloatPrecision - Generate low-precision inline sequences for
- /// some float libcalls (6, 8 or 12 bits).
- static unsigned LimitFloatPrecision;
- static cl::opt<bool>
- InsertAssertAlign("insert-assert-align", cl::init(true),
- cl::desc("Insert the experimental `assertalign` node."),
- cl::ReallyHidden);
- static cl::opt<unsigned, true>
- LimitFPPrecision("limit-float-precision",
- cl::desc("Generate low-precision inline sequences "
- "for some float libcalls"),
- cl::location(LimitFloatPrecision), cl::Hidden,
- cl::init(0));
- static cl::opt<unsigned> SwitchPeelThreshold(
- "switch-peel-threshold", cl::Hidden, cl::init(66),
- cl::desc("Set the case probability threshold for peeling the case from a "
- "switch statement. A value greater than 100 will void this "
- "optimization"));
- // Limit the width of DAG chains. This is important in general to prevent
- // DAG-based analysis from blowing up. For example, alias analysis and
- // load clustering may not complete in reasonable time. It is difficult to
- // recognize and avoid this situation within each individual analysis, and
- // future analyses are likely to have the same behavior. Limiting DAG width is
- // the safe approach and will be especially important with global DAGs.
- //
- // MaxParallelChains default is arbitrarily high to avoid affecting
- // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
- // sequence over this should have been converted to llvm.memcpy by the
- // frontend. It is easy to induce this behavior with .ll code such as:
- // %buffer = alloca [4096 x i8]
- // %data = load [4096 x i8]* %argPtr
- // store [4096 x i8] %data, [4096 x i8]* %buffer
- static const unsigned MaxParallelChains = 64;
- static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
- const SDValue *Parts, unsigned NumParts,
- MVT PartVT, EVT ValueVT, const Value *V,
- std::optional<CallingConv::ID> CC);
- /// getCopyFromParts - Create a value that contains the specified legal parts
- /// combined into the value they represent. If the parts combine to a type
- /// larger than ValueVT then AssertOp can be used to specify whether the extra
- /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
- /// (ISD::AssertSext).
- static SDValue
- getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
- unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
- std::optional<CallingConv::ID> CC = std::nullopt,
- std::optional<ISD::NodeType> AssertOp = std::nullopt) {
- // Let the target assemble the parts if it wants to
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
- PartVT, ValueVT, CC))
- return Val;
- if (ValueVT.isVector())
- return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
- CC);
- assert(NumParts > 0 && "No parts to assemble!");
- SDValue Val = Parts[0];
- if (NumParts > 1) {
- // Assemble the value from multiple parts.
- if (ValueVT.isInteger()) {
- unsigned PartBits = PartVT.getSizeInBits();
- unsigned ValueBits = ValueVT.getSizeInBits();
- // Assemble the power of 2 part.
- unsigned RoundParts = llvm::bit_floor(NumParts);
- unsigned RoundBits = PartBits * RoundParts;
- EVT RoundVT = RoundBits == ValueBits ?
- ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
- SDValue Lo, Hi;
- EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
- if (RoundParts > 2) {
- Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
- PartVT, HalfVT, V);
- Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
- RoundParts / 2, PartVT, HalfVT, V);
- } else {
- Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
- Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
- }
- if (DAG.getDataLayout().isBigEndian())
- std::swap(Lo, Hi);
- Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
- if (RoundParts < NumParts) {
- // Assemble the trailing non-power-of-2 part.
- unsigned OddParts = NumParts - RoundParts;
- EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
- Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
- OddVT, V, CC);
- // Combine the round and odd parts.
- Lo = Val;
- if (DAG.getDataLayout().isBigEndian())
- std::swap(Lo, Hi);
- EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
- Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
- DAG.getConstant(Lo.getValueSizeInBits(), DL,
- TLI.getShiftAmountTy(
- TotalVT, DAG.getDataLayout())));
- Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
- Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
- }
- } else if (PartVT.isFloatingPoint()) {
- // FP split into multiple FP parts (for ppcf128)
- assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
- "Unexpected split");
- SDValue Lo, Hi;
- Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
- Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
- if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
- std::swap(Lo, Hi);
- Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
- } else {
- // FP split into integer parts (soft fp)
- assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
- !PartVT.isVector() && "Unexpected split");
- EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
- Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
- }
- }
- // There is now one part, held in Val. Correct it to match ValueVT.
- // PartEVT is the type of the register class that holds the value.
- // ValueVT is the type of the inline asm operation.
- EVT PartEVT = Val.getValueType();
- if (PartEVT == ValueVT)
- return Val;
- if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
- ValueVT.bitsLT(PartEVT)) {
- // For an FP value in an integer part, we need to truncate to the right
- // width first.
- PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
- Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
- }
- // Handle types that have the same size.
- if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
- return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
- // Handle types with different sizes.
- if (PartEVT.isInteger() && ValueVT.isInteger()) {
- if (ValueVT.bitsLT(PartEVT)) {
- // For a truncate, see if we have any information to
- // indicate whether the truncated bits will always be
- // zero or sign-extension.
- if (AssertOp)
- Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
- DAG.getValueType(ValueVT));
- return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
- }
- return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
- }
- if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
- // FP_ROUND's are always exact here.
- if (ValueVT.bitsLT(Val.getValueType()))
- return DAG.getNode(
- ISD::FP_ROUND, DL, ValueVT, Val,
- DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
- return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
- }
- // Handle MMX to a narrower integer type by bitcasting MMX to integer and
- // then truncating.
- if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
- ValueVT.bitsLT(PartEVT)) {
- Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
- return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
- }
- report_fatal_error("Unknown mismatch in getCopyFromParts!");
- }
- static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
- const Twine &ErrMsg) {
- const Instruction *I = dyn_cast_or_null<Instruction>(V);
- if (!V)
- return Ctx.emitError(ErrMsg);
- const char *AsmError = ", possible invalid constraint for vector type";
- if (const CallInst *CI = dyn_cast<CallInst>(I))
- if (CI->isInlineAsm())
- return Ctx.emitError(I, ErrMsg + AsmError);
- return Ctx.emitError(I, ErrMsg);
- }
- /// getCopyFromPartsVector - Create a value that contains the specified legal
- /// parts combined into the value they represent. If the parts combine to a
- /// type larger than ValueVT then AssertOp can be used to specify whether the
- /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
- /// ValueVT (ISD::AssertSext).
- static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
- const SDValue *Parts, unsigned NumParts,
- MVT PartVT, EVT ValueVT, const Value *V,
- std::optional<CallingConv::ID> CallConv) {
- assert(ValueVT.isVector() && "Not a vector value");
- assert(NumParts > 0 && "No parts to assemble!");
- const bool IsABIRegCopy = CallConv.has_value();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue Val = Parts[0];
- // Handle a multi-element vector.
- if (NumParts > 1) {
- EVT IntermediateVT;
- MVT RegisterVT;
- unsigned NumIntermediates;
- unsigned NumRegs;
- if (IsABIRegCopy) {
- NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
- *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
- NumIntermediates, RegisterVT);
- } else {
- NumRegs =
- TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
- NumIntermediates, RegisterVT);
- }
- assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
- NumParts = NumRegs; // Silence a compiler warning.
- assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
- assert(RegisterVT.getSizeInBits() ==
- Parts[0].getSimpleValueType().getSizeInBits() &&
- "Part type sizes don't match!");
- // Assemble the parts into intermediate operands.
- SmallVector<SDValue, 8> Ops(NumIntermediates);
- if (NumIntermediates == NumParts) {
- // If the register was not expanded, truncate or copy the value,
- // as appropriate.
- for (unsigned i = 0; i != NumParts; ++i)
- Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
- PartVT, IntermediateVT, V, CallConv);
- } else if (NumParts > 0) {
- // If the intermediate type was expanded, build the intermediate
- // operands from the parts.
- assert(NumParts % NumIntermediates == 0 &&
- "Must expand into a divisible number of parts!");
- unsigned Factor = NumParts / NumIntermediates;
- for (unsigned i = 0; i != NumIntermediates; ++i)
- Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
- PartVT, IntermediateVT, V, CallConv);
- }
- // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
- // intermediate operands.
- EVT BuiltVectorTy =
- IntermediateVT.isVector()
- ? EVT::getVectorVT(
- *DAG.getContext(), IntermediateVT.getScalarType(),
- IntermediateVT.getVectorElementCount() * NumParts)
- : EVT::getVectorVT(*DAG.getContext(),
- IntermediateVT.getScalarType(),
- NumIntermediates);
- Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
- : ISD::BUILD_VECTOR,
- DL, BuiltVectorTy, Ops);
- }
- // There is now one part, held in Val. Correct it to match ValueVT.
- EVT PartEVT = Val.getValueType();
- if (PartEVT == ValueVT)
- return Val;
- if (PartEVT.isVector()) {
- // Vector/Vector bitcast.
- if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
- return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
- // If the parts vector has more elements than the value vector, then we
- // have a vector widening case (e.g. <2 x float> -> <4 x float>).
- // Extract the elements we want.
- if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
- assert((PartEVT.getVectorElementCount().getKnownMinValue() >
- ValueVT.getVectorElementCount().getKnownMinValue()) &&
- (PartEVT.getVectorElementCount().isScalable() ==
- ValueVT.getVectorElementCount().isScalable()) &&
- "Cannot narrow, it would be a lossy transformation");
- PartEVT =
- EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
- ValueVT.getVectorElementCount());
- Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
- DAG.getVectorIdxConstant(0, DL));
- if (PartEVT == ValueVT)
- return Val;
- if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
- return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
- }
- // Promoted vector extract
- return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
- }
- // Trivial bitcast if the types are the same size and the destination
- // vector type is legal.
- if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
- TLI.isTypeLegal(ValueVT))
- return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
- if (ValueVT.getVectorNumElements() != 1) {
- // Certain ABIs require that vectors are passed as integers. For vectors
- // are the same size, this is an obvious bitcast.
- if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
- return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
- } else if (ValueVT.bitsLT(PartEVT)) {
- const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
- EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
- // Drop the extra bits.
- Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
- return DAG.getBitcast(ValueVT, Val);
- }
- diagnosePossiblyInvalidConstraint(
- *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
- return DAG.getUNDEF(ValueVT);
- }
- // Handle cases such as i8 -> <1 x i1>
- EVT ValueSVT = ValueVT.getVectorElementType();
- if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
- unsigned ValueSize = ValueSVT.getSizeInBits();
- if (ValueSize == PartEVT.getSizeInBits()) {
- Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
- } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
- // It's possible a scalar floating point type gets softened to integer and
- // then promoted to a larger integer. If PartEVT is the larger integer
- // we need to truncate it and then bitcast to the FP type.
- assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
- EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
- Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
- Val = DAG.getBitcast(ValueSVT, Val);
- } else {
- Val = ValueVT.isFloatingPoint()
- ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
- : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
- }
- }
- return DAG.getBuildVector(ValueVT, DL, Val);
- }
- static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
- SDValue Val, SDValue *Parts, unsigned NumParts,
- MVT PartVT, const Value *V,
- std::optional<CallingConv::ID> CallConv);
- /// getCopyToParts - Create a series of nodes that contain the specified value
- /// split into legal parts. If the parts contain more bits than Val, then, for
- /// integers, ExtendKind can be used to specify how to generate the extra bits.
- static void
- getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
- unsigned NumParts, MVT PartVT, const Value *V,
- std::optional<CallingConv::ID> CallConv = std::nullopt,
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
- // Let the target split the parts if it wants to
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
- CallConv))
- return;
- EVT ValueVT = Val.getValueType();
- // Handle the vector case separately.
- if (ValueVT.isVector())
- return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
- CallConv);
- unsigned PartBits = PartVT.getSizeInBits();
- unsigned OrigNumParts = NumParts;
- assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
- "Copying to an illegal type!");
- if (NumParts == 0)
- return;
- assert(!ValueVT.isVector() && "Vector case handled elsewhere");
- EVT PartEVT = PartVT;
- if (PartEVT == ValueVT) {
- assert(NumParts == 1 && "No-op copy with multiple parts!");
- Parts[0] = Val;
- return;
- }
- if (NumParts * PartBits > ValueVT.getSizeInBits()) {
- // If the parts cover more bits than the value has, promote the value.
- if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
- assert(NumParts == 1 && "Do not know what to promote to!");
- Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
- } else {
- if (ValueVT.isFloatingPoint()) {
- // FP values need to be bitcast, then extended if they are being put
- // into a larger container.
- ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
- Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
- }
- assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
- ValueVT.isInteger() &&
- "Unknown mismatch!");
- ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
- if (PartVT == MVT::x86mmx)
- Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
- }
- } else if (PartBits == ValueVT.getSizeInBits()) {
- // Different types of the same size.
- assert(NumParts == 1 && PartEVT != ValueVT);
- Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
- } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
- // If the parts cover less bits than value has, truncate the value.
- assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
- ValueVT.isInteger() &&
- "Unknown mismatch!");
- ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
- if (PartVT == MVT::x86mmx)
- Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
- }
- // The value may have changed - recompute ValueVT.
- ValueVT = Val.getValueType();
- assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
- "Failed to tile the value with PartVT!");
- if (NumParts == 1) {
- if (PartEVT != ValueVT) {
- diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
- "scalar-to-vector conversion failed");
- Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
- }
- Parts[0] = Val;
- return;
- }
- // Expand the value into multiple parts.
- if (NumParts & (NumParts - 1)) {
- // The number of parts is not a power of 2. Split off and copy the tail.
- assert(PartVT.isInteger() && ValueVT.isInteger() &&
- "Do not know what to expand to!");
- unsigned RoundParts = llvm::bit_floor(NumParts);
- unsigned RoundBits = RoundParts * PartBits;
- unsigned OddParts = NumParts - RoundParts;
- SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
- DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
- getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
- CallConv);
- if (DAG.getDataLayout().isBigEndian())
- // The odd parts were reversed by getCopyToParts - unreverse them.
- std::reverse(Parts + RoundParts, Parts + NumParts);
- NumParts = RoundParts;
- ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
- }
- // The number of parts is a power of 2. Repeatedly bisect the value using
- // EXTRACT_ELEMENT.
- Parts[0] = DAG.getNode(ISD::BITCAST, DL,
- EVT::getIntegerVT(*DAG.getContext(),
- ValueVT.getSizeInBits()),
- Val);
- for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
- for (unsigned i = 0; i < NumParts; i += StepSize) {
- unsigned ThisBits = StepSize * PartBits / 2;
- EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
- SDValue &Part0 = Parts[i];
- SDValue &Part1 = Parts[i+StepSize/2];
- Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
- ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
- Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
- ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
- if (ThisBits == PartBits && ThisVT != PartVT) {
- Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
- Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
- }
- }
- }
- if (DAG.getDataLayout().isBigEndian())
- std::reverse(Parts, Parts + OrigNumParts);
- }
- static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
- const SDLoc &DL, EVT PartVT) {
- if (!PartVT.isVector())
- return SDValue();
- EVT ValueVT = Val.getValueType();
- ElementCount PartNumElts = PartVT.getVectorElementCount();
- ElementCount ValueNumElts = ValueVT.getVectorElementCount();
- // We only support widening vectors with equivalent element types and
- // fixed/scalable properties. If a target needs to widen a fixed-length type
- // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
- if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
- PartNumElts.isScalable() != ValueNumElts.isScalable() ||
- PartVT.getVectorElementType() != ValueVT.getVectorElementType())
- return SDValue();
- // Widening a scalable vector to another scalable vector is done by inserting
- // the vector into a larger undef one.
- if (PartNumElts.isScalable())
- return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
- Val, DAG.getVectorIdxConstant(0, DL));
- EVT ElementVT = PartVT.getVectorElementType();
- // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
- // undef elements.
- SmallVector<SDValue, 16> Ops;
- DAG.ExtractVectorElements(Val, Ops);
- SDValue EltUndef = DAG.getUNDEF(ElementVT);
- Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
- // FIXME: Use CONCAT for 2x -> 4x.
- return DAG.getBuildVector(PartVT, DL, Ops);
- }
- /// getCopyToPartsVector - Create a series of nodes that contain the specified
- /// value split into legal parts.
- static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
- SDValue Val, SDValue *Parts, unsigned NumParts,
- MVT PartVT, const Value *V,
- std::optional<CallingConv::ID> CallConv) {
- EVT ValueVT = Val.getValueType();
- assert(ValueVT.isVector() && "Not a vector");
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- const bool IsABIRegCopy = CallConv.has_value();
- if (NumParts == 1) {
- EVT PartEVT = PartVT;
- if (PartEVT == ValueVT) {
- // Nothing to do.
- } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
- // Bitconvert vector->vector case.
- Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
- } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
- Val = Widened;
- } else if (PartVT.isVector() &&
- PartEVT.getVectorElementType().bitsGE(
- ValueVT.getVectorElementType()) &&
- PartEVT.getVectorElementCount() ==
- ValueVT.getVectorElementCount()) {
- // Promoted vector extract
- Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
- } else if (PartEVT.isVector() &&
- PartEVT.getVectorElementType() !=
- ValueVT.getVectorElementType() &&
- TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
- TargetLowering::TypeWidenVector) {
- // Combination of widening and promotion.
- EVT WidenVT =
- EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
- PartVT.getVectorElementCount());
- SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
- Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
- } else {
- // Don't extract an integer from a float vector. This can happen if the
- // FP type gets softened to integer and then promoted. The promotion
- // prevents it from being picked up by the earlier bitcast case.
- if (ValueVT.getVectorElementCount().isScalar() &&
- (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
- Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
- DAG.getVectorIdxConstant(0, DL));
- } else {
- uint64_t ValueSize = ValueVT.getFixedSizeInBits();
- assert(PartVT.getFixedSizeInBits() > ValueSize &&
- "lossy conversion of vector to scalar type");
- EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
- Val = DAG.getBitcast(IntermediateType, Val);
- Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
- }
- }
- assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
- Parts[0] = Val;
- return;
- }
- // Handle a multi-element vector.
- EVT IntermediateVT;
- MVT RegisterVT;
- unsigned NumIntermediates;
- unsigned NumRegs;
- if (IsABIRegCopy) {
- NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
- *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
- RegisterVT);
- } else {
- NumRegs =
- TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
- NumIntermediates, RegisterVT);
- }
- assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
- NumParts = NumRegs; // Silence a compiler warning.
- assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
- assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
- "Mixing scalable and fixed vectors when copying in parts");
- std::optional<ElementCount> DestEltCnt;
- if (IntermediateVT.isVector())
- DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
- else
- DestEltCnt = ElementCount::getFixed(NumIntermediates);
- EVT BuiltVectorTy = EVT::getVectorVT(
- *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
- if (ValueVT == BuiltVectorTy) {
- // Nothing to do.
- } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
- // Bitconvert vector->vector case.
- Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
- } else {
- if (BuiltVectorTy.getVectorElementType().bitsGT(
- ValueVT.getVectorElementType())) {
- // Integer promotion.
- ValueVT = EVT::getVectorVT(*DAG.getContext(),
- BuiltVectorTy.getVectorElementType(),
- ValueVT.getVectorElementCount());
- Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
- }
- if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
- Val = Widened;
- }
- }
- assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
- // Split the vector into intermediate operands.
- SmallVector<SDValue, 8> Ops(NumIntermediates);
- for (unsigned i = 0; i != NumIntermediates; ++i) {
- if (IntermediateVT.isVector()) {
- // This does something sensible for scalable vectors - see the
- // definition of EXTRACT_SUBVECTOR for further details.
- unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
- Ops[i] =
- DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
- DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
- } else {
- Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
- DAG.getVectorIdxConstant(i, DL));
- }
- }
- // Split the intermediate operands into legal parts.
- if (NumParts == NumIntermediates) {
- // If the register was not expanded, promote or copy the value,
- // as appropriate.
- for (unsigned i = 0; i != NumParts; ++i)
- getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
- } else if (NumParts > 0) {
- // If the intermediate type was expanded, split each the value into
- // legal parts.
- assert(NumIntermediates != 0 && "division by zero");
- assert(NumParts % NumIntermediates == 0 &&
- "Must expand into a divisible number of parts!");
- unsigned Factor = NumParts / NumIntermediates;
- for (unsigned i = 0; i != NumIntermediates; ++i)
- getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
- CallConv);
- }
- }
- RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt,
- EVT valuevt, std::optional<CallingConv::ID> CC)
- : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
- RegCount(1, regs.size()), CallConv(CC) {}
- RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
- const DataLayout &DL, unsigned Reg, Type *Ty,
- std::optional<CallingConv::ID> CC) {
- ComputeValueVTs(TLI, DL, Ty, ValueVTs);
- CallConv = CC;
- for (EVT ValueVT : ValueVTs) {
- unsigned NumRegs =
- isABIMangled()
- ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
- : TLI.getNumRegisters(Context, ValueVT);
- MVT RegisterVT =
- isABIMangled()
- ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
- : TLI.getRegisterType(Context, ValueVT);
- for (unsigned i = 0; i != NumRegs; ++i)
- Regs.push_back(Reg + i);
- RegVTs.push_back(RegisterVT);
- RegCount.push_back(NumRegs);
- Reg += NumRegs;
- }
- }
- SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
- FunctionLoweringInfo &FuncInfo,
- const SDLoc &dl, SDValue &Chain,
- SDValue *Flag, const Value *V) const {
- // A Value with type {} or [0 x %t] needs no registers.
- if (ValueVTs.empty())
- return SDValue();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // Assemble the legal parts into the final values.
- SmallVector<SDValue, 4> Values(ValueVTs.size());
- SmallVector<SDValue, 8> Parts;
- for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
- // Copy the legal parts from the registers.
- EVT ValueVT = ValueVTs[Value];
- unsigned NumRegs = RegCount[Value];
- MVT RegisterVT = isABIMangled()
- ? TLI.getRegisterTypeForCallingConv(
- *DAG.getContext(), *CallConv, RegVTs[Value])
- : RegVTs[Value];
- Parts.resize(NumRegs);
- for (unsigned i = 0; i != NumRegs; ++i) {
- SDValue P;
- if (!Flag) {
- P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
- } else {
- P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
- *Flag = P.getValue(2);
- }
- Chain = P.getValue(1);
- Parts[i] = P;
- // If the source register was virtual and if we know something about it,
- // add an assert node.
- if (!Register::isVirtualRegister(Regs[Part + i]) ||
- !RegisterVT.isInteger())
- continue;
- const FunctionLoweringInfo::LiveOutInfo *LOI =
- FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
- if (!LOI)
- continue;
- unsigned RegSize = RegisterVT.getScalarSizeInBits();
- unsigned NumSignBits = LOI->NumSignBits;
- unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
- if (NumZeroBits == RegSize) {
- // The current value is a zero.
- // Explicitly express that as it would be easier for
- // optimizations to kick in.
- Parts[i] = DAG.getConstant(0, dl, RegisterVT);
- continue;
- }
- // FIXME: We capture more information than the dag can represent. For
- // now, just use the tightest assertzext/assertsext possible.
- bool isSExt;
- EVT FromVT(MVT::Other);
- if (NumZeroBits) {
- FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
- isSExt = false;
- } else if (NumSignBits > 1) {
- FromVT =
- EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
- isSExt = true;
- } else {
- continue;
- }
- // Add an assertion node.
- assert(FromVT != MVT::Other);
- Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
- RegisterVT, P, DAG.getValueType(FromVT));
- }
- Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
- RegisterVT, ValueVT, V, CallConv);
- Part += NumRegs;
- Parts.clear();
- }
- return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
- }
- void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
- const SDLoc &dl, SDValue &Chain, SDValue *Flag,
- const Value *V,
- ISD::NodeType PreferredExtendType) const {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- ISD::NodeType ExtendKind = PreferredExtendType;
- // Get the list of the values's legal parts.
- unsigned NumRegs = Regs.size();
- SmallVector<SDValue, 8> Parts(NumRegs);
- for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
- unsigned NumParts = RegCount[Value];
- MVT RegisterVT = isABIMangled()
- ? TLI.getRegisterTypeForCallingConv(
- *DAG.getContext(), *CallConv, RegVTs[Value])
- : RegVTs[Value];
- if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
- ExtendKind = ISD::ZERO_EXTEND;
- getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
- NumParts, RegisterVT, V, CallConv, ExtendKind);
- Part += NumParts;
- }
- // Copy the parts into the registers.
- SmallVector<SDValue, 8> Chains(NumRegs);
- for (unsigned i = 0; i != NumRegs; ++i) {
- SDValue Part;
- if (!Flag) {
- Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
- } else {
- Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
- *Flag = Part.getValue(1);
- }
- Chains[i] = Part.getValue(0);
- }
- if (NumRegs == 1 || Flag)
- // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
- // flagged to it. That is the CopyToReg nodes and the user are considered
- // a single scheduling unit. If we create a TokenFactor and return it as
- // chain, then the TokenFactor is both a predecessor (operand) of the
- // user as well as a successor (the TF operands are flagged to the user).
- // c1, f1 = CopyToReg
- // c2, f2 = CopyToReg
- // c3 = TokenFactor c1, c2
- // ...
- // = op c3, ..., f2
- Chain = Chains[NumRegs-1];
- else
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
- }
- void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
- unsigned MatchingIdx, const SDLoc &dl,
- SelectionDAG &DAG,
- std::vector<SDValue> &Ops) const {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
- if (HasMatching)
- Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
- else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
- // Put the register class of the virtual registers in the flag word. That
- // way, later passes can recompute register class constraints for inline
- // assembly as well as normal instructions.
- // Don't do this for tied operands that can use the regclass information
- // from the def.
- const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
- const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
- Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
- }
- SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
- Ops.push_back(Res);
- if (Code == InlineAsm::Kind_Clobber) {
- // Clobbers should always have a 1:1 mapping with registers, and may
- // reference registers that have illegal (e.g. vector) types. Hence, we
- // shouldn't try to apply any sort of splitting logic to them.
- assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
- "No 1:1 mapping from clobbers to regs?");
- Register SP = TLI.getStackPointerRegisterToSaveRestore();
- (void)SP;
- for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
- Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
- assert(
- (Regs[I] != SP ||
- DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
- "If we clobbered the stack pointer, MFI should know about it.");
- }
- return;
- }
- for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
- MVT RegisterVT = RegVTs[Value];
- unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
- RegisterVT);
- for (unsigned i = 0; i != NumRegs; ++i) {
- assert(Reg < Regs.size() && "Mismatch in # registers expected");
- unsigned TheReg = Regs[Reg++];
- Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
- }
- }
- }
- SmallVector<std::pair<unsigned, TypeSize>, 4>
- RegsForValue::getRegsAndSizes() const {
- SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
- unsigned I = 0;
- for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
- unsigned RegCount = std::get<0>(CountAndVT);
- MVT RegisterVT = std::get<1>(CountAndVT);
- TypeSize RegisterSize = RegisterVT.getSizeInBits();
- for (unsigned E = I + RegCount; I != E; ++I)
- OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
- }
- return OutVec;
- }
- void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
- AssumptionCache *ac,
- const TargetLibraryInfo *li) {
- AA = aa;
- AC = ac;
- GFI = gfi;
- LibInfo = li;
- Context = DAG.getContext();
- LPadToCallSiteMap.clear();
- SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
- }
- void SelectionDAGBuilder::clear() {
- NodeMap.clear();
- UnusedArgNodeMap.clear();
- PendingLoads.clear();
- PendingExports.clear();
- PendingConstrainedFP.clear();
- PendingConstrainedFPStrict.clear();
- CurInst = nullptr;
- HasTailCall = false;
- SDNodeOrder = LowestSDNodeOrder;
- StatepointLowering.clear();
- }
- void SelectionDAGBuilder::clearDanglingDebugInfo() {
- DanglingDebugInfoMap.clear();
- }
- // Update DAG root to include dependencies on Pending chains.
- SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
- SDValue Root = DAG.getRoot();
- if (Pending.empty())
- return Root;
- // Add current root to PendingChains, unless we already indirectly
- // depend on it.
- if (Root.getOpcode() != ISD::EntryToken) {
- unsigned i = 0, e = Pending.size();
- for (; i != e; ++i) {
- assert(Pending[i].getNode()->getNumOperands() > 1);
- if (Pending[i].getNode()->getOperand(0) == Root)
- break; // Don't add the root if we already indirectly depend on it.
- }
- if (i == e)
- Pending.push_back(Root);
- }
- if (Pending.size() == 1)
- Root = Pending[0];
- else
- Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
- DAG.setRoot(Root);
- Pending.clear();
- return Root;
- }
- SDValue SelectionDAGBuilder::getMemoryRoot() {
- return updateRoot(PendingLoads);
- }
- SDValue SelectionDAGBuilder::getRoot() {
- // Chain up all pending constrained intrinsics together with all
- // pending loads, by simply appending them to PendingLoads and
- // then calling getMemoryRoot().
- PendingLoads.reserve(PendingLoads.size() +
- PendingConstrainedFP.size() +
- PendingConstrainedFPStrict.size());
- PendingLoads.append(PendingConstrainedFP.begin(),
- PendingConstrainedFP.end());
- PendingLoads.append(PendingConstrainedFPStrict.begin(),
- PendingConstrainedFPStrict.end());
- PendingConstrainedFP.clear();
- PendingConstrainedFPStrict.clear();
- return getMemoryRoot();
- }
- SDValue SelectionDAGBuilder::getControlRoot() {
- // We need to emit pending fpexcept.strict constrained intrinsics,
- // so append them to the PendingExports list.
- PendingExports.append(PendingConstrainedFPStrict.begin(),
- PendingConstrainedFPStrict.end());
- PendingConstrainedFPStrict.clear();
- return updateRoot(PendingExports);
- }
- void SelectionDAGBuilder::visit(const Instruction &I) {
- // Set up outgoing PHI node register values before emitting the terminator.
- if (I.isTerminator()) {
- HandlePHINodesInSuccessorBlocks(I.getParent());
- }
- // Add SDDbgValue nodes for any var locs here. Do so before updating
- // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
- if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
- // Add SDDbgValue nodes for any var locs here. Do so before updating
- // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
- for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
- It != End; ++It) {
- auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
- dropDanglingDebugInfo(Var, It->Expr);
- if (!handleDebugValue(It->V, Var, It->Expr, It->DL, SDNodeOrder,
- /*IsVariadic=*/false))
- addDanglingDebugInfo(It, SDNodeOrder);
- }
- }
- // Increase the SDNodeOrder if dealing with a non-debug instruction.
- if (!isa<DbgInfoIntrinsic>(I))
- ++SDNodeOrder;
- CurInst = &I;
- // Set inserted listener only if required.
- bool NodeInserted = false;
- std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
- MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
- if (PCSectionsMD) {
- InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
- DAG, [&](SDNode *) { NodeInserted = true; });
- }
- visit(I.getOpcode(), I);
- if (!I.isTerminator() && !HasTailCall &&
- !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
- CopyToExportRegsIfNeeded(&I);
- // Handle metadata.
- if (PCSectionsMD) {
- auto It = NodeMap.find(&I);
- if (It != NodeMap.end()) {
- DAG.addPCSections(It->second.getNode(), PCSectionsMD);
- } else if (NodeInserted) {
- // This should not happen; if it does, don't let it go unnoticed so we can
- // fix it. Relevant visit*() function is probably missing a setValue().
- errs() << "warning: loosing !pcsections metadata ["
- << I.getModule()->getName() << "]\n";
- LLVM_DEBUG(I.dump());
- assert(false);
- }
- }
- CurInst = nullptr;
- }
- void SelectionDAGBuilder::visitPHI(const PHINode &) {
- llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
- }
- void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
- // Note: this doesn't use InstVisitor, because it has to work with
- // ConstantExpr's in addition to instructions.
- switch (Opcode) {
- default: llvm_unreachable("Unknown instruction type encountered!");
- // Build the switch statement using the Instruction.def file.
- #define HANDLE_INST(NUM, OPCODE, CLASS) \
- case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
- #include "llvm/IR/Instruction.def"
- }
- }
- void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc,
- unsigned Order) {
- DanglingDebugInfoMap[VarLoc->V].emplace_back(VarLoc, Order);
- }
- void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
- unsigned Order) {
- // We treat variadic dbg_values differently at this stage.
- if (DI->hasArgList()) {
- // For variadic dbg_values we will now insert an undef.
- // FIXME: We can potentially recover these!
- SmallVector<SDDbgOperand, 2> Locs;
- for (const Value *V : DI->getValues()) {
- auto Undef = UndefValue::get(V->getType());
- Locs.push_back(SDDbgOperand::fromConst(Undef));
- }
- SDDbgValue *SDV = DAG.getDbgValueList(
- DI->getVariable(), DI->getExpression(), Locs, {},
- /*IsIndirect=*/false, DI->getDebugLoc(), Order, /*IsVariadic=*/true);
- DAG.AddDbgValue(SDV, /*isParameter=*/false);
- } else {
- // TODO: Dangling debug info will eventually either be resolved or produce
- // an Undef DBG_VALUE. However in the resolution case, a gap may appear
- // between the original dbg.value location and its resolved DBG_VALUE,
- // which we should ideally fill with an extra Undef DBG_VALUE.
- assert(DI->getNumVariableLocationOps() == 1 &&
- "DbgValueInst without an ArgList should have a single location "
- "operand.");
- DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order);
- }
- }
- void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
- const DIExpression *Expr) {
- auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
- DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs());
- DIExpression *DanglingExpr = DDI.getExpression();
- if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
- LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI)
- << "\n");
- return true;
- }
- return false;
- };
- for (auto &DDIMI : DanglingDebugInfoMap) {
- DanglingDebugInfoVector &DDIV = DDIMI.second;
- // If debug info is to be dropped, run it through final checks to see
- // whether it can be salvaged.
- for (auto &DDI : DDIV)
- if (isMatchingDbgValue(DDI))
- salvageUnresolvedDbgValue(DDI);
- erase_if(DDIV, isMatchingDbgValue);
- }
- }
- // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
- // generate the debug data structures now that we've seen its definition.
- void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
- SDValue Val) {
- auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
- if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
- return;
- DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
- for (auto &DDI : DDIV) {
- DebugLoc DL = DDI.getDebugLoc();
- unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
- unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
- DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs());
- DIExpression *Expr = DDI.getExpression();
- assert(Variable->isValidLocationForIntrinsic(DL) &&
- "Expected inlined-at fields to agree");
- SDDbgValue *SDV;
- if (Val.getNode()) {
- // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
- // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
- // we couldn't resolve it directly when examining the DbgValue intrinsic
- // in the first place we should not be more successful here). Unless we
- // have some test case that prove this to be correct we should avoid
- // calling EmitFuncArgumentDbgValue here.
- if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
- FuncArgumentDbgValueKind::Value, Val)) {
- LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI)
- << "\n");
- LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump());
- // Increase the SDNodeOrder for the DbgValue here to make sure it is
- // inserted after the definition of Val when emitting the instructions
- // after ISel. An alternative could be to teach
- // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
- LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
- << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
- << ValSDNodeOrder << "\n");
- SDV = getDbgValue(Val, Variable, Expr, DL,
- std::max(DbgSDNodeOrder, ValSDNodeOrder));
- DAG.AddDbgValue(SDV, false);
- } else
- LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
- << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n");
- } else {
- LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n");
- auto Undef = UndefValue::get(V->getType());
- auto SDV =
- DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
- DAG.AddDbgValue(SDV, false);
- }
- }
- DDIV.clear();
- }
- void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
- // TODO: For the variadic implementation, instead of only checking the fail
- // state of `handleDebugValue`, we need know specifically which values were
- // invalid, so that we attempt to salvage only those values when processing
- // a DIArgList.
- Value *V = DDI.getVariableLocationOp(0);
- Value *OrigV = V;
- DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs());
- DIExpression *Expr = DDI.getExpression();
- DebugLoc DL = DDI.getDebugLoc();
- unsigned SDOrder = DDI.getSDNodeOrder();
- // Currently we consider only dbg.value intrinsics -- we tell the salvager
- // that DW_OP_stack_value is desired.
- bool StackValue = true;
- // Can this Value can be encoded without any further work?
- if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
- return;
- // Attempt to salvage back through as many instructions as possible. Bail if
- // a non-instruction is seen, such as a constant expression or global
- // variable. FIXME: Further work could recover those too.
- while (isa<Instruction>(V)) {
- Instruction &VAsInst = *cast<Instruction>(V);
- // Temporary "0", awaiting real implementation.
- SmallVector<uint64_t, 16> Ops;
- SmallVector<Value *, 4> AdditionalValues;
- V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
- AdditionalValues);
- // If we cannot salvage any further, and haven't yet found a suitable debug
- // expression, bail out.
- if (!V)
- break;
- // TODO: If AdditionalValues isn't empty, then the salvage can only be
- // represented with a DBG_VALUE_LIST, so we give up. When we have support
- // here for variadic dbg_values, remove that condition.
- if (!AdditionalValues.empty())
- break;
- // New value and expr now represent this debuginfo.
- Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
- // Some kind of simplification occurred: check whether the operand of the
- // salvaged debug expression can be encoded in this DAG.
- if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
- LLVM_DEBUG(
- dbgs() << "Salvaged debug location info for:\n " << *Var << "\n"
- << *OrigV << "\nBy stripping back to:\n " << *V << "\n");
- return;
- }
- }
- // This was the final opportunity to salvage this debug information, and it
- // couldn't be done. Place an undef DBG_VALUE at this location to terminate
- // any earlier variable location.
- assert(OrigV && "V shouldn't be null");
- auto *Undef = UndefValue::get(OrigV->getType());
- auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
- DAG.AddDbgValue(SDV, false);
- LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << printDDI(DDI)
- << "\n");
- }
- bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
- DILocalVariable *Var,
- DIExpression *Expr, DebugLoc DbgLoc,
- unsigned Order, bool IsVariadic) {
- if (Values.empty())
- return true;
- SmallVector<SDDbgOperand> LocationOps;
- SmallVector<SDNode *> Dependencies;
- for (const Value *V : Values) {
- // Constant value.
- if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
- isa<ConstantPointerNull>(V)) {
- LocationOps.emplace_back(SDDbgOperand::fromConst(V));
- continue;
- }
- // Look through IntToPtr constants.
- if (auto *CE = dyn_cast<ConstantExpr>(V))
- if (CE->getOpcode() == Instruction::IntToPtr) {
- LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
- continue;
- }
- // If the Value is a frame index, we can create a FrameIndex debug value
- // without relying on the DAG at all.
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- auto SI = FuncInfo.StaticAllocaMap.find(AI);
- if (SI != FuncInfo.StaticAllocaMap.end()) {
- LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
- continue;
- }
- }
- // Do not use getValue() in here; we don't want to generate code at
- // this point if it hasn't been done yet.
- SDValue N = NodeMap[V];
- if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
- N = UnusedArgNodeMap[V];
- if (N.getNode()) {
- // Only emit func arg dbg value for non-variadic dbg.values for now.
- if (!IsVariadic &&
- EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
- FuncArgumentDbgValueKind::Value, N))
- return true;
- if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
- // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
- // describe stack slot locations.
- //
- // Consider "int x = 0; int *px = &x;". There are two kinds of
- // interesting debug values here after optimization:
- //
- // dbg.value(i32* %px, !"int *px", !DIExpression()), and
- // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
- //
- // Both describe the direct values of their associated variables.
- Dependencies.push_back(N.getNode());
- LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
- continue;
- }
- LocationOps.emplace_back(
- SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
- continue;
- }
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // Special rules apply for the first dbg.values of parameter variables in a
- // function. Identify them by the fact they reference Argument Values, that
- // they're parameters, and they are parameters of the current function. We
- // need to let them dangle until they get an SDNode.
- bool IsParamOfFunc =
- isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
- if (IsParamOfFunc)
- return false;
- // The value is not used in this block yet (or it would have an SDNode).
- // We still want the value to appear for the user if possible -- if it has
- // an associated VReg, we can refer to that instead.
- auto VMI = FuncInfo.ValueMap.find(V);
- if (VMI != FuncInfo.ValueMap.end()) {
- unsigned Reg = VMI->second;
- // If this is a PHI node, it may be split up into several MI PHI nodes
- // (in FunctionLoweringInfo::set).
- RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
- V->getType(), std::nullopt);
- if (RFV.occupiesMultipleRegs()) {
- // FIXME: We could potentially support variadic dbg_values here.
- if (IsVariadic)
- return false;
- unsigned Offset = 0;
- unsigned BitsToDescribe = 0;
- if (auto VarSize = Var->getSizeInBits())
- BitsToDescribe = *VarSize;
- if (auto Fragment = Expr->getFragmentInfo())
- BitsToDescribe = Fragment->SizeInBits;
- for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
- // Bail out if all bits are described already.
- if (Offset >= BitsToDescribe)
- break;
- // TODO: handle scalable vectors.
- unsigned RegisterSize = RegAndSize.second;
- unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
- ? BitsToDescribe - Offset
- : RegisterSize;
- auto FragmentExpr = DIExpression::createFragmentExpression(
- Expr, Offset, FragmentSize);
- if (!FragmentExpr)
- continue;
- SDDbgValue *SDV = DAG.getVRegDbgValue(
- Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
- DAG.AddDbgValue(SDV, false);
- Offset += RegisterSize;
- }
- return true;
- }
- // We can use simple vreg locations for variadic dbg_values as well.
- LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
- continue;
- }
- // We failed to create a SDDbgOperand for V.
- return false;
- }
- // We have created a SDDbgOperand for each Value in Values.
- // Should use Order instead of SDNodeOrder?
- assert(!LocationOps.empty());
- SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
- /*IsIndirect=*/false, DbgLoc,
- SDNodeOrder, IsVariadic);
- DAG.AddDbgValue(SDV, /*isParameter=*/false);
- return true;
- }
- void SelectionDAGBuilder::resolveOrClearDbgInfo() {
- // Try to fixup any remaining dangling debug info -- and drop it if we can't.
- for (auto &Pair : DanglingDebugInfoMap)
- for (auto &DDI : Pair.second)
- salvageUnresolvedDbgValue(DDI);
- clearDanglingDebugInfo();
- }
- /// getCopyFromRegs - If there was virtual register allocated for the value V
- /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
- SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
- DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
- SDValue Result;
- if (It != FuncInfo.ValueMap.end()) {
- Register InReg = It->second;
- RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
- DAG.getDataLayout(), InReg, Ty,
- std::nullopt); // This is not an ABI copy.
- SDValue Chain = DAG.getEntryNode();
- Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
- V);
- resolveDanglingDebugInfo(V, Result);
- }
- return Result;
- }
- /// getValue - Return an SDValue for the given Value.
- SDValue SelectionDAGBuilder::getValue(const Value *V) {
- // If we already have an SDValue for this value, use it. It's important
- // to do this first, so that we don't create a CopyFromReg if we already
- // have a regular SDValue.
- SDValue &N = NodeMap[V];
- if (N.getNode()) return N;
- // If there's a virtual register allocated and initialized for this
- // value, use it.
- if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
- return copyFromReg;
- // Otherwise create a new SDValue and remember it.
- SDValue Val = getValueImpl(V);
- NodeMap[V] = Val;
- resolveDanglingDebugInfo(V, Val);
- return Val;
- }
- /// getNonRegisterValue - Return an SDValue for the given Value, but
- /// don't look in FuncInfo.ValueMap for a virtual register.
- SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
- // If we already have an SDValue for this value, use it.
- SDValue &N = NodeMap[V];
- if (N.getNode()) {
- if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
- // Remove the debug location from the node as the node is about to be used
- // in a location which may differ from the original debug location. This
- // is relevant to Constant and ConstantFP nodes because they can appear
- // as constant expressions inside PHI nodes.
- N->setDebugLoc(DebugLoc());
- }
- return N;
- }
- // Otherwise create a new SDValue and remember it.
- SDValue Val = getValueImpl(V);
- NodeMap[V] = Val;
- resolveDanglingDebugInfo(V, Val);
- return Val;
- }
- /// getValueImpl - Helper function for getValue and getNonRegisterValue.
- /// Create an SDValue for the given value.
- SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (const Constant *C = dyn_cast<Constant>(V)) {
- EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
- return DAG.getConstant(*CI, getCurSDLoc(), VT);
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
- return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
- if (isa<ConstantPointerNull>(C)) {
- unsigned AS = V->getType()->getPointerAddressSpace();
- return DAG.getConstant(0, getCurSDLoc(),
- TLI.getPointerTy(DAG.getDataLayout(), AS));
- }
- if (match(C, m_VScale(DAG.getDataLayout())))
- return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
- return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
- if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
- return DAG.getUNDEF(VT);
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- visit(CE->getOpcode(), *CE);
- SDValue N1 = NodeMap[V];
- assert(N1.getNode() && "visit didn't populate the NodeMap!");
- return N1;
- }
- if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
- SmallVector<SDValue, 4> Constants;
- for (const Use &U : C->operands()) {
- SDNode *Val = getValue(U).getNode();
- // If the operand is an empty aggregate, there are no values.
- if (!Val) continue;
- // Add each leaf value from the operand to the Constants list
- // to form a flattened list of all the values.
- for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
- Constants.push_back(SDValue(Val, i));
- }
- return DAG.getMergeValues(Constants, getCurSDLoc());
- }
- if (const ConstantDataSequential *CDS =
- dyn_cast<ConstantDataSequential>(C)) {
- SmallVector<SDValue, 4> Ops;
- for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
- SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
- // Add each leaf value from the operand to the Constants list
- // to form a flattened list of all the values.
- for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
- Ops.push_back(SDValue(Val, i));
- }
- if (isa<ArrayType>(CDS->getType()))
- return DAG.getMergeValues(Ops, getCurSDLoc());
- return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
- }
- if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
- assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
- "Unknown struct or array constant!");
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
- unsigned NumElts = ValueVTs.size();
- if (NumElts == 0)
- return SDValue(); // empty struct
- SmallVector<SDValue, 4> Constants(NumElts);
- for (unsigned i = 0; i != NumElts; ++i) {
- EVT EltVT = ValueVTs[i];
- if (isa<UndefValue>(C))
- Constants[i] = DAG.getUNDEF(EltVT);
- else if (EltVT.isFloatingPoint())
- Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
- else
- Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
- }
- return DAG.getMergeValues(Constants, getCurSDLoc());
- }
- if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
- return DAG.getBlockAddress(BA, VT);
- if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
- return getValue(Equiv->getGlobalValue());
- if (const auto *NC = dyn_cast<NoCFIValue>(C))
- return getValue(NC->getGlobalValue());
- VectorType *VecTy = cast<VectorType>(V->getType());
- // Now that we know the number and type of the elements, get that number of
- // elements into the Ops array based on what kind of constant it is.
- if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
- SmallVector<SDValue, 16> Ops;
- unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
- for (unsigned i = 0; i != NumElements; ++i)
- Ops.push_back(getValue(CV->getOperand(i)));
- return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
- }
- if (isa<ConstantAggregateZero>(C)) {
- EVT EltVT =
- TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
- SDValue Op;
- if (EltVT.isFloatingPoint())
- Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
- else
- Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
- return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
- }
- llvm_unreachable("Unknown vector constant");
- }
- // If this is a static alloca, generate it as the frameindex instead of
- // computation.
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- DenseMap<const AllocaInst*, int>::iterator SI =
- FuncInfo.StaticAllocaMap.find(AI);
- if (SI != FuncInfo.StaticAllocaMap.end())
- return DAG.getFrameIndex(
- SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
- }
- // If this is an instruction which fast-isel has deferred, select it now.
- if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
- Register InReg = FuncInfo.InitializeRegForValue(Inst);
- RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
- Inst->getType(), std::nullopt);
- SDValue Chain = DAG.getEntryNode();
- return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
- }
- if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
- return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
- if (const auto *BB = dyn_cast<BasicBlock>(V))
- return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
- llvm_unreachable("Can't get register for value!");
- }
- void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
- auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
- bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
- bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
- bool IsSEH = isAsynchronousEHPersonality(Pers);
- MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
- if (!IsSEH)
- CatchPadMBB->setIsEHScopeEntry();
- // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
- if (IsMSVCCXX || IsCoreCLR)
- CatchPadMBB->setIsEHFuncletEntry();
- }
- void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
- // Update machine-CFG edge.
- MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
- FuncInfo.MBB->addSuccessor(TargetMBB);
- TargetMBB->setIsEHCatchretTarget(true);
- DAG.getMachineFunction().setHasEHCatchret(true);
- auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
- bool IsSEH = isAsynchronousEHPersonality(Pers);
- if (IsSEH) {
- // If this is not a fall-through branch or optimizations are switched off,
- // emit the branch.
- if (TargetMBB != NextBlock(FuncInfo.MBB) ||
- TM.getOptLevel() == CodeGenOpt::None)
- DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
- getControlRoot(), DAG.getBasicBlock(TargetMBB)));
- return;
- }
- // Figure out the funclet membership for the catchret's successor.
- // This will be used by the FuncletLayout pass to determine how to order the
- // BB's.
- // A 'catchret' returns to the outer scope's color.
- Value *ParentPad = I.getCatchSwitchParentPad();
- const BasicBlock *SuccessorColor;
- if (isa<ConstantTokenNone>(ParentPad))
- SuccessorColor = &FuncInfo.Fn->getEntryBlock();
- else
- SuccessorColor = cast<Instruction>(ParentPad)->getParent();
- assert(SuccessorColor && "No parent funclet for catchret!");
- MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
- assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
- // Create the terminator node.
- SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
- getControlRoot(), DAG.getBasicBlock(TargetMBB),
- DAG.getBasicBlock(SuccessorColorMBB));
- DAG.setRoot(Ret);
- }
- void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
- // Don't emit any special code for the cleanuppad instruction. It just marks
- // the start of an EH scope/funclet.
- FuncInfo.MBB->setIsEHScopeEntry();
- auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
- if (Pers != EHPersonality::Wasm_CXX) {
- FuncInfo.MBB->setIsEHFuncletEntry();
- FuncInfo.MBB->setIsCleanupFuncletEntry();
- }
- }
- // In wasm EH, even though a catchpad may not catch an exception if a tag does
- // not match, it is OK to add only the first unwind destination catchpad to the
- // successors, because there will be at least one invoke instruction within the
- // catch scope that points to the next unwind destination, if one exists, so
- // CFGSort cannot mess up with BB sorting order.
- // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
- // call within them, and catchpads only consisting of 'catch (...)' have a
- // '__cxa_end_catch' call within them, both of which generate invokes in case
- // the next unwind destination exists, i.e., the next unwind destination is not
- // the caller.)
- //
- // Having at most one EH pad successor is also simpler and helps later
- // transformations.
- //
- // For example,
- // current:
- // invoke void @foo to ... unwind label %catch.dispatch
- // catch.dispatch:
- // %0 = catchswitch within ... [label %catch.start] unwind label %next
- // catch.start:
- // ...
- // ... in this BB or some other child BB dominated by this BB there will be an
- // invoke that points to 'next' BB as an unwind destination
- //
- // next: ; We don't need to add this to 'current' BB's successor
- // ...
- static void findWasmUnwindDestinations(
- FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
- BranchProbability Prob,
- SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
- &UnwindDests) {
- while (EHPadBB) {
- const Instruction *Pad = EHPadBB->getFirstNonPHI();
- if (isa<CleanupPadInst>(Pad)) {
- // Stop on cleanup pads.
- UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
- UnwindDests.back().first->setIsEHScopeEntry();
- break;
- } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
- // Add the catchpad handlers to the possible destinations. We don't
- // continue to the unwind destination of the catchswitch for wasm.
- for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
- UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
- UnwindDests.back().first->setIsEHScopeEntry();
- }
- break;
- } else {
- continue;
- }
- }
- }
- /// When an invoke or a cleanupret unwinds to the next EH pad, there are
- /// many places it could ultimately go. In the IR, we have a single unwind
- /// destination, but in the machine CFG, we enumerate all the possible blocks.
- /// This function skips over imaginary basic blocks that hold catchswitch
- /// instructions, and finds all the "real" machine
- /// basic block destinations. As those destinations may not be successors of
- /// EHPadBB, here we also calculate the edge probability to those destinations.
- /// The passed-in Prob is the edge probability to EHPadBB.
- static void findUnwindDestinations(
- FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
- BranchProbability Prob,
- SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
- &UnwindDests) {
- EHPersonality Personality =
- classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
- bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
- bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
- bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
- bool IsSEH = isAsynchronousEHPersonality(Personality);
- if (IsWasmCXX) {
- findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
- assert(UnwindDests.size() <= 1 &&
- "There should be at most one unwind destination for wasm");
- return;
- }
- while (EHPadBB) {
- const Instruction *Pad = EHPadBB->getFirstNonPHI();
- BasicBlock *NewEHPadBB = nullptr;
- if (isa<LandingPadInst>(Pad)) {
- // Stop on landingpads. They are not funclets.
- UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
- break;
- } else if (isa<CleanupPadInst>(Pad)) {
- // Stop on cleanup pads. Cleanups are always funclet entries for all known
- // personalities.
- UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
- UnwindDests.back().first->setIsEHScopeEntry();
- UnwindDests.back().first->setIsEHFuncletEntry();
- break;
- } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
- // Add the catchpad handlers to the possible destinations.
- for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
- UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
- // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
- if (IsMSVCCXX || IsCoreCLR)
- UnwindDests.back().first->setIsEHFuncletEntry();
- if (!IsSEH)
- UnwindDests.back().first->setIsEHScopeEntry();
- }
- NewEHPadBB = CatchSwitch->getUnwindDest();
- } else {
- continue;
- }
- BranchProbabilityInfo *BPI = FuncInfo.BPI;
- if (BPI && NewEHPadBB)
- Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
- EHPadBB = NewEHPadBB;
- }
- }
- void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
- // Update successor info.
- SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
- auto UnwindDest = I.getUnwindDest();
- BranchProbabilityInfo *BPI = FuncInfo.BPI;
- BranchProbability UnwindDestProb =
- (BPI && UnwindDest)
- ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
- : BranchProbability::getZero();
- findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
- for (auto &UnwindDest : UnwindDests) {
- UnwindDest.first->setIsEHPad();
- addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
- }
- FuncInfo.MBB->normalizeSuccProbs();
- // Create the terminator node.
- SDValue Ret =
- DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
- DAG.setRoot(Ret);
- }
- void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
- report_fatal_error("visitCatchSwitch not yet implemented!");
- }
- void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- auto &DL = DAG.getDataLayout();
- SDValue Chain = getControlRoot();
- SmallVector<ISD::OutputArg, 8> Outs;
- SmallVector<SDValue, 8> OutVals;
- // Calls to @llvm.experimental.deoptimize don't generate a return value, so
- // lower
- //
- // %val = call <ty> @llvm.experimental.deoptimize()
- // ret <ty> %val
- //
- // differently.
- if (I.getParent()->getTerminatingDeoptimizeCall()) {
- LowerDeoptimizingReturn();
- return;
- }
- if (!FuncInfo.CanLowerReturn) {
- unsigned DemoteReg = FuncInfo.DemoteRegister;
- const Function *F = I.getParent()->getParent();
- // Emit a store of the return value through the virtual register.
- // Leave Outs empty so that LowerReturn won't try to load return
- // registers the usual way.
- SmallVector<EVT, 1> PtrValueVTs;
- ComputeValueVTs(TLI, DL,
- F->getReturnType()->getPointerTo(
- DAG.getDataLayout().getAllocaAddrSpace()),
- PtrValueVTs);
- SDValue RetPtr =
- DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
- SDValue RetOp = getValue(I.getOperand(0));
- SmallVector<EVT, 4> ValueVTs, MemVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
- &Offsets);
- unsigned NumValues = ValueVTs.size();
- SmallVector<SDValue, 4> Chains(NumValues);
- Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
- for (unsigned i = 0; i != NumValues; ++i) {
- // An aggregate return value cannot wrap around the address space, so
- // offsets to its parts don't wrap either.
- SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
- TypeSize::Fixed(Offsets[i]));
- SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
- if (MemVTs[i] != ValueVTs[i])
- Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
- Chains[i] = DAG.getStore(
- Chain, getCurSDLoc(), Val,
- // FIXME: better loc info would be nice.
- Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
- commonAlignment(BaseAlign, Offsets[i]));
- }
- Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
- MVT::Other, Chains);
- } else if (I.getNumOperands() != 0) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
- unsigned NumValues = ValueVTs.size();
- if (NumValues) {
- SDValue RetOp = getValue(I.getOperand(0));
- const Function *F = I.getParent()->getParent();
- bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
- I.getOperand(0)->getType(), F->getCallingConv(),
- /*IsVarArg*/ false, DL);
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
- if (F->getAttributes().hasRetAttr(Attribute::SExt))
- ExtendKind = ISD::SIGN_EXTEND;
- else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
- ExtendKind = ISD::ZERO_EXTEND;
- LLVMContext &Context = F->getContext();
- bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
- for (unsigned j = 0; j != NumValues; ++j) {
- EVT VT = ValueVTs[j];
- if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
- VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
- CallingConv::ID CC = F->getCallingConv();
- unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
- MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
- SmallVector<SDValue, 4> Parts(NumParts);
- getCopyToParts(DAG, getCurSDLoc(),
- SDValue(RetOp.getNode(), RetOp.getResNo() + j),
- &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
- // 'inreg' on function refers to return value
- ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
- if (RetInReg)
- Flags.setInReg();
- if (I.getOperand(0)->getType()->isPointerTy()) {
- Flags.setPointer();
- Flags.setPointerAddrSpace(
- cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
- }
- if (NeedsRegBlock) {
- Flags.setInConsecutiveRegs();
- if (j == NumValues - 1)
- Flags.setInConsecutiveRegsLast();
- }
- // Propagate extension type if any
- if (ExtendKind == ISD::SIGN_EXTEND)
- Flags.setSExt();
- else if (ExtendKind == ISD::ZERO_EXTEND)
- Flags.setZExt();
- for (unsigned i = 0; i < NumParts; ++i) {
- Outs.push_back(ISD::OutputArg(Flags,
- Parts[i].getValueType().getSimpleVT(),
- VT, /*isfixed=*/true, 0, 0));
- OutVals.push_back(Parts[i]);
- }
- }
- }
- }
- // Push in swifterror virtual register as the last element of Outs. This makes
- // sure swifterror virtual register will be returned in the swifterror
- // physical register.
- const Function *F = I.getParent()->getParent();
- if (TLI.supportSwiftError() &&
- F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
- assert(SwiftError.getFunctionArg() && "Need a swift error argument");
- ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
- Flags.setSwiftError();
- Outs.push_back(ISD::OutputArg(
- Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
- /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
- // Create SDNode for the swifterror virtual register.
- OutVals.push_back(
- DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
- &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
- EVT(TLI.getPointerTy(DL))));
- }
- bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
- CallingConv::ID CallConv =
- DAG.getMachineFunction().getFunction().getCallingConv();
- Chain = DAG.getTargetLoweringInfo().LowerReturn(
- Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
- // Verify that the target's LowerReturn behaved as expected.
- assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
- "LowerReturn didn't return a valid chain!");
- // Update the DAG with the new chain value resulting from return lowering.
- DAG.setRoot(Chain);
- }
- /// CopyToExportRegsIfNeeded - If the given value has virtual registers
- /// created for it, emit nodes to copy the value into the virtual
- /// registers.
- void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
- // Skip empty types
- if (V->getType()->isEmptyTy())
- return;
- DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
- if (VMI != FuncInfo.ValueMap.end()) {
- assert(!V->use_empty() && "Unused value assigned virtual registers!");
- CopyValueToVirtualRegister(V, VMI->second);
- }
- }
- /// ExportFromCurrentBlock - If this condition isn't known to be exported from
- /// the current basic block, add it to ValueMap now so that we'll get a
- /// CopyTo/FromReg.
- void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
- // No need to export constants.
- if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
- // Already exported?
- if (FuncInfo.isExportedInst(V)) return;
- Register Reg = FuncInfo.InitializeRegForValue(V);
- CopyValueToVirtualRegister(V, Reg);
- }
- bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
- const BasicBlock *FromBB) {
- // The operands of the setcc have to be in this block. We don't know
- // how to export them from some other block.
- if (const Instruction *VI = dyn_cast<Instruction>(V)) {
- // Can export from current BB.
- if (VI->getParent() == FromBB)
- return true;
- // Is already exported, noop.
- return FuncInfo.isExportedInst(V);
- }
- // If this is an argument, we can export it if the BB is the entry block or
- // if it is already exported.
- if (isa<Argument>(V)) {
- if (FromBB->isEntryBlock())
- return true;
- // Otherwise, can only export this if it is already exported.
- return FuncInfo.isExportedInst(V);
- }
- // Otherwise, constants can always be exported.
- return true;
- }
- /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
- BranchProbability
- SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
- const MachineBasicBlock *Dst) const {
- BranchProbabilityInfo *BPI = FuncInfo.BPI;
- const BasicBlock *SrcBB = Src->getBasicBlock();
- const BasicBlock *DstBB = Dst->getBasicBlock();
- if (!BPI) {
- // If BPI is not available, set the default probability as 1 / N, where N is
- // the number of successors.
- auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
- return BranchProbability(1, SuccSize);
- }
- return BPI->getEdgeProbability(SrcBB, DstBB);
- }
- void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
- MachineBasicBlock *Dst,
- BranchProbability Prob) {
- if (!FuncInfo.BPI)
- Src->addSuccessorWithoutProb(Dst);
- else {
- if (Prob.isUnknown())
- Prob = getEdgeProbability(Src, Dst);
- Src->addSuccessor(Dst, Prob);
- }
- }
- static bool InBlock(const Value *V, const BasicBlock *BB) {
- if (const Instruction *I = dyn_cast<Instruction>(V))
- return I->getParent() == BB;
- return true;
- }
- /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
- /// This function emits a branch and is used at the leaves of an OR or an
- /// AND operator tree.
- void
- SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
- MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- MachineBasicBlock *CurBB,
- MachineBasicBlock *SwitchBB,
- BranchProbability TProb,
- BranchProbability FProb,
- bool InvertCond) {
- const BasicBlock *BB = CurBB->getBasicBlock();
- // If the leaf of the tree is a comparison, merge the condition into
- // the caseblock.
- if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
- // The operands of the cmp have to be in this block. We don't know
- // how to export them from some other block. If this is the first block
- // of the sequence, no exporting is needed.
- if (CurBB == SwitchBB ||
- (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
- isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
- ISD::CondCode Condition;
- if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
- ICmpInst::Predicate Pred =
- InvertCond ? IC->getInversePredicate() : IC->getPredicate();
- Condition = getICmpCondCode(Pred);
- } else {
- const FCmpInst *FC = cast<FCmpInst>(Cond);
- FCmpInst::Predicate Pred =
- InvertCond ? FC->getInversePredicate() : FC->getPredicate();
- Condition = getFCmpCondCode(Pred);
- if (TM.Options.NoNaNsFPMath)
- Condition = getFCmpCodeWithoutNaN(Condition);
- }
- CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
- TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
- SL->SwitchCases.push_back(CB);
- return;
- }
- }
- // Create a CaseBlock record representing this branch.
- ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
- CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
- nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
- SL->SwitchCases.push_back(CB);
- }
- void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
- MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- MachineBasicBlock *CurBB,
- MachineBasicBlock *SwitchBB,
- Instruction::BinaryOps Opc,
- BranchProbability TProb,
- BranchProbability FProb,
- bool InvertCond) {
- // Skip over not part of the tree and remember to invert op and operands at
- // next level.
- Value *NotCond;
- if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
- InBlock(NotCond, CurBB->getBasicBlock())) {
- FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
- !InvertCond);
- return;
- }
- const Instruction *BOp = dyn_cast<Instruction>(Cond);
- const Value *BOpOp0, *BOpOp1;
- // Compute the effective opcode for Cond, taking into account whether it needs
- // to be inverted, e.g.
- // and (not (or A, B)), C
- // gets lowered as
- // and (and (not A, not B), C)
- Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
- if (BOp) {
- BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
- ? Instruction::And
- : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
- ? Instruction::Or
- : (Instruction::BinaryOps)0);
- if (InvertCond) {
- if (BOpc == Instruction::And)
- BOpc = Instruction::Or;
- else if (BOpc == Instruction::Or)
- BOpc = Instruction::And;
- }
- }
- // If this node is not part of the or/and tree, emit it as a branch.
- // Note that all nodes in the tree should have same opcode.
- bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
- if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
- !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
- !InBlock(BOpOp1, CurBB->getBasicBlock())) {
- EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
- TProb, FProb, InvertCond);
- return;
- }
- // Create TmpBB after CurBB.
- MachineFunction::iterator BBI(CurBB);
- MachineFunction &MF = DAG.getMachineFunction();
- MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
- CurBB->getParent()->insert(++BBI, TmpBB);
- if (Opc == Instruction::Or) {
- // Codegen X | Y as:
- // BB1:
- // jmp_if_X TBB
- // jmp TmpBB
- // TmpBB:
- // jmp_if_Y TBB
- // jmp FBB
- //
- // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
- // The requirement is that
- // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
- // = TrueProb for original BB.
- // Assuming the original probabilities are A and B, one choice is to set
- // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
- // A/(1+B) and 2B/(1+B). This choice assumes that
- // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
- // Another choice is to assume TrueProb for BB1 equals to TrueProb for
- // TmpBB, but the math is more complicated.
- auto NewTrueProb = TProb / 2;
- auto NewFalseProb = TProb / 2 + FProb;
- // Emit the LHS condition.
- FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
- NewFalseProb, InvertCond);
- // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
- SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
- BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
- // Emit the RHS condition into TmpBB.
- FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
- Probs[1], InvertCond);
- } else {
- assert(Opc == Instruction::And && "Unknown merge op!");
- // Codegen X & Y as:
- // BB1:
- // jmp_if_X TmpBB
- // jmp FBB
- // TmpBB:
- // jmp_if_Y TBB
- // jmp FBB
- //
- // This requires creation of TmpBB after CurBB.
- // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
- // The requirement is that
- // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
- // = FalseProb for original BB.
- // Assuming the original probabilities are A and B, one choice is to set
- // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
- // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
- // TrueProb for BB1 * FalseProb for TmpBB.
- auto NewTrueProb = TProb + FProb / 2;
- auto NewFalseProb = FProb / 2;
- // Emit the LHS condition.
- FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
- NewFalseProb, InvertCond);
- // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
- SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
- BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
- // Emit the RHS condition into TmpBB.
- FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
- Probs[1], InvertCond);
- }
- }
- /// If the set of cases should be emitted as a series of branches, return true.
- /// If we should emit this as a bunch of and/or'd together conditions, return
- /// false.
- bool
- SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
- if (Cases.size() != 2) return true;
- // If this is two comparisons of the same values or'd or and'd together, they
- // will get folded into a single comparison, so don't emit two blocks.
- if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
- Cases[0].CmpRHS == Cases[1].CmpRHS) ||
- (Cases[0].CmpRHS == Cases[1].CmpLHS &&
- Cases[0].CmpLHS == Cases[1].CmpRHS)) {
- return false;
- }
- // Handle: (X != null) | (Y != null) --> (X|Y) != 0
- // Handle: (X == null) & (Y == null) --> (X|Y) == 0
- if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
- Cases[0].CC == Cases[1].CC &&
- isa<Constant>(Cases[0].CmpRHS) &&
- cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
- if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
- return false;
- if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
- return false;
- }
- return true;
- }
- void SelectionDAGBuilder::visitBr(const BranchInst &I) {
- MachineBasicBlock *BrMBB = FuncInfo.MBB;
- // Update machine-CFG edges.
- MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
- if (I.isUnconditional()) {
- // Update machine-CFG edges.
- BrMBB->addSuccessor(Succ0MBB);
- // If this is not a fall-through branch or optimizations are switched off,
- // emit the branch.
- if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
- DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
- MVT::Other, getControlRoot(),
- DAG.getBasicBlock(Succ0MBB)));
- return;
- }
- // If this condition is one of the special cases we handle, do special stuff
- // now.
- const Value *CondVal = I.getCondition();
- MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
- // If this is a series of conditions that are or'd or and'd together, emit
- // this as a sequence of branches instead of setcc's with and/or operations.
- // As long as jumps are not expensive (exceptions for multi-use logic ops,
- // unpredictable branches, and vector extracts because those jumps are likely
- // expensive for any target), this should improve performance.
- // For example, instead of something like:
- // cmp A, B
- // C = seteq
- // cmp D, E
- // F = setle
- // or C, F
- // jnz foo
- // Emit:
- // cmp A, B
- // je foo
- // cmp D, E
- // jle foo
- const Instruction *BOp = dyn_cast<Instruction>(CondVal);
- if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
- BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
- Value *Vec;
- const Value *BOp0, *BOp1;
- Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
- if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
- Opcode = Instruction::And;
- else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
- Opcode = Instruction::Or;
- if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
- match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
- FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
- getEdgeProbability(BrMBB, Succ0MBB),
- getEdgeProbability(BrMBB, Succ1MBB),
- /*InvertCond=*/false);
- // If the compares in later blocks need to use values not currently
- // exported from this block, export them now. This block should always
- // be the first entry.
- assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
- // Allow some cases to be rejected.
- if (ShouldEmitAsBranches(SL->SwitchCases)) {
- for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
- ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
- ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
- }
- // Emit the branch for this block.
- visitSwitchCase(SL->SwitchCases[0], BrMBB);
- SL->SwitchCases.erase(SL->SwitchCases.begin());
- return;
- }
- // Okay, we decided not to do this, remove any inserted MBB's and clear
- // SwitchCases.
- for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
- FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
- SL->SwitchCases.clear();
- }
- }
- // Create a CaseBlock record representing this branch.
- CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
- nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
- // Use visitSwitchCase to actually insert the fast branch sequence for this
- // cond branch.
- visitSwitchCase(CB, BrMBB);
- }
- /// visitSwitchCase - Emits the necessary code to represent a single node in
- /// the binary search tree resulting from lowering a switch instruction.
- void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
- MachineBasicBlock *SwitchBB) {
- SDValue Cond;
- SDValue CondLHS = getValue(CB.CmpLHS);
- SDLoc dl = CB.DL;
- if (CB.CC == ISD::SETTRUE) {
- // Branch or fall through to TrueBB.
- addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
- SwitchBB->normalizeSuccProbs();
- if (CB.TrueBB != NextBlock(SwitchBB)) {
- DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
- DAG.getBasicBlock(CB.TrueBB)));
- }
- return;
- }
- auto &TLI = DAG.getTargetLoweringInfo();
- EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
- // Build the setcc now.
- if (!CB.CmpMHS) {
- // Fold "(X == true)" to X and "(X == false)" to !X to
- // handle common cases produced by branch lowering.
- if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
- CB.CC == ISD::SETEQ)
- Cond = CondLHS;
- else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
- CB.CC == ISD::SETEQ) {
- SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
- Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
- } else {
- SDValue CondRHS = getValue(CB.CmpRHS);
- // If a pointer's DAG type is larger than its memory type then the DAG
- // values are zero-extended. This breaks signed comparisons so truncate
- // back to the underlying type before doing the compare.
- if (CondLHS.getValueType() != MemVT) {
- CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
- CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
- }
- Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
- }
- } else {
- assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
- const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
- const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
- SDValue CmpOp = getValue(CB.CmpMHS);
- EVT VT = CmpOp.getValueType();
- if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
- Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
- ISD::SETLE);
- } else {
- SDValue SUB = DAG.getNode(ISD::SUB, dl,
- VT, CmpOp, DAG.getConstant(Low, dl, VT));
- Cond = DAG.getSetCC(dl, MVT::i1, SUB,
- DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
- }
- }
- // Update successor info
- addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
- // TrueBB and FalseBB are always different unless the incoming IR is
- // degenerate. This only happens when running llc on weird IR.
- if (CB.TrueBB != CB.FalseBB)
- addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
- SwitchBB->normalizeSuccProbs();
- // If the lhs block is the next block, invert the condition so that we can
- // fall through to the lhs instead of the rhs block.
- if (CB.TrueBB == NextBlock(SwitchBB)) {
- std::swap(CB.TrueBB, CB.FalseBB);
- SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
- Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
- }
- SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
- MVT::Other, getControlRoot(), Cond,
- DAG.getBasicBlock(CB.TrueBB));
- setValue(CurInst, BrCond);
- // Insert the false branch. Do this even if it's a fall through branch,
- // this makes it easier to do DAG optimizations which require inverting
- // the branch condition.
- BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
- DAG.getBasicBlock(CB.FalseBB));
- DAG.setRoot(BrCond);
- }
- /// visitJumpTable - Emit JumpTable node in the current MBB
- void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
- // Emit the code for the jump table
- assert(JT.Reg != -1U && "Should lower JT Header first!");
- EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
- SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
- JT.Reg, PTy);
- SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
- SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
- MVT::Other, Index.getValue(1),
- Table, Index);
- DAG.setRoot(BrJumpTable);
- }
- /// visitJumpTableHeader - This function emits necessary code to produce index
- /// in the JumpTable from switch case.
- void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
- JumpTableHeader &JTH,
- MachineBasicBlock *SwitchBB) {
- SDLoc dl = getCurSDLoc();
- // Subtract the lowest switch case value from the value being switched on.
- SDValue SwitchOp = getValue(JTH.SValue);
- EVT VT = SwitchOp.getValueType();
- SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
- DAG.getConstant(JTH.First, dl, VT));
- // The SDNode we just created, which holds the value being switched on minus
- // the smallest case value, needs to be copied to a virtual register so it
- // can be used as an index into the jump table in a subsequent basic block.
- // This value may be smaller or larger than the target's pointer type, and
- // therefore require extension or truncating.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
- unsigned JumpTableReg =
- FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
- SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
- JumpTableReg, SwitchOp);
- JT.Reg = JumpTableReg;
- if (!JTH.FallthroughUnreachable) {
- // Emit the range check for the jump table, and branch to the default block
- // for the switch statement if the value being switched on exceeds the
- // largest case in the switch.
- SDValue CMP = DAG.getSetCC(
- dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
- Sub.getValueType()),
- Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
- SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
- MVT::Other, CopyTo, CMP,
- DAG.getBasicBlock(JT.Default));
- // Avoid emitting unnecessary branches to the next block.
- if (JT.MBB != NextBlock(SwitchBB))
- BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
- DAG.getBasicBlock(JT.MBB));
- DAG.setRoot(BrCond);
- } else {
- // Avoid emitting unnecessary branches to the next block.
- if (JT.MBB != NextBlock(SwitchBB))
- DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
- DAG.getBasicBlock(JT.MBB)));
- else
- DAG.setRoot(CopyTo);
- }
- }
- /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
- /// variable if there exists one.
- static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
- SDValue &Chain) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
- EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
- MachineFunction &MF = DAG.getMachineFunction();
- Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
- MachineSDNode *Node =
- DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
- if (Global) {
- MachinePointerInfo MPInfo(Global);
- auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
- MachineMemOperand::MODereferenceable;
- MachineMemOperand *MemRef = MF.getMachineMemOperand(
- MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
- DAG.setNodeMemRefs(Node, {MemRef});
- }
- if (PtrTy != PtrMemTy)
- return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
- return SDValue(Node, 0);
- }
- /// Codegen a new tail for a stack protector check ParentMBB which has had its
- /// tail spliced into a stack protector check success bb.
- ///
- /// For a high level explanation of how this fits into the stack protector
- /// generation see the comment on the declaration of class
- /// StackProtectorDescriptor.
- void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
- MachineBasicBlock *ParentBB) {
- // First create the loads to the guard/stack slot for the comparison.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
- EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
- MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
- int FI = MFI.getStackProtectorIndex();
- SDValue Guard;
- SDLoc dl = getCurSDLoc();
- SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
- const Module &M = *ParentBB->getParent()->getFunction().getParent();
- Align Align =
- DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
- // Generate code to load the content of the guard slot.
- SDValue GuardVal = DAG.getLoad(
- PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
- MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
- MachineMemOperand::MOVolatile);
- if (TLI.useStackGuardXorFP())
- GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
- // Retrieve guard check function, nullptr if instrumentation is inlined.
- if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
- // The target provides a guard check function to validate the guard value.
- // Generate a call to that function with the content of the guard slot as
- // argument.
- FunctionType *FnTy = GuardCheckFn->getFunctionType();
- assert(FnTy->getNumParams() == 1 && "Invalid function signature");
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Node = GuardVal;
- Entry.Ty = FnTy->getParamType(0);
- if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
- Entry.IsInReg = true;
- Args.push_back(Entry);
- TargetLowering::CallLoweringInfo CLI(DAG);
- CLI.setDebugLoc(getCurSDLoc())
- .setChain(DAG.getEntryNode())
- .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
- getValue(GuardCheckFn), std::move(Args));
- std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
- DAG.setRoot(Result.second);
- return;
- }
- // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
- // Otherwise, emit a volatile load to retrieve the stack guard value.
- SDValue Chain = DAG.getEntryNode();
- if (TLI.useLoadStackGuardNode()) {
- Guard = getLoadStackGuard(DAG, dl, Chain);
- } else {
- const Value *IRGuard = TLI.getSDagStackGuard(M);
- SDValue GuardPtr = getValue(IRGuard);
- Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
- MachinePointerInfo(IRGuard, 0), Align,
- MachineMemOperand::MOVolatile);
- }
- // Perform the comparison via a getsetcc.
- SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
- *DAG.getContext(),
- Guard.getValueType()),
- Guard, GuardVal, ISD::SETNE);
- // If the guard/stackslot do not equal, branch to failure MBB.
- SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
- MVT::Other, GuardVal.getOperand(0),
- Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
- // Otherwise branch to success MBB.
- SDValue Br = DAG.getNode(ISD::BR, dl,
- MVT::Other, BrCond,
- DAG.getBasicBlock(SPD.getSuccessMBB()));
- DAG.setRoot(Br);
- }
- /// Codegen the failure basic block for a stack protector check.
- ///
- /// A failure stack protector machine basic block consists simply of a call to
- /// __stack_chk_fail().
- ///
- /// For a high level explanation of how this fits into the stack protector
- /// generation see the comment on the declaration of class
- /// StackProtectorDescriptor.
- void
- SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- TargetLowering::MakeLibCallOptions CallOptions;
- CallOptions.setDiscardResult(true);
- SDValue Chain =
- TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
- std::nullopt, CallOptions, getCurSDLoc())
- .second;
- // On PS4/PS5, the "return address" must still be within the calling
- // function, even if it's at the very end, so emit an explicit TRAP here.
- // Passing 'true' for doesNotReturn above won't generate the trap for us.
- if (TM.getTargetTriple().isPS())
- Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
- // WebAssembly needs an unreachable instruction after a non-returning call,
- // because the function return type can be different from __stack_chk_fail's
- // return type (void).
- if (TM.getTargetTriple().isWasm())
- Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
- DAG.setRoot(Chain);
- }
- /// visitBitTestHeader - This function emits necessary code to produce value
- /// suitable for "bit tests"
- void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
- MachineBasicBlock *SwitchBB) {
- SDLoc dl = getCurSDLoc();
- // Subtract the minimum value.
- SDValue SwitchOp = getValue(B.SValue);
- EVT VT = SwitchOp.getValueType();
- SDValue RangeSub =
- DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
- // Determine the type of the test operands.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- bool UsePtrType = false;
- if (!TLI.isTypeLegal(VT)) {
- UsePtrType = true;
- } else {
- for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
- if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
- // Switch table case range are encoded into series of masks.
- // Just use pointer type, it's guaranteed to fit.
- UsePtrType = true;
- break;
- }
- }
- SDValue Sub = RangeSub;
- if (UsePtrType) {
- VT = TLI.getPointerTy(DAG.getDataLayout());
- Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
- }
- B.RegVT = VT.getSimpleVT();
- B.Reg = FuncInfo.CreateReg(B.RegVT);
- SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
- MachineBasicBlock* MBB = B.Cases[0].ThisBB;
- if (!B.FallthroughUnreachable)
- addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
- addSuccessorWithProb(SwitchBB, MBB, B.Prob);
- SwitchBB->normalizeSuccProbs();
- SDValue Root = CopyTo;
- if (!B.FallthroughUnreachable) {
- // Conditional branch to the default block.
- SDValue RangeCmp = DAG.getSetCC(dl,
- TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
- RangeSub.getValueType()),
- RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
- ISD::SETUGT);
- Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
- DAG.getBasicBlock(B.Default));
- }
- // Avoid emitting unnecessary branches to the next block.
- if (MBB != NextBlock(SwitchBB))
- Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
- DAG.setRoot(Root);
- }
- /// visitBitTestCase - this function produces one "bit test"
- void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
- MachineBasicBlock* NextMBB,
- BranchProbability BranchProbToNext,
- unsigned Reg,
- BitTestCase &B,
- MachineBasicBlock *SwitchBB) {
- SDLoc dl = getCurSDLoc();
- MVT VT = BB.RegVT;
- SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
- SDValue Cmp;
- unsigned PopCount = llvm::popcount(B.Mask);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (PopCount == 1) {
- // Testing for a single bit; just compare the shift count with what it
- // would need to be to shift a 1 bit in that position.
- Cmp = DAG.getSetCC(
- dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
- ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
- ISD::SETEQ);
- } else if (PopCount == BB.Range) {
- // There is only one zero bit in the range, test for it directly.
- Cmp = DAG.getSetCC(
- dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
- ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
- ISD::SETNE);
- } else {
- // Make desired shift
- SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
- DAG.getConstant(1, dl, VT), ShiftOp);
- // Emit bit tests and jumps
- SDValue AndOp = DAG.getNode(ISD::AND, dl,
- VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
- Cmp = DAG.getSetCC(
- dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
- AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
- }
- // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
- addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
- // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
- addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
- // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
- // one as they are relative probabilities (and thus work more like weights),
- // and hence we need to normalize them to let the sum of them become one.
- SwitchBB->normalizeSuccProbs();
- SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
- MVT::Other, getControlRoot(),
- Cmp, DAG.getBasicBlock(B.TargetBB));
- // Avoid emitting unnecessary branches to the next block.
- if (NextMBB != NextBlock(SwitchBB))
- BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
- DAG.getBasicBlock(NextMBB));
- DAG.setRoot(BrAnd);
- }
- void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
- MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
- // Retrieve successors. Look through artificial IR level blocks like
- // catchswitch for successors.
- MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
- const BasicBlock *EHPadBB = I.getSuccessor(1);
- // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
- // have to do anything here to lower funclet bundles.
- assert(!I.hasOperandBundlesOtherThan(
- {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
- LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
- LLVMContext::OB_cfguardtarget,
- LLVMContext::OB_clang_arc_attachedcall}) &&
- "Cannot lower invokes with arbitrary operand bundles yet!");
- const Value *Callee(I.getCalledOperand());
- const Function *Fn = dyn_cast<Function>(Callee);
- if (isa<InlineAsm>(Callee))
- visitInlineAsm(I, EHPadBB);
- else if (Fn && Fn->isIntrinsic()) {
- switch (Fn->getIntrinsicID()) {
- default:
- llvm_unreachable("Cannot invoke this intrinsic");
- case Intrinsic::donothing:
- // Ignore invokes to @llvm.donothing: jump directly to the next BB.
- case Intrinsic::seh_try_begin:
- case Intrinsic::seh_scope_begin:
- case Intrinsic::seh_try_end:
- case Intrinsic::seh_scope_end:
- break;
- case Intrinsic::experimental_patchpoint_void:
- case Intrinsic::experimental_patchpoint_i64:
- visitPatchpoint(I, EHPadBB);
- break;
- case Intrinsic::experimental_gc_statepoint:
- LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
- break;
- case Intrinsic::wasm_rethrow: {
- // This is usually done in visitTargetIntrinsic, but this intrinsic is
- // special because it can be invoked, so we manually lower it to a DAG
- // node here.
- SmallVector<SDValue, 8> Ops;
- Ops.push_back(getRoot()); // inchain
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- Ops.push_back(
- DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
- TLI.getPointerTy(DAG.getDataLayout())));
- SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
- DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
- break;
- }
- }
- } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
- // Currently we do not lower any intrinsic calls with deopt operand bundles.
- // Eventually we will support lowering the @llvm.experimental.deoptimize
- // intrinsic, and right now there are no plans to support other intrinsics
- // with deopt state.
- LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
- } else {
- LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
- }
- // If the value of the invoke is used outside of its defining block, make it
- // available as a virtual register.
- // We already took care of the exported value for the statepoint instruction
- // during call to the LowerStatepoint.
- if (!isa<GCStatepointInst>(I)) {
- CopyToExportRegsIfNeeded(&I);
- }
- SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
- BranchProbabilityInfo *BPI = FuncInfo.BPI;
- BranchProbability EHPadBBProb =
- BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
- : BranchProbability::getZero();
- findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
- // Update successor info.
- addSuccessorWithProb(InvokeMBB, Return);
- for (auto &UnwindDest : UnwindDests) {
- UnwindDest.first->setIsEHPad();
- addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
- }
- InvokeMBB->normalizeSuccProbs();
- // Drop into normal successor.
- DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
- DAG.getBasicBlock(Return)));
- }
- void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
- MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
- // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
- // have to do anything here to lower funclet bundles.
- assert(!I.hasOperandBundlesOtherThan(
- {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
- "Cannot lower callbrs with arbitrary operand bundles yet!");
- assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
- visitInlineAsm(I);
- CopyToExportRegsIfNeeded(&I);
- // Retrieve successors.
- SmallPtrSet<BasicBlock *, 8> Dests;
- Dests.insert(I.getDefaultDest());
- MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
- // Update successor info.
- addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
- for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
- BasicBlock *Dest = I.getIndirectDest(i);
- MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
- Target->setIsInlineAsmBrIndirectTarget();
- Target->setMachineBlockAddressTaken();
- Target->setLabelMustBeEmitted();
- // Don't add duplicate machine successors.
- if (Dests.insert(Dest).second)
- addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
- }
- CallBrMBB->normalizeSuccProbs();
- // Drop into default successor.
- DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
- MVT::Other, getControlRoot(),
- DAG.getBasicBlock(Return)));
- }
- void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
- llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
- }
- void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
- assert(FuncInfo.MBB->isEHPad() &&
- "Call to landingpad not in landing pad!");
- // If there aren't registers to copy the values into (e.g., during SjLj
- // exceptions), then don't bother to create these DAG nodes.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
- if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
- TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
- return;
- // If landingpad's return type is token type, we don't create DAG nodes
- // for its exception pointer and selector value. The extraction of exception
- // pointer or selector value from token type landingpads is not currently
- // supported.
- if (LP.getType()->isTokenTy())
- return;
- SmallVector<EVT, 2> ValueVTs;
- SDLoc dl = getCurSDLoc();
- ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
- assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
- // Get the two live-in registers as SDValues. The physregs have already been
- // copied into virtual registers.
- SDValue Ops[2];
- if (FuncInfo.ExceptionPointerVirtReg) {
- Ops[0] = DAG.getZExtOrTrunc(
- DAG.getCopyFromReg(DAG.getEntryNode(), dl,
- FuncInfo.ExceptionPointerVirtReg,
- TLI.getPointerTy(DAG.getDataLayout())),
- dl, ValueVTs[0]);
- } else {
- Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
- }
- Ops[1] = DAG.getZExtOrTrunc(
- DAG.getCopyFromReg(DAG.getEntryNode(), dl,
- FuncInfo.ExceptionSelectorVirtReg,
- TLI.getPointerTy(DAG.getDataLayout())),
- dl, ValueVTs[1]);
- // Merge into one.
- SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
- DAG.getVTList(ValueVTs), Ops);
- setValue(&LP, Res);
- }
- void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
- MachineBasicBlock *Last) {
- // Update JTCases.
- for (JumpTableBlock &JTB : SL->JTCases)
- if (JTB.first.HeaderBB == First)
- JTB.first.HeaderBB = Last;
- // Update BitTestCases.
- for (BitTestBlock &BTB : SL->BitTestCases)
- if (BTB.Parent == First)
- BTB.Parent = Last;
- }
- void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
- MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
- // Update machine-CFG edges with unique successors.
- SmallSet<BasicBlock*, 32> Done;
- for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
- BasicBlock *BB = I.getSuccessor(i);
- bool Inserted = Done.insert(BB).second;
- if (!Inserted)
- continue;
- MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
- addSuccessorWithProb(IndirectBrMBB, Succ);
- }
- IndirectBrMBB->normalizeSuccProbs();
- DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
- MVT::Other, getControlRoot(),
- getValue(I.getAddress())));
- }
- void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
- if (!DAG.getTarget().Options.TrapUnreachable)
- return;
- // We may be able to ignore unreachable behind a noreturn call.
- if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
- const BasicBlock &BB = *I.getParent();
- if (&I != &BB.front()) {
- BasicBlock::const_iterator PredI =
- std::prev(BasicBlock::const_iterator(&I));
- if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
- if (Call->doesNotReturn())
- return;
- }
- }
- }
- DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
- }
- void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
- SDNodeFlags Flags;
- if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
- Flags.copyFMF(*FPOp);
- SDValue Op = getValue(I.getOperand(0));
- SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
- Op, Flags);
- setValue(&I, UnNodeValue);
- }
- void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
- SDNodeFlags Flags;
- if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
- Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
- Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
- }
- if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
- Flags.setExact(ExactOp->isExact());
- if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
- Flags.copyFMF(*FPOp);
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
- Op1, Op2, Flags);
- setValue(&I, BinNodeValue);
- }
- void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
- Op1.getValueType(), DAG.getDataLayout());
- // Coerce the shift amount to the right type if we can. This exposes the
- // truncate or zext to optimization early.
- if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
- assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
- "Unexpected shift type");
- Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
- }
- bool nuw = false;
- bool nsw = false;
- bool exact = false;
- if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
- if (const OverflowingBinaryOperator *OFBinOp =
- dyn_cast<const OverflowingBinaryOperator>(&I)) {
- nuw = OFBinOp->hasNoUnsignedWrap();
- nsw = OFBinOp->hasNoSignedWrap();
- }
- if (const PossiblyExactOperator *ExactOp =
- dyn_cast<const PossiblyExactOperator>(&I))
- exact = ExactOp->isExact();
- }
- SDNodeFlags Flags;
- Flags.setExact(exact);
- Flags.setNoSignedWrap(nsw);
- Flags.setNoUnsignedWrap(nuw);
- SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
- Flags);
- setValue(&I, Res);
- }
- void SelectionDAGBuilder::visitSDiv(const User &I) {
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- SDNodeFlags Flags;
- Flags.setExact(isa<PossiblyExactOperator>(&I) &&
- cast<PossiblyExactOperator>(&I)->isExact());
- setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
- Op2, Flags));
- }
- void SelectionDAGBuilder::visitICmp(const User &I) {
- ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
- if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
- predicate = IC->getPredicate();
- else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
- predicate = ICmpInst::Predicate(IC->getPredicate());
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- ISD::CondCode Opcode = getICmpCondCode(predicate);
- auto &TLI = DAG.getTargetLoweringInfo();
- EVT MemVT =
- TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
- // If a pointer's DAG type is larger than its memory type then the DAG values
- // are zero-extended. This breaks signed comparisons so truncate back to the
- // underlying type before doing the compare.
- if (Op1.getValueType() != MemVT) {
- Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
- Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
- }
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
- }
- void SelectionDAGBuilder::visitFCmp(const User &I) {
- FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
- if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
- predicate = FC->getPredicate();
- else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
- predicate = FCmpInst::Predicate(FC->getPredicate());
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- ISD::CondCode Condition = getFCmpCondCode(predicate);
- auto *FPMO = cast<FPMathOperator>(&I);
- if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
- Condition = getFCmpCodeWithoutNaN(Condition);
- SDNodeFlags Flags;
- Flags.copyFMF(*FPMO);
- SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
- }
- // Check if the condition of the select has one use or two users that are both
- // selects with the same condition.
- static bool hasOnlySelectUsers(const Value *Cond) {
- return llvm::all_of(Cond->users(), [](const Value *V) {
- return isa<SelectInst>(V);
- });
- }
- void SelectionDAGBuilder::visitSelect(const User &I) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
- ValueVTs);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0) return;
- SmallVector<SDValue, 4> Values(NumValues);
- SDValue Cond = getValue(I.getOperand(0));
- SDValue LHSVal = getValue(I.getOperand(1));
- SDValue RHSVal = getValue(I.getOperand(2));
- SmallVector<SDValue, 1> BaseOps(1, Cond);
- ISD::NodeType OpCode =
- Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
- bool IsUnaryAbs = false;
- bool Negate = false;
- SDNodeFlags Flags;
- if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
- Flags.copyFMF(*FPOp);
- // Min/max matching is only viable if all output VTs are the same.
- if (all_equal(ValueVTs)) {
- EVT VT = ValueVTs[0];
- LLVMContext &Ctx = *DAG.getContext();
- auto &TLI = DAG.getTargetLoweringInfo();
- // We care about the legality of the operation after it has been type
- // legalized.
- while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
- VT = TLI.getTypeToTransformTo(Ctx, VT);
- // If the vselect is legal, assume we want to leave this as a vector setcc +
- // vselect. Otherwise, if this is going to be scalarized, we want to see if
- // min/max is legal on the scalar type.
- bool UseScalarMinMax = VT.isVector() &&
- !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
- Value *LHS, *RHS;
- auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
- ISD::NodeType Opc = ISD::DELETED_NODE;
- switch (SPR.Flavor) {
- case SPF_UMAX: Opc = ISD::UMAX; break;
- case SPF_UMIN: Opc = ISD::UMIN; break;
- case SPF_SMAX: Opc = ISD::SMAX; break;
- case SPF_SMIN: Opc = ISD::SMIN; break;
- case SPF_FMINNUM:
- switch (SPR.NaNBehavior) {
- case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
- case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break;
- case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
- case SPNB_RETURNS_ANY: {
- if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
- Opc = ISD::FMINNUM;
- else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
- Opc = ISD::FMINIMUM;
- else if (UseScalarMinMax)
- Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
- ISD::FMINNUM : ISD::FMINIMUM;
- break;
- }
- }
- break;
- case SPF_FMAXNUM:
- switch (SPR.NaNBehavior) {
- case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
- case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break;
- case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
- case SPNB_RETURNS_ANY:
- if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
- Opc = ISD::FMAXNUM;
- else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
- Opc = ISD::FMAXIMUM;
- else if (UseScalarMinMax)
- Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
- ISD::FMAXNUM : ISD::FMAXIMUM;
- break;
- }
- break;
- case SPF_NABS:
- Negate = true;
- [[fallthrough]];
- case SPF_ABS:
- IsUnaryAbs = true;
- Opc = ISD::ABS;
- break;
- default: break;
- }
- if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
- (TLI.isOperationLegalOrCustom(Opc, VT) ||
- (UseScalarMinMax &&
- TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
- // If the underlying comparison instruction is used by any other
- // instruction, the consumed instructions won't be destroyed, so it is
- // not profitable to convert to a min/max.
- hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
- OpCode = Opc;
- LHSVal = getValue(LHS);
- RHSVal = getValue(RHS);
- BaseOps.clear();
- }
- if (IsUnaryAbs) {
- OpCode = Opc;
- LHSVal = getValue(LHS);
- BaseOps.clear();
- }
- }
- if (IsUnaryAbs) {
- for (unsigned i = 0; i != NumValues; ++i) {
- SDLoc dl = getCurSDLoc();
- EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
- Values[i] =
- DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
- if (Negate)
- Values[i] = DAG.getNegative(Values[i], dl, VT);
- }
- } else {
- for (unsigned i = 0; i != NumValues; ++i) {
- SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
- Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
- Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
- Values[i] = DAG.getNode(
- OpCode, getCurSDLoc(),
- LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
- }
- }
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
- DAG.getVTList(ValueVTs), Values));
- }
- void SelectionDAGBuilder::visitTrunc(const User &I) {
- // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitZExt(const User &I) {
- // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
- // ZExt also can't be a cast to bool for same reason. So, nothing much to do
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitSExt(const User &I) {
- // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
- // SExt also can't be a cast to bool for same reason. So, nothing much to do
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitFPTrunc(const User &I) {
- // FPTrunc is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- SDLoc dl = getCurSDLoc();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
- DAG.getTargetConstant(
- 0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
- }
- void SelectionDAGBuilder::visitFPExt(const User &I) {
- // FPExt is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitFPToUI(const User &I) {
- // FPToUI is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitFPToSI(const User &I) {
- // FPToSI is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitUIToFP(const User &I) {
- // UIToFP is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitSIToFP(const User &I) {
- // SIToFP is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitPtrToInt(const User &I) {
- // What to do depends on the size of the integer and the size of the pointer.
- // We can either truncate, zero extend, or no-op, accordingly.
- SDValue N = getValue(I.getOperand(0));
- auto &TLI = DAG.getTargetLoweringInfo();
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- EVT PtrMemVT =
- TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
- N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
- N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
- setValue(&I, N);
- }
- void SelectionDAGBuilder::visitIntToPtr(const User &I) {
- // What to do depends on the size of the integer and the size of the pointer.
- // We can either truncate, zero extend, or no-op, accordingly.
- SDValue N = getValue(I.getOperand(0));
- auto &TLI = DAG.getTargetLoweringInfo();
- EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
- N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
- N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
- setValue(&I, N);
- }
- void SelectionDAGBuilder::visitBitCast(const User &I) {
- SDValue N = getValue(I.getOperand(0));
- SDLoc dl = getCurSDLoc();
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- // BitCast assures us that source and destination are the same size so this is
- // either a BITCAST or a no-op.
- if (DestVT != N.getValueType())
- setValue(&I, DAG.getNode(ISD::BITCAST, dl,
- DestVT, N)); // convert types.
- // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
- // might fold any kind of constant expression to an integer constant and that
- // is not what we are looking for. Only recognize a bitcast of a genuine
- // constant integer as an opaque constant.
- else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
- setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
- /*isOpaque*/true));
- else
- setValue(&I, N); // noop cast.
- }
- void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- const Value *SV = I.getOperand(0);
- SDValue N = getValue(SV);
- EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- unsigned SrcAS = SV->getType()->getPointerAddressSpace();
- unsigned DestAS = I.getType()->getPointerAddressSpace();
- if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
- N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
- setValue(&I, N);
- }
- void SelectionDAGBuilder::visitInsertElement(const User &I) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue InVec = getValue(I.getOperand(0));
- SDValue InVal = getValue(I.getOperand(1));
- SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
- TLI.getVectorIdxTy(DAG.getDataLayout()));
- setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
- TLI.getValueType(DAG.getDataLayout(), I.getType()),
- InVec, InVal, InIdx));
- }
- void SelectionDAGBuilder::visitExtractElement(const User &I) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue InVec = getValue(I.getOperand(0));
- SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
- TLI.getVectorIdxTy(DAG.getDataLayout()));
- setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
- TLI.getValueType(DAG.getDataLayout(), I.getType()),
- InVec, InIdx));
- }
- void SelectionDAGBuilder::visitShuffleVector(const User &I) {
- SDValue Src1 = getValue(I.getOperand(0));
- SDValue Src2 = getValue(I.getOperand(1));
- ArrayRef<int> Mask;
- if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
- Mask = SVI->getShuffleMask();
- else
- Mask = cast<ConstantExpr>(I).getShuffleMask();
- SDLoc DL = getCurSDLoc();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- EVT SrcVT = Src1.getValueType();
- if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
- VT.isScalableVector()) {
- // Canonical splat form of first element of first input vector.
- SDValue FirstElt =
- DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
- DAG.getVectorIdxConstant(0, DL));
- setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
- return;
- }
- // For now, we only handle splats for scalable vectors.
- // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
- // for targets that support a SPLAT_VECTOR for non-scalable vector types.
- assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
- unsigned SrcNumElts = SrcVT.getVectorNumElements();
- unsigned MaskNumElts = Mask.size();
- if (SrcNumElts == MaskNumElts) {
- setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
- return;
- }
- // Normalize the shuffle vector since mask and vector length don't match.
- if (SrcNumElts < MaskNumElts) {
- // Mask is longer than the source vectors. We can use concatenate vector to
- // make the mask and vectors lengths match.
- if (MaskNumElts % SrcNumElts == 0) {
- // Mask length is a multiple of the source vector length.
- // Check if the shuffle is some kind of concatenation of the input
- // vectors.
- unsigned NumConcat = MaskNumElts / SrcNumElts;
- bool IsConcat = true;
- SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- if (Idx < 0)
- continue;
- // Ensure the indices in each SrcVT sized piece are sequential and that
- // the same source is used for the whole piece.
- if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
- (ConcatSrcs[i / SrcNumElts] >= 0 &&
- ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
- IsConcat = false;
- break;
- }
- // Remember which source this index came from.
- ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
- }
- // The shuffle is concatenating multiple vectors together. Just emit
- // a CONCAT_VECTORS operation.
- if (IsConcat) {
- SmallVector<SDValue, 8> ConcatOps;
- for (auto Src : ConcatSrcs) {
- if (Src < 0)
- ConcatOps.push_back(DAG.getUNDEF(SrcVT));
- else if (Src == 0)
- ConcatOps.push_back(Src1);
- else
- ConcatOps.push_back(Src2);
- }
- setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
- return;
- }
- }
- unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
- unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
- EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
- PaddedMaskNumElts);
- // Pad both vectors with undefs to make them the same length as the mask.
- SDValue UndefVal = DAG.getUNDEF(SrcVT);
- SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
- SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
- MOps1[0] = Src1;
- MOps2[0] = Src2;
- Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
- Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
- // Readjust mask for new input vector length.
- SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- if (Idx >= (int)SrcNumElts)
- Idx -= SrcNumElts - PaddedMaskNumElts;
- MappedOps[i] = Idx;
- }
- SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
- // If the concatenated vector was padded, extract a subvector with the
- // correct number of elements.
- if (MaskNumElts != PaddedMaskNumElts)
- Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
- DAG.getVectorIdxConstant(0, DL));
- setValue(&I, Result);
- return;
- }
- if (SrcNumElts > MaskNumElts) {
- // Analyze the access pattern of the vector to see if we can extract
- // two subvectors and do the shuffle.
- int StartIdx[2] = { -1, -1 }; // StartIdx to extract from
- bool CanExtract = true;
- for (int Idx : Mask) {
- unsigned Input = 0;
- if (Idx < 0)
- continue;
- if (Idx >= (int)SrcNumElts) {
- Input = 1;
- Idx -= SrcNumElts;
- }
- // If all the indices come from the same MaskNumElts sized portion of
- // the sources we can use extract. Also make sure the extract wouldn't
- // extract past the end of the source.
- int NewStartIdx = alignDown(Idx, MaskNumElts);
- if (NewStartIdx + MaskNumElts > SrcNumElts ||
- (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
- CanExtract = false;
- // Make sure we always update StartIdx as we use it to track if all
- // elements are undef.
- StartIdx[Input] = NewStartIdx;
- }
- if (StartIdx[0] < 0 && StartIdx[1] < 0) {
- setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
- return;
- }
- if (CanExtract) {
- // Extract appropriate subvector and generate a vector shuffle
- for (unsigned Input = 0; Input < 2; ++Input) {
- SDValue &Src = Input == 0 ? Src1 : Src2;
- if (StartIdx[Input] < 0)
- Src = DAG.getUNDEF(VT);
- else {
- Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
- DAG.getVectorIdxConstant(StartIdx[Input], DL));
- }
- }
- // Calculate new mask.
- SmallVector<int, 8> MappedOps(Mask);
- for (int &Idx : MappedOps) {
- if (Idx >= (int)SrcNumElts)
- Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
- else if (Idx >= 0)
- Idx -= StartIdx[0];
- }
- setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
- return;
- }
- }
- // We can't use either concat vectors or extract subvectors so fall back to
- // replacing the shuffle with extract and build vector.
- // to insert and build vector.
- EVT EltVT = VT.getVectorElementType();
- SmallVector<SDValue,8> Ops;
- for (int Idx : Mask) {
- SDValue Res;
- if (Idx < 0) {
- Res = DAG.getUNDEF(EltVT);
- } else {
- SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
- if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
- Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
- DAG.getVectorIdxConstant(Idx, DL));
- }
- Ops.push_back(Res);
- }
- setValue(&I, DAG.getBuildVector(VT, DL, Ops));
- }
- void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
- ArrayRef<unsigned> Indices = I.getIndices();
- const Value *Op0 = I.getOperand(0);
- const Value *Op1 = I.getOperand(1);
- Type *AggTy = I.getType();
- Type *ValTy = Op1->getType();
- bool IntoUndef = isa<UndefValue>(Op0);
- bool FromUndef = isa<UndefValue>(Op1);
- unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SmallVector<EVT, 4> AggValueVTs;
- ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
- SmallVector<EVT, 4> ValValueVTs;
- ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
- unsigned NumAggValues = AggValueVTs.size();
- unsigned NumValValues = ValValueVTs.size();
- SmallVector<SDValue, 4> Values(NumAggValues);
- // Ignore an insertvalue that produces an empty object
- if (!NumAggValues) {
- setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
- return;
- }
- SDValue Agg = getValue(Op0);
- unsigned i = 0;
- // Copy the beginning value(s) from the original aggregate.
- for (; i != LinearIndex; ++i)
- Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
- SDValue(Agg.getNode(), Agg.getResNo() + i);
- // Copy values from the inserted value(s).
- if (NumValValues) {
- SDValue Val = getValue(Op1);
- for (; i != LinearIndex + NumValValues; ++i)
- Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
- SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
- }
- // Copy remaining value(s) from the original aggregate.
- for (; i != NumAggValues; ++i)
- Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
- SDValue(Agg.getNode(), Agg.getResNo() + i);
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
- DAG.getVTList(AggValueVTs), Values));
- }
- void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
- ArrayRef<unsigned> Indices = I.getIndices();
- const Value *Op0 = I.getOperand(0);
- Type *AggTy = Op0->getType();
- Type *ValTy = I.getType();
- bool OutOfUndef = isa<UndefValue>(Op0);
- unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SmallVector<EVT, 4> ValValueVTs;
- ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
- unsigned NumValValues = ValValueVTs.size();
- // Ignore a extractvalue that produces an empty object
- if (!NumValValues) {
- setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
- return;
- }
- SmallVector<SDValue, 4> Values(NumValValues);
- SDValue Agg = getValue(Op0);
- // Copy out the selected value(s).
- for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
- Values[i - LinearIndex] =
- OutOfUndef ?
- DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
- SDValue(Agg.getNode(), Agg.getResNo() + i);
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
- DAG.getVTList(ValValueVTs), Values));
- }
- void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
- Value *Op0 = I.getOperand(0);
- // Note that the pointer operand may be a vector of pointers. Take the scalar
- // element which holds a pointer.
- unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
- SDValue N = getValue(Op0);
- SDLoc dl = getCurSDLoc();
- auto &TLI = DAG.getTargetLoweringInfo();
- // Normalize Vector GEP - all scalar operands should be converted to the
- // splat vector.
- bool IsVectorGEP = I.getType()->isVectorTy();
- ElementCount VectorElementCount =
- IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
- : ElementCount::getFixed(0);
- if (IsVectorGEP && !N.getValueType().isVector()) {
- LLVMContext &Context = *DAG.getContext();
- EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
- N = DAG.getSplat(VT, dl, N);
- }
- for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
- GTI != E; ++GTI) {
- const Value *Idx = GTI.getOperand();
- if (StructType *StTy = GTI.getStructTypeOrNull()) {
- unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
- if (Field) {
- // N = N + Offset
- uint64_t Offset =
- DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
- // In an inbounds GEP with an offset that is nonnegative even when
- // interpreted as signed, assume there is no unsigned overflow.
- SDNodeFlags Flags;
- if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
- Flags.setNoUnsignedWrap(true);
- N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
- DAG.getConstant(Offset, dl, N.getValueType()), Flags);
- }
- } else {
- // IdxSize is the width of the arithmetic according to IR semantics.
- // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
- // (and fix up the result later).
- unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
- MVT IdxTy = MVT::getIntegerVT(IdxSize);
- TypeSize ElementSize =
- DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
- // We intentionally mask away the high bits here; ElementSize may not
- // fit in IdxTy.
- APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
- bool ElementScalable = ElementSize.isScalable();
- // If this is a scalar constant or a splat vector of constants,
- // handle it quickly.
- const auto *C = dyn_cast<Constant>(Idx);
- if (C && isa<VectorType>(C->getType()))
- C = C->getSplatValue();
- const auto *CI = dyn_cast_or_null<ConstantInt>(C);
- if (CI && CI->isZero())
- continue;
- if (CI && !ElementScalable) {
- APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
- LLVMContext &Context = *DAG.getContext();
- SDValue OffsVal;
- if (IsVectorGEP)
- OffsVal = DAG.getConstant(
- Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
- else
- OffsVal = DAG.getConstant(Offs, dl, IdxTy);
- // In an inbounds GEP with an offset that is nonnegative even when
- // interpreted as signed, assume there is no unsigned overflow.
- SDNodeFlags Flags;
- if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
- Flags.setNoUnsignedWrap(true);
- OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
- N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
- continue;
- }
- // N = N + Idx * ElementMul;
- SDValue IdxN = getValue(Idx);
- if (!IdxN.getValueType().isVector() && IsVectorGEP) {
- EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
- VectorElementCount);
- IdxN = DAG.getSplat(VT, dl, IdxN);
- }
- // If the index is smaller or larger than intptr_t, truncate or extend
- // it.
- IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
- if (ElementScalable) {
- EVT VScaleTy = N.getValueType().getScalarType();
- SDValue VScale = DAG.getNode(
- ISD::VSCALE, dl, VScaleTy,
- DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
- if (IsVectorGEP)
- VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
- IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
- } else {
- // If this is a multiply by a power of two, turn it into a shl
- // immediately. This is a very common case.
- if (ElementMul != 1) {
- if (ElementMul.isPowerOf2()) {
- unsigned Amt = ElementMul.logBase2();
- IdxN = DAG.getNode(ISD::SHL, dl,
- N.getValueType(), IdxN,
- DAG.getConstant(Amt, dl, IdxN.getValueType()));
- } else {
- SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
- IdxN.getValueType());
- IdxN = DAG.getNode(ISD::MUL, dl,
- N.getValueType(), IdxN, Scale);
- }
- }
- }
- N = DAG.getNode(ISD::ADD, dl,
- N.getValueType(), N, IdxN);
- }
- }
- MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
- MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
- if (IsVectorGEP) {
- PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
- PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
- }
- if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
- N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
- setValue(&I, N);
- }
- void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
- // If this is a fixed sized alloca in the entry block of the function,
- // allocate it statically on the stack.
- if (FuncInfo.StaticAllocaMap.count(&I))
- return; // getValue will auto-populate this.
- SDLoc dl = getCurSDLoc();
- Type *Ty = I.getAllocatedType();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- auto &DL = DAG.getDataLayout();
- TypeSize TySize = DL.getTypeAllocSize(Ty);
- MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
- SDValue AllocSize = getValue(I.getArraySize());
- EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace());
- if (AllocSize.getValueType() != IntPtr)
- AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
- if (TySize.isScalable())
- AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
- DAG.getVScale(dl, IntPtr,
- APInt(IntPtr.getScalarSizeInBits(),
- TySize.getKnownMinValue())));
- else
- AllocSize =
- DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
- DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
- // Handle alignment. If the requested alignment is less than or equal to
- // the stack alignment, ignore it. If the size is greater than or equal to
- // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
- Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
- if (*Alignment <= StackAlign)
- Alignment = std::nullopt;
- const uint64_t StackAlignMask = StackAlign.value() - 1U;
- // Round the size of the allocation up to the stack alignment size
- // by add SA-1 to the size. This doesn't overflow because we're computing
- // an address inside an alloca.
- SDNodeFlags Flags;
- Flags.setNoUnsignedWrap(true);
- AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
- DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
- // Mask out the low bits for alignment purposes.
- AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
- DAG.getConstant(~StackAlignMask, dl, IntPtr));
- SDValue Ops[] = {
- getRoot(), AllocSize,
- DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
- SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
- SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
- setValue(&I, DSA);
- DAG.setRoot(DSA.getValue(1));
- assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
- }
- void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
- if (I.isAtomic())
- return visitAtomicLoad(I);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- const Value *SV = I.getOperand(0);
- if (TLI.supportSwiftError()) {
- // Swifterror values can come from either a function parameter with
- // swifterror attribute or an alloca with swifterror attribute.
- if (const Argument *Arg = dyn_cast<Argument>(SV)) {
- if (Arg->hasSwiftErrorAttr())
- return visitLoadFromSwiftError(I);
- }
- if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
- if (Alloca->isSwiftError())
- return visitLoadFromSwiftError(I);
- }
- }
- SDValue Ptr = getValue(SV);
- Type *Ty = I.getType();
- SmallVector<EVT, 4> ValueVTs, MemVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0)
- return;
- Align Alignment = I.getAlign();
- AAMDNodes AAInfo = I.getAAMetadata();
- const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
- bool isVolatile = I.isVolatile();
- MachineMemOperand::Flags MMOFlags =
- TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
- SDValue Root;
- bool ConstantMemory = false;
- if (isVolatile)
- // Serialize volatile loads with other side effects.
- Root = getRoot();
- else if (NumValues > MaxParallelChains)
- Root = getMemoryRoot();
- else if (AA &&
- AA->pointsToConstantMemory(MemoryLocation(
- SV,
- LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
- AAInfo))) {
- // Do not serialize (non-volatile) loads of constant memory with anything.
- Root = DAG.getEntryNode();
- ConstantMemory = true;
- MMOFlags |= MachineMemOperand::MOInvariant;
- } else {
- // Do not serialize non-volatile loads against each other.
- Root = DAG.getRoot();
- }
- SDLoc dl = getCurSDLoc();
- if (isVolatile)
- Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
- // An aggregate load cannot wrap around the address space, so offsets to its
- // parts don't wrap either.
- SDNodeFlags Flags;
- Flags.setNoUnsignedWrap(true);
- SmallVector<SDValue, 4> Values(NumValues);
- SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
- EVT PtrVT = Ptr.getValueType();
- unsigned ChainI = 0;
- for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
- // Serializing loads here may result in excessive register pressure, and
- // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
- // could recover a bit by hoisting nodes upward in the chain by recognizing
- // they are side-effect free or do not alias. The optimizer should really
- // avoid this case by converting large object/array copies to llvm.memcpy
- // (MaxParallelChains should always remain as failsafe).
- if (ChainI == MaxParallelChains) {
- assert(PendingLoads.empty() && "PendingLoads must be serialized first");
- SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- ArrayRef(Chains.data(), ChainI));
- Root = Chain;
- ChainI = 0;
- }
- SDValue A = DAG.getNode(ISD::ADD, dl,
- PtrVT, Ptr,
- DAG.getConstant(Offsets[i], dl, PtrVT),
- Flags);
- SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
- MachinePointerInfo(SV, Offsets[i]), Alignment,
- MMOFlags, AAInfo, Ranges);
- Chains[ChainI] = L.getValue(1);
- if (MemVTs[i] != ValueVTs[i])
- L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
- Values[i] = L;
- }
- if (!ConstantMemory) {
- SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- ArrayRef(Chains.data(), ChainI));
- if (isVolatile)
- DAG.setRoot(Chain);
- else
- PendingLoads.push_back(Chain);
- }
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
- DAG.getVTList(ValueVTs), Values));
- }
- void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
- assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
- "call visitStoreToSwiftError when backend supports swifterror");
- SmallVector<EVT, 4> ValueVTs;
- SmallVector<uint64_t, 4> Offsets;
- const Value *SrcV = I.getOperand(0);
- ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
- SrcV->getType(), ValueVTs, &Offsets);
- assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
- "expect a single EVT for swifterror");
- SDValue Src = getValue(SrcV);
- // Create a virtual register, then update the virtual register.
- Register VReg =
- SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
- // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
- // Chain can be getRoot or getControlRoot.
- SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
- SDValue(Src.getNode(), Src.getResNo()));
- DAG.setRoot(CopyNode);
- }
- void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
- assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
- "call visitLoadFromSwiftError when backend supports swifterror");
- assert(!I.isVolatile() &&
- !I.hasMetadata(LLVMContext::MD_nontemporal) &&
- !I.hasMetadata(LLVMContext::MD_invariant_load) &&
- "Support volatile, non temporal, invariant for load_from_swift_error");
- const Value *SV = I.getOperand(0);
- Type *Ty = I.getType();
- assert(
- (!AA ||
- !AA->pointsToConstantMemory(MemoryLocation(
- SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
- I.getAAMetadata()))) &&
- "load_from_swift_error should not be constant memory");
- SmallVector<EVT, 4> ValueVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
- ValueVTs, &Offsets);
- assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
- "expect a single EVT for swifterror");
- // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
- SDValue L = DAG.getCopyFromReg(
- getRoot(), getCurSDLoc(),
- SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
- setValue(&I, L);
- }
- void SelectionDAGBuilder::visitStore(const StoreInst &I) {
- if (I.isAtomic())
- return visitAtomicStore(I);
- const Value *SrcV = I.getOperand(0);
- const Value *PtrV = I.getOperand(1);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (TLI.supportSwiftError()) {
- // Swifterror values can come from either a function parameter with
- // swifterror attribute or an alloca with swifterror attribute.
- if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
- if (Arg->hasSwiftErrorAttr())
- return visitStoreToSwiftError(I);
- }
- if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
- if (Alloca->isSwiftError())
- return visitStoreToSwiftError(I);
- }
- }
- SmallVector<EVT, 4> ValueVTs, MemVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
- SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0)
- return;
- // Get the lowered operands. Note that we do this after
- // checking if NumResults is zero, because with zero results
- // the operands won't have values in the map.
- SDValue Src = getValue(SrcV);
- SDValue Ptr = getValue(PtrV);
- SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
- SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
- SDLoc dl = getCurSDLoc();
- Align Alignment = I.getAlign();
- AAMDNodes AAInfo = I.getAAMetadata();
- auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
- // An aggregate load cannot wrap around the address space, so offsets to its
- // parts don't wrap either.
- SDNodeFlags Flags;
- Flags.setNoUnsignedWrap(true);
- unsigned ChainI = 0;
- for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
- // See visitLoad comments.
- if (ChainI == MaxParallelChains) {
- SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- ArrayRef(Chains.data(), ChainI));
- Root = Chain;
- ChainI = 0;
- }
- SDValue Add =
- DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
- SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
- if (MemVTs[i] != ValueVTs[i])
- Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
- SDValue St =
- DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
- Alignment, MMOFlags, AAInfo);
- Chains[ChainI] = St;
- }
- SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- ArrayRef(Chains.data(), ChainI));
- setValue(&I, StoreNode);
- DAG.setRoot(StoreNode);
- }
- void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
- bool IsCompressing) {
- SDLoc sdl = getCurSDLoc();
- auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
- MaybeAlign &Alignment) {
- // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
- Src0 = I.getArgOperand(0);
- Ptr = I.getArgOperand(1);
- Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
- Mask = I.getArgOperand(3);
- };
- auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
- MaybeAlign &Alignment) {
- // llvm.masked.compressstore.*(Src0, Ptr, Mask)
- Src0 = I.getArgOperand(0);
- Ptr = I.getArgOperand(1);
- Mask = I.getArgOperand(2);
- Alignment = std::nullopt;
- };
- Value *PtrOperand, *MaskOperand, *Src0Operand;
- MaybeAlign Alignment;
- if (IsCompressing)
- getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
- else
- getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
- SDValue Ptr = getValue(PtrOperand);
- SDValue Src0 = getValue(Src0Operand);
- SDValue Mask = getValue(MaskOperand);
- SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
- EVT VT = Src0.getValueType();
- if (!Alignment)
- Alignment = DAG.getEVTAlign(VT);
- MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
- MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
- MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
- SDValue StoreNode =
- DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
- ISD::UNINDEXED, false /* Truncating */, IsCompressing);
- DAG.setRoot(StoreNode);
- setValue(&I, StoreNode);
- }
- // Get a uniform base for the Gather/Scatter intrinsic.
- // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
- // We try to represent it as a base pointer + vector of indices.
- // Usually, the vector of pointers comes from a 'getelementptr' instruction.
- // The first operand of the GEP may be a single pointer or a vector of pointers
- // Example:
- // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
- // or
- // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
- // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
- //
- // When the first GEP operand is a single pointer - it is the uniform base we
- // are looking for. If first operand of the GEP is a splat vector - we
- // extract the splat value and use it as a uniform base.
- // In all other cases the function returns 'false'.
- static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
- ISD::MemIndexType &IndexType, SDValue &Scale,
- SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
- uint64_t ElemSize) {
- SelectionDAG& DAG = SDB->DAG;
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- const DataLayout &DL = DAG.getDataLayout();
- assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
- // Handle splat constant pointer.
- if (auto *C = dyn_cast<Constant>(Ptr)) {
- C = C->getSplatValue();
- if (!C)
- return false;
- Base = SDB->getValue(C);
- ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
- EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
- Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
- IndexType = ISD::SIGNED_SCALED;
- Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
- return true;
- }
- const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
- if (!GEP || GEP->getParent() != CurBB)
- return false;
- if (GEP->getNumOperands() != 2)
- return false;
- const Value *BasePtr = GEP->getPointerOperand();
- const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
- // Make sure the base is scalar and the index is a vector.
- if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
- return false;
- uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
- // Target may not support the required addressing mode.
- if (ScaleVal != 1 &&
- !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize))
- return false;
- Base = SDB->getValue(BasePtr);
- Index = SDB->getValue(IndexVal);
- IndexType = ISD::SIGNED_SCALED;
- Scale =
- DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
- return true;
- }
- void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
- SDLoc sdl = getCurSDLoc();
- // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
- const Value *Ptr = I.getArgOperand(1);
- SDValue Src0 = getValue(I.getArgOperand(0));
- SDValue Mask = getValue(I.getArgOperand(3));
- EVT VT = Src0.getValueType();
- Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
- ->getMaybeAlignValue()
- .value_or(DAG.getEVTAlign(VT.getScalarType()));
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue Base;
- SDValue Index;
- ISD::MemIndexType IndexType;
- SDValue Scale;
- bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
- I.getParent(), VT.getScalarStoreSize());
- unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
- MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
- MachinePointerInfo(AS), MachineMemOperand::MOStore,
- // TODO: Make MachineMemOperands aware of scalable
- // vectors.
- MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
- if (!UniformBase) {
- Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
- Index = getValue(Ptr);
- IndexType = ISD::SIGNED_SCALED;
- Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
- }
- EVT IdxVT = Index.getValueType();
- EVT EltTy = IdxVT.getVectorElementType();
- if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
- EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
- Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
- }
- SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
- SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
- Ops, MMO, IndexType, false);
- DAG.setRoot(Scatter);
- setValue(&I, Scatter);
- }
- void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
- SDLoc sdl = getCurSDLoc();
- auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
- MaybeAlign &Alignment) {
- // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
- Ptr = I.getArgOperand(0);
- Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
- Mask = I.getArgOperand(2);
- Src0 = I.getArgOperand(3);
- };
- auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
- MaybeAlign &Alignment) {
- // @llvm.masked.expandload.*(Ptr, Mask, Src0)
- Ptr = I.getArgOperand(0);
- Alignment = std::nullopt;
- Mask = I.getArgOperand(1);
- Src0 = I.getArgOperand(2);
- };
- Value *PtrOperand, *MaskOperand, *Src0Operand;
- MaybeAlign Alignment;
- if (IsExpanding)
- getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
- else
- getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
- SDValue Ptr = getValue(PtrOperand);
- SDValue Src0 = getValue(Src0Operand);
- SDValue Mask = getValue(MaskOperand);
- SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
- EVT VT = Src0.getValueType();
- if (!Alignment)
- Alignment = DAG.getEVTAlign(VT);
- AAMDNodes AAInfo = I.getAAMetadata();
- const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
- // Do not serialize masked loads of constant memory with anything.
- MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
- bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
- SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
- MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
- MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
- MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
- SDValue Load =
- DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
- ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
- if (AddToChain)
- PendingLoads.push_back(Load.getValue(1));
- setValue(&I, Load);
- }
- void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
- SDLoc sdl = getCurSDLoc();
- // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
- const Value *Ptr = I.getArgOperand(0);
- SDValue Src0 = getValue(I.getArgOperand(3));
- SDValue Mask = getValue(I.getArgOperand(2));
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
- ->getMaybeAlignValue()
- .value_or(DAG.getEVTAlign(VT.getScalarType()));
- const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
- SDValue Root = DAG.getRoot();
- SDValue Base;
- SDValue Index;
- ISD::MemIndexType IndexType;
- SDValue Scale;
- bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
- I.getParent(), VT.getScalarStoreSize());
- unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
- MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
- MachinePointerInfo(AS), MachineMemOperand::MOLoad,
- // TODO: Make MachineMemOperands aware of scalable
- // vectors.
- MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
- if (!UniformBase) {
- Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
- Index = getValue(Ptr);
- IndexType = ISD::SIGNED_SCALED;
- Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
- }
- EVT IdxVT = Index.getValueType();
- EVT EltTy = IdxVT.getVectorElementType();
- if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
- EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
- Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
- }
- SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
- SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
- Ops, MMO, IndexType, ISD::NON_EXTLOAD);
- PendingLoads.push_back(Gather.getValue(1));
- setValue(&I, Gather);
- }
- void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
- SDLoc dl = getCurSDLoc();
- AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
- AtomicOrdering FailureOrdering = I.getFailureOrdering();
- SyncScope::ID SSID = I.getSyncScopeID();
- SDValue InChain = getRoot();
- MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
- SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
- MachineFunction &MF = DAG.getMachineFunction();
- MachineMemOperand *MMO = MF.getMachineMemOperand(
- MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
- DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
- FailureOrdering);
- SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
- dl, MemVT, VTs, InChain,
- getValue(I.getPointerOperand()),
- getValue(I.getCompareOperand()),
- getValue(I.getNewValOperand()), MMO);
- SDValue OutChain = L.getValue(2);
- setValue(&I, L);
- DAG.setRoot(OutChain);
- }
- void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
- SDLoc dl = getCurSDLoc();
- ISD::NodeType NT;
- switch (I.getOperation()) {
- default: llvm_unreachable("Unknown atomicrmw operation");
- case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
- case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
- case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
- case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
- case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
- case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
- case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
- case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
- case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
- case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
- case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
- case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
- case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
- case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
- case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
- case AtomicRMWInst::UIncWrap:
- NT = ISD::ATOMIC_LOAD_UINC_WRAP;
- break;
- case AtomicRMWInst::UDecWrap:
- NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
- break;
- }
- AtomicOrdering Ordering = I.getOrdering();
- SyncScope::ID SSID = I.getSyncScopeID();
- SDValue InChain = getRoot();
- auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
- MachineFunction &MF = DAG.getMachineFunction();
- MachineMemOperand *MMO = MF.getMachineMemOperand(
- MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
- DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
- SDValue L =
- DAG.getAtomic(NT, dl, MemVT, InChain,
- getValue(I.getPointerOperand()), getValue(I.getValOperand()),
- MMO);
- SDValue OutChain = L.getValue(1);
- setValue(&I, L);
- DAG.setRoot(OutChain);
- }
- void SelectionDAGBuilder::visitFence(const FenceInst &I) {
- SDLoc dl = getCurSDLoc();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue Ops[3];
- Ops[0] = getRoot();
- Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
- TLI.getFenceOperandTy(DAG.getDataLayout()));
- Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
- TLI.getFenceOperandTy(DAG.getDataLayout()));
- SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
- setValue(&I, N);
- DAG.setRoot(N);
- }
- void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
- SDLoc dl = getCurSDLoc();
- AtomicOrdering Order = I.getOrdering();
- SyncScope::ID SSID = I.getSyncScopeID();
- SDValue InChain = getRoot();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
- if (!TLI.supportsUnalignedAtomics() &&
- I.getAlign().value() < MemVT.getSizeInBits() / 8)
- report_fatal_error("Cannot generate unaligned atomic load");
- auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
- MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
- MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
- I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
- InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
- SDValue Ptr = getValue(I.getPointerOperand());
- if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
- // TODO: Once this is better exercised by tests, it should be merged with
- // the normal path for loads to prevent future divergence.
- SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
- if (MemVT != VT)
- L = DAG.getPtrExtOrTrunc(L, dl, VT);
- setValue(&I, L);
- SDValue OutChain = L.getValue(1);
- if (!I.isUnordered())
- DAG.setRoot(OutChain);
- else
- PendingLoads.push_back(OutChain);
- return;
- }
- SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
- Ptr, MMO);
- SDValue OutChain = L.getValue(1);
- if (MemVT != VT)
- L = DAG.getPtrExtOrTrunc(L, dl, VT);
- setValue(&I, L);
- DAG.setRoot(OutChain);
- }
- void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
- SDLoc dl = getCurSDLoc();
- AtomicOrdering Ordering = I.getOrdering();
- SyncScope::ID SSID = I.getSyncScopeID();
- SDValue InChain = getRoot();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT MemVT =
- TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
- if (!TLI.supportsUnalignedAtomics() &&
- I.getAlign().value() < MemVT.getSizeInBits() / 8)
- report_fatal_error("Cannot generate unaligned atomic store");
- auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
- MachineFunction &MF = DAG.getMachineFunction();
- MachineMemOperand *MMO = MF.getMachineMemOperand(
- MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
- I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
- SDValue Val = getValue(I.getValueOperand());
- if (Val.getValueType() != MemVT)
- Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
- SDValue Ptr = getValue(I.getPointerOperand());
- if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
- // TODO: Once this is better exercised by tests, it should be merged with
- // the normal path for stores to prevent future divergence.
- SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
- setValue(&I, S);
- DAG.setRoot(S);
- return;
- }
- SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
- Ptr, Val, MMO);
- setValue(&I, OutChain);
- DAG.setRoot(OutChain);
- }
- /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
- /// node.
- void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
- unsigned Intrinsic) {
- // Ignore the callsite's attributes. A specific call site may be marked with
- // readnone, but the lowering code will expect the chain based on the
- // definition.
- const Function *F = I.getCalledFunction();
- bool HasChain = !F->doesNotAccessMemory();
- bool OnlyLoad = HasChain && F->onlyReadsMemory();
- // Build the operand list.
- SmallVector<SDValue, 8> Ops;
- if (HasChain) { // If this intrinsic has side-effects, chainify it.
- if (OnlyLoad) {
- // We don't need to serialize loads against other loads.
- Ops.push_back(DAG.getRoot());
- } else {
- Ops.push_back(getRoot());
- }
- }
- // Info is set by getTgtMemIntrinsic
- TargetLowering::IntrinsicInfo Info;
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
- DAG.getMachineFunction(),
- Intrinsic);
- // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
- if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
- Info.opc == ISD::INTRINSIC_W_CHAIN)
- Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
- TLI.getPointerTy(DAG.getDataLayout())));
- // Add all operands of the call to the operand list.
- for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
- const Value *Arg = I.getArgOperand(i);
- if (!I.paramHasAttr(i, Attribute::ImmArg)) {
- Ops.push_back(getValue(Arg));
- continue;
- }
- // Use TargetConstant instead of a regular constant for immarg.
- EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
- assert(CI->getBitWidth() <= 64 &&
- "large intrinsic immediates not handled");
- Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
- } else {
- Ops.push_back(
- DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
- }
- }
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
- if (HasChain)
- ValueVTs.push_back(MVT::Other);
- SDVTList VTs = DAG.getVTList(ValueVTs);
- // Propagate fast-math-flags from IR to node(s).
- SDNodeFlags Flags;
- if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
- Flags.copyFMF(*FPMO);
- SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
- // Create the node.
- SDValue Result;
- // In some cases, custom collection of operands from CallInst I may be needed.
- TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
- if (IsTgtIntrinsic) {
- // This is target intrinsic that touches memory
- //
- // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
- // didn't yield anything useful.
- MachinePointerInfo MPI;
- if (Info.ptrVal)
- MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
- else if (Info.fallbackAddressSpace)
- MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
- Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
- Info.memVT, MPI, Info.align, Info.flags,
- Info.size, I.getAAMetadata());
- } else if (!HasChain) {
- Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
- } else if (!I.getType()->isVoidTy()) {
- Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
- } else {
- Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
- }
- if (HasChain) {
- SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
- if (OnlyLoad)
- PendingLoads.push_back(Chain);
- else
- DAG.setRoot(Chain);
- }
- if (!I.getType()->isVoidTy()) {
- if (!isa<VectorType>(I.getType()))
- Result = lowerRangeToAssertZExt(DAG, I, Result);
- MaybeAlign Alignment = I.getRetAlign();
- if (!Alignment)
- Alignment = F->getAttributes().getRetAlignment();
- // Insert `assertalign` node if there's an alignment.
- if (InsertAssertAlign && Alignment) {
- Result =
- DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
- }
- setValue(&I, Result);
- }
- }
- /// GetSignificand - Get the significand and build it into a floating-point
- /// number with exponent of 1:
- ///
- /// Op = (Op & 0x007fffff) | 0x3f800000;
- ///
- /// where Op is the hexadecimal representation of floating point value.
- static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
- SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
- DAG.getConstant(0x007fffff, dl, MVT::i32));
- SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
- DAG.getConstant(0x3f800000, dl, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
- }
- /// GetExponent - Get the exponent:
- ///
- /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
- ///
- /// where Op is the hexadecimal representation of floating point value.
- static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
- const TargetLowering &TLI, const SDLoc &dl) {
- SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
- DAG.getConstant(0x7f800000, dl, MVT::i32));
- SDValue t1 = DAG.getNode(
- ISD::SRL, dl, MVT::i32, t0,
- DAG.getConstant(23, dl,
- TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
- SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
- DAG.getConstant(127, dl, MVT::i32));
- return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
- }
- /// getF32Constant - Get 32-bit floating point constant.
- static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
- const SDLoc &dl) {
- return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
- MVT::f32);
- }
- static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
- SelectionDAG &DAG) {
- // TODO: What fast-math-flags should be set on the floating-point nodes?
- // IntegerPartOfX = ((int32_t)(t0);
- SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
- // FractionalPartOfX = t0 - (float)IntegerPartOfX;
- SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
- SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
- // IntegerPartOfX <<= 23;
- IntegerPartOfX =
- DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
- DAG.getConstant(23, dl,
- DAG.getTargetLoweringInfo().getShiftAmountTy(
- MVT::i32, DAG.getDataLayout())));
- SDValue TwoToFractionalPartOfX;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // TwoToFractionalPartOfX =
- // 0.997535578f +
- // (0.735607626f + 0.252464424f * x) * x;
- //
- // error 0.0144103317, which is 6 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3e814304, dl));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f3c50c8, dl));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f7f5e7e, dl));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // TwoToFractionalPartOfX =
- // 0.999892986f +
- // (0.696457318f +
- // (0.224338339f + 0.792043434e-1f * x) * x) * x;
- //
- // error 0.000107046256, which is 13 to 14 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3da235e3, dl));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3e65b8f3, dl));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f324b07, dl));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3f7ff8fd, dl));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // TwoToFractionalPartOfX =
- // 0.999999982f +
- // (0.693148872f +
- // (0.240227044f +
- // (0.554906021e-1f +
- // (0.961591928e-2f +
- // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
- // error 2.47208000*10^(-7), which is better than 18 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3924b03e, dl));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3ab24b87, dl));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3c1d8c17, dl));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3d634a1d, dl));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3e75fe14, dl));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x3f317234, dl));
- SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
- getF32Constant(DAG, 0x3f800000, dl));
- }
- // Add the exponent into the result in integer domain.
- SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
- return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
- DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
- }
- /// expandExp - Lower an exp intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI, SDNodeFlags Flags) {
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- // Put the exponent in the right bit position for later addition to the
- // final result:
- //
- // t0 = Op * log2(e)
- // TODO: What fast-math-flags should be set here?
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
- DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
- return getLimitedPrecisionExp2(t0, dl, DAG);
- }
- // No special expansion.
- return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
- }
- /// expandLog - Lower a log intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI, SDNodeFlags Flags) {
- // TODO: What fast-math-flags should be set on the floating-point nodes?
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
- // Scale the exponent by log(2).
- SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
- SDValue LogOfExponent =
- DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
- DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
- // Get the significand and build it into a floating-point number with
- // exponent of 1.
- SDValue X = GetSignificand(DAG, Op1, dl);
- SDValue LogOfMantissa;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // LogofMantissa =
- // -1.1609546f +
- // (1.4034025f - 0.23903021f * x) * x;
- //
- // error 0.0034276066, which is better than 8 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbe74c456, dl));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3fb3a2b1, dl));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f949a29, dl));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // LogOfMantissa =
- // -1.7417939f +
- // (2.8212026f +
- // (-1.4699568f +
- // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
- //
- // error 0.000061011436, which is 14 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbd67b6d6, dl));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3ee4f4b8, dl));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fbc278b, dl));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40348e95, dl));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3fdef31a, dl));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // LogOfMantissa =
- // -2.1072184f +
- // (4.2372794f +
- // (-3.7029485f +
- // (2.2781945f +
- // (-0.87823314f +
- // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
- //
- // error 0.0000023660568, which is better than 18 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbc91e5ac, dl));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e4350aa, dl));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f60d3e3, dl));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x4011cdf0, dl));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x406cfd1c, dl));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x408797cb, dl));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x4006dcab, dl));
- }
- return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
- }
- // No special expansion.
- return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
- }
- /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI, SDNodeFlags Flags) {
- // TODO: What fast-math-flags should be set on the floating-point nodes?
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
- // Get the exponent.
- SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
- // Get the significand and build it into a floating-point number with
- // exponent of 1.
- SDValue X = GetSignificand(DAG, Op1, dl);
- // Different possible minimax approximations of significand in
- // floating-point for various degrees of accuracy over [1,2].
- SDValue Log2ofMantissa;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
- //
- // error 0.0049451742, which is more than 7 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbeb08fe0, dl));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x40019463, dl));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fd6633d, dl));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // Log2ofMantissa =
- // -2.51285454f +
- // (4.07009056f +
- // (-2.12067489f +
- // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
- //
- // error 0.0000876136000, which is better than 13 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbda7262e, dl));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3f25280b, dl));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x4007b923, dl));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40823e2f, dl));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x4020d29c, dl));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // Log2ofMantissa =
- // -3.0400495f +
- // (6.1129976f +
- // (-5.3420409f +
- // (3.2865683f +
- // (-1.2669343f +
- // (0.27515199f -
- // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
- //
- // error 0.0000018516, which is better than 18 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbcd2769e, dl));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e8ce0b9, dl));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fa22ae7, dl));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40525723, dl));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x40aaf200, dl));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x40c39dad, dl));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x4042902c, dl));
- }
- return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
- }
- // No special expansion.
- return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
- }
- /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI, SDNodeFlags Flags) {
- // TODO: What fast-math-flags should be set on the floating-point nodes?
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
- // Scale the exponent by log10(2) [0.30102999f].
- SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
- SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
- getF32Constant(DAG, 0x3e9a209a, dl));
- // Get the significand and build it into a floating-point number with
- // exponent of 1.
- SDValue X = GetSignificand(DAG, Op1, dl);
- SDValue Log10ofMantissa;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // Log10ofMantissa =
- // -0.50419619f +
- // (0.60948995f - 0.10380950f * x) * x;
- //
- // error 0.0014886165, which is 6 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbdd49a13, dl));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3f1c0789, dl));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f011300, dl));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // Log10ofMantissa =
- // -0.64831180f +
- // (0.91751397f +
- // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
- //
- // error 0.00019228036, which is better than 12 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3d431f31, dl));
- SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3ea21fb2, dl));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f6ae232, dl));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f25f7c3, dl));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // Log10ofMantissa =
- // -0.84299375f +
- // (1.5327582f +
- // (-1.0688956f +
- // (0.49102474f +
- // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
- //
- // error 0.0000037995730, which is better than 18 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3c5d51ce, dl));
- SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e00685a, dl));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3efb6798, dl));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f88d192, dl));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3fc4316c, dl));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3f57ce70, dl));
- }
- return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
- }
- // No special expansion.
- return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
- }
- /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI, SDNodeFlags Flags) {
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
- return getLimitedPrecisionExp2(Op, dl, DAG);
- // No special expansion.
- return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
- }
- /// visitPow - Lower a pow intrinsic. Handles the special sequences for
- /// limited-precision mode with x == 10.0f.
- static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
- SelectionDAG &DAG, const TargetLowering &TLI,
- SDNodeFlags Flags) {
- bool IsExp10 = false;
- if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
- APFloat Ten(10.0f);
- IsExp10 = LHSC->isExactlyValue(Ten);
- }
- }
- // TODO: What fast-math-flags should be set on the FMUL node?
- if (IsExp10) {
- // Put the exponent in the right bit position for later addition to the
- // final result:
- //
- // #define LOG2OF10 3.3219281f
- // t0 = Op * LOG2OF10;
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
- getF32Constant(DAG, 0x40549a78, dl));
- return getLimitedPrecisionExp2(t0, dl, DAG);
- }
- // No special expansion.
- return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
- }
- /// ExpandPowI - Expand a llvm.powi intrinsic.
- static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
- SelectionDAG &DAG) {
- // If RHS is a constant, we can expand this out to a multiplication tree if
- // it's beneficial on the target, otherwise we end up lowering to a call to
- // __powidf2 (for example).
- if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
- unsigned Val = RHSC->getSExtValue();
- // powi(x, 0) -> 1.0
- if (Val == 0)
- return DAG.getConstantFP(1.0, DL, LHS.getValueType());
- if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
- Val, DAG.shouldOptForSize())) {
- // Get the exponent as a positive value.
- if ((int)Val < 0)
- Val = -Val;
- // We use the simple binary decomposition method to generate the multiply
- // sequence. There are more optimal ways to do this (for example,
- // powi(x,15) generates one more multiply than it should), but this has
- // the benefit of being both really simple and much better than a libcall.
- SDValue Res; // Logically starts equal to 1.0
- SDValue CurSquare = LHS;
- // TODO: Intrinsics should have fast-math-flags that propagate to these
- // nodes.
- while (Val) {
- if (Val & 1) {
- if (Res.getNode())
- Res =
- DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
- else
- Res = CurSquare; // 1.0*CurSquare.
- }
- CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
- CurSquare, CurSquare);
- Val >>= 1;
- }
- // If the original was negative, invert the result, producing 1/(x*x*x).
- if (RHSC->getSExtValue() < 0)
- Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
- DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
- return Res;
- }
- }
- // Otherwise, expand to a libcall.
- return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
- }
- static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
- SDValue LHS, SDValue RHS, SDValue Scale,
- SelectionDAG &DAG, const TargetLowering &TLI) {
- EVT VT = LHS.getValueType();
- bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
- bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
- LLVMContext &Ctx = *DAG.getContext();
- // If the type is legal but the operation isn't, this node might survive all
- // the way to operation legalization. If we end up there and we do not have
- // the ability to widen the type (if VT*2 is not legal), we cannot expand the
- // node.
- // Coax the legalizer into expanding the node during type legalization instead
- // by bumping the size by one bit. This will force it to Promote, enabling the
- // early expansion and avoiding the need to expand later.
- // We don't have to do this if Scale is 0; that can always be expanded, unless
- // it's a saturating signed operation. Those can experience true integer
- // division overflow, a case which we must avoid.
- // FIXME: We wouldn't have to do this (or any of the early
- // expansion/promotion) if it was possible to expand a libcall of an
- // illegal type during operation legalization. But it's not, so things
- // get a bit hacky.
- unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
- if ((ScaleInt > 0 || (Saturating && Signed)) &&
- (TLI.isTypeLegal(VT) ||
- (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
- TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
- Opcode, VT, ScaleInt);
- if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
- EVT PromVT;
- if (VT.isScalarInteger())
- PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
- else if (VT.isVector()) {
- PromVT = VT.getVectorElementType();
- PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
- PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
- } else
- llvm_unreachable("Wrong VT for DIVFIX?");
- if (Signed) {
- LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
- RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
- } else {
- LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
- RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
- }
- EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
- // For saturating operations, we need to shift up the LHS to get the
- // proper saturation width, and then shift down again afterwards.
- if (Saturating)
- LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
- DAG.getConstant(1, DL, ShiftTy));
- SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
- if (Saturating)
- Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
- DAG.getConstant(1, DL, ShiftTy));
- return DAG.getZExtOrTrunc(Res, DL, VT);
- }
- }
- return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
- }
- // getUnderlyingArgRegs - Find underlying registers used for a truncated,
- // bitcasted, or split argument. Returns a list of <Register, size in bits>
- static void
- getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
- const SDValue &N) {
- switch (N.getOpcode()) {
- case ISD::CopyFromReg: {
- SDValue Op = N.getOperand(1);
- Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
- Op.getValueType().getSizeInBits());
- return;
- }
- case ISD::BITCAST:
- case ISD::AssertZext:
- case ISD::AssertSext:
- case ISD::TRUNCATE:
- getUnderlyingArgRegs(Regs, N.getOperand(0));
- return;
- case ISD::BUILD_PAIR:
- case ISD::BUILD_VECTOR:
- case ISD::CONCAT_VECTORS:
- for (SDValue Op : N->op_values())
- getUnderlyingArgRegs(Regs, Op);
- return;
- default:
- return;
- }
- }
- /// If the DbgValueInst is a dbg_value of a function argument, create the
- /// corresponding DBG_VALUE machine instruction for it now. At the end of
- /// instruction selection, they will be inserted to the entry BB.
- /// We don't currently support this for variadic dbg_values, as they shouldn't
- /// appear for function arguments or in the prologue.
- bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
- const Value *V, DILocalVariable *Variable, DIExpression *Expr,
- DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
- const Argument *Arg = dyn_cast<Argument>(V);
- if (!Arg)
- return false;
- MachineFunction &MF = DAG.getMachineFunction();
- const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
- // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
- // we've been asked to pursue.
- auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
- bool Indirect) {
- if (Reg.isVirtual() && MF.useDebugInstrRef()) {
- // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
- // pointing at the VReg, which will be patched up later.
- auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
- SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
- /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
- /* isKill */ false, /* isDead */ false,
- /* isUndef */ false, /* isEarlyClobber */ false,
- /* SubReg */ 0, /* isDebug */ true)});
- auto *NewDIExpr = FragExpr;
- // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
- // the DIExpression.
- if (Indirect)
- NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
- SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
- NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
- return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
- } else {
- // Create a completely standard DBG_VALUE.
- auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
- return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
- }
- };
- if (Kind == FuncArgumentDbgValueKind::Value) {
- // ArgDbgValues are hoisted to the beginning of the entry block. So we
- // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
- // the entry block.
- bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
- if (!IsInEntryBlock)
- return false;
- // ArgDbgValues are hoisted to the beginning of the entry block. So we
- // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
- // variable that also is a param.
- //
- // Although, if we are at the top of the entry block already, we can still
- // emit using ArgDbgValue. This might catch some situations when the
- // dbg.value refers to an argument that isn't used in the entry block, so
- // any CopyToReg node would be optimized out and the only way to express
- // this DBG_VALUE is by using the physical reg (or FI) as done in this
- // method. ArgDbgValues are hoisted to the beginning of the entry block. So
- // we should only emit as ArgDbgValue if the Variable is an argument to the
- // current function, and the dbg.value intrinsic is found in the entry
- // block.
- bool VariableIsFunctionInputArg = Variable->isParameter() &&
- !DL->getInlinedAt();
- bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
- if (!IsInPrologue && !VariableIsFunctionInputArg)
- return false;
- // Here we assume that a function argument on IR level only can be used to
- // describe one input parameter on source level. If we for example have
- // source code like this
- //
- // struct A { long x, y; };
- // void foo(struct A a, long b) {
- // ...
- // b = a.x;
- // ...
- // }
- //
- // and IR like this
- //
- // define void @foo(i32 %a1, i32 %a2, i32 %b) {
- // entry:
- // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
- // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
- // call void @llvm.dbg.value(metadata i32 %b, "b",
- // ...
- // call void @llvm.dbg.value(metadata i32 %a1, "b"
- // ...
- //
- // then the last dbg.value is describing a parameter "b" using a value that
- // is an argument. But since we already has used %a1 to describe a parameter
- // we should not handle that last dbg.value here (that would result in an
- // incorrect hoisting of the DBG_VALUE to the function entry).
- // Notice that we allow one dbg.value per IR level argument, to accommodate
- // for the situation with fragments above.
- if (VariableIsFunctionInputArg) {
- unsigned ArgNo = Arg->getArgNo();
- if (ArgNo >= FuncInfo.DescribedArgs.size())
- FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
- else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
- return false;
- FuncInfo.DescribedArgs.set(ArgNo);
- }
- }
- bool IsIndirect = false;
- std::optional<MachineOperand> Op;
- // Some arguments' frame index is recorded during argument lowering.
- int FI = FuncInfo.getArgumentFrameIndex(Arg);
- if (FI != std::numeric_limits<int>::max())
- Op = MachineOperand::CreateFI(FI);
- SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
- if (!Op && N.getNode()) {
- getUnderlyingArgRegs(ArgRegsAndSizes, N);
- Register Reg;
- if (ArgRegsAndSizes.size() == 1)
- Reg = ArgRegsAndSizes.front().first;
- if (Reg && Reg.isVirtual()) {
- MachineRegisterInfo &RegInfo = MF.getRegInfo();
- Register PR = RegInfo.getLiveInPhysReg(Reg);
- if (PR)
- Reg = PR;
- }
- if (Reg) {
- Op = MachineOperand::CreateReg(Reg, false);
- IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
- }
- }
- if (!Op && N.getNode()) {
- // Check if frame index is available.
- SDValue LCandidate = peekThroughBitcasts(N);
- if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
- if (FrameIndexSDNode *FINode =
- dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
- Op = MachineOperand::CreateFI(FINode->getIndex());
- }
- if (!Op) {
- // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
- auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
- SplitRegs) {
- unsigned Offset = 0;
- for (const auto &RegAndSize : SplitRegs) {
- // If the expression is already a fragment, the current register
- // offset+size might extend beyond the fragment. In this case, only
- // the register bits that are inside the fragment are relevant.
- int RegFragmentSizeInBits = RegAndSize.second;
- if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
- uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
- // The register is entirely outside the expression fragment,
- // so is irrelevant for debug info.
- if (Offset >= ExprFragmentSizeInBits)
- break;
- // The register is partially outside the expression fragment, only
- // the low bits within the fragment are relevant for debug info.
- if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
- RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
- }
- }
- auto FragmentExpr = DIExpression::createFragmentExpression(
- Expr, Offset, RegFragmentSizeInBits);
- Offset += RegAndSize.second;
- // If a valid fragment expression cannot be created, the variable's
- // correct value cannot be determined and so it is set as Undef.
- if (!FragmentExpr) {
- SDDbgValue *SDV = DAG.getConstantDbgValue(
- Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
- DAG.AddDbgValue(SDV, false);
- continue;
- }
- MachineInstr *NewMI =
- MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
- Kind != FuncArgumentDbgValueKind::Value);
- FuncInfo.ArgDbgValues.push_back(NewMI);
- }
- };
- // Check if ValueMap has reg number.
- DenseMap<const Value *, Register>::const_iterator
- VMI = FuncInfo.ValueMap.find(V);
- if (VMI != FuncInfo.ValueMap.end()) {
- const auto &TLI = DAG.getTargetLoweringInfo();
- RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
- V->getType(), std::nullopt);
- if (RFV.occupiesMultipleRegs()) {
- splitMultiRegDbgValue(RFV.getRegsAndSizes());
- return true;
- }
- Op = MachineOperand::CreateReg(VMI->second, false);
- IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
- } else if (ArgRegsAndSizes.size() > 1) {
- // This was split due to the calling convention, and no virtual register
- // mapping exists for the value.
- splitMultiRegDbgValue(ArgRegsAndSizes);
- return true;
- }
- }
- if (!Op)
- return false;
- assert(Variable->isValidLocationForIntrinsic(DL) &&
- "Expected inlined-at fields to agree");
- MachineInstr *NewMI = nullptr;
- if (Op->isReg())
- NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
- else
- NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
- Variable, Expr);
- // Otherwise, use ArgDbgValues.
- FuncInfo.ArgDbgValues.push_back(NewMI);
- return true;
- }
- /// Return the appropriate SDDbgValue based on N.
- SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
- DILocalVariable *Variable,
- DIExpression *Expr,
- const DebugLoc &dl,
- unsigned DbgSDNodeOrder) {
- if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
- // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
- // stack slot locations.
- //
- // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
- // debug values here after optimization:
- //
- // dbg.value(i32* %px, !"int *px", !DIExpression()), and
- // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
- //
- // Both describe the direct values of their associated variables.
- return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
- /*IsIndirect*/ false, dl, DbgSDNodeOrder);
- }
- return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
- /*IsIndirect*/ false, dl, DbgSDNodeOrder);
- }
- static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
- switch (Intrinsic) {
- case Intrinsic::smul_fix:
- return ISD::SMULFIX;
- case Intrinsic::umul_fix:
- return ISD::UMULFIX;
- case Intrinsic::smul_fix_sat:
- return ISD::SMULFIXSAT;
- case Intrinsic::umul_fix_sat:
- return ISD::UMULFIXSAT;
- case Intrinsic::sdiv_fix:
- return ISD::SDIVFIX;
- case Intrinsic::udiv_fix:
- return ISD::UDIVFIX;
- case Intrinsic::sdiv_fix_sat:
- return ISD::SDIVFIXSAT;
- case Intrinsic::udiv_fix_sat:
- return ISD::UDIVFIXSAT;
- default:
- llvm_unreachable("Unhandled fixed point intrinsic");
- }
- }
- void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
- const char *FunctionName) {
- assert(FunctionName && "FunctionName must not be nullptr");
- SDValue Callee = DAG.getExternalSymbol(
- FunctionName,
- DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
- LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
- }
- /// Given a @llvm.call.preallocated.setup, return the corresponding
- /// preallocated call.
- static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
- assert(cast<CallBase>(PreallocatedSetup)
- ->getCalledFunction()
- ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
- "expected call_preallocated_setup Value");
- for (const auto *U : PreallocatedSetup->users()) {
- auto *UseCall = cast<CallBase>(U);
- const Function *Fn = UseCall->getCalledFunction();
- if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
- return UseCall;
- }
- }
- llvm_unreachable("expected corresponding call to preallocated setup/arg");
- }
- /// Lower the call to the specified intrinsic function.
- void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
- unsigned Intrinsic) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDLoc sdl = getCurSDLoc();
- DebugLoc dl = getCurDebugLoc();
- SDValue Res;
- SDNodeFlags Flags;
- if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
- Flags.copyFMF(*FPOp);
- switch (Intrinsic) {
- default:
- // By default, turn this into a target intrinsic node.
- visitTargetIntrinsic(I, Intrinsic);
- return;
- case Intrinsic::vscale: {
- match(&I, m_VScale(DAG.getDataLayout()));
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
- return;
- }
- case Intrinsic::vastart: visitVAStart(I); return;
- case Intrinsic::vaend: visitVAEnd(I); return;
- case Intrinsic::vacopy: visitVACopy(I); return;
- case Intrinsic::returnaddress:
- setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
- TLI.getValueType(DAG.getDataLayout(), I.getType()),
- getValue(I.getArgOperand(0))));
- return;
- case Intrinsic::addressofreturnaddress:
- setValue(&I,
- DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
- TLI.getValueType(DAG.getDataLayout(), I.getType())));
- return;
- case Intrinsic::sponentry:
- setValue(&I,
- DAG.getNode(ISD::SPONENTRY, sdl,
- TLI.getValueType(DAG.getDataLayout(), I.getType())));
- return;
- case Intrinsic::frameaddress:
- setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
- TLI.getFrameIndexTy(DAG.getDataLayout()),
- getValue(I.getArgOperand(0))));
- return;
- case Intrinsic::read_volatile_register:
- case Intrinsic::read_register: {
- Value *Reg = I.getArgOperand(0);
- SDValue Chain = getRoot();
- SDValue RegName =
- DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- Res = DAG.getNode(ISD::READ_REGISTER, sdl,
- DAG.getVTList(VT, MVT::Other), Chain, RegName);
- setValue(&I, Res);
- DAG.setRoot(Res.getValue(1));
- return;
- }
- case Intrinsic::write_register: {
- Value *Reg = I.getArgOperand(0);
- Value *RegValue = I.getArgOperand(1);
- SDValue Chain = getRoot();
- SDValue RegName =
- DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
- DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
- RegName, getValue(RegValue)));
- return;
- }
- case Intrinsic::memcpy: {
- const auto &MCI = cast<MemCpyInst>(I);
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- SDValue Op3 = getValue(I.getArgOperand(2));
- // @llvm.memcpy defines 0 and 1 to both mean no alignment.
- Align DstAlign = MCI.getDestAlign().valueOrOne();
- Align SrcAlign = MCI.getSourceAlign().valueOrOne();
- Align Alignment = std::min(DstAlign, SrcAlign);
- bool isVol = MCI.isVolatile();
- bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
- // FIXME: Support passing different dest/src alignments to the memcpy DAG
- // node.
- SDValue Root = isVol ? getRoot() : getMemoryRoot();
- SDValue MC = DAG.getMemcpy(
- Root, sdl, Op1, Op2, Op3, Alignment, isVol,
- /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
- MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
- updateDAGForMaybeTailCall(MC);
- return;
- }
- case Intrinsic::memcpy_inline: {
- const auto &MCI = cast<MemCpyInlineInst>(I);
- SDValue Dst = getValue(I.getArgOperand(0));
- SDValue Src = getValue(I.getArgOperand(1));
- SDValue Size = getValue(I.getArgOperand(2));
- assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
- // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
- Align DstAlign = MCI.getDestAlign().valueOrOne();
- Align SrcAlign = MCI.getSourceAlign().valueOrOne();
- Align Alignment = std::min(DstAlign, SrcAlign);
- bool isVol = MCI.isVolatile();
- bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
- // FIXME: Support passing different dest/src alignments to the memcpy DAG
- // node.
- SDValue MC = DAG.getMemcpy(
- getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
- /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
- MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
- updateDAGForMaybeTailCall(MC);
- return;
- }
- case Intrinsic::memset: {
- const auto &MSI = cast<MemSetInst>(I);
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- SDValue Op3 = getValue(I.getArgOperand(2));
- // @llvm.memset defines 0 and 1 to both mean no alignment.
- Align Alignment = MSI.getDestAlign().valueOrOne();
- bool isVol = MSI.isVolatile();
- bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
- SDValue Root = isVol ? getRoot() : getMemoryRoot();
- SDValue MS = DAG.getMemset(
- Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
- isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
- updateDAGForMaybeTailCall(MS);
- return;
- }
- case Intrinsic::memset_inline: {
- const auto &MSII = cast<MemSetInlineInst>(I);
- SDValue Dst = getValue(I.getArgOperand(0));
- SDValue Value = getValue(I.getArgOperand(1));
- SDValue Size = getValue(I.getArgOperand(2));
- assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
- // @llvm.memset defines 0 and 1 to both mean no alignment.
- Align DstAlign = MSII.getDestAlign().valueOrOne();
- bool isVol = MSII.isVolatile();
- bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
- SDValue Root = isVol ? getRoot() : getMemoryRoot();
- SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
- /* AlwaysInline */ true, isTC,
- MachinePointerInfo(I.getArgOperand(0)),
- I.getAAMetadata());
- updateDAGForMaybeTailCall(MC);
- return;
- }
- case Intrinsic::memmove: {
- const auto &MMI = cast<MemMoveInst>(I);
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- SDValue Op3 = getValue(I.getArgOperand(2));
- // @llvm.memmove defines 0 and 1 to both mean no alignment.
- Align DstAlign = MMI.getDestAlign().valueOrOne();
- Align SrcAlign = MMI.getSourceAlign().valueOrOne();
- Align Alignment = std::min(DstAlign, SrcAlign);
- bool isVol = MMI.isVolatile();
- bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
- // FIXME: Support passing different dest/src alignments to the memmove DAG
- // node.
- SDValue Root = isVol ? getRoot() : getMemoryRoot();
- SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
- isTC, MachinePointerInfo(I.getArgOperand(0)),
- MachinePointerInfo(I.getArgOperand(1)),
- I.getAAMetadata(), AA);
- updateDAGForMaybeTailCall(MM);
- return;
- }
- case Intrinsic::memcpy_element_unordered_atomic: {
- const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
- SDValue Dst = getValue(MI.getRawDest());
- SDValue Src = getValue(MI.getRawSource());
- SDValue Length = getValue(MI.getLength());
- Type *LengthTy = MI.getLength()->getType();
- unsigned ElemSz = MI.getElementSizeInBytes();
- bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
- SDValue MC =
- DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
- isTC, MachinePointerInfo(MI.getRawDest()),
- MachinePointerInfo(MI.getRawSource()));
- updateDAGForMaybeTailCall(MC);
- return;
- }
- case Intrinsic::memmove_element_unordered_atomic: {
- auto &MI = cast<AtomicMemMoveInst>(I);
- SDValue Dst = getValue(MI.getRawDest());
- SDValue Src = getValue(MI.getRawSource());
- SDValue Length = getValue(MI.getLength());
- Type *LengthTy = MI.getLength()->getType();
- unsigned ElemSz = MI.getElementSizeInBytes();
- bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
- SDValue MC =
- DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
- isTC, MachinePointerInfo(MI.getRawDest()),
- MachinePointerInfo(MI.getRawSource()));
- updateDAGForMaybeTailCall(MC);
- return;
- }
- case Intrinsic::memset_element_unordered_atomic: {
- auto &MI = cast<AtomicMemSetInst>(I);
- SDValue Dst = getValue(MI.getRawDest());
- SDValue Val = getValue(MI.getValue());
- SDValue Length = getValue(MI.getLength());
- Type *LengthTy = MI.getLength()->getType();
- unsigned ElemSz = MI.getElementSizeInBytes();
- bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
- SDValue MC =
- DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
- isTC, MachinePointerInfo(MI.getRawDest()));
- updateDAGForMaybeTailCall(MC);
- return;
- }
- case Intrinsic::call_preallocated_setup: {
- const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
- SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
- SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
- getRoot(), SrcValue);
- setValue(&I, Res);
- DAG.setRoot(Res);
- return;
- }
- case Intrinsic::call_preallocated_arg: {
- const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
- SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
- SDValue Ops[3];
- Ops[0] = getRoot();
- Ops[1] = SrcValue;
- Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
- MVT::i32); // arg index
- SDValue Res = DAG.getNode(
- ISD::PREALLOCATED_ARG, sdl,
- DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
- setValue(&I, Res);
- DAG.setRoot(Res.getValue(1));
- return;
- }
- case Intrinsic::dbg_addr:
- case Intrinsic::dbg_declare: {
- // Debug intrinsics are handled seperately in assignment tracking mode.
- if (isAssignmentTrackingEnabled(*I.getFunction()->getParent()))
- return;
- // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
- // they are non-variadic.
- const auto &DI = cast<DbgVariableIntrinsic>(I);
- assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
- DILocalVariable *Variable = DI.getVariable();
- DIExpression *Expression = DI.getExpression();
- dropDanglingDebugInfo(Variable, Expression);
- assert(Variable && "Missing variable");
- LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
- << "\n");
- // Check if address has undef value.
- const Value *Address = DI.getVariableLocationOp(0);
- if (!Address || isa<UndefValue>(Address) ||
- (Address->use_empty() && !isa<Argument>(Address))) {
- LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
- << " (bad/undef/unused-arg address)\n");
- return;
- }
- bool isParameter = Variable->isParameter() || isa<Argument>(Address);
- // Check if this variable can be described by a frame index, typically
- // either as a static alloca or a byval parameter.
- int FI = std::numeric_limits<int>::max();
- if (const auto *AI =
- dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
- if (AI->isStaticAlloca()) {
- auto I = FuncInfo.StaticAllocaMap.find(AI);
- if (I != FuncInfo.StaticAllocaMap.end())
- FI = I->second;
- }
- } else if (const auto *Arg = dyn_cast<Argument>(
- Address->stripInBoundsConstantOffsets())) {
- FI = FuncInfo.getArgumentFrameIndex(Arg);
- }
- // llvm.dbg.addr is control dependent and always generates indirect
- // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
- // the MachineFunction variable table.
- if (FI != std::numeric_limits<int>::max()) {
- if (Intrinsic == Intrinsic::dbg_addr) {
- SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
- Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
- dl, SDNodeOrder);
- DAG.AddDbgValue(SDV, isParameter);
- } else {
- LLVM_DEBUG(dbgs() << "Skipping " << DI
- << " (variable info stashed in MF side table)\n");
- }
- return;
- }
- SDValue &N = NodeMap[Address];
- if (!N.getNode() && isa<Argument>(Address))
- // Check unused arguments map.
- N = UnusedArgNodeMap[Address];
- SDDbgValue *SDV;
- if (N.getNode()) {
- if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
- Address = BCI->getOperand(0);
- // Parameters are handled specially.
- auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
- if (isParameter && FINode) {
- // Byval parameter. We have a frame index at this point.
- SDV =
- DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
- /*IsIndirect*/ true, dl, SDNodeOrder);
- } else if (isa<Argument>(Address)) {
- // Address is an argument, so try to emit its dbg value using
- // virtual register info from the FuncInfo.ValueMap.
- EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
- FuncArgumentDbgValueKind::Declare, N);
- return;
- } else {
- SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
- true, dl, SDNodeOrder);
- }
- DAG.AddDbgValue(SDV, isParameter);
- } else {
- // If Address is an argument then try to emit its dbg value using
- // virtual register info from the FuncInfo.ValueMap.
- if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
- FuncArgumentDbgValueKind::Declare, N)) {
- LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
- << " (could not emit func-arg dbg_value)\n");
- }
- }
- return;
- }
- case Intrinsic::dbg_label: {
- const DbgLabelInst &DI = cast<DbgLabelInst>(I);
- DILabel *Label = DI.getLabel();
- assert(Label && "Missing label");
- SDDbgLabel *SDV;
- SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
- DAG.AddDbgLabel(SDV);
- return;
- }
- case Intrinsic::dbg_assign: {
- // Debug intrinsics are handled seperately in assignment tracking mode.
- assert(isAssignmentTrackingEnabled(*I.getFunction()->getParent()) &&
- "expected assignment tracking to be enabled");
- return;
- }
- case Intrinsic::dbg_value: {
- // Debug intrinsics are handled seperately in assignment tracking mode.
- if (isAssignmentTrackingEnabled(*I.getFunction()->getParent()))
- return;
- const DbgValueInst &DI = cast<DbgValueInst>(I);
- assert(DI.getVariable() && "Missing variable");
- DILocalVariable *Variable = DI.getVariable();
- DIExpression *Expression = DI.getExpression();
- dropDanglingDebugInfo(Variable, Expression);
- SmallVector<Value *, 4> Values(DI.getValues());
- if (Values.empty())
- return;
- if (llvm::is_contained(Values, nullptr))
- return;
- bool IsVariadic = DI.hasArgList();
- if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
- SDNodeOrder, IsVariadic))
- addDanglingDebugInfo(&DI, SDNodeOrder);
- return;
- }
- case Intrinsic::eh_typeid_for: {
- // Find the type id for the given typeinfo.
- GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
- unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
- Res = DAG.getConstant(TypeID, sdl, MVT::i32);
- setValue(&I, Res);
- return;
- }
- case Intrinsic::eh_return_i32:
- case Intrinsic::eh_return_i64:
- DAG.getMachineFunction().setCallsEHReturn(true);
- DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
- MVT::Other,
- getControlRoot(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1))));
- return;
- case Intrinsic::eh_unwind_init:
- DAG.getMachineFunction().setCallsUnwindInit(true);
- return;
- case Intrinsic::eh_dwarf_cfa:
- setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
- TLI.getPointerTy(DAG.getDataLayout()),
- getValue(I.getArgOperand(0))));
- return;
- case Intrinsic::eh_sjlj_callsite: {
- MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
- ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
- assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
- MMI.setCurrentCallSite(CI->getZExtValue());
- return;
- }
- case Intrinsic::eh_sjlj_functioncontext: {
- // Get and store the index of the function context.
- MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
- AllocaInst *FnCtx =
- cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
- int FI = FuncInfo.StaticAllocaMap[FnCtx];
- MFI.setFunctionContextIndex(FI);
- return;
- }
- case Intrinsic::eh_sjlj_setjmp: {
- SDValue Ops[2];
- Ops[0] = getRoot();
- Ops[1] = getValue(I.getArgOperand(0));
- SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
- DAG.getVTList(MVT::i32, MVT::Other), Ops);
- setValue(&I, Op.getValue(0));
- DAG.setRoot(Op.getValue(1));
- return;
- }
- case Intrinsic::eh_sjlj_longjmp:
- DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
- getRoot(), getValue(I.getArgOperand(0))));
- return;
- case Intrinsic::eh_sjlj_setup_dispatch:
- DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
- getRoot()));
- return;
- case Intrinsic::masked_gather:
- visitMaskedGather(I);
- return;
- case Intrinsic::masked_load:
- visitMaskedLoad(I);
- return;
- case Intrinsic::masked_scatter:
- visitMaskedScatter(I);
- return;
- case Intrinsic::masked_store:
- visitMaskedStore(I);
- return;
- case Intrinsic::masked_expandload:
- visitMaskedLoad(I, true /* IsExpanding */);
- return;
- case Intrinsic::masked_compressstore:
- visitMaskedStore(I, true /* IsCompressing */);
- return;
- case Intrinsic::powi:
- setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)), DAG));
- return;
- case Intrinsic::log:
- setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
- return;
- case Intrinsic::log2:
- setValue(&I,
- expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
- return;
- case Intrinsic::log10:
- setValue(&I,
- expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
- return;
- case Intrinsic::exp:
- setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
- return;
- case Intrinsic::exp2:
- setValue(&I,
- expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
- return;
- case Intrinsic::pow:
- setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)), DAG, TLI, Flags));
- return;
- case Intrinsic::sqrt:
- case Intrinsic::fabs:
- case Intrinsic::sin:
- case Intrinsic::cos:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::round:
- case Intrinsic::roundeven:
- case Intrinsic::canonicalize: {
- unsigned Opcode;
- switch (Intrinsic) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
- case Intrinsic::fabs: Opcode = ISD::FABS; break;
- case Intrinsic::sin: Opcode = ISD::FSIN; break;
- case Intrinsic::cos: Opcode = ISD::FCOS; break;
- case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
- case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
- case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
- case Intrinsic::rint: Opcode = ISD::FRINT; break;
- case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
- case Intrinsic::round: Opcode = ISD::FROUND; break;
- case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
- case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
- }
- setValue(&I, DAG.getNode(Opcode, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)), Flags));
- return;
- }
- case Intrinsic::lround:
- case Intrinsic::llround:
- case Intrinsic::lrint:
- case Intrinsic::llrint: {
- unsigned Opcode;
- switch (Intrinsic) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::lround: Opcode = ISD::LROUND; break;
- case Intrinsic::llround: Opcode = ISD::LLROUND; break;
- case Intrinsic::lrint: Opcode = ISD::LRINT; break;
- case Intrinsic::llrint: Opcode = ISD::LLRINT; break;
- }
- EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
- getValue(I.getArgOperand(0))));
- return;
- }
- case Intrinsic::minnum:
- setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)), Flags));
- return;
- case Intrinsic::maxnum:
- setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)), Flags));
- return;
- case Intrinsic::minimum:
- setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)), Flags));
- return;
- case Intrinsic::maximum:
- setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)), Flags));
- return;
- case Intrinsic::copysign:
- setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)), Flags));
- return;
- case Intrinsic::arithmetic_fence: {
- setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)), Flags));
- return;
- }
- case Intrinsic::fma:
- setValue(&I, DAG.getNode(
- ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
- getValue(I.getArgOperand(2)), Flags));
- return;
- #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
- case Intrinsic::INTRINSIC:
- #include "llvm/IR/ConstrainedOps.def"
- visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
- return;
- #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
- #include "llvm/IR/VPIntrinsics.def"
- visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
- return;
- case Intrinsic::fptrunc_round: {
- // Get the last argument, the metadata and convert it to an integer in the
- // call
- Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
- std::optional<RoundingMode> RoundMode =
- convertStrToRoundingMode(cast<MDString>(MD)->getString());
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- // Propagate fast-math-flags from IR to node(s).
- SDNodeFlags Flags;
- Flags.copyFMF(*cast<FPMathOperator>(&I));
- SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
- SDValue Result;
- Result = DAG.getNode(
- ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
- DAG.getTargetConstant((int)*RoundMode, sdl,
- TLI.getPointerTy(DAG.getDataLayout())));
- setValue(&I, Result);
- return;
- }
- case Intrinsic::fmuladd: {
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
- TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
- setValue(&I, DAG.getNode(ISD::FMA, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)),
- getValue(I.getArgOperand(2)), Flags));
- } else {
- // TODO: Intrinsic calls should have fast-math-flags.
- SDValue Mul = DAG.getNode(
- ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
- SDValue Add = DAG.getNode(ISD::FADD, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- Mul, getValue(I.getArgOperand(2)), Flags);
- setValue(&I, Add);
- }
- return;
- }
- case Intrinsic::convert_to_fp16:
- setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
- DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
- getValue(I.getArgOperand(0)),
- DAG.getTargetConstant(0, sdl,
- MVT::i32))));
- return;
- case Intrinsic::convert_from_fp16:
- setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
- TLI.getValueType(DAG.getDataLayout(), I.getType()),
- DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
- getValue(I.getArgOperand(0)))));
- return;
- case Intrinsic::fptosi_sat: {
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
- getValue(I.getArgOperand(0)),
- DAG.getValueType(VT.getScalarType())));
- return;
- }
- case Intrinsic::fptoui_sat: {
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
- getValue(I.getArgOperand(0)),
- DAG.getValueType(VT.getScalarType())));
- return;
- }
- case Intrinsic::set_rounding:
- Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
- {getRoot(), getValue(I.getArgOperand(0))});
- setValue(&I, Res);
- DAG.setRoot(Res.getValue(0));
- return;
- case Intrinsic::is_fpclass: {
- const DataLayout DLayout = DAG.getDataLayout();
- EVT DestVT = TLI.getValueType(DLayout, I.getType());
- EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
- unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
- MachineFunction &MF = DAG.getMachineFunction();
- const Function &F = MF.getFunction();
- SDValue Op = getValue(I.getArgOperand(0));
- SDNodeFlags Flags;
- Flags.setNoFPExcept(
- !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
- // If ISD::IS_FPCLASS should be expanded, do it right now, because the
- // expansion can use illegal types. Making expansion early allows
- // legalizing these types prior to selection.
- if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
- SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
- setValue(&I, Result);
- return;
- }
- SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
- SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
- setValue(&I, V);
- return;
- }
- case Intrinsic::pcmarker: {
- SDValue Tmp = getValue(I.getArgOperand(0));
- DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
- return;
- }
- case Intrinsic::readcyclecounter: {
- SDValue Op = getRoot();
- Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
- DAG.getVTList(MVT::i64, MVT::Other), Op);
- setValue(&I, Res);
- DAG.setRoot(Res.getValue(1));
- return;
- }
- case Intrinsic::bitreverse:
- setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0))));
- return;
- case Intrinsic::bswap:
- setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0))));
- return;
- case Intrinsic::cttz: {
- SDValue Arg = getValue(I.getArgOperand(0));
- ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
- EVT Ty = Arg.getValueType();
- setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
- sdl, Ty, Arg));
- return;
- }
- case Intrinsic::ctlz: {
- SDValue Arg = getValue(I.getArgOperand(0));
- ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
- EVT Ty = Arg.getValueType();
- setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
- sdl, Ty, Arg));
- return;
- }
- case Intrinsic::ctpop: {
- SDValue Arg = getValue(I.getArgOperand(0));
- EVT Ty = Arg.getValueType();
- setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
- return;
- }
- case Intrinsic::fshl:
- case Intrinsic::fshr: {
- bool IsFSHL = Intrinsic == Intrinsic::fshl;
- SDValue X = getValue(I.getArgOperand(0));
- SDValue Y = getValue(I.getArgOperand(1));
- SDValue Z = getValue(I.getArgOperand(2));
- EVT VT = X.getValueType();
- if (X == Y) {
- auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
- setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
- } else {
- auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
- setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
- }
- return;
- }
- case Intrinsic::sadd_sat: {
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
- return;
- }
- case Intrinsic::uadd_sat: {
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
- return;
- }
- case Intrinsic::ssub_sat: {
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
- return;
- }
- case Intrinsic::usub_sat: {
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
- return;
- }
- case Intrinsic::sshl_sat: {
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
- return;
- }
- case Intrinsic::ushl_sat: {
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
- return;
- }
- case Intrinsic::smul_fix:
- case Intrinsic::umul_fix:
- case Intrinsic::smul_fix_sat:
- case Intrinsic::umul_fix_sat: {
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- SDValue Op3 = getValue(I.getArgOperand(2));
- setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
- Op1.getValueType(), Op1, Op2, Op3));
- return;
- }
- case Intrinsic::sdiv_fix:
- case Intrinsic::udiv_fix:
- case Intrinsic::sdiv_fix_sat:
- case Intrinsic::udiv_fix_sat: {
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- SDValue Op3 = getValue(I.getArgOperand(2));
- setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
- Op1, Op2, Op3, DAG, TLI));
- return;
- }
- case Intrinsic::smax: {
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
- return;
- }
- case Intrinsic::smin: {
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
- return;
- }
- case Intrinsic::umax: {
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
- return;
- }
- case Intrinsic::umin: {
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
- return;
- }
- case Intrinsic::abs: {
- // TODO: Preserve "int min is poison" arg in SDAG?
- SDValue Op1 = getValue(I.getArgOperand(0));
- setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
- return;
- }
- case Intrinsic::stacksave: {
- SDValue Op = getRoot();
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
- setValue(&I, Res);
- DAG.setRoot(Res.getValue(1));
- return;
- }
- case Intrinsic::stackrestore:
- Res = getValue(I.getArgOperand(0));
- DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
- return;
- case Intrinsic::get_dynamic_area_offset: {
- SDValue Op = getRoot();
- EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
- EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
- // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
- // target.
- if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
- report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
- " intrinsic!");
- Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
- Op);
- DAG.setRoot(Op);
- setValue(&I, Res);
- return;
- }
- case Intrinsic::stackguard: {
- MachineFunction &MF = DAG.getMachineFunction();
- const Module &M = *MF.getFunction().getParent();
- SDValue Chain = getRoot();
- if (TLI.useLoadStackGuardNode()) {
- Res = getLoadStackGuard(DAG, sdl, Chain);
- } else {
- EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
- const Value *Global = TLI.getSDagStackGuard(M);
- Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
- Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
- MachinePointerInfo(Global, 0), Align,
- MachineMemOperand::MOVolatile);
- }
- if (TLI.useStackGuardXorFP())
- Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
- DAG.setRoot(Chain);
- setValue(&I, Res);
- return;
- }
- case Intrinsic::stackprotector: {
- // Emit code into the DAG to store the stack guard onto the stack.
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo &MFI = MF.getFrameInfo();
- SDValue Src, Chain = getRoot();
- if (TLI.useLoadStackGuardNode())
- Src = getLoadStackGuard(DAG, sdl, Chain);
- else
- Src = getValue(I.getArgOperand(0)); // The guard's value.
- AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
- int FI = FuncInfo.StaticAllocaMap[Slot];
- MFI.setStackProtectorIndex(FI);
- EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
- SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
- // Store the stack protector onto the stack.
- Res = DAG.getStore(
- Chain, sdl, Src, FIN,
- MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
- MaybeAlign(), MachineMemOperand::MOVolatile);
- setValue(&I, Res);
- DAG.setRoot(Res);
- return;
- }
- case Intrinsic::objectsize:
- llvm_unreachable("llvm.objectsize.* should have been lowered already");
- case Intrinsic::is_constant:
- llvm_unreachable("llvm.is.constant.* should have been lowered already");
- case Intrinsic::annotation:
- case Intrinsic::ptr_annotation:
- case Intrinsic::launder_invariant_group:
- case Intrinsic::strip_invariant_group:
- // Drop the intrinsic, but forward the value
- setValue(&I, getValue(I.getOperand(0)));
- return;
- case Intrinsic::assume:
- case Intrinsic::experimental_noalias_scope_decl:
- case Intrinsic::var_annotation:
- case Intrinsic::sideeffect:
- // Discard annotate attributes, noalias scope declarations, assumptions, and
- // artificial side-effects.
- return;
- case Intrinsic::codeview_annotation: {
- // Emit a label associated with this metadata.
- MachineFunction &MF = DAG.getMachineFunction();
- MCSymbol *Label =
- MF.getMMI().getContext().createTempSymbol("annotation", true);
- Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
- MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
- Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
- DAG.setRoot(Res);
- return;
- }
- case Intrinsic::init_trampoline: {
- const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
- SDValue Ops[6];
- Ops[0] = getRoot();
- Ops[1] = getValue(I.getArgOperand(0));
- Ops[2] = getValue(I.getArgOperand(1));
- Ops[3] = getValue(I.getArgOperand(2));
- Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
- Ops[5] = DAG.getSrcValue(F);
- Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
- DAG.setRoot(Res);
- return;
- }
- case Intrinsic::adjust_trampoline:
- setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
- TLI.getPointerTy(DAG.getDataLayout()),
- getValue(I.getArgOperand(0))));
- return;
- case Intrinsic::gcroot: {
- assert(DAG.getMachineFunction().getFunction().hasGC() &&
- "only valid in functions with gc specified, enforced by Verifier");
- assert(GFI && "implied by previous");
- const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
- const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
- FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
- GFI->addStackRoot(FI->getIndex(), TypeMap);
- return;
- }
- case Intrinsic::gcread:
- case Intrinsic::gcwrite:
- llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
- case Intrinsic::get_rounding:
- Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
- setValue(&I, Res);
- DAG.setRoot(Res.getValue(1));
- return;
- case Intrinsic::expect:
- // Just replace __builtin_expect(exp, c) with EXP.
- setValue(&I, getValue(I.getArgOperand(0)));
- return;
- case Intrinsic::ubsantrap:
- case Intrinsic::debugtrap:
- case Intrinsic::trap: {
- StringRef TrapFuncName =
- I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
- if (TrapFuncName.empty()) {
- switch (Intrinsic) {
- case Intrinsic::trap:
- DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
- break;
- case Intrinsic::debugtrap:
- DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
- break;
- case Intrinsic::ubsantrap:
- DAG.setRoot(DAG.getNode(
- ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
- DAG.getTargetConstant(
- cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
- MVT::i32)));
- break;
- default: llvm_unreachable("unknown trap intrinsic");
- }
- return;
- }
- TargetLowering::ArgListTy Args;
- if (Intrinsic == Intrinsic::ubsantrap) {
- Args.push_back(TargetLoweringBase::ArgListEntry());
- Args[0].Val = I.getArgOperand(0);
- Args[0].Node = getValue(Args[0].Val);
- Args[0].Ty = Args[0].Val->getType();
- }
- TargetLowering::CallLoweringInfo CLI(DAG);
- CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
- CallingConv::C, I.getType(),
- DAG.getExternalSymbol(TrapFuncName.data(),
- TLI.getPointerTy(DAG.getDataLayout())),
- std::move(Args));
- std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
- DAG.setRoot(Result.second);
- return;
- }
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::umul_with_overflow:
- case Intrinsic::smul_with_overflow: {
- ISD::NodeType Op;
- switch (Intrinsic) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
- case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
- case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
- case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
- case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
- case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
- }
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- EVT ResultVT = Op1.getValueType();
- EVT OverflowVT = MVT::i1;
- if (ResultVT.isVector())
- OverflowVT = EVT::getVectorVT(
- *Context, OverflowVT, ResultVT.getVectorElementCount());
- SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
- setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
- return;
- }
- case Intrinsic::prefetch: {
- SDValue Ops[5];
- unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
- auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
- Ops[0] = DAG.getRoot();
- Ops[1] = getValue(I.getArgOperand(0));
- Ops[2] = getValue(I.getArgOperand(1));
- Ops[3] = getValue(I.getArgOperand(2));
- Ops[4] = getValue(I.getArgOperand(3));
- SDValue Result = DAG.getMemIntrinsicNode(
- ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
- EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
- /* align */ std::nullopt, Flags);
- // Chain the prefetch in parallell with any pending loads, to stay out of
- // the way of later optimizations.
- PendingLoads.push_back(Result);
- Result = getRoot();
- DAG.setRoot(Result);
- return;
- }
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end: {
- bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
- // Stack coloring is not enabled in O0, discard region information.
- if (TM.getOptLevel() == CodeGenOpt::None)
- return;
- const int64_t ObjectSize =
- cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
- Value *const ObjectPtr = I.getArgOperand(1);
- SmallVector<const Value *, 4> Allocas;
- getUnderlyingObjects(ObjectPtr, Allocas);
- for (const Value *Alloca : Allocas) {
- const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
- // Could not find an Alloca.
- if (!LifetimeObject)
- continue;
- // First check that the Alloca is static, otherwise it won't have a
- // valid frame index.
- auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
- if (SI == FuncInfo.StaticAllocaMap.end())
- return;
- const int FrameIndex = SI->second;
- int64_t Offset;
- if (GetPointerBaseWithConstantOffset(
- ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
- Offset = -1; // Cannot determine offset from alloca to lifetime object.
- Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
- Offset);
- DAG.setRoot(Res);
- }
- return;
- }
- case Intrinsic::pseudoprobe: {
- auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
- auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
- auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
- Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
- DAG.setRoot(Res);
- return;
- }
- case Intrinsic::invariant_start:
- // Discard region information.
- setValue(&I,
- DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
- return;
- case Intrinsic::invariant_end:
- // Discard region information.
- return;
- case Intrinsic::clear_cache:
- /// FunctionName may be null.
- if (const char *FunctionName = TLI.getClearCacheBuiltinName())
- lowerCallToExternalSymbol(I, FunctionName);
- return;
- case Intrinsic::donothing:
- case Intrinsic::seh_try_begin:
- case Intrinsic::seh_scope_begin:
- case Intrinsic::seh_try_end:
- case Intrinsic::seh_scope_end:
- // ignore
- return;
- case Intrinsic::experimental_stackmap:
- visitStackmap(I);
- return;
- case Intrinsic::experimental_patchpoint_void:
- case Intrinsic::experimental_patchpoint_i64:
- visitPatchpoint(I);
- return;
- case Intrinsic::experimental_gc_statepoint:
- LowerStatepoint(cast<GCStatepointInst>(I));
- return;
- case Intrinsic::experimental_gc_result:
- visitGCResult(cast<GCResultInst>(I));
- return;
- case Intrinsic::experimental_gc_relocate:
- visitGCRelocate(cast<GCRelocateInst>(I));
- return;
- case Intrinsic::instrprof_cover:
- llvm_unreachable("instrprof failed to lower a cover");
- case Intrinsic::instrprof_increment:
- llvm_unreachable("instrprof failed to lower an increment");
- case Intrinsic::instrprof_value_profile:
- llvm_unreachable("instrprof failed to lower a value profiling call");
- case Intrinsic::localescape: {
- MachineFunction &MF = DAG.getMachineFunction();
- const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
- // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
- // is the same on all targets.
- for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
- Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
- if (isa<ConstantPointerNull>(Arg))
- continue; // Skip null pointers. They represent a hole in index space.
- AllocaInst *Slot = cast<AllocaInst>(Arg);
- assert(FuncInfo.StaticAllocaMap.count(Slot) &&
- "can only escape static allocas");
- int FI = FuncInfo.StaticAllocaMap[Slot];
- MCSymbol *FrameAllocSym =
- MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
- GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
- TII->get(TargetOpcode::LOCAL_ESCAPE))
- .addSym(FrameAllocSym)
- .addFrameIndex(FI);
- }
- return;
- }
- case Intrinsic::localrecover: {
- // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
- MachineFunction &MF = DAG.getMachineFunction();
- // Get the symbol that defines the frame offset.
- auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
- auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
- unsigned IdxVal =
- unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
- MCSymbol *FrameAllocSym =
- MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
- GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
- Value *FP = I.getArgOperand(1);
- SDValue FPVal = getValue(FP);
- EVT PtrVT = FPVal.getValueType();
- // Create a MCSymbol for the label to avoid any target lowering
- // that would make this PC relative.
- SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
- SDValue OffsetVal =
- DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
- // Add the offset to the FP.
- SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
- setValue(&I, Add);
- return;
- }
- case Intrinsic::eh_exceptionpointer:
- case Intrinsic::eh_exceptioncode: {
- // Get the exception pointer vreg, copy from it, and resize it to fit.
- const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
- MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
- const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
- unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
- SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
- if (Intrinsic == Intrinsic::eh_exceptioncode)
- N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
- setValue(&I, N);
- return;
- }
- case Intrinsic::xray_customevent: {
- // Here we want to make sure that the intrinsic behaves as if it has a
- // specific calling convention, and only for x86_64.
- // FIXME: Support other platforms later.
- const auto &Triple = DAG.getTarget().getTargetTriple();
- if (Triple.getArch() != Triple::x86_64)
- return;
- SmallVector<SDValue, 8> Ops;
- // We want to say that we always want the arguments in registers.
- SDValue LogEntryVal = getValue(I.getArgOperand(0));
- SDValue StrSizeVal = getValue(I.getArgOperand(1));
- SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
- SDValue Chain = getRoot();
- Ops.push_back(LogEntryVal);
- Ops.push_back(StrSizeVal);
- Ops.push_back(Chain);
- // We need to enforce the calling convention for the callsite, so that
- // argument ordering is enforced correctly, and that register allocation can
- // see that some registers may be assumed clobbered and have to preserve
- // them across calls to the intrinsic.
- MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
- sdl, NodeTys, Ops);
- SDValue patchableNode = SDValue(MN, 0);
- DAG.setRoot(patchableNode);
- setValue(&I, patchableNode);
- return;
- }
- case Intrinsic::xray_typedevent: {
- // Here we want to make sure that the intrinsic behaves as if it has a
- // specific calling convention, and only for x86_64.
- // FIXME: Support other platforms later.
- const auto &Triple = DAG.getTarget().getTargetTriple();
- if (Triple.getArch() != Triple::x86_64)
- return;
- SmallVector<SDValue, 8> Ops;
- // We want to say that we always want the arguments in registers.
- // It's unclear to me how manipulating the selection DAG here forces callers
- // to provide arguments in registers instead of on the stack.
- SDValue LogTypeId = getValue(I.getArgOperand(0));
- SDValue LogEntryVal = getValue(I.getArgOperand(1));
- SDValue StrSizeVal = getValue(I.getArgOperand(2));
- SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
- SDValue Chain = getRoot();
- Ops.push_back(LogTypeId);
- Ops.push_back(LogEntryVal);
- Ops.push_back(StrSizeVal);
- Ops.push_back(Chain);
- // We need to enforce the calling convention for the callsite, so that
- // argument ordering is enforced correctly, and that register allocation can
- // see that some registers may be assumed clobbered and have to preserve
- // them across calls to the intrinsic.
- MachineSDNode *MN = DAG.getMachineNode(
- TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
- SDValue patchableNode = SDValue(MN, 0);
- DAG.setRoot(patchableNode);
- setValue(&I, patchableNode);
- return;
- }
- case Intrinsic::experimental_deoptimize:
- LowerDeoptimizeCall(&I);
- return;
- case Intrinsic::experimental_stepvector:
- visitStepVector(I);
- return;
- case Intrinsic::vector_reduce_fadd:
- case Intrinsic::vector_reduce_fmul:
- case Intrinsic::vector_reduce_add:
- case Intrinsic::vector_reduce_mul:
- case Intrinsic::vector_reduce_and:
- case Intrinsic::vector_reduce_or:
- case Intrinsic::vector_reduce_xor:
- case Intrinsic::vector_reduce_smax:
- case Intrinsic::vector_reduce_smin:
- case Intrinsic::vector_reduce_umax:
- case Intrinsic::vector_reduce_umin:
- case Intrinsic::vector_reduce_fmax:
- case Intrinsic::vector_reduce_fmin:
- visitVectorReduce(I, Intrinsic);
- return;
- case Intrinsic::icall_branch_funnel: {
- SmallVector<SDValue, 16> Ops;
- Ops.push_back(getValue(I.getArgOperand(0)));
- int64_t Offset;
- auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
- I.getArgOperand(1), Offset, DAG.getDataLayout()));
- if (!Base)
- report_fatal_error(
- "llvm.icall.branch.funnel operand must be a GlobalValue");
- Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
- struct BranchFunnelTarget {
- int64_t Offset;
- SDValue Target;
- };
- SmallVector<BranchFunnelTarget, 8> Targets;
- for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
- auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
- I.getArgOperand(Op), Offset, DAG.getDataLayout()));
- if (ElemBase != Base)
- report_fatal_error("all llvm.icall.branch.funnel operands must refer "
- "to the same GlobalValue");
- SDValue Val = getValue(I.getArgOperand(Op + 1));
- auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
- if (!GA)
- report_fatal_error(
- "llvm.icall.branch.funnel operand must be a GlobalValue");
- Targets.push_back({Offset, DAG.getTargetGlobalAddress(
- GA->getGlobal(), sdl, Val.getValueType(),
- GA->getOffset())});
- }
- llvm::sort(Targets,
- [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
- return T1.Offset < T2.Offset;
- });
- for (auto &T : Targets) {
- Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
- Ops.push_back(T.Target);
- }
- Ops.push_back(DAG.getRoot()); // Chain
- SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
- MVT::Other, Ops),
- 0);
- DAG.setRoot(N);
- setValue(&I, N);
- HasTailCall = true;
- return;
- }
- case Intrinsic::wasm_landingpad_index:
- // Information this intrinsic contained has been transferred to
- // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
- // delete it now.
- return;
- case Intrinsic::aarch64_settag:
- case Intrinsic::aarch64_settag_zero: {
- const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
- bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
- SDValue Val = TSI.EmitTargetCodeForSetTag(
- DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
- ZeroMemory);
- DAG.setRoot(Val);
- setValue(&I, Val);
- return;
- }
- case Intrinsic::ptrmask: {
- SDValue Ptr = getValue(I.getOperand(0));
- SDValue Const = getValue(I.getOperand(1));
- EVT PtrVT = Ptr.getValueType();
- setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
- DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
- return;
- }
- case Intrinsic::threadlocal_address: {
- setValue(&I, getValue(I.getOperand(0)));
- return;
- }
- case Intrinsic::get_active_lane_mask: {
- EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- SDValue Index = getValue(I.getOperand(0));
- EVT ElementVT = Index.getValueType();
- if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
- visitTargetIntrinsic(I, Intrinsic);
- return;
- }
- SDValue TripCount = getValue(I.getOperand(1));
- auto VecTy = CCVT.changeVectorElementType(ElementVT);
- SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
- SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
- SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
- SDValue VectorInduction = DAG.getNode(
- ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
- SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
- VectorTripCount, ISD::CondCode::SETULT);
- setValue(&I, SetCC);
- return;
- }
- case Intrinsic::vector_insert: {
- SDValue Vec = getValue(I.getOperand(0));
- SDValue SubVec = getValue(I.getOperand(1));
- SDValue Index = getValue(I.getOperand(2));
- // The intrinsic's index type is i64, but the SDNode requires an index type
- // suitable for the target. Convert the index as required.
- MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
- if (Index.getValueType() != VectorIdxTy)
- Index = DAG.getVectorIdxConstant(
- cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
- EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
- Index));
- return;
- }
- case Intrinsic::vector_extract: {
- SDValue Vec = getValue(I.getOperand(0));
- SDValue Index = getValue(I.getOperand(1));
- EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- // The intrinsic's index type is i64, but the SDNode requires an index type
- // suitable for the target. Convert the index as required.
- MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
- if (Index.getValueType() != VectorIdxTy)
- Index = DAG.getVectorIdxConstant(
- cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
- setValue(&I,
- DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
- return;
- }
- case Intrinsic::experimental_vector_reverse:
- visitVectorReverse(I);
- return;
- case Intrinsic::experimental_vector_splice:
- visitVectorSplice(I);
- return;
- }
- }
- void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
- const ConstrainedFPIntrinsic &FPI) {
- SDLoc sdl = getCurSDLoc();
- // We do not need to serialize constrained FP intrinsics against
- // each other or against (nonvolatile) loads, so they can be
- // chained like loads.
- SDValue Chain = DAG.getRoot();
- SmallVector<SDValue, 4> Opers;
- Opers.push_back(Chain);
- if (FPI.isUnaryOp()) {
- Opers.push_back(getValue(FPI.getArgOperand(0)));
- } else if (FPI.isTernaryOp()) {
- Opers.push_back(getValue(FPI.getArgOperand(0)));
- Opers.push_back(getValue(FPI.getArgOperand(1)));
- Opers.push_back(getValue(FPI.getArgOperand(2)));
- } else {
- Opers.push_back(getValue(FPI.getArgOperand(0)));
- Opers.push_back(getValue(FPI.getArgOperand(1)));
- }
- auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
- assert(Result.getNode()->getNumValues() == 2);
- // Push node to the appropriate list so that future instructions can be
- // chained up correctly.
- SDValue OutChain = Result.getValue(1);
- switch (EB) {
- case fp::ExceptionBehavior::ebIgnore:
- // The only reason why ebIgnore nodes still need to be chained is that
- // they might depend on the current rounding mode, and therefore must
- // not be moved across instruction that may change that mode.
- [[fallthrough]];
- case fp::ExceptionBehavior::ebMayTrap:
- // These must not be moved across calls or instructions that may change
- // floating-point exception masks.
- PendingConstrainedFP.push_back(OutChain);
- break;
- case fp::ExceptionBehavior::ebStrict:
- // These must not be moved across calls or instructions that may change
- // floating-point exception masks or read floating-point exception flags.
- // In addition, they cannot be optimized out even if unused.
- PendingConstrainedFPStrict.push_back(OutChain);
- break;
- }
- };
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
- SDVTList VTs = DAG.getVTList(VT, MVT::Other);
- fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
- SDNodeFlags Flags;
- if (EB == fp::ExceptionBehavior::ebIgnore)
- Flags.setNoFPExcept(true);
- if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
- Flags.copyFMF(*FPOp);
- unsigned Opcode;
- switch (FPI.getIntrinsicID()) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
- case Intrinsic::INTRINSIC: \
- Opcode = ISD::STRICT_##DAGN; \
- break;
- #include "llvm/IR/ConstrainedOps.def"
- case Intrinsic::experimental_constrained_fmuladd: {
- Opcode = ISD::STRICT_FMA;
- // Break fmuladd into fmul and fadd.
- if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
- !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
- Opers.pop_back();
- SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
- pushOutChain(Mul, EB);
- Opcode = ISD::STRICT_FADD;
- Opers.clear();
- Opers.push_back(Mul.getValue(1));
- Opers.push_back(Mul.getValue(0));
- Opers.push_back(getValue(FPI.getArgOperand(2)));
- }
- break;
- }
- }
- // A few strict DAG nodes carry additional operands that are not
- // set up by the default code above.
- switch (Opcode) {
- default: break;
- case ISD::STRICT_FP_ROUND:
- Opers.push_back(
- DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
- break;
- case ISD::STRICT_FSETCC:
- case ISD::STRICT_FSETCCS: {
- auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
- ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
- if (TM.Options.NoNaNsFPMath)
- Condition = getFCmpCodeWithoutNaN(Condition);
- Opers.push_back(DAG.getCondCode(Condition));
- break;
- }
- }
- SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
- pushOutChain(Result, EB);
- SDValue FPResult = Result.getValue(0);
- setValue(&FPI, FPResult);
- }
- static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
- std::optional<unsigned> ResOPC;
- switch (VPIntrin.getIntrinsicID()) {
- case Intrinsic::vp_ctlz: {
- bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne();
- ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
- break;
- }
- case Intrinsic::vp_cttz: {
- bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne();
- ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
- break;
- }
- #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \
- case Intrinsic::VPID: \
- ResOPC = ISD::VPSD; \
- break;
- #include "llvm/IR/VPIntrinsics.def"
- }
- if (!ResOPC)
- llvm_unreachable(
- "Inconsistency: no SDNode available for this VPIntrinsic!");
- if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
- *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
- if (VPIntrin.getFastMathFlags().allowReassoc())
- return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
- : ISD::VP_REDUCE_FMUL;
- }
- return *ResOPC;
- }
- void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT,
- SmallVector<SDValue, 7> &OpValues) {
- SDLoc DL = getCurSDLoc();
- Value *PtrOperand = VPIntrin.getArgOperand(0);
- MaybeAlign Alignment = VPIntrin.getPointerAlignment();
- AAMDNodes AAInfo = VPIntrin.getAAMetadata();
- const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
- SDValue LD;
- bool AddToChain = true;
- // Do not serialize variable-length loads of constant memory with
- // anything.
- if (!Alignment)
- Alignment = DAG.getEVTAlign(VT);
- MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
- AddToChain = !AA || !AA->pointsToConstantMemory(ML);
- SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
- MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
- MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
- MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
- LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
- MMO, false /*IsExpanding */);
- if (AddToChain)
- PendingLoads.push_back(LD.getValue(1));
- setValue(&VPIntrin, LD);
- }
- void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT,
- SmallVector<SDValue, 7> &OpValues) {
- SDLoc DL = getCurSDLoc();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- Value *PtrOperand = VPIntrin.getArgOperand(0);
- MaybeAlign Alignment = VPIntrin.getPointerAlignment();
- AAMDNodes AAInfo = VPIntrin.getAAMetadata();
- const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
- SDValue LD;
- if (!Alignment)
- Alignment = DAG.getEVTAlign(VT.getScalarType());
- unsigned AS =
- PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
- MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
- MachinePointerInfo(AS), MachineMemOperand::MOLoad,
- MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
- SDValue Base, Index, Scale;
- ISD::MemIndexType IndexType;
- bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
- this, VPIntrin.getParent(),
- VT.getScalarStoreSize());
- if (!UniformBase) {
- Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
- Index = getValue(PtrOperand);
- IndexType = ISD::SIGNED_SCALED;
- Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
- }
- EVT IdxVT = Index.getValueType();
- EVT EltTy = IdxVT.getVectorElementType();
- if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
- EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
- Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
- }
- LD = DAG.getGatherVP(
- DAG.getVTList(VT, MVT::Other), VT, DL,
- {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
- IndexType);
- PendingLoads.push_back(LD.getValue(1));
- setValue(&VPIntrin, LD);
- }
- void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin,
- SmallVector<SDValue, 7> &OpValues) {
- SDLoc DL = getCurSDLoc();
- Value *PtrOperand = VPIntrin.getArgOperand(1);
- EVT VT = OpValues[0].getValueType();
- MaybeAlign Alignment = VPIntrin.getPointerAlignment();
- AAMDNodes AAInfo = VPIntrin.getAAMetadata();
- SDValue ST;
- if (!Alignment)
- Alignment = DAG.getEVTAlign(VT);
- SDValue Ptr = OpValues[1];
- SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
- MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
- MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
- MemoryLocation::UnknownSize, *Alignment, AAInfo);
- ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
- OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
- /* IsTruncating */ false, /*IsCompressing*/ false);
- DAG.setRoot(ST);
- setValue(&VPIntrin, ST);
- }
- void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin,
- SmallVector<SDValue, 7> &OpValues) {
- SDLoc DL = getCurSDLoc();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- Value *PtrOperand = VPIntrin.getArgOperand(1);
- EVT VT = OpValues[0].getValueType();
- MaybeAlign Alignment = VPIntrin.getPointerAlignment();
- AAMDNodes AAInfo = VPIntrin.getAAMetadata();
- SDValue ST;
- if (!Alignment)
- Alignment = DAG.getEVTAlign(VT.getScalarType());
- unsigned AS =
- PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
- MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
- MachinePointerInfo(AS), MachineMemOperand::MOStore,
- MemoryLocation::UnknownSize, *Alignment, AAInfo);
- SDValue Base, Index, Scale;
- ISD::MemIndexType IndexType;
- bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
- this, VPIntrin.getParent(),
- VT.getScalarStoreSize());
- if (!UniformBase) {
- Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
- Index = getValue(PtrOperand);
- IndexType = ISD::SIGNED_SCALED;
- Scale =
- DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
- }
- EVT IdxVT = Index.getValueType();
- EVT EltTy = IdxVT.getVectorElementType();
- if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
- EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
- Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
- }
- ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
- {getMemoryRoot(), OpValues[0], Base, Index, Scale,
- OpValues[2], OpValues[3]},
- MMO, IndexType);
- DAG.setRoot(ST);
- setValue(&VPIntrin, ST);
- }
- void SelectionDAGBuilder::visitVPStridedLoad(
- const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
- SDLoc DL = getCurSDLoc();
- Value *PtrOperand = VPIntrin.getArgOperand(0);
- MaybeAlign Alignment = VPIntrin.getPointerAlignment();
- if (!Alignment)
- Alignment = DAG.getEVTAlign(VT.getScalarType());
- AAMDNodes AAInfo = VPIntrin.getAAMetadata();
- const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
- MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
- bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
- SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
- MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
- MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
- MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
- SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
- OpValues[2], OpValues[3], MMO,
- false /*IsExpanding*/);
- if (AddToChain)
- PendingLoads.push_back(LD.getValue(1));
- setValue(&VPIntrin, LD);
- }
- void SelectionDAGBuilder::visitVPStridedStore(
- const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
- SDLoc DL = getCurSDLoc();
- Value *PtrOperand = VPIntrin.getArgOperand(1);
- EVT VT = OpValues[0].getValueType();
- MaybeAlign Alignment = VPIntrin.getPointerAlignment();
- if (!Alignment)
- Alignment = DAG.getEVTAlign(VT.getScalarType());
- AAMDNodes AAInfo = VPIntrin.getAAMetadata();
- MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
- MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
- MemoryLocation::UnknownSize, *Alignment, AAInfo);
- SDValue ST = DAG.getStridedStoreVP(
- getMemoryRoot(), DL, OpValues[0], OpValues[1],
- DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
- OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
- /*IsCompressing*/ false);
- DAG.setRoot(ST);
- setValue(&VPIntrin, ST);
- }
- void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDLoc DL = getCurSDLoc();
- ISD::CondCode Condition;
- CmpInst::Predicate CondCode = VPIntrin.getPredicate();
- bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
- if (IsFP) {
- // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
- // flags, but calls that don't return floating-point types can't be
- // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
- Condition = getFCmpCondCode(CondCode);
- if (TM.Options.NoNaNsFPMath)
- Condition = getFCmpCodeWithoutNaN(Condition);
- } else {
- Condition = getICmpCondCode(CondCode);
- }
- SDValue Op1 = getValue(VPIntrin.getOperand(0));
- SDValue Op2 = getValue(VPIntrin.getOperand(1));
- // #2 is the condition code
- SDValue MaskOp = getValue(VPIntrin.getOperand(3));
- SDValue EVL = getValue(VPIntrin.getOperand(4));
- MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
- assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
- "Unexpected target EVL type");
- EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- VPIntrin.getType());
- setValue(&VPIntrin,
- DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
- }
- void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
- const VPIntrinsic &VPIntrin) {
- SDLoc DL = getCurSDLoc();
- unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
- auto IID = VPIntrin.getIntrinsicID();
- if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
- return visitVPCmp(*CmpI);
- SmallVector<EVT, 4> ValueVTs;
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
- SDVTList VTs = DAG.getVTList(ValueVTs);
- auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
- MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
- assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
- "Unexpected target EVL type");
- // Request operands.
- SmallVector<SDValue, 7> OpValues;
- for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
- auto Op = getValue(VPIntrin.getArgOperand(I));
- if (I == EVLParamPos)
- Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
- OpValues.push_back(Op);
- }
- switch (Opcode) {
- default: {
- SDNodeFlags SDFlags;
- if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
- SDFlags.copyFMF(*FPMO);
- SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
- setValue(&VPIntrin, Result);
- break;
- }
- case ISD::VP_LOAD:
- visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
- break;
- case ISD::VP_GATHER:
- visitVPGather(VPIntrin, ValueVTs[0], OpValues);
- break;
- case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
- visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
- break;
- case ISD::VP_STORE:
- visitVPStore(VPIntrin, OpValues);
- break;
- case ISD::VP_SCATTER:
- visitVPScatter(VPIntrin, OpValues);
- break;
- case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
- visitVPStridedStore(VPIntrin, OpValues);
- break;
- case ISD::VP_FMULADD: {
- assert(OpValues.size() == 5 && "Unexpected number of operands");
- SDNodeFlags SDFlags;
- if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
- SDFlags.copyFMF(*FPMO);
- if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
- TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
- setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
- } else {
- SDValue Mul = DAG.getNode(
- ISD::VP_FMUL, DL, VTs,
- {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
- SDValue Add =
- DAG.getNode(ISD::VP_FADD, DL, VTs,
- {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
- setValue(&VPIntrin, Add);
- }
- break;
- }
- case ISD::VP_INTTOPTR: {
- SDValue N = OpValues[0];
- EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
- EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
- N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
- OpValues[2]);
- N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
- OpValues[2]);
- setValue(&VPIntrin, N);
- break;
- }
- case ISD::VP_PTRTOINT: {
- SDValue N = OpValues[0];
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- VPIntrin.getType());
- EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
- VPIntrin.getOperand(0)->getType());
- N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
- OpValues[2]);
- N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
- OpValues[2]);
- setValue(&VPIntrin, N);
- break;
- }
- case ISD::VP_ABS:
- case ISD::VP_CTLZ:
- case ISD::VP_CTLZ_ZERO_UNDEF:
- case ISD::VP_CTTZ:
- case ISD::VP_CTTZ_ZERO_UNDEF: {
- // Pop is_zero_poison operand for cp.ctlz/cttz or
- // is_int_min_poison operand for vp.abs.
- OpValues.pop_back();
- SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
- setValue(&VPIntrin, Result);
- break;
- }
- }
- }
- SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
- const BasicBlock *EHPadBB,
- MCSymbol *&BeginLabel) {
- MachineFunction &MF = DAG.getMachineFunction();
- MachineModuleInfo &MMI = MF.getMMI();
- // Insert a label before the invoke call to mark the try range. This can be
- // used to detect deletion of the invoke via the MachineModuleInfo.
- BeginLabel = MMI.getContext().createTempSymbol();
- // For SjLj, keep track of which landing pads go with which invokes
- // so as to maintain the ordering of pads in the LSDA.
- unsigned CallSiteIndex = MMI.getCurrentCallSite();
- if (CallSiteIndex) {
- MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
- LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
- // Now that the call site is handled, stop tracking it.
- MMI.setCurrentCallSite(0);
- }
- return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
- }
- SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
- const BasicBlock *EHPadBB,
- MCSymbol *BeginLabel) {
- assert(BeginLabel && "BeginLabel should've been set");
- MachineFunction &MF = DAG.getMachineFunction();
- MachineModuleInfo &MMI = MF.getMMI();
- // Insert a label at the end of the invoke call to mark the try range. This
- // can be used to detect deletion of the invoke via the MachineModuleInfo.
- MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
- Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
- // Inform MachineModuleInfo of range.
- auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
- // There is a platform (e.g. wasm) that uses funclet style IR but does not
- // actually use outlined funclets and their LSDA info style.
- if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
- assert(II && "II should've been set");
- WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
- EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
- } else if (!isScopedEHPersonality(Pers)) {
- assert(EHPadBB);
- MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
- }
- return Chain;
- }
- std::pair<SDValue, SDValue>
- SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
- const BasicBlock *EHPadBB) {
- MCSymbol *BeginLabel = nullptr;
- if (EHPadBB) {
- // Both PendingLoads and PendingExports must be flushed here;
- // this call might not return.
- (void)getRoot();
- DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
- CLI.setChain(getRoot());
- }
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
- assert((CLI.IsTailCall || Result.second.getNode()) &&
- "Non-null chain expected with non-tail call!");
- assert((Result.second.getNode() || !Result.first.getNode()) &&
- "Null value expected with tail call!");
- if (!Result.second.getNode()) {
- // As a special case, a null chain means that a tail call has been emitted
- // and the DAG root is already updated.
- HasTailCall = true;
- // Since there's no actual continuation from this block, nothing can be
- // relying on us setting vregs for them.
- PendingExports.clear();
- } else {
- DAG.setRoot(Result.second);
- }
- if (EHPadBB) {
- DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
- BeginLabel));
- }
- return Result;
- }
- void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
- bool isTailCall,
- bool isMustTailCall,
- const BasicBlock *EHPadBB) {
- auto &DL = DAG.getDataLayout();
- FunctionType *FTy = CB.getFunctionType();
- Type *RetTy = CB.getType();
- TargetLowering::ArgListTy Args;
- Args.reserve(CB.arg_size());
- const Value *SwiftErrorVal = nullptr;
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (isTailCall) {
- // Avoid emitting tail calls in functions with the disable-tail-calls
- // attribute.
- auto *Caller = CB.getParent()->getParent();
- if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
- "true" && !isMustTailCall)
- isTailCall = false;
- // We can't tail call inside a function with a swifterror argument. Lowering
- // does not support this yet. It would have to move into the swifterror
- // register before the call.
- if (TLI.supportSwiftError() &&
- Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
- isTailCall = false;
- }
- for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
- TargetLowering::ArgListEntry Entry;
- const Value *V = *I;
- // Skip empty types
- if (V->getType()->isEmptyTy())
- continue;
- SDValue ArgNode = getValue(V);
- Entry.Node = ArgNode; Entry.Ty = V->getType();
- Entry.setAttributes(&CB, I - CB.arg_begin());
- // Use swifterror virtual register as input to the call.
- if (Entry.IsSwiftError && TLI.supportSwiftError()) {
- SwiftErrorVal = V;
- // We find the virtual register for the actual swifterror argument.
- // Instead of using the Value, we use the virtual register instead.
- Entry.Node =
- DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
- EVT(TLI.getPointerTy(DL)));
- }
- Args.push_back(Entry);
- // If we have an explicit sret argument that is an Instruction, (i.e., it
- // might point to function-local memory), we can't meaningfully tail-call.
- if (Entry.IsSRet && isa<Instruction>(V))
- isTailCall = false;
- }
- // If call site has a cfguardtarget operand bundle, create and add an
- // additional ArgListEntry.
- if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
- TargetLowering::ArgListEntry Entry;
- Value *V = Bundle->Inputs[0];
- SDValue ArgNode = getValue(V);
- Entry.Node = ArgNode;
- Entry.Ty = V->getType();
- Entry.IsCFGuardTarget = true;
- Args.push_back(Entry);
- }
- // Check if target-independent constraints permit a tail call here.
- // Target-dependent constraints are checked within TLI->LowerCallTo.
- if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
- isTailCall = false;
- // Disable tail calls if there is an swifterror argument. Targets have not
- // been updated to support tail calls.
- if (TLI.supportSwiftError() && SwiftErrorVal)
- isTailCall = false;
- ConstantInt *CFIType = nullptr;
- if (CB.isIndirectCall()) {
- if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
- if (!TLI.supportKCFIBundles())
- report_fatal_error(
- "Target doesn't support calls with kcfi operand bundles.");
- CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
- assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
- }
- }
- TargetLowering::CallLoweringInfo CLI(DAG);
- CLI.setDebugLoc(getCurSDLoc())
- .setChain(getRoot())
- .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
- .setTailCall(isTailCall)
- .setConvergent(CB.isConvergent())
- .setIsPreallocated(
- CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
- .setCFIType(CFIType);
- std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
- if (Result.first.getNode()) {
- Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
- setValue(&CB, Result.first);
- }
- // The last element of CLI.InVals has the SDValue for swifterror return.
- // Here we copy it to a virtual register and update SwiftErrorMap for
- // book-keeping.
- if (SwiftErrorVal && TLI.supportSwiftError()) {
- // Get the last element of InVals.
- SDValue Src = CLI.InVals.back();
- Register VReg =
- SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
- SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
- DAG.setRoot(CopyNode);
- }
- }
- static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
- SelectionDAGBuilder &Builder) {
- // Check to see if this load can be trivially constant folded, e.g. if the
- // input is from a string literal.
- if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
- // Cast pointer to the type we really want to load.
- Type *LoadTy =
- Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
- if (LoadVT.isVector())
- LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
- LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
- PointerType::getUnqual(LoadTy));
- if (const Constant *LoadCst =
- ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
- LoadTy, Builder.DAG.getDataLayout()))
- return Builder.getValue(LoadCst);
- }
- // Otherwise, we have to emit the load. If the pointer is to unfoldable but
- // still constant memory, the input chain can be the entry node.
- SDValue Root;
- bool ConstantMemory = false;
- // Do not serialize (non-volatile) loads of constant memory with anything.
- if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
- Root = Builder.DAG.getEntryNode();
- ConstantMemory = true;
- } else {
- // Do not serialize non-volatile loads against each other.
- Root = Builder.DAG.getRoot();
- }
- SDValue Ptr = Builder.getValue(PtrVal);
- SDValue LoadVal =
- Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
- MachinePointerInfo(PtrVal), Align(1));
- if (!ConstantMemory)
- Builder.PendingLoads.push_back(LoadVal.getValue(1));
- return LoadVal;
- }
- /// Record the value for an instruction that produces an integer result,
- /// converting the type where necessary.
- void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
- SDValue Value,
- bool IsSigned) {
- EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType(), true);
- if (IsSigned)
- Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
- else
- Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
- setValue(&I, Value);
- }
- /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
- /// true and lower it. Otherwise return false, and it will be lowered like a
- /// normal call.
- /// The caller already checked that \p I calls the appropriate LibFunc with a
- /// correct prototype.
- bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
- const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
- const Value *Size = I.getArgOperand(2);
- const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
- if (CSize && CSize->getZExtValue() == 0) {
- EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType(), true);
- setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
- return true;
- }
- const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
- std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
- DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
- getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
- if (Res.first.getNode()) {
- processIntegerCallValue(I, Res.first, true);
- PendingLoads.push_back(Res.second);
- return true;
- }
- // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
- // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
- if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
- return false;
- // If the target has a fast compare for the given size, it will return a
- // preferred load type for that size. Require that the load VT is legal and
- // that the target supports unaligned loads of that type. Otherwise, return
- // INVALID.
- auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- MVT LVT = TLI.hasFastEqualityCompare(NumBits);
- if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
- // TODO: Handle 5 byte compare as 4-byte + 1 byte.
- // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
- // TODO: Check alignment of src and dest ptrs.
- unsigned DstAS = LHS->getType()->getPointerAddressSpace();
- unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
- if (!TLI.isTypeLegal(LVT) ||
- !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
- !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
- LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
- }
- return LVT;
- };
- // This turns into unaligned loads. We only do this if the target natively
- // supports the MVT we'll be loading or if it is small enough (<= 4) that
- // we'll only produce a small number of byte loads.
- MVT LoadVT;
- unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
- switch (NumBitsToCompare) {
- default:
- return false;
- case 16:
- LoadVT = MVT::i16;
- break;
- case 32:
- LoadVT = MVT::i32;
- break;
- case 64:
- case 128:
- case 256:
- LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
- break;
- }
- if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
- return false;
- SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
- SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
- // Bitcast to a wide integer type if the loads are vectors.
- if (LoadVT.isVector()) {
- EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
- LoadL = DAG.getBitcast(CmpVT, LoadL);
- LoadR = DAG.getBitcast(CmpVT, LoadR);
- }
- SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
- processIntegerCallValue(I, Cmp, false);
- return true;
- }
- /// See if we can lower a memchr call into an optimized form. If so, return
- /// true and lower it. Otherwise return false, and it will be lowered like a
- /// normal call.
- /// The caller already checked that \p I calls the appropriate LibFunc with a
- /// correct prototype.
- bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
- const Value *Src = I.getArgOperand(0);
- const Value *Char = I.getArgOperand(1);
- const Value *Length = I.getArgOperand(2);
- const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
- std::pair<SDValue, SDValue> Res =
- TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
- getValue(Src), getValue(Char), getValue(Length),
- MachinePointerInfo(Src));
- if (Res.first.getNode()) {
- setValue(&I, Res.first);
- PendingLoads.push_back(Res.second);
- return true;
- }
- return false;
- }
- /// See if we can lower a mempcpy call into an optimized form. If so, return
- /// true and lower it. Otherwise return false, and it will be lowered like a
- /// normal call.
- /// The caller already checked that \p I calls the appropriate LibFunc with a
- /// correct prototype.
- bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
- SDValue Dst = getValue(I.getArgOperand(0));
- SDValue Src = getValue(I.getArgOperand(1));
- SDValue Size = getValue(I.getArgOperand(2));
- Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
- Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
- // DAG::getMemcpy needs Alignment to be defined.
- Align Alignment = std::min(DstAlign, SrcAlign);
- bool isVol = false;
- SDLoc sdl = getCurSDLoc();
- // In the mempcpy context we need to pass in a false value for isTailCall
- // because the return pointer needs to be adjusted by the size of
- // the copied memory.
- SDValue Root = isVol ? getRoot() : getMemoryRoot();
- SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
- /*isTailCall=*/false,
- MachinePointerInfo(I.getArgOperand(0)),
- MachinePointerInfo(I.getArgOperand(1)),
- I.getAAMetadata());
- assert(MC.getNode() != nullptr &&
- "** memcpy should not be lowered as TailCall in mempcpy context **");
- DAG.setRoot(MC);
- // Check if Size needs to be truncated or extended.
- Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
- // Adjust return pointer to point just past the last dst byte.
- SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
- Dst, Size);
- setValue(&I, DstPlusSize);
- return true;
- }
- /// See if we can lower a strcpy call into an optimized form. If so, return
- /// true and lower it, otherwise return false and it will be lowered like a
- /// normal call.
- /// The caller already checked that \p I calls the appropriate LibFunc with a
- /// correct prototype.
- bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
- const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
- const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
- std::pair<SDValue, SDValue> Res =
- TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
- getValue(Arg0), getValue(Arg1),
- MachinePointerInfo(Arg0),
- MachinePointerInfo(Arg1), isStpcpy);
- if (Res.first.getNode()) {
- setValue(&I, Res.first);
- DAG.setRoot(Res.second);
- return true;
- }
- return false;
- }
- /// See if we can lower a strcmp call into an optimized form. If so, return
- /// true and lower it, otherwise return false and it will be lowered like a
- /// normal call.
- /// The caller already checked that \p I calls the appropriate LibFunc with a
- /// correct prototype.
- bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
- const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
- const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
- std::pair<SDValue, SDValue> Res =
- TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
- getValue(Arg0), getValue(Arg1),
- MachinePointerInfo(Arg0),
- MachinePointerInfo(Arg1));
- if (Res.first.getNode()) {
- processIntegerCallValue(I, Res.first, true);
- PendingLoads.push_back(Res.second);
- return true;
- }
- return false;
- }
- /// See if we can lower a strlen call into an optimized form. If so, return
- /// true and lower it, otherwise return false and it will be lowered like a
- /// normal call.
- /// The caller already checked that \p I calls the appropriate LibFunc with a
- /// correct prototype.
- bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
- const Value *Arg0 = I.getArgOperand(0);
- const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
- std::pair<SDValue, SDValue> Res =
- TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
- getValue(Arg0), MachinePointerInfo(Arg0));
- if (Res.first.getNode()) {
- processIntegerCallValue(I, Res.first, false);
- PendingLoads.push_back(Res.second);
- return true;
- }
- return false;
- }
- /// See if we can lower a strnlen call into an optimized form. If so, return
- /// true and lower it, otherwise return false and it will be lowered like a
- /// normal call.
- /// The caller already checked that \p I calls the appropriate LibFunc with a
- /// correct prototype.
- bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
- const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
- const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
- std::pair<SDValue, SDValue> Res =
- TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
- getValue(Arg0), getValue(Arg1),
- MachinePointerInfo(Arg0));
- if (Res.first.getNode()) {
- processIntegerCallValue(I, Res.first, false);
- PendingLoads.push_back(Res.second);
- return true;
- }
- return false;
- }
- /// See if we can lower a unary floating-point operation into an SDNode with
- /// the specified Opcode. If so, return true and lower it, otherwise return
- /// false and it will be lowered like a normal call.
- /// The caller already checked that \p I calls the appropriate LibFunc with a
- /// correct prototype.
- bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
- unsigned Opcode) {
- // We already checked this call's prototype; verify it doesn't modify errno.
- if (!I.onlyReadsMemory())
- return false;
- SDNodeFlags Flags;
- Flags.copyFMF(cast<FPMathOperator>(I));
- SDValue Tmp = getValue(I.getArgOperand(0));
- setValue(&I,
- DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
- return true;
- }
- /// See if we can lower a binary floating-point operation into an SDNode with
- /// the specified Opcode. If so, return true and lower it. Otherwise return
- /// false, and it will be lowered like a normal call.
- /// The caller already checked that \p I calls the appropriate LibFunc with a
- /// correct prototype.
- bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
- unsigned Opcode) {
- // We already checked this call's prototype; verify it doesn't modify errno.
- if (!I.onlyReadsMemory())
- return false;
- SDNodeFlags Flags;
- Flags.copyFMF(cast<FPMathOperator>(I));
- SDValue Tmp0 = getValue(I.getArgOperand(0));
- SDValue Tmp1 = getValue(I.getArgOperand(1));
- EVT VT = Tmp0.getValueType();
- setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
- return true;
- }
- void SelectionDAGBuilder::visitCall(const CallInst &I) {
- // Handle inline assembly differently.
- if (I.isInlineAsm()) {
- visitInlineAsm(I);
- return;
- }
- diagnoseDontCall(I);
- if (Function *F = I.getCalledFunction()) {
- if (F->isDeclaration()) {
- // Is this an LLVM intrinsic or a target-specific intrinsic?
- unsigned IID = F->getIntrinsicID();
- if (!IID)
- if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
- IID = II->getIntrinsicID(F);
- if (IID) {
- visitIntrinsicCall(I, IID);
- return;
- }
- }
- // Check for well-known libc/libm calls. If the function is internal, it
- // can't be a library call. Don't do the check if marked as nobuiltin for
- // some reason or the call site requires strict floating point semantics.
- LibFunc Func;
- if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
- F->hasName() && LibInfo->getLibFunc(*F, Func) &&
- LibInfo->hasOptimizedCodeGen(Func)) {
- switch (Func) {
- default: break;
- case LibFunc_bcmp:
- if (visitMemCmpBCmpCall(I))
- return;
- break;
- case LibFunc_copysign:
- case LibFunc_copysignf:
- case LibFunc_copysignl:
- // We already checked this call's prototype; verify it doesn't modify
- // errno.
- if (I.onlyReadsMemory()) {
- SDValue LHS = getValue(I.getArgOperand(0));
- SDValue RHS = getValue(I.getArgOperand(1));
- setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
- LHS.getValueType(), LHS, RHS));
- return;
- }
- break;
- case LibFunc_fabs:
- case LibFunc_fabsf:
- case LibFunc_fabsl:
- if (visitUnaryFloatCall(I, ISD::FABS))
- return;
- break;
- case LibFunc_fmin:
- case LibFunc_fminf:
- case LibFunc_fminl:
- if (visitBinaryFloatCall(I, ISD::FMINNUM))
- return;
- break;
- case LibFunc_fmax:
- case LibFunc_fmaxf:
- case LibFunc_fmaxl:
- if (visitBinaryFloatCall(I, ISD::FMAXNUM))
- return;
- break;
- case LibFunc_sin:
- case LibFunc_sinf:
- case LibFunc_sinl:
- if (visitUnaryFloatCall(I, ISD::FSIN))
- return;
- break;
- case LibFunc_cos:
- case LibFunc_cosf:
- case LibFunc_cosl:
- if (visitUnaryFloatCall(I, ISD::FCOS))
- return;
- break;
- case LibFunc_sqrt:
- case LibFunc_sqrtf:
- case LibFunc_sqrtl:
- case LibFunc_sqrt_finite:
- case LibFunc_sqrtf_finite:
- case LibFunc_sqrtl_finite:
- if (visitUnaryFloatCall(I, ISD::FSQRT))
- return;
- break;
- case LibFunc_floor:
- case LibFunc_floorf:
- case LibFunc_floorl:
- if (visitUnaryFloatCall(I, ISD::FFLOOR))
- return;
- break;
- case LibFunc_nearbyint:
- case LibFunc_nearbyintf:
- case LibFunc_nearbyintl:
- if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
- return;
- break;
- case LibFunc_ceil:
- case LibFunc_ceilf:
- case LibFunc_ceill:
- if (visitUnaryFloatCall(I, ISD::FCEIL))
- return;
- break;
- case LibFunc_rint:
- case LibFunc_rintf:
- case LibFunc_rintl:
- if (visitUnaryFloatCall(I, ISD::FRINT))
- return;
- break;
- case LibFunc_round:
- case LibFunc_roundf:
- case LibFunc_roundl:
- if (visitUnaryFloatCall(I, ISD::FROUND))
- return;
- break;
- case LibFunc_trunc:
- case LibFunc_truncf:
- case LibFunc_truncl:
- if (visitUnaryFloatCall(I, ISD::FTRUNC))
- return;
- break;
- case LibFunc_log2:
- case LibFunc_log2f:
- case LibFunc_log2l:
- if (visitUnaryFloatCall(I, ISD::FLOG2))
- return;
- break;
- case LibFunc_exp2:
- case LibFunc_exp2f:
- case LibFunc_exp2l:
- if (visitUnaryFloatCall(I, ISD::FEXP2))
- return;
- break;
- case LibFunc_memcmp:
- if (visitMemCmpBCmpCall(I))
- return;
- break;
- case LibFunc_mempcpy:
- if (visitMemPCpyCall(I))
- return;
- break;
- case LibFunc_memchr:
- if (visitMemChrCall(I))
- return;
- break;
- case LibFunc_strcpy:
- if (visitStrCpyCall(I, false))
- return;
- break;
- case LibFunc_stpcpy:
- if (visitStrCpyCall(I, true))
- return;
- break;
- case LibFunc_strcmp:
- if (visitStrCmpCall(I))
- return;
- break;
- case LibFunc_strlen:
- if (visitStrLenCall(I))
- return;
- break;
- case LibFunc_strnlen:
- if (visitStrNLenCall(I))
- return;
- break;
- }
- }
- }
- // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
- // have to do anything here to lower funclet bundles.
- // CFGuardTarget bundles are lowered in LowerCallTo.
- assert(!I.hasOperandBundlesOtherThan(
- {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
- LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
- LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
- "Cannot lower calls with arbitrary operand bundles!");
- SDValue Callee = getValue(I.getCalledOperand());
- if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
- LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
- else
- // Check if we can potentially perform a tail call. More detailed checking
- // is be done within LowerCallTo, after more information about the call is
- // known.
- LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
- }
- namespace {
- /// AsmOperandInfo - This contains information for each constraint that we are
- /// lowering.
- class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
- public:
- /// CallOperand - If this is the result output operand or a clobber
- /// this is null, otherwise it is the incoming operand to the CallInst.
- /// This gets modified as the asm is processed.
- SDValue CallOperand;
- /// AssignedRegs - If this is a register or register class operand, this
- /// contains the set of register corresponding to the operand.
- RegsForValue AssignedRegs;
- explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
- : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
- }
- /// Whether or not this operand accesses memory
- bool hasMemory(const TargetLowering &TLI) const {
- // Indirect operand accesses access memory.
- if (isIndirect)
- return true;
- for (const auto &Code : Codes)
- if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
- return true;
- return false;
- }
- };
- } // end anonymous namespace
- /// Make sure that the output operand \p OpInfo and its corresponding input
- /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
- /// out).
- static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
- SDISelAsmOperandInfo &MatchingOpInfo,
- SelectionDAG &DAG) {
- if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
- return;
- const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
- const auto &TLI = DAG.getTargetLoweringInfo();
- std::pair<unsigned, const TargetRegisterClass *> MatchRC =
- TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
- std::pair<unsigned, const TargetRegisterClass *> InputRC =
- TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
- MatchingOpInfo.ConstraintVT);
- if ((OpInfo.ConstraintVT.isInteger() !=
- MatchingOpInfo.ConstraintVT.isInteger()) ||
- (MatchRC.second != InputRC.second)) {
- // FIXME: error out in a more elegant fashion
- report_fatal_error("Unsupported asm: input constraint"
- " with a matching output constraint of"
- " incompatible type!");
- }
- MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
- }
- /// Get a direct memory input to behave well as an indirect operand.
- /// This may introduce stores, hence the need for a \p Chain.
- /// \return The (possibly updated) chain.
- static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
- SDISelAsmOperandInfo &OpInfo,
- SelectionDAG &DAG) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // If we don't have an indirect input, put it in the constpool if we can,
- // otherwise spill it to a stack slot.
- // TODO: This isn't quite right. We need to handle these according to
- // the addressing mode that the constraint wants. Also, this may take
- // an additional register for the computation and we don't want that
- // either.
- // If the operand is a float, integer, or vector constant, spill to a
- // constant pool entry to get its address.
- const Value *OpVal = OpInfo.CallOperandVal;
- if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
- isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
- OpInfo.CallOperand = DAG.getConstantPool(
- cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
- return Chain;
- }
- // Otherwise, create a stack slot and emit a store to it before the asm.
- Type *Ty = OpVal->getType();
- auto &DL = DAG.getDataLayout();
- uint64_t TySize = DL.getTypeAllocSize(Ty);
- MachineFunction &MF = DAG.getMachineFunction();
- int SSFI = MF.getFrameInfo().CreateStackObject(
- TySize, DL.getPrefTypeAlign(Ty), false);
- SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
- Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
- MachinePointerInfo::getFixedStack(MF, SSFI),
- TLI.getMemValueType(DL, Ty));
- OpInfo.CallOperand = StackSlot;
- return Chain;
- }
- /// GetRegistersForValue - Assign registers (virtual or physical) for the
- /// specified operand. We prefer to assign virtual registers, to allow the
- /// register allocator to handle the assignment process. However, if the asm
- /// uses features that we can't model on machineinstrs, we have SDISel do the
- /// allocation. This produces generally horrible, but correct, code.
- ///
- /// OpInfo describes the operand
- /// RefOpInfo describes the matching operand if any, the operand otherwise
- static std::optional<unsigned>
- getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
- SDISelAsmOperandInfo &OpInfo,
- SDISelAsmOperandInfo &RefOpInfo) {
- LLVMContext &Context = *DAG.getContext();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- MachineFunction &MF = DAG.getMachineFunction();
- SmallVector<unsigned, 4> Regs;
- const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
- // No work to do for memory/address operands.
- if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
- OpInfo.ConstraintType == TargetLowering::C_Address)
- return std::nullopt;
- // If this is a constraint for a single physreg, or a constraint for a
- // register class, find it.
- unsigned AssignedReg;
- const TargetRegisterClass *RC;
- std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
- &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
- // RC is unset only on failure. Return immediately.
- if (!RC)
- return std::nullopt;
- // Get the actual register value type. This is important, because the user
- // may have asked for (e.g.) the AX register in i32 type. We need to
- // remember that AX is actually i16 to get the right extension.
- const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
- if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
- // If this is an FP operand in an integer register (or visa versa), or more
- // generally if the operand value disagrees with the register class we plan
- // to stick it in, fix the operand type.
- //
- // If this is an input value, the bitcast to the new type is done now.
- // Bitcast for output value is done at the end of visitInlineAsm().
- if ((OpInfo.Type == InlineAsm::isOutput ||
- OpInfo.Type == InlineAsm::isInput) &&
- !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
- // Try to convert to the first EVT that the reg class contains. If the
- // types are identical size, use a bitcast to convert (e.g. two differing
- // vector types). Note: output bitcast is done at the end of
- // visitInlineAsm().
- if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
- // Exclude indirect inputs while they are unsupported because the code
- // to perform the load is missing and thus OpInfo.CallOperand still
- // refers to the input address rather than the pointed-to value.
- if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
- OpInfo.CallOperand =
- DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
- OpInfo.ConstraintVT = RegVT;
- // If the operand is an FP value and we want it in integer registers,
- // use the corresponding integer type. This turns an f64 value into
- // i64, which can be passed with two i32 values on a 32-bit machine.
- } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
- MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
- if (OpInfo.Type == InlineAsm::isInput)
- OpInfo.CallOperand =
- DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
- OpInfo.ConstraintVT = VT;
- }
- }
- }
- // No need to allocate a matching input constraint since the constraint it's
- // matching to has already been allocated.
- if (OpInfo.isMatchingInputConstraint())
- return std::nullopt;
- EVT ValueVT = OpInfo.ConstraintVT;
- if (OpInfo.ConstraintVT == MVT::Other)
- ValueVT = RegVT;
- // Initialize NumRegs.
- unsigned NumRegs = 1;
- if (OpInfo.ConstraintVT != MVT::Other)
- NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
- // If this is a constraint for a specific physical register, like {r17},
- // assign it now.
- // If this associated to a specific register, initialize iterator to correct
- // place. If virtual, make sure we have enough registers
- // Initialize iterator if necessary
- TargetRegisterClass::iterator I = RC->begin();
- MachineRegisterInfo &RegInfo = MF.getRegInfo();
- // Do not check for single registers.
- if (AssignedReg) {
- I = std::find(I, RC->end(), AssignedReg);
- if (I == RC->end()) {
- // RC does not contain the selected register, which indicates a
- // mismatch between the register and the required type/bitwidth.
- return {AssignedReg};
- }
- }
- for (; NumRegs; --NumRegs, ++I) {
- assert(I != RC->end() && "Ran out of registers to allocate!");
- Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
- Regs.push_back(R);
- }
- OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
- return std::nullopt;
- }
- static unsigned
- findMatchingInlineAsmOperand(unsigned OperandNo,
- const std::vector<SDValue> &AsmNodeOperands) {
- // Scan until we find the definition we already emitted of this operand.
- unsigned CurOp = InlineAsm::Op_FirstOperand;
- for (; OperandNo; --OperandNo) {
- // Advance to the next operand.
- unsigned OpFlag =
- cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
- assert((InlineAsm::isRegDefKind(OpFlag) ||
- InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
- InlineAsm::isMemKind(OpFlag)) &&
- "Skipped past definitions?");
- CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
- }
- return CurOp;
- }
- namespace {
- class ExtraFlags {
- unsigned Flags = 0;
- public:
- explicit ExtraFlags(const CallBase &Call) {
- const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
- if (IA->hasSideEffects())
- Flags |= InlineAsm::Extra_HasSideEffects;
- if (IA->isAlignStack())
- Flags |= InlineAsm::Extra_IsAlignStack;
- if (Call.isConvergent())
- Flags |= InlineAsm::Extra_IsConvergent;
- Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
- }
- void update(const TargetLowering::AsmOperandInfo &OpInfo) {
- // Ideally, we would only check against memory constraints. However, the
- // meaning of an Other constraint can be target-specific and we can't easily
- // reason about it. Therefore, be conservative and set MayLoad/MayStore
- // for Other constraints as well.
- if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
- OpInfo.ConstraintType == TargetLowering::C_Other) {
- if (OpInfo.Type == InlineAsm::isInput)
- Flags |= InlineAsm::Extra_MayLoad;
- else if (OpInfo.Type == InlineAsm::isOutput)
- Flags |= InlineAsm::Extra_MayStore;
- else if (OpInfo.Type == InlineAsm::isClobber)
- Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
- }
- }
- unsigned get() const { return Flags; }
- };
- } // end anonymous namespace
- static bool isFunction(SDValue Op) {
- if (Op && Op.getOpcode() == ISD::GlobalAddress) {
- if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
- auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
- // In normal "call dllimport func" instruction (non-inlineasm) it force
- // indirect access by specifing call opcode. And usually specially print
- // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
- // not do in this way now. (In fact, this is similar with "Data Access"
- // action). So here we ignore dllimport function.
- if (Fn && !Fn->hasDLLImportStorageClass())
- return true;
- }
- }
- return false;
- }
- /// visitInlineAsm - Handle a call to an InlineAsm object.
- void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
- const BasicBlock *EHPadBB) {
- const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
- /// ConstraintOperands - Information about all of the constraints.
- SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
- DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
- // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
- // AsmDialect, MayLoad, MayStore).
- bool HasSideEffect = IA->hasSideEffects();
- ExtraFlags ExtraInfo(Call);
- for (auto &T : TargetConstraints) {
- ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
- if (OpInfo.CallOperandVal)
- OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
- if (!HasSideEffect)
- HasSideEffect = OpInfo.hasMemory(TLI);
- // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
- // FIXME: Could we compute this on OpInfo rather than T?
- // Compute the constraint code and ConstraintType to use.
- TLI.ComputeConstraintToUse(T, SDValue());
- if (T.ConstraintType == TargetLowering::C_Immediate &&
- OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
- // We've delayed emitting a diagnostic like the "n" constraint because
- // inlining could cause an integer showing up.
- return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
- "' expects an integer constant "
- "expression");
- ExtraInfo.update(T);
- }
- // We won't need to flush pending loads if this asm doesn't touch
- // memory and is nonvolatile.
- SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
- bool EmitEHLabels = isa<InvokeInst>(Call);
- if (EmitEHLabels) {
- assert(EHPadBB && "InvokeInst must have an EHPadBB");
- }
- bool IsCallBr = isa<CallBrInst>(Call);
- if (IsCallBr || EmitEHLabels) {
- // If this is a callbr or invoke we need to flush pending exports since
- // inlineasm_br and invoke are terminators.
- // We need to do this before nodes are glued to the inlineasm_br node.
- Chain = getControlRoot();
- }
- MCSymbol *BeginLabel = nullptr;
- if (EmitEHLabels) {
- Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
- }
- int OpNo = -1;
- SmallVector<StringRef> AsmStrs;
- IA->collectAsmStrs(AsmStrs);
- // Second pass over the constraints: compute which constraint option to use.
- for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
- if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
- OpNo++;
- // If this is an output operand with a matching input operand, look up the
- // matching input. If their types mismatch, e.g. one is an integer, the
- // other is floating point, or their sizes are different, flag it as an
- // error.
- if (OpInfo.hasMatchingInput()) {
- SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
- patchMatchingInput(OpInfo, Input, DAG);
- }
- // Compute the constraint code and ConstraintType to use.
- TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
- if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
- OpInfo.Type == InlineAsm::isClobber) ||
- OpInfo.ConstraintType == TargetLowering::C_Address)
- continue;
- // In Linux PIC model, there are 4 cases about value/label addressing:
- //
- // 1: Function call or Label jmp inside the module.
- // 2: Data access (such as global variable, static variable) inside module.
- // 3: Function call or Label jmp outside the module.
- // 4: Data access (such as global variable) outside the module.
- //
- // Due to current llvm inline asm architecture designed to not "recognize"
- // the asm code, there are quite troubles for us to treat mem addressing
- // differently for same value/adress used in different instuctions.
- // For example, in pic model, call a func may in plt way or direclty
- // pc-related, but lea/mov a function adress may use got.
- //
- // Here we try to "recognize" function call for the case 1 and case 3 in
- // inline asm. And try to adjust the constraint for them.
- //
- // TODO: Due to current inline asm didn't encourage to jmp to the outsider
- // label, so here we don't handle jmp function label now, but we need to
- // enhance it (especilly in PIC model) if we meet meaningful requirements.
- if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
- TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
- TM.getCodeModel() != CodeModel::Large) {
- OpInfo.isIndirect = false;
- OpInfo.ConstraintType = TargetLowering::C_Address;
- }
- // If this is a memory input, and if the operand is not indirect, do what we
- // need to provide an address for the memory input.
- if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
- !OpInfo.isIndirect) {
- assert((OpInfo.isMultipleAlternative ||
- (OpInfo.Type == InlineAsm::isInput)) &&
- "Can only indirectify direct input operands!");
- // Memory operands really want the address of the value.
- Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
- // There is no longer a Value* corresponding to this operand.
- OpInfo.CallOperandVal = nullptr;
- // It is now an indirect operand.
- OpInfo.isIndirect = true;
- }
- }
- // AsmNodeOperands - The operands for the ISD::INLINEASM node.
- std::vector<SDValue> AsmNodeOperands;
- AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
- AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
- IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
- // If we have a !srcloc metadata node associated with it, we want to attach
- // this to the ultimately generated inline asm machineinstr. To do this, we
- // pass in the third operand as this (potentially null) inline asm MDNode.
- const MDNode *SrcLoc = Call.getMetadata("srcloc");
- AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
- // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
- // bits as operand 3.
- AsmNodeOperands.push_back(DAG.getTargetConstant(
- ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
- // Third pass: Loop over operands to prepare DAG-level operands.. As part of
- // this, assign virtual and physical registers for inputs and otput.
- for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
- // Assign Registers.
- SDISelAsmOperandInfo &RefOpInfo =
- OpInfo.isMatchingInputConstraint()
- ? ConstraintOperands[OpInfo.getMatchedOperand()]
- : OpInfo;
- const auto RegError =
- getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
- if (RegError) {
- const MachineFunction &MF = DAG.getMachineFunction();
- const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
- const char *RegName = TRI.getName(*RegError);
- emitInlineAsmError(Call, "register '" + Twine(RegName) +
- "' allocated for constraint '" +
- Twine(OpInfo.ConstraintCode) +
- "' does not match required type");
- return;
- }
- auto DetectWriteToReservedRegister = [&]() {
- const MachineFunction &MF = DAG.getMachineFunction();
- const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
- for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
- if (Register::isPhysicalRegister(Reg) &&
- TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
- const char *RegName = TRI.getName(Reg);
- emitInlineAsmError(Call, "write to reserved register '" +
- Twine(RegName) + "'");
- return true;
- }
- }
- return false;
- };
- assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
- (OpInfo.Type == InlineAsm::isInput &&
- !OpInfo.isMatchingInputConstraint())) &&
- "Only address as input operand is allowed.");
- switch (OpInfo.Type) {
- case InlineAsm::isOutput:
- if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
- unsigned ConstraintID =
- TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
- assert(ConstraintID != InlineAsm::Constraint_Unknown &&
- "Failed to convert memory constraint code to constraint id.");
- // Add information to the INLINEASM node to know about this output.
- unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
- OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
- AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
- MVT::i32));
- AsmNodeOperands.push_back(OpInfo.CallOperand);
- } else {
- // Otherwise, this outputs to a register (directly for C_Register /
- // C_RegisterClass, and a target-defined fashion for
- // C_Immediate/C_Other). Find a register that we can use.
- if (OpInfo.AssignedRegs.Regs.empty()) {
- emitInlineAsmError(
- Call, "couldn't allocate output register for constraint '" +
- Twine(OpInfo.ConstraintCode) + "'");
- return;
- }
- if (DetectWriteToReservedRegister())
- return;
- // Add information to the INLINEASM node to know that this register is
- // set.
- OpInfo.AssignedRegs.AddInlineAsmOperands(
- OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
- : InlineAsm::Kind_RegDef,
- false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
- }
- break;
- case InlineAsm::isInput:
- case InlineAsm::isLabel: {
- SDValue InOperandVal = OpInfo.CallOperand;
- if (OpInfo.isMatchingInputConstraint()) {
- // If this is required to match an output register we have already set,
- // just use its register.
- auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
- AsmNodeOperands);
- unsigned OpFlag =
- cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
- if (InlineAsm::isRegDefKind(OpFlag) ||
- InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
- // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
- if (OpInfo.isIndirect) {
- // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
- emitInlineAsmError(Call, "inline asm not supported yet: "
- "don't know how to handle tied "
- "indirect register inputs");
- return;
- }
- SmallVector<unsigned, 4> Regs;
- MachineFunction &MF = DAG.getMachineFunction();
- MachineRegisterInfo &MRI = MF.getRegInfo();
- const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
- auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
- Register TiedReg = R->getReg();
- MVT RegVT = R->getSimpleValueType(0);
- const TargetRegisterClass *RC =
- TiedReg.isVirtual() ? MRI.getRegClass(TiedReg)
- : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
- : TRI.getMinimalPhysRegClass(TiedReg);
- unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
- for (unsigned i = 0; i != NumRegs; ++i)
- Regs.push_back(MRI.createVirtualRegister(RC));
- RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
- SDLoc dl = getCurSDLoc();
- // Use the produced MatchedRegs object to
- MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
- MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
- true, OpInfo.getMatchedOperand(), dl,
- DAG, AsmNodeOperands);
- break;
- }
- assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
- assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
- "Unexpected number of operands");
- // Add information to the INLINEASM node to know about this input.
- // See InlineAsm.h isUseOperandTiedToDef.
- OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
- OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
- OpInfo.getMatchedOperand());
- AsmNodeOperands.push_back(DAG.getTargetConstant(
- OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
- AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
- break;
- }
- // Treat indirect 'X' constraint as memory.
- if (OpInfo.ConstraintType == TargetLowering::C_Other &&
- OpInfo.isIndirect)
- OpInfo.ConstraintType = TargetLowering::C_Memory;
- if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
- OpInfo.ConstraintType == TargetLowering::C_Other) {
- std::vector<SDValue> Ops;
- TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
- Ops, DAG);
- if (Ops.empty()) {
- if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
- if (isa<ConstantSDNode>(InOperandVal)) {
- emitInlineAsmError(Call, "value out of range for constraint '" +
- Twine(OpInfo.ConstraintCode) + "'");
- return;
- }
- emitInlineAsmError(Call,
- "invalid operand for inline asm constraint '" +
- Twine(OpInfo.ConstraintCode) + "'");
- return;
- }
- // Add information to the INLINEASM node to know about this input.
- unsigned ResOpType =
- InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
- AsmNodeOperands.push_back(DAG.getTargetConstant(
- ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
- llvm::append_range(AsmNodeOperands, Ops);
- break;
- }
- if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
- assert((OpInfo.isIndirect ||
- OpInfo.ConstraintType != TargetLowering::C_Memory) &&
- "Operand must be indirect to be a mem!");
- assert(InOperandVal.getValueType() ==
- TLI.getPointerTy(DAG.getDataLayout()) &&
- "Memory operands expect pointer values");
- unsigned ConstraintID =
- TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
- assert(ConstraintID != InlineAsm::Constraint_Unknown &&
- "Failed to convert memory constraint code to constraint id.");
- // Add information to the INLINEASM node to know about this input.
- unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
- ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
- AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
- getCurSDLoc(),
- MVT::i32));
- AsmNodeOperands.push_back(InOperandVal);
- break;
- }
- if (OpInfo.ConstraintType == TargetLowering::C_Address) {
- assert(InOperandVal.getValueType() ==
- TLI.getPointerTy(DAG.getDataLayout()) &&
- "Address operands expect pointer values");
- unsigned ConstraintID =
- TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
- assert(ConstraintID != InlineAsm::Constraint_Unknown &&
- "Failed to convert memory constraint code to constraint id.");
- unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
- SDValue AsmOp = InOperandVal;
- if (isFunction(InOperandVal)) {
- auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
- ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1);
- AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
- InOperandVal.getValueType(),
- GA->getOffset());
- }
- // Add information to the INLINEASM node to know about this input.
- ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
- AsmNodeOperands.push_back(
- DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
- AsmNodeOperands.push_back(AsmOp);
- break;
- }
- assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
- OpInfo.ConstraintType == TargetLowering::C_Register) &&
- "Unknown constraint type!");
- // TODO: Support this.
- if (OpInfo.isIndirect) {
- emitInlineAsmError(
- Call, "Don't know how to handle indirect register inputs yet "
- "for constraint '" +
- Twine(OpInfo.ConstraintCode) + "'");
- return;
- }
- // Copy the input into the appropriate registers.
- if (OpInfo.AssignedRegs.Regs.empty()) {
- emitInlineAsmError(Call,
- "couldn't allocate input reg for constraint '" +
- Twine(OpInfo.ConstraintCode) + "'");
- return;
- }
- if (DetectWriteToReservedRegister())
- return;
- SDLoc dl = getCurSDLoc();
- OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
- &Call);
- OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
- dl, DAG, AsmNodeOperands);
- break;
- }
- case InlineAsm::isClobber:
- // Add the clobbered value to the operand list, so that the register
- // allocator is aware that the physreg got clobbered.
- if (!OpInfo.AssignedRegs.Regs.empty())
- OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
- false, 0, getCurSDLoc(), DAG,
- AsmNodeOperands);
- break;
- }
- }
- // Finish up input operands. Set the input chain and add the flag last.
- AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
- if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
- unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
- Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
- DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
- Flag = Chain.getValue(1);
- // Do additional work to generate outputs.
- SmallVector<EVT, 1> ResultVTs;
- SmallVector<SDValue, 1> ResultValues;
- SmallVector<SDValue, 8> OutChains;
- llvm::Type *CallResultType = Call.getType();
- ArrayRef<Type *> ResultTypes;
- if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
- ResultTypes = StructResult->elements();
- else if (!CallResultType->isVoidTy())
- ResultTypes = ArrayRef(CallResultType);
- auto CurResultType = ResultTypes.begin();
- auto handleRegAssign = [&](SDValue V) {
- assert(CurResultType != ResultTypes.end() && "Unexpected value");
- assert((*CurResultType)->isSized() && "Unexpected unsized type");
- EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
- ++CurResultType;
- // If the type of the inline asm call site return value is different but has
- // same size as the type of the asm output bitcast it. One example of this
- // is for vectors with different width / number of elements. This can
- // happen for register classes that can contain multiple different value
- // types. The preg or vreg allocated may not have the same VT as was
- // expected.
- //
- // This can also happen for a return value that disagrees with the register
- // class it is put in, eg. a double in a general-purpose register on a
- // 32-bit machine.
- if (ResultVT != V.getValueType() &&
- ResultVT.getSizeInBits() == V.getValueSizeInBits())
- V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
- else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
- V.getValueType().isInteger()) {
- // If a result value was tied to an input value, the computed result
- // may have a wider width than the expected result. Extract the
- // relevant portion.
- V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
- }
- assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
- ResultVTs.push_back(ResultVT);
- ResultValues.push_back(V);
- };
- // Deal with output operands.
- for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
- if (OpInfo.Type == InlineAsm::isOutput) {
- SDValue Val;
- // Skip trivial output operands.
- if (OpInfo.AssignedRegs.Regs.empty())
- continue;
- switch (OpInfo.ConstraintType) {
- case TargetLowering::C_Register:
- case TargetLowering::C_RegisterClass:
- Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
- Chain, &Flag, &Call);
- break;
- case TargetLowering::C_Immediate:
- case TargetLowering::C_Other:
- Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
- OpInfo, DAG);
- break;
- case TargetLowering::C_Memory:
- break; // Already handled.
- case TargetLowering::C_Address:
- break; // Silence warning.
- case TargetLowering::C_Unknown:
- assert(false && "Unexpected unknown constraint");
- }
- // Indirect output manifest as stores. Record output chains.
- if (OpInfo.isIndirect) {
- const Value *Ptr = OpInfo.CallOperandVal;
- assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
- SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
- MachinePointerInfo(Ptr));
- OutChains.push_back(Store);
- } else {
- // generate CopyFromRegs to associated registers.
- assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
- if (Val.getOpcode() == ISD::MERGE_VALUES) {
- for (const SDValue &V : Val->op_values())
- handleRegAssign(V);
- } else
- handleRegAssign(Val);
- }
- }
- }
- // Set results.
- if (!ResultValues.empty()) {
- assert(CurResultType == ResultTypes.end() &&
- "Mismatch in number of ResultTypes");
- assert(ResultValues.size() == ResultTypes.size() &&
- "Mismatch in number of output operands in asm result");
- SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
- DAG.getVTList(ResultVTs), ResultValues);
- setValue(&Call, V);
- }
- // Collect store chains.
- if (!OutChains.empty())
- Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
- if (EmitEHLabels) {
- Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
- }
- // Only Update Root if inline assembly has a memory effect.
- if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
- EmitEHLabels)
- DAG.setRoot(Chain);
- }
- void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
- const Twine &Message) {
- LLVMContext &Ctx = *DAG.getContext();
- Ctx.emitError(&Call, Message);
- // Make sure we leave the DAG in a valid state
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SmallVector<EVT, 1> ValueVTs;
- ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
- if (ValueVTs.empty())
- return;
- SmallVector<SDValue, 1> Ops;
- for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
- Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
- setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
- }
- void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
- DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
- MVT::Other, getRoot(),
- getValue(I.getArgOperand(0)),
- DAG.getSrcValue(I.getArgOperand(0))));
- }
- void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- const DataLayout &DL = DAG.getDataLayout();
- SDValue V = DAG.getVAArg(
- TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
- getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
- DL.getABITypeAlign(I.getType()).value());
- DAG.setRoot(V.getValue(1));
- if (I.getType()->isPointerTy())
- V = DAG.getPtrExtOrTrunc(
- V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
- setValue(&I, V);
- }
- void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
- DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
- MVT::Other, getRoot(),
- getValue(I.getArgOperand(0)),
- DAG.getSrcValue(I.getArgOperand(0))));
- }
- void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
- DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
- MVT::Other, getRoot(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)),
- DAG.getSrcValue(I.getArgOperand(0)),
- DAG.getSrcValue(I.getArgOperand(1))));
- }
- SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
- const Instruction &I,
- SDValue Op) {
- const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
- if (!Range)
- return Op;
- ConstantRange CR = getConstantRangeFromMetadata(*Range);
- if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
- return Op;
- APInt Lo = CR.getUnsignedMin();
- if (!Lo.isMinValue())
- return Op;
- APInt Hi = CR.getUnsignedMax();
- unsigned Bits = std::max(Hi.getActiveBits(),
- static_cast<unsigned>(IntegerType::MIN_INT_BITS));
- EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
- SDLoc SL = getCurSDLoc();
- SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
- DAG.getValueType(SmallVT));
- unsigned NumVals = Op.getNode()->getNumValues();
- if (NumVals == 1)
- return ZExt;
- SmallVector<SDValue, 4> Ops;
- Ops.push_back(ZExt);
- for (unsigned I = 1; I != NumVals; ++I)
- Ops.push_back(Op.getValue(I));
- return DAG.getMergeValues(Ops, SL);
- }
- /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
- /// the call being lowered.
- ///
- /// This is a helper for lowering intrinsics that follow a target calling
- /// convention or require stack pointer adjustment. Only a subset of the
- /// intrinsic's operands need to participate in the calling convention.
- void SelectionDAGBuilder::populateCallLoweringInfo(
- TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
- unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
- bool IsPatchPoint) {
- TargetLowering::ArgListTy Args;
- Args.reserve(NumArgs);
- // Populate the argument list.
- // Attributes for args start at offset 1, after the return attribute.
- for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
- ArgI != ArgE; ++ArgI) {
- const Value *V = Call->getOperand(ArgI);
- assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
- TargetLowering::ArgListEntry Entry;
- Entry.Node = getValue(V);
- Entry.Ty = V->getType();
- Entry.setAttributes(Call, ArgI);
- Args.push_back(Entry);
- }
- CLI.setDebugLoc(getCurSDLoc())
- .setChain(getRoot())
- .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
- .setDiscardResult(Call->use_empty())
- .setIsPatchPoint(IsPatchPoint)
- .setIsPreallocated(
- Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
- }
- /// Add a stack map intrinsic call's live variable operands to a stackmap
- /// or patchpoint target node's operand list.
- ///
- /// Constants are converted to TargetConstants purely as an optimization to
- /// avoid constant materialization and register allocation.
- ///
- /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
- /// generate addess computation nodes, and so FinalizeISel can convert the
- /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
- /// address materialization and register allocation, but may also be required
- /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
- /// alloca in the entry block, then the runtime may assume that the alloca's
- /// StackMap location can be read immediately after compilation and that the
- /// location is valid at any point during execution (this is similar to the
- /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
- /// only available in a register, then the runtime would need to trap when
- /// execution reaches the StackMap in order to read the alloca's location.
- static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
- const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
- SelectionDAGBuilder &Builder) {
- SelectionDAG &DAG = Builder.DAG;
- for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
- SDValue Op = Builder.getValue(Call.getArgOperand(I));
- // Things on the stack are pointer-typed, meaning that they are already
- // legal and can be emitted directly to target nodes.
- if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
- Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
- } else {
- // Otherwise emit a target independent node to be legalised.
- Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
- }
- }
- }
- /// Lower llvm.experimental.stackmap.
- void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
- // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
- // [live variables...])
- assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
- SDValue Chain, InFlag, Callee;
- SmallVector<SDValue, 32> Ops;
- SDLoc DL = getCurSDLoc();
- Callee = getValue(CI.getCalledOperand());
- // The stackmap intrinsic only records the live variables (the arguments
- // passed to it) and emits NOPS (if requested). Unlike the patchpoint
- // intrinsic, this won't be lowered to a function call. This means we don't
- // have to worry about calling conventions and target specific lowering code.
- // Instead we perform the call lowering right here.
- //
- // chain, flag = CALLSEQ_START(chain, 0, 0)
- // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
- // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
- //
- Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
- InFlag = Chain.getValue(1);
- // Add the STACKMAP operands, starting with DAG house-keeping.
- Ops.push_back(Chain);
- Ops.push_back(InFlag);
- // Add the <id>, <numShadowBytes> operands.
- //
- // These do not require legalisation, and can be emitted directly to target
- // constant nodes.
- SDValue ID = getValue(CI.getArgOperand(0));
- assert(ID.getValueType() == MVT::i64);
- SDValue IDConst = DAG.getTargetConstant(
- cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
- Ops.push_back(IDConst);
- SDValue Shad = getValue(CI.getArgOperand(1));
- assert(Shad.getValueType() == MVT::i32);
- SDValue ShadConst = DAG.getTargetConstant(
- cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
- Ops.push_back(ShadConst);
- // Add the live variables.
- addStackMapLiveVars(CI, 2, DL, Ops, *this);
- // Create the STACKMAP node.
- SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
- Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
- InFlag = Chain.getValue(1);
- Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL);
- // Stackmaps don't generate values, so nothing goes into the NodeMap.
- // Set the root to the target-lowered call chain.
- DAG.setRoot(Chain);
- // Inform the Frame Information that we have a stackmap in this function.
- FuncInfo.MF->getFrameInfo().setHasStackMap();
- }
- /// Lower llvm.experimental.patchpoint directly to its target opcode.
- void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
- const BasicBlock *EHPadBB) {
- // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
- // i32 <numBytes>,
- // i8* <target>,
- // i32 <numArgs>,
- // [Args...],
- // [live variables...])
- CallingConv::ID CC = CB.getCallingConv();
- bool IsAnyRegCC = CC == CallingConv::AnyReg;
- bool HasDef = !CB.getType()->isVoidTy();
- SDLoc dl = getCurSDLoc();
- SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
- // Handle immediate and symbolic callees.
- if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
- Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
- /*isTarget=*/true);
- else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
- Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
- SDLoc(SymbolicCallee),
- SymbolicCallee->getValueType(0));
- // Get the real number of arguments participating in the call <numArgs>
- SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
- unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
- // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
- // Intrinsics include all meta-operands up to but not including CC.
- unsigned NumMetaOpers = PatchPointOpers::CCPos;
- assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
- "Not enough arguments provided to the patchpoint intrinsic");
- // For AnyRegCC the arguments are lowered later on manually.
- unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
- Type *ReturnTy =
- IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
- TargetLowering::CallLoweringInfo CLI(DAG);
- populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
- ReturnTy, true);
- std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
- SDNode *CallEnd = Result.second.getNode();
- if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
- CallEnd = CallEnd->getOperand(0).getNode();
- /// Get a call instruction from the call sequence chain.
- /// Tail calls are not allowed.
- assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
- "Expected a callseq node.");
- SDNode *Call = CallEnd->getOperand(0).getNode();
- bool HasGlue = Call->getGluedNode();
- // Replace the target specific call node with the patchable intrinsic.
- SmallVector<SDValue, 8> Ops;
- // Push the chain.
- Ops.push_back(*(Call->op_begin()));
- // Optionally, push the glue (if any).
- if (HasGlue)
- Ops.push_back(*(Call->op_end() - 1));
- // Push the register mask info.
- if (HasGlue)
- Ops.push_back(*(Call->op_end() - 2));
- else
- Ops.push_back(*(Call->op_end() - 1));
- // Add the <id> and <numBytes> constants.
- SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
- Ops.push_back(DAG.getTargetConstant(
- cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
- SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
- Ops.push_back(DAG.getTargetConstant(
- cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
- MVT::i32));
- // Add the callee.
- Ops.push_back(Callee);
- // Adjust <numArgs> to account for any arguments that have been passed on the
- // stack instead.
- // Call Node: Chain, Target, {Args}, RegMask, [Glue]
- unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
- NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
- Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
- // Add the calling convention
- Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
- // Add the arguments we omitted previously. The register allocator should
- // place these in any free register.
- if (IsAnyRegCC)
- for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
- Ops.push_back(getValue(CB.getArgOperand(i)));
- // Push the arguments from the call instruction.
- SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
- Ops.append(Call->op_begin() + 2, e);
- // Push live variables for the stack map.
- addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
- SDVTList NodeTys;
- if (IsAnyRegCC && HasDef) {
- // Create the return types based on the intrinsic definition
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SmallVector<EVT, 3> ValueVTs;
- ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
- assert(ValueVTs.size() == 1 && "Expected only one return value type.");
- // There is always a chain and a glue type at the end
- ValueVTs.push_back(MVT::Other);
- ValueVTs.push_back(MVT::Glue);
- NodeTys = DAG.getVTList(ValueVTs);
- } else
- NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
- // Replace the target specific call node with a PATCHPOINT node.
- SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
- // Update the NodeMap.
- if (HasDef) {
- if (IsAnyRegCC)
- setValue(&CB, SDValue(PPV.getNode(), 0));
- else
- setValue(&CB, Result.first);
- }
- // Fixup the consumers of the intrinsic. The chain and glue may be used in the
- // call sequence. Furthermore the location of the chain and glue can change
- // when the AnyReg calling convention is used and the intrinsic returns a
- // value.
- if (IsAnyRegCC && HasDef) {
- SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
- SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
- DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
- } else
- DAG.ReplaceAllUsesWith(Call, PPV.getNode());
- DAG.DeleteNode(Call);
- // Inform the Frame Information that we have a patchpoint in this function.
- FuncInfo.MF->getFrameInfo().setHasPatchPoint();
- }
- void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
- unsigned Intrinsic) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2;
- if (I.arg_size() > 1)
- Op2 = getValue(I.getArgOperand(1));
- SDLoc dl = getCurSDLoc();
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- SDValue Res;
- SDNodeFlags SDFlags;
- if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
- SDFlags.copyFMF(*FPMO);
- switch (Intrinsic) {
- case Intrinsic::vector_reduce_fadd:
- if (SDFlags.hasAllowReassociation())
- Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
- DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
- SDFlags);
- else
- Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
- break;
- case Intrinsic::vector_reduce_fmul:
- if (SDFlags.hasAllowReassociation())
- Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
- DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
- SDFlags);
- else
- Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
- break;
- case Intrinsic::vector_reduce_add:
- Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
- break;
- case Intrinsic::vector_reduce_mul:
- Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
- break;
- case Intrinsic::vector_reduce_and:
- Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
- break;
- case Intrinsic::vector_reduce_or:
- Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
- break;
- case Intrinsic::vector_reduce_xor:
- Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
- break;
- case Intrinsic::vector_reduce_smax:
- Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
- break;
- case Intrinsic::vector_reduce_smin:
- Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
- break;
- case Intrinsic::vector_reduce_umax:
- Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
- break;
- case Intrinsic::vector_reduce_umin:
- Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
- break;
- case Intrinsic::vector_reduce_fmax:
- Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
- break;
- case Intrinsic::vector_reduce_fmin:
- Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
- break;
- default:
- llvm_unreachable("Unhandled vector reduce intrinsic");
- }
- setValue(&I, Res);
- }
- /// Returns an AttributeList representing the attributes applied to the return
- /// value of the given call.
- static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
- SmallVector<Attribute::AttrKind, 2> Attrs;
- if (CLI.RetSExt)
- Attrs.push_back(Attribute::SExt);
- if (CLI.RetZExt)
- Attrs.push_back(Attribute::ZExt);
- if (CLI.IsInReg)
- Attrs.push_back(Attribute::InReg);
- return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
- Attrs);
- }
- /// TargetLowering::LowerCallTo - This is the default LowerCallTo
- /// implementation, which just calls LowerCall.
- /// FIXME: When all targets are
- /// migrated to using LowerCall, this hook should be integrated into SDISel.
- std::pair<SDValue, SDValue>
- TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
- // Handle the incoming return values from the call.
- CLI.Ins.clear();
- Type *OrigRetTy = CLI.RetTy;
- SmallVector<EVT, 4> RetTys;
- SmallVector<uint64_t, 4> Offsets;
- auto &DL = CLI.DAG.getDataLayout();
- ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
- if (CLI.IsPostTypeLegalization) {
- // If we are lowering a libcall after legalization, split the return type.
- SmallVector<EVT, 4> OldRetTys;
- SmallVector<uint64_t, 4> OldOffsets;
- RetTys.swap(OldRetTys);
- Offsets.swap(OldOffsets);
- for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
- EVT RetVT = OldRetTys[i];
- uint64_t Offset = OldOffsets[i];
- MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
- unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
- unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
- RetTys.append(NumRegs, RegisterVT);
- for (unsigned j = 0; j != NumRegs; ++j)
- Offsets.push_back(Offset + j * RegisterVTByteSZ);
- }
- }
- SmallVector<ISD::OutputArg, 4> Outs;
- GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
- bool CanLowerReturn =
- this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
- CLI.IsVarArg, Outs, CLI.RetTy->getContext());
- SDValue DemoteStackSlot;
- int DemoteStackIdx = -100;
- if (!CanLowerReturn) {
- // FIXME: equivalent assert?
- // assert(!CS.hasInAllocaArgument() &&
- // "sret demotion is incompatible with inalloca");
- uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
- Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
- MachineFunction &MF = CLI.DAG.getMachineFunction();
- DemoteStackIdx =
- MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
- Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
- DL.getAllocaAddrSpace());
- DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
- ArgListEntry Entry;
- Entry.Node = DemoteStackSlot;
- Entry.Ty = StackSlotPtrType;
- Entry.IsSExt = false;
- Entry.IsZExt = false;
- Entry.IsInReg = false;
- Entry.IsSRet = true;
- Entry.IsNest = false;
- Entry.IsByVal = false;
- Entry.IsByRef = false;
- Entry.IsReturned = false;
- Entry.IsSwiftSelf = false;
- Entry.IsSwiftAsync = false;
- Entry.IsSwiftError = false;
- Entry.IsCFGuardTarget = false;
- Entry.Alignment = Alignment;
- CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
- CLI.NumFixedArgs += 1;
- CLI.getArgs()[0].IndirectType = CLI.RetTy;
- CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
- // sret demotion isn't compatible with tail-calls, since the sret argument
- // points into the callers stack frame.
- CLI.IsTailCall = false;
- } else {
- bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
- CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
- for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
- ISD::ArgFlagsTy Flags;
- if (NeedsRegBlock) {
- Flags.setInConsecutiveRegs();
- if (I == RetTys.size() - 1)
- Flags.setInConsecutiveRegsLast();
- }
- EVT VT = RetTys[I];
- MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
- CLI.CallConv, VT);
- unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
- CLI.CallConv, VT);
- for (unsigned i = 0; i != NumRegs; ++i) {
- ISD::InputArg MyFlags;
- MyFlags.Flags = Flags;
- MyFlags.VT = RegisterVT;
- MyFlags.ArgVT = VT;
- MyFlags.Used = CLI.IsReturnValueUsed;
- if (CLI.RetTy->isPointerTy()) {
- MyFlags.Flags.setPointer();
- MyFlags.Flags.setPointerAddrSpace(
- cast<PointerType>(CLI.RetTy)->getAddressSpace());
- }
- if (CLI.RetSExt)
- MyFlags.Flags.setSExt();
- if (CLI.RetZExt)
- MyFlags.Flags.setZExt();
- if (CLI.IsInReg)
- MyFlags.Flags.setInReg();
- CLI.Ins.push_back(MyFlags);
- }
- }
- }
- // We push in swifterror return as the last element of CLI.Ins.
- ArgListTy &Args = CLI.getArgs();
- if (supportSwiftError()) {
- for (const ArgListEntry &Arg : Args) {
- if (Arg.IsSwiftError) {
- ISD::InputArg MyFlags;
- MyFlags.VT = getPointerTy(DL);
- MyFlags.ArgVT = EVT(getPointerTy(DL));
- MyFlags.Flags.setSwiftError();
- CLI.Ins.push_back(MyFlags);
- }
- }
- }
- // Handle all of the outgoing arguments.
- CLI.Outs.clear();
- CLI.OutVals.clear();
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
- // FIXME: Split arguments if CLI.IsPostTypeLegalization
- Type *FinalType = Args[i].Ty;
- if (Args[i].IsByVal)
- FinalType = Args[i].IndirectType;
- bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
- FinalType, CLI.CallConv, CLI.IsVarArg, DL);
- for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
- ++Value) {
- EVT VT = ValueVTs[Value];
- Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
- SDValue Op = SDValue(Args[i].Node.getNode(),
- Args[i].Node.getResNo() + Value);
- ISD::ArgFlagsTy Flags;
- // Certain targets (such as MIPS), may have a different ABI alignment
- // for a type depending on the context. Give the target a chance to
- // specify the alignment it wants.
- const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
- Flags.setOrigAlign(OriginalAlignment);
- if (Args[i].Ty->isPointerTy()) {
- Flags.setPointer();
- Flags.setPointerAddrSpace(
- cast<PointerType>(Args[i].Ty)->getAddressSpace());
- }
- if (Args[i].IsZExt)
- Flags.setZExt();
- if (Args[i].IsSExt)
- Flags.setSExt();
- if (Args[i].IsInReg) {
- // If we are using vectorcall calling convention, a structure that is
- // passed InReg - is surely an HVA
- if (CLI.CallConv == CallingConv::X86_VectorCall &&
- isa<StructType>(FinalType)) {
- // The first value of a structure is marked
- if (0 == Value)
- Flags.setHvaStart();
- Flags.setHva();
- }
- // Set InReg Flag
- Flags.setInReg();
- }
- if (Args[i].IsSRet)
- Flags.setSRet();
- if (Args[i].IsSwiftSelf)
- Flags.setSwiftSelf();
- if (Args[i].IsSwiftAsync)
- Flags.setSwiftAsync();
- if (Args[i].IsSwiftError)
- Flags.setSwiftError();
- if (Args[i].IsCFGuardTarget)
- Flags.setCFGuardTarget();
- if (Args[i].IsByVal)
- Flags.setByVal();
- if (Args[i].IsByRef)
- Flags.setByRef();
- if (Args[i].IsPreallocated) {
- Flags.setPreallocated();
- // Set the byval flag for CCAssignFn callbacks that don't know about
- // preallocated. This way we can know how many bytes we should've
- // allocated and how many bytes a callee cleanup function will pop. If
- // we port preallocated to more targets, we'll have to add custom
- // preallocated handling in the various CC lowering callbacks.
- Flags.setByVal();
- }
- if (Args[i].IsInAlloca) {
- Flags.setInAlloca();
- // Set the byval flag for CCAssignFn callbacks that don't know about
- // inalloca. This way we can know how many bytes we should've allocated
- // and how many bytes a callee cleanup function will pop. If we port
- // inalloca to more targets, we'll have to add custom inalloca handling
- // in the various CC lowering callbacks.
- Flags.setByVal();
- }
- Align MemAlign;
- if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
- unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
- Flags.setByValSize(FrameSize);
- // info is not there but there are cases it cannot get right.
- if (auto MA = Args[i].Alignment)
- MemAlign = *MA;
- else
- MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
- } else if (auto MA = Args[i].Alignment) {
- MemAlign = *MA;
- } else {
- MemAlign = OriginalAlignment;
- }
- Flags.setMemAlign(MemAlign);
- if (Args[i].IsNest)
- Flags.setNest();
- if (NeedsRegBlock)
- Flags.setInConsecutiveRegs();
- MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
- CLI.CallConv, VT);
- unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
- CLI.CallConv, VT);
- SmallVector<SDValue, 4> Parts(NumParts);
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
- if (Args[i].IsSExt)
- ExtendKind = ISD::SIGN_EXTEND;
- else if (Args[i].IsZExt)
- ExtendKind = ISD::ZERO_EXTEND;
- // Conservatively only handle 'returned' on non-vectors that can be lowered,
- // for now.
- if (Args[i].IsReturned && !Op.getValueType().isVector() &&
- CanLowerReturn) {
- assert((CLI.RetTy == Args[i].Ty ||
- (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
- CLI.RetTy->getPointerAddressSpace() ==
- Args[i].Ty->getPointerAddressSpace())) &&
- RetTys.size() == NumValues && "unexpected use of 'returned'");
- // Before passing 'returned' to the target lowering code, ensure that
- // either the register MVT and the actual EVT are the same size or that
- // the return value and argument are extended in the same way; in these
- // cases it's safe to pass the argument register value unchanged as the
- // return register value (although it's at the target's option whether
- // to do so)
- // TODO: allow code generation to take advantage of partially preserved
- // registers rather than clobbering the entire register when the
- // parameter extension method is not compatible with the return
- // extension method
- if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
- (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
- CLI.RetZExt == Args[i].IsZExt))
- Flags.setReturned();
- }
- getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
- CLI.CallConv, ExtendKind);
- for (unsigned j = 0; j != NumParts; ++j) {
- // if it isn't first piece, alignment must be 1
- // For scalable vectors the scalable part is currently handled
- // by individual targets, so we just use the known minimum size here.
- ISD::OutputArg MyFlags(
- Flags, Parts[j].getValueType().getSimpleVT(), VT,
- i < CLI.NumFixedArgs, i,
- j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
- if (NumParts > 1 && j == 0)
- MyFlags.Flags.setSplit();
- else if (j != 0) {
- MyFlags.Flags.setOrigAlign(Align(1));
- if (j == NumParts - 1)
- MyFlags.Flags.setSplitEnd();
- }
- CLI.Outs.push_back(MyFlags);
- CLI.OutVals.push_back(Parts[j]);
- }
- if (NeedsRegBlock && Value == NumValues - 1)
- CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
- }
- }
- SmallVector<SDValue, 4> InVals;
- CLI.Chain = LowerCall(CLI, InVals);
- // Update CLI.InVals to use outside of this function.
- CLI.InVals = InVals;
- // Verify that the target's LowerCall behaved as expected.
- assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
- "LowerCall didn't return a valid chain!");
- assert((!CLI.IsTailCall || InVals.empty()) &&
- "LowerCall emitted a return value for a tail call!");
- assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
- "LowerCall didn't emit the correct number of values!");
- // For a tail call, the return value is merely live-out and there aren't
- // any nodes in the DAG representing it. Return a special value to
- // indicate that a tail call has been emitted and no more Instructions
- // should be processed in the current block.
- if (CLI.IsTailCall) {
- CLI.DAG.setRoot(CLI.Chain);
- return std::make_pair(SDValue(), SDValue());
- }
- #ifndef NDEBUG
- for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
- assert(InVals[i].getNode() && "LowerCall emitted a null value!");
- assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
- "LowerCall emitted a value with the wrong type!");
- }
- #endif
- SmallVector<SDValue, 4> ReturnValues;
- if (!CanLowerReturn) {
- // The instruction result is the result of loading from the
- // hidden sret parameter.
- SmallVector<EVT, 1> PVTs;
- Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
- ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
- assert(PVTs.size() == 1 && "Pointers should fit in one register");
- EVT PtrVT = PVTs[0];
- unsigned NumValues = RetTys.size();
- ReturnValues.resize(NumValues);
- SmallVector<SDValue, 4> Chains(NumValues);
- // An aggregate return value cannot wrap around the address space, so
- // offsets to its parts don't wrap either.
- SDNodeFlags Flags;
- Flags.setNoUnsignedWrap(true);
- MachineFunction &MF = CLI.DAG.getMachineFunction();
- Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
- for (unsigned i = 0; i < NumValues; ++i) {
- SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
- CLI.DAG.getConstant(Offsets[i], CLI.DL,
- PtrVT), Flags);
- SDValue L = CLI.DAG.getLoad(
- RetTys[i], CLI.DL, CLI.Chain, Add,
- MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
- DemoteStackIdx, Offsets[i]),
- HiddenSRetAlign);
- ReturnValues[i] = L;
- Chains[i] = L.getValue(1);
- }
- CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
- } else {
- // Collect the legal value parts into potentially illegal values
- // that correspond to the original function's return values.
- std::optional<ISD::NodeType> AssertOp;
- if (CLI.RetSExt)
- AssertOp = ISD::AssertSext;
- else if (CLI.RetZExt)
- AssertOp = ISD::AssertZext;
- unsigned CurReg = 0;
- for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
- EVT VT = RetTys[I];
- MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
- CLI.CallConv, VT);
- unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
- CLI.CallConv, VT);
- ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
- NumRegs, RegisterVT, VT, nullptr,
- CLI.CallConv, AssertOp));
- CurReg += NumRegs;
- }
- // For a function returning void, there is no return value. We can't create
- // such a node, so we just return a null return value in that case. In
- // that case, nothing will actually look at the value.
- if (ReturnValues.empty())
- return std::make_pair(SDValue(), CLI.Chain);
- }
- SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
- CLI.DAG.getVTList(RetTys), ReturnValues);
- return std::make_pair(Res, CLI.Chain);
- }
- /// Places new result values for the node in Results (their number
- /// and types must exactly match those of the original return values of
- /// the node), or leaves Results empty, which indicates that the node is not
- /// to be custom lowered after all.
- void TargetLowering::LowerOperationWrapper(SDNode *N,
- SmallVectorImpl<SDValue> &Results,
- SelectionDAG &DAG) const {
- SDValue Res = LowerOperation(SDValue(N, 0), DAG);
- if (!Res.getNode())
- return;
- // If the original node has one result, take the return value from
- // LowerOperation as is. It might not be result number 0.
- if (N->getNumValues() == 1) {
- Results.push_back(Res);
- return;
- }
- // If the original node has multiple results, then the return node should
- // have the same number of results.
- assert((N->getNumValues() == Res->getNumValues()) &&
- "Lowering returned the wrong number of results!");
- // Places new result values base on N result number.
- for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
- Results.push_back(Res.getValue(I));
- }
- SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
- llvm_unreachable("LowerOperation not implemented for this target!");
- }
- void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
- unsigned Reg,
- ISD::NodeType ExtendType) {
- SDValue Op = getNonRegisterValue(V);
- assert((Op.getOpcode() != ISD::CopyFromReg ||
- cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
- "Copy from a reg to the same reg!");
- assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // If this is an InlineAsm we have to match the registers required, not the
- // notional registers required by the type.
- RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
- std::nullopt); // This is not an ABI copy.
- SDValue Chain = DAG.getEntryNode();
- if (ExtendType == ISD::ANY_EXTEND) {
- auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
- if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
- ExtendType = PreferredExtendIt->second;
- }
- RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
- PendingExports.push_back(Chain);
- }
- #include "llvm/CodeGen/SelectionDAGISel.h"
- /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
- /// entry block, return true. This includes arguments used by switches, since
- /// the switch may expand into multiple basic blocks.
- static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
- // With FastISel active, we may be splitting blocks, so force creation
- // of virtual registers for all non-dead arguments.
- if (FastISel)
- return A->use_empty();
- const BasicBlock &Entry = A->getParent()->front();
- for (const User *U : A->users())
- if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
- return false; // Use not in entry block.
- return true;
- }
- using ArgCopyElisionMapTy =
- DenseMap<const Argument *,
- std::pair<const AllocaInst *, const StoreInst *>>;
- /// Scan the entry block of the function in FuncInfo for arguments that look
- /// like copies into a local alloca. Record any copied arguments in
- /// ArgCopyElisionCandidates.
- static void
- findArgumentCopyElisionCandidates(const DataLayout &DL,
- FunctionLoweringInfo *FuncInfo,
- ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
- // Record the state of every static alloca used in the entry block. Argument
- // allocas are all used in the entry block, so we need approximately as many
- // entries as we have arguments.
- enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
- SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
- unsigned NumArgs = FuncInfo->Fn->arg_size();
- StaticAllocas.reserve(NumArgs * 2);
- auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
- if (!V)
- return nullptr;
- V = V->stripPointerCasts();
- const auto *AI = dyn_cast<AllocaInst>(V);
- if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
- return nullptr;
- auto Iter = StaticAllocas.insert({AI, Unknown});
- return &Iter.first->second;
- };
- // Look for stores of arguments to static allocas. Look through bitcasts and
- // GEPs to handle type coercions, as long as the alloca is fully initialized
- // by the store. Any non-store use of an alloca escapes it and any subsequent
- // unanalyzed store might write it.
- // FIXME: Handle structs initialized with multiple stores.
- for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
- // Look for stores, and handle non-store uses conservatively.
- const auto *SI = dyn_cast<StoreInst>(&I);
- if (!SI) {
- // We will look through cast uses, so ignore them completely.
- if (I.isCast())
- continue;
- // Ignore debug info and pseudo op intrinsics, they don't escape or store
- // to allocas.
- if (I.isDebugOrPseudoInst())
- continue;
- // This is an unknown instruction. Assume it escapes or writes to all
- // static alloca operands.
- for (const Use &U : I.operands()) {
- if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
- *Info = StaticAllocaInfo::Clobbered;
- }
- continue;
- }
- // If the stored value is a static alloca, mark it as escaped.
- if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
- *Info = StaticAllocaInfo::Clobbered;
- // Check if the destination is a static alloca.
- const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
- StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
- if (!Info)
- continue;
- const AllocaInst *AI = cast<AllocaInst>(Dst);
- // Skip allocas that have been initialized or clobbered.
- if (*Info != StaticAllocaInfo::Unknown)
- continue;
- // Check if the stored value is an argument, and that this store fully
- // initializes the alloca.
- // If the argument type has padding bits we can't directly forward a pointer
- // as the upper bits may contain garbage.
- // Don't elide copies from the same argument twice.
- const Value *Val = SI->getValueOperand()->stripPointerCasts();
- const auto *Arg = dyn_cast<Argument>(Val);
- if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
- Arg->getType()->isEmptyTy() ||
- DL.getTypeStoreSize(Arg->getType()) !=
- DL.getTypeAllocSize(AI->getAllocatedType()) ||
- !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
- ArgCopyElisionCandidates.count(Arg)) {
- *Info = StaticAllocaInfo::Clobbered;
- continue;
- }
- LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
- << '\n');
- // Mark this alloca and store for argument copy elision.
- *Info = StaticAllocaInfo::Elidable;
- ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
- // Stop scanning if we've seen all arguments. This will happen early in -O0
- // builds, which is useful, because -O0 builds have large entry blocks and
- // many allocas.
- if (ArgCopyElisionCandidates.size() == NumArgs)
- break;
- }
- }
- /// Try to elide argument copies from memory into a local alloca. Succeeds if
- /// ArgVal is a load from a suitable fixed stack object.
- static void tryToElideArgumentCopy(
- FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
- DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
- SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
- ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
- SDValue ArgVal, bool &ArgHasUses) {
- // Check if this is a load from a fixed stack object.
- auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
- if (!LNode)
- return;
- auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
- if (!FINode)
- return;
- // Check that the fixed stack object is the right size and alignment.
- // Look at the alignment that the user wrote on the alloca instead of looking
- // at the stack object.
- auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
- assert(ArgCopyIter != ArgCopyElisionCandidates.end());
- const AllocaInst *AI = ArgCopyIter->second.first;
- int FixedIndex = FINode->getIndex();
- int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
- int OldIndex = AllocaIndex;
- MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
- if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
- LLVM_DEBUG(
- dbgs() << " argument copy elision failed due to bad fixed stack "
- "object size\n");
- return;
- }
- Align RequiredAlignment = AI->getAlign();
- if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
- LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
- "greater than stack argument alignment ("
- << DebugStr(RequiredAlignment) << " vs "
- << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
- return;
- }
- // Perform the elision. Delete the old stack object and replace its only use
- // in the variable info map. Mark the stack object as mutable.
- LLVM_DEBUG({
- dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
- << " Replacing frame index " << OldIndex << " with " << FixedIndex
- << '\n';
- });
- MFI.RemoveStackObject(OldIndex);
- MFI.setIsImmutableObjectIndex(FixedIndex, false);
- AllocaIndex = FixedIndex;
- ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
- Chains.push_back(ArgVal.getValue(1));
- // Avoid emitting code for the store implementing the copy.
- const StoreInst *SI = ArgCopyIter->second.second;
- ElidedArgCopyInstrs.insert(SI);
- // Check for uses of the argument again so that we can avoid exporting ArgVal
- // if it is't used by anything other than the store.
- for (const Value *U : Arg.users()) {
- if (U != SI) {
- ArgHasUses = true;
- break;
- }
- }
- }
- void SelectionDAGISel::LowerArguments(const Function &F) {
- SelectionDAG &DAG = SDB->DAG;
- SDLoc dl = SDB->getCurSDLoc();
- const DataLayout &DL = DAG.getDataLayout();
- SmallVector<ISD::InputArg, 16> Ins;
- // In Naked functions we aren't going to save any registers.
- if (F.hasFnAttribute(Attribute::Naked))
- return;
- if (!FuncInfo->CanLowerReturn) {
- // Put in an sret pointer parameter before all the other parameters.
- SmallVector<EVT, 1> ValueVTs;
- ComputeValueVTs(*TLI, DAG.getDataLayout(),
- F.getReturnType()->getPointerTo(
- DAG.getDataLayout().getAllocaAddrSpace()),
- ValueVTs);
- // NOTE: Assuming that a pointer will never break down to more than one VT
- // or one register.
- ISD::ArgFlagsTy Flags;
- Flags.setSRet();
- MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
- ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
- ISD::InputArg::NoArgIndex, 0);
- Ins.push_back(RetArg);
- }
- // Look for stores of arguments to static allocas. Mark such arguments with a
- // flag to ask the target to give us the memory location of that argument if
- // available.
- ArgCopyElisionMapTy ArgCopyElisionCandidates;
- findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
- ArgCopyElisionCandidates);
- // Set up the incoming argument description vector.
- for (const Argument &Arg : F.args()) {
- unsigned ArgNo = Arg.getArgNo();
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
- bool isArgValueUsed = !Arg.use_empty();
- unsigned PartBase = 0;
- Type *FinalType = Arg.getType();
- if (Arg.hasAttribute(Attribute::ByVal))
- FinalType = Arg.getParamByValType();
- bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
- FinalType, F.getCallingConv(), F.isVarArg(), DL);
- for (unsigned Value = 0, NumValues = ValueVTs.size();
- Value != NumValues; ++Value) {
- EVT VT = ValueVTs[Value];
- Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
- ISD::ArgFlagsTy Flags;
- if (Arg.getType()->isPointerTy()) {
- Flags.setPointer();
- Flags.setPointerAddrSpace(
- cast<PointerType>(Arg.getType())->getAddressSpace());
- }
- if (Arg.hasAttribute(Attribute::ZExt))
- Flags.setZExt();
- if (Arg.hasAttribute(Attribute::SExt))
- Flags.setSExt();
- if (Arg.hasAttribute(Attribute::InReg)) {
- // If we are using vectorcall calling convention, a structure that is
- // passed InReg - is surely an HVA
- if (F.getCallingConv() == CallingConv::X86_VectorCall &&
- isa<StructType>(Arg.getType())) {
- // The first value of a structure is marked
- if (0 == Value)
- Flags.setHvaStart();
- Flags.setHva();
- }
- // Set InReg Flag
- Flags.setInReg();
- }
- if (Arg.hasAttribute(Attribute::StructRet))
- Flags.setSRet();
- if (Arg.hasAttribute(Attribute::SwiftSelf))
- Flags.setSwiftSelf();
- if (Arg.hasAttribute(Attribute::SwiftAsync))
- Flags.setSwiftAsync();
- if (Arg.hasAttribute(Attribute::SwiftError))
- Flags.setSwiftError();
- if (Arg.hasAttribute(Attribute::ByVal))
- Flags.setByVal();
- if (Arg.hasAttribute(Attribute::ByRef))
- Flags.setByRef();
- if (Arg.hasAttribute(Attribute::InAlloca)) {
- Flags.setInAlloca();
- // Set the byval flag for CCAssignFn callbacks that don't know about
- // inalloca. This way we can know how many bytes we should've allocated
- // and how many bytes a callee cleanup function will pop. If we port
- // inalloca to more targets, we'll have to add custom inalloca handling
- // in the various CC lowering callbacks.
- Flags.setByVal();
- }
- if (Arg.hasAttribute(Attribute::Preallocated)) {
- Flags.setPreallocated();
- // Set the byval flag for CCAssignFn callbacks that don't know about
- // preallocated. This way we can know how many bytes we should've
- // allocated and how many bytes a callee cleanup function will pop. If
- // we port preallocated to more targets, we'll have to add custom
- // preallocated handling in the various CC lowering callbacks.
- Flags.setByVal();
- }
- // Certain targets (such as MIPS), may have a different ABI alignment
- // for a type depending on the context. Give the target a chance to
- // specify the alignment it wants.
- const Align OriginalAlignment(
- TLI->getABIAlignmentForCallingConv(ArgTy, DL));
- Flags.setOrigAlign(OriginalAlignment);
- Align MemAlign;
- Type *ArgMemTy = nullptr;
- if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
- Flags.isByRef()) {
- if (!ArgMemTy)
- ArgMemTy = Arg.getPointeeInMemoryValueType();
- uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
- // For in-memory arguments, size and alignment should be passed from FE.
- // BE will guess if this info is not there but there are cases it cannot
- // get right.
- if (auto ParamAlign = Arg.getParamStackAlign())
- MemAlign = *ParamAlign;
- else if ((ParamAlign = Arg.getParamAlign()))
- MemAlign = *ParamAlign;
- else
- MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
- if (Flags.isByRef())
- Flags.setByRefSize(MemSize);
- else
- Flags.setByValSize(MemSize);
- } else if (auto ParamAlign = Arg.getParamStackAlign()) {
- MemAlign = *ParamAlign;
- } else {
- MemAlign = OriginalAlignment;
- }
- Flags.setMemAlign(MemAlign);
- if (Arg.hasAttribute(Attribute::Nest))
- Flags.setNest();
- if (NeedsRegBlock)
- Flags.setInConsecutiveRegs();
- if (ArgCopyElisionCandidates.count(&Arg))
- Flags.setCopyElisionCandidate();
- if (Arg.hasAttribute(Attribute::Returned))
- Flags.setReturned();
- MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
- *CurDAG->getContext(), F.getCallingConv(), VT);
- unsigned NumRegs = TLI->getNumRegistersForCallingConv(
- *CurDAG->getContext(), F.getCallingConv(), VT);
- for (unsigned i = 0; i != NumRegs; ++i) {
- // For scalable vectors, use the minimum size; individual targets
- // are responsible for handling scalable vector arguments and
- // return values.
- ISD::InputArg MyFlags(
- Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
- PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
- if (NumRegs > 1 && i == 0)
- MyFlags.Flags.setSplit();
- // if it isn't first piece, alignment must be 1
- else if (i > 0) {
- MyFlags.Flags.setOrigAlign(Align(1));
- if (i == NumRegs - 1)
- MyFlags.Flags.setSplitEnd();
- }
- Ins.push_back(MyFlags);
- }
- if (NeedsRegBlock && Value == NumValues - 1)
- Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
- PartBase += VT.getStoreSize().getKnownMinValue();
- }
- }
- // Call the target to set up the argument values.
- SmallVector<SDValue, 8> InVals;
- SDValue NewRoot = TLI->LowerFormalArguments(
- DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
- // Verify that the target's LowerFormalArguments behaved as expected.
- assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
- "LowerFormalArguments didn't return a valid chain!");
- assert(InVals.size() == Ins.size() &&
- "LowerFormalArguments didn't emit the correct number of values!");
- LLVM_DEBUG({
- for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
- assert(InVals[i].getNode() &&
- "LowerFormalArguments emitted a null value!");
- assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
- "LowerFormalArguments emitted a value with the wrong type!");
- }
- });
- // Update the DAG with the new chain value resulting from argument lowering.
- DAG.setRoot(NewRoot);
- // Set up the argument values.
- unsigned i = 0;
- if (!FuncInfo->CanLowerReturn) {
- // Create a virtual register for the sret pointer, and put in a copy
- // from the sret argument into it.
- SmallVector<EVT, 1> ValueVTs;
- ComputeValueVTs(*TLI, DAG.getDataLayout(),
- F.getReturnType()->getPointerTo(
- DAG.getDataLayout().getAllocaAddrSpace()),
- ValueVTs);
- MVT VT = ValueVTs[0].getSimpleVT();
- MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
- std::optional<ISD::NodeType> AssertOp;
- SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
- nullptr, F.getCallingConv(), AssertOp);
- MachineFunction& MF = SDB->DAG.getMachineFunction();
- MachineRegisterInfo& RegInfo = MF.getRegInfo();
- Register SRetReg =
- RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
- FuncInfo->DemoteRegister = SRetReg;
- NewRoot =
- SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
- DAG.setRoot(NewRoot);
- // i indexes lowered arguments. Bump it past the hidden sret argument.
- ++i;
- }
- SmallVector<SDValue, 4> Chains;
- DenseMap<int, int> ArgCopyElisionFrameIndexMap;
- for (const Argument &Arg : F.args()) {
- SmallVector<SDValue, 4> ArgValues;
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0)
- continue;
- bool ArgHasUses = !Arg.use_empty();
- // Elide the copying store if the target loaded this argument from a
- // suitable fixed stack object.
- if (Ins[i].Flags.isCopyElisionCandidate()) {
- tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
- ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
- InVals[i], ArgHasUses);
- }
- // If this argument is unused then remember its value. It is used to generate
- // debugging information.
- bool isSwiftErrorArg =
- TLI->supportSwiftError() &&
- Arg.hasAttribute(Attribute::SwiftError);
- if (!ArgHasUses && !isSwiftErrorArg) {
- SDB->setUnusedArgValue(&Arg, InVals[i]);
- // Also remember any frame index for use in FastISel.
- if (FrameIndexSDNode *FI =
- dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
- FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
- }
- for (unsigned Val = 0; Val != NumValues; ++Val) {
- EVT VT = ValueVTs[Val];
- MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
- F.getCallingConv(), VT);
- unsigned NumParts = TLI->getNumRegistersForCallingConv(
- *CurDAG->getContext(), F.getCallingConv(), VT);
- // Even an apparent 'unused' swifterror argument needs to be returned. So
- // we do generate a copy for it that can be used on return from the
- // function.
- if (ArgHasUses || isSwiftErrorArg) {
- std::optional<ISD::NodeType> AssertOp;
- if (Arg.hasAttribute(Attribute::SExt))
- AssertOp = ISD::AssertSext;
- else if (Arg.hasAttribute(Attribute::ZExt))
- AssertOp = ISD::AssertZext;
- ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
- PartVT, VT, nullptr,
- F.getCallingConv(), AssertOp));
- }
- i += NumParts;
- }
- // We don't need to do anything else for unused arguments.
- if (ArgValues.empty())
- continue;
- // Note down frame index.
- if (FrameIndexSDNode *FI =
- dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
- FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
- SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
- SDB->getCurSDLoc());
- SDB->setValue(&Arg, Res);
- if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
- // We want to associate the argument with the frame index, among
- // involved operands, that correspond to the lowest address. The
- // getCopyFromParts function, called earlier, is swapping the order of
- // the operands to BUILD_PAIR depending on endianness. The result of
- // that swapping is that the least significant bits of the argument will
- // be in the first operand of the BUILD_PAIR node, and the most
- // significant bits will be in the second operand.
- unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
- if (LoadSDNode *LNode =
- dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
- if (FrameIndexSDNode *FI =
- dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
- FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
- }
- // Analyses past this point are naive and don't expect an assertion.
- if (Res.getOpcode() == ISD::AssertZext)
- Res = Res.getOperand(0);
- // Update the SwiftErrorVRegDefMap.
- if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
- unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
- if (Register::isVirtualRegister(Reg))
- SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
- Reg);
- }
- // If this argument is live outside of the entry block, insert a copy from
- // wherever we got it to the vreg that other BB's will reference it as.
- if (Res.getOpcode() == ISD::CopyFromReg) {
- // If we can, though, try to skip creating an unnecessary vreg.
- // FIXME: This isn't very clean... it would be nice to make this more
- // general.
- unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
- if (Register::isVirtualRegister(Reg)) {
- FuncInfo->ValueMap[&Arg] = Reg;
- continue;
- }
- }
- if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
- FuncInfo->InitializeRegForValue(&Arg);
- SDB->CopyToExportRegsIfNeeded(&Arg);
- }
- }
- if (!Chains.empty()) {
- Chains.push_back(NewRoot);
- NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
- }
- DAG.setRoot(NewRoot);
- assert(i == InVals.size() && "Argument register count mismatch!");
- // If any argument copy elisions occurred and we have debug info, update the
- // stale frame indices used in the dbg.declare variable info table.
- MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
- if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
- for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
- auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
- if (I != ArgCopyElisionFrameIndexMap.end())
- VI.Slot = I->second;
- }
- }
- // Finally, if the target has anything special to do, allow it to do so.
- emitFunctionEntryCode();
- }
- /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
- /// ensure constants are generated when needed. Remember the virtual registers
- /// that need to be added to the Machine PHI nodes as input. We cannot just
- /// directly add them, because expansion might result in multiple MBB's for one
- /// BB. As such, the start of the BB might correspond to a different MBB than
- /// the end.
- void
- SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
- // Check PHI nodes in successors that expect a value to be available from this
- // block.
- for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
- if (!isa<PHINode>(SuccBB->begin())) continue;
- MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
- // If this terminator has multiple identical successors (common for
- // switches), only handle each succ once.
- if (!SuccsHandled.insert(SuccMBB).second)
- continue;
- MachineBasicBlock::iterator MBBI = SuccMBB->begin();
- // At this point we know that there is a 1-1 correspondence between LLVM PHI
- // nodes and Machine PHI nodes, but the incoming operands have not been
- // emitted yet.
- for (const PHINode &PN : SuccBB->phis()) {
- // Ignore dead phi's.
- if (PN.use_empty())
- continue;
- // Skip empty types
- if (PN.getType()->isEmptyTy())
- continue;
- unsigned Reg;
- const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
- if (const auto *C = dyn_cast<Constant>(PHIOp)) {
- unsigned &RegOut = ConstantsOut[C];
- if (RegOut == 0) {
- RegOut = FuncInfo.CreateRegs(C);
- // We need to zero/sign extend ConstantInt phi operands to match
- // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
- ISD::NodeType ExtendType = ISD::ANY_EXTEND;
- if (auto *CI = dyn_cast<ConstantInt>(C))
- ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
- : ISD::ZERO_EXTEND;
- CopyValueToVirtualRegister(C, RegOut, ExtendType);
- }
- Reg = RegOut;
- } else {
- DenseMap<const Value *, Register>::iterator I =
- FuncInfo.ValueMap.find(PHIOp);
- if (I != FuncInfo.ValueMap.end())
- Reg = I->second;
- else {
- assert(isa<AllocaInst>(PHIOp) &&
- FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
- "Didn't codegen value into a register!??");
- Reg = FuncInfo.CreateRegs(PHIOp);
- CopyValueToVirtualRegister(PHIOp, Reg);
- }
- }
- // Remember that this register needs to added to the machine PHI node as
- // the input for this MBB.
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
- for (EVT VT : ValueVTs) {
- const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
- for (unsigned i = 0; i != NumRegisters; ++i)
- FuncInfo.PHINodesToUpdate.push_back(
- std::make_pair(&*MBBI++, Reg + i));
- Reg += NumRegisters;
- }
- }
- }
- ConstantsOut.clear();
- }
- MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
- MachineFunction::iterator I(MBB);
- if (++I == FuncInfo.MF->end())
- return nullptr;
- return &*I;
- }
- /// During lowering new call nodes can be created (such as memset, etc.).
- /// Those will become new roots of the current DAG, but complications arise
- /// when they are tail calls. In such cases, the call lowering will update
- /// the root, but the builder still needs to know that a tail call has been
- /// lowered in order to avoid generating an additional return.
- void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
- // If the node is null, we do have a tail call.
- if (MaybeTC.getNode() != nullptr)
- DAG.setRoot(MaybeTC);
- else
- HasTailCall = true;
- }
- void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
- MachineBasicBlock *SwitchMBB,
- MachineBasicBlock *DefaultMBB) {
- MachineFunction *CurMF = FuncInfo.MF;
- MachineBasicBlock *NextMBB = nullptr;
- MachineFunction::iterator BBI(W.MBB);
- if (++BBI != FuncInfo.MF->end())
- NextMBB = &*BBI;
- unsigned Size = W.LastCluster - W.FirstCluster + 1;
- BranchProbabilityInfo *BPI = FuncInfo.BPI;
- if (Size == 2 && W.MBB == SwitchMBB) {
- // If any two of the cases has the same destination, and if one value
- // is the same as the other, but has one bit unset that the other has set,
- // use bit manipulation to do two compares at once. For example:
- // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
- // TODO: This could be extended to merge any 2 cases in switches with 3
- // cases.
- // TODO: Handle cases where W.CaseBB != SwitchBB.
- CaseCluster &Small = *W.FirstCluster;
- CaseCluster &Big = *W.LastCluster;
- if (Small.Low == Small.High && Big.Low == Big.High &&
- Small.MBB == Big.MBB) {
- const APInt &SmallValue = Small.Low->getValue();
- const APInt &BigValue = Big.Low->getValue();
- // Check that there is only one bit different.
- APInt CommonBit = BigValue ^ SmallValue;
- if (CommonBit.isPowerOf2()) {
- SDValue CondLHS = getValue(Cond);
- EVT VT = CondLHS.getValueType();
- SDLoc DL = getCurSDLoc();
- SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
- DAG.getConstant(CommonBit, DL, VT));
- SDValue Cond = DAG.getSetCC(
- DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
- ISD::SETEQ);
- // Update successor info.
- // Both Small and Big will jump to Small.BB, so we sum up the
- // probabilities.
- addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
- if (BPI)
- addSuccessorWithProb(
- SwitchMBB, DefaultMBB,
- // The default destination is the first successor in IR.
- BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
- else
- addSuccessorWithProb(SwitchMBB, DefaultMBB);
- // Insert the true branch.
- SDValue BrCond =
- DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
- DAG.getBasicBlock(Small.MBB));
- // Insert the false branch.
- BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
- DAG.getBasicBlock(DefaultMBB));
- DAG.setRoot(BrCond);
- return;
- }
- }
- }
- if (TM.getOptLevel() != CodeGenOpt::None) {
- // Here, we order cases by probability so the most likely case will be
- // checked first. However, two clusters can have the same probability in
- // which case their relative ordering is non-deterministic. So we use Low
- // as a tie-breaker as clusters are guaranteed to never overlap.
- llvm::sort(W.FirstCluster, W.LastCluster + 1,
- [](const CaseCluster &a, const CaseCluster &b) {
- return a.Prob != b.Prob ?
- a.Prob > b.Prob :
- a.Low->getValue().slt(b.Low->getValue());
- });
- // Rearrange the case blocks so that the last one falls through if possible
- // without changing the order of probabilities.
- for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
- --I;
- if (I->Prob > W.LastCluster->Prob)
- break;
- if (I->Kind == CC_Range && I->MBB == NextMBB) {
- std::swap(*I, *W.LastCluster);
- break;
- }
- }
- }
- // Compute total probability.
- BranchProbability DefaultProb = W.DefaultProb;
- BranchProbability UnhandledProbs = DefaultProb;
- for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
- UnhandledProbs += I->Prob;
- MachineBasicBlock *CurMBB = W.MBB;
- for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
- bool FallthroughUnreachable = false;
- MachineBasicBlock *Fallthrough;
- if (I == W.LastCluster) {
- // For the last cluster, fall through to the default destination.
- Fallthrough = DefaultMBB;
- FallthroughUnreachable = isa<UnreachableInst>(
- DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
- } else {
- Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
- CurMF->insert(BBI, Fallthrough);
- // Put Cond in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(Cond);
- }
- UnhandledProbs -= I->Prob;
- switch (I->Kind) {
- case CC_JumpTable: {
- // FIXME: Optimize away range check based on pivot comparisons.
- JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
- SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
- // The jump block hasn't been inserted yet; insert it here.
- MachineBasicBlock *JumpMBB = JT->MBB;
- CurMF->insert(BBI, JumpMBB);
- auto JumpProb = I->Prob;
- auto FallthroughProb = UnhandledProbs;
- // If the default statement is a target of the jump table, we evenly
- // distribute the default probability to successors of CurMBB. Also
- // update the probability on the edge from JumpMBB to Fallthrough.
- for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
- SE = JumpMBB->succ_end();
- SI != SE; ++SI) {
- if (*SI == DefaultMBB) {
- JumpProb += DefaultProb / 2;
- FallthroughProb -= DefaultProb / 2;
- JumpMBB->setSuccProbability(SI, DefaultProb / 2);
- JumpMBB->normalizeSuccProbs();
- break;
- }
- }
- if (FallthroughUnreachable)
- JTH->FallthroughUnreachable = true;
- if (!JTH->FallthroughUnreachable)
- addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
- addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
- CurMBB->normalizeSuccProbs();
- // The jump table header will be inserted in our current block, do the
- // range check, and fall through to our fallthrough block.
- JTH->HeaderBB = CurMBB;
- JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
- // If we're in the right place, emit the jump table header right now.
- if (CurMBB == SwitchMBB) {
- visitJumpTableHeader(*JT, *JTH, SwitchMBB);
- JTH->Emitted = true;
- }
- break;
- }
- case CC_BitTests: {
- // FIXME: Optimize away range check based on pivot comparisons.
- BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
- // The bit test blocks haven't been inserted yet; insert them here.
- for (BitTestCase &BTC : BTB->Cases)
- CurMF->insert(BBI, BTC.ThisBB);
- // Fill in fields of the BitTestBlock.
- BTB->Parent = CurMBB;
- BTB->Default = Fallthrough;
- BTB->DefaultProb = UnhandledProbs;
- // If the cases in bit test don't form a contiguous range, we evenly
- // distribute the probability on the edge to Fallthrough to two
- // successors of CurMBB.
- if (!BTB->ContiguousRange) {
- BTB->Prob += DefaultProb / 2;
- BTB->DefaultProb -= DefaultProb / 2;
- }
- if (FallthroughUnreachable)
- BTB->FallthroughUnreachable = true;
- // If we're in the right place, emit the bit test header right now.
- if (CurMBB == SwitchMBB) {
- visitBitTestHeader(*BTB, SwitchMBB);
- BTB->Emitted = true;
- }
- break;
- }
- case CC_Range: {
- const Value *RHS, *LHS, *MHS;
- ISD::CondCode CC;
- if (I->Low == I->High) {
- // Check Cond == I->Low.
- CC = ISD::SETEQ;
- LHS = Cond;
- RHS=I->Low;
- MHS = nullptr;
- } else {
- // Check I->Low <= Cond <= I->High.
- CC = ISD::SETLE;
- LHS = I->Low;
- MHS = Cond;
- RHS = I->High;
- }
- // If Fallthrough is unreachable, fold away the comparison.
- if (FallthroughUnreachable)
- CC = ISD::SETTRUE;
- // The false probability is the sum of all unhandled cases.
- CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
- getCurSDLoc(), I->Prob, UnhandledProbs);
- if (CurMBB == SwitchMBB)
- visitSwitchCase(CB, SwitchMBB);
- else
- SL->SwitchCases.push_back(CB);
- break;
- }
- }
- CurMBB = Fallthrough;
- }
- }
- unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
- CaseClusterIt First,
- CaseClusterIt Last) {
- return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
- if (X.Prob != CC.Prob)
- return X.Prob > CC.Prob;
- // Ties are broken by comparing the case value.
- return X.Low->getValue().slt(CC.Low->getValue());
- });
- }
- void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
- const SwitchWorkListItem &W,
- Value *Cond,
- MachineBasicBlock *SwitchMBB) {
- assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
- "Clusters not sorted?");
- assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
- // Balance the tree based on branch probabilities to create a near-optimal (in
- // terms of search time given key frequency) binary search tree. See e.g. Kurt
- // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
- CaseClusterIt LastLeft = W.FirstCluster;
- CaseClusterIt FirstRight = W.LastCluster;
- auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
- auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
- // Move LastLeft and FirstRight towards each other from opposite directions to
- // find a partitioning of the clusters which balances the probability on both
- // sides. If LeftProb and RightProb are equal, alternate which side is
- // taken to ensure 0-probability nodes are distributed evenly.
- unsigned I = 0;
- while (LastLeft + 1 < FirstRight) {
- if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
- LeftProb += (++LastLeft)->Prob;
- else
- RightProb += (--FirstRight)->Prob;
- I++;
- }
- while (true) {
- // Our binary search tree differs from a typical BST in that ours can have up
- // to three values in each leaf. The pivot selection above doesn't take that
- // into account, which means the tree might require more nodes and be less
- // efficient. We compensate for this here.
- unsigned NumLeft = LastLeft - W.FirstCluster + 1;
- unsigned NumRight = W.LastCluster - FirstRight + 1;
- if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
- // If one side has less than 3 clusters, and the other has more than 3,
- // consider taking a cluster from the other side.
- if (NumLeft < NumRight) {
- // Consider moving the first cluster on the right to the left side.
- CaseCluster &CC = *FirstRight;
- unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
- unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
- if (LeftSideRank <= RightSideRank) {
- // Moving the cluster to the left does not demote it.
- ++LastLeft;
- ++FirstRight;
- continue;
- }
- } else {
- assert(NumRight < NumLeft);
- // Consider moving the last element on the left to the right side.
- CaseCluster &CC = *LastLeft;
- unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
- unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
- if (RightSideRank <= LeftSideRank) {
- // Moving the cluster to the right does not demot it.
- --LastLeft;
- --FirstRight;
- continue;
- }
- }
- }
- break;
- }
- assert(LastLeft + 1 == FirstRight);
- assert(LastLeft >= W.FirstCluster);
- assert(FirstRight <= W.LastCluster);
- // Use the first element on the right as pivot since we will make less-than
- // comparisons against it.
- CaseClusterIt PivotCluster = FirstRight;
- assert(PivotCluster > W.FirstCluster);
- assert(PivotCluster <= W.LastCluster);
- CaseClusterIt FirstLeft = W.FirstCluster;
- CaseClusterIt LastRight = W.LastCluster;
- const ConstantInt *Pivot = PivotCluster->Low;
- // New blocks will be inserted immediately after the current one.
- MachineFunction::iterator BBI(W.MBB);
- ++BBI;
- // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
- // we can branch to its destination directly if it's squeezed exactly in
- // between the known lower bound and Pivot - 1.
- MachineBasicBlock *LeftMBB;
- if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
- FirstLeft->Low == W.GE &&
- (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
- LeftMBB = FirstLeft->MBB;
- } else {
- LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
- FuncInfo.MF->insert(BBI, LeftMBB);
- WorkList.push_back(
- {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
- // Put Cond in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(Cond);
- }
- // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
- // single cluster, RHS.Low == Pivot, and we can branch to its destination
- // directly if RHS.High equals the current upper bound.
- MachineBasicBlock *RightMBB;
- if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
- W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
- RightMBB = FirstRight->MBB;
- } else {
- RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
- FuncInfo.MF->insert(BBI, RightMBB);
- WorkList.push_back(
- {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
- // Put Cond in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(Cond);
- }
- // Create the CaseBlock record that will be used to lower the branch.
- CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
- getCurSDLoc(), LeftProb, RightProb);
- if (W.MBB == SwitchMBB)
- visitSwitchCase(CB, SwitchMBB);
- else
- SL->SwitchCases.push_back(CB);
- }
- // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
- // from the swith statement.
- static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
- BranchProbability PeeledCaseProb) {
- if (PeeledCaseProb == BranchProbability::getOne())
- return BranchProbability::getZero();
- BranchProbability SwitchProb = PeeledCaseProb.getCompl();
- uint32_t Numerator = CaseProb.getNumerator();
- uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
- return BranchProbability(Numerator, std::max(Numerator, Denominator));
- }
- // Try to peel the top probability case if it exceeds the threshold.
- // Return current MachineBasicBlock for the switch statement if the peeling
- // does not occur.
- // If the peeling is performed, return the newly created MachineBasicBlock
- // for the peeled switch statement. Also update Clusters to remove the peeled
- // case. PeeledCaseProb is the BranchProbability for the peeled case.
- MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
- const SwitchInst &SI, CaseClusterVector &Clusters,
- BranchProbability &PeeledCaseProb) {
- MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
- // Don't perform if there is only one cluster or optimizing for size.
- if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
- TM.getOptLevel() == CodeGenOpt::None ||
- SwitchMBB->getParent()->getFunction().hasMinSize())
- return SwitchMBB;
- BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
- unsigned PeeledCaseIndex = 0;
- bool SwitchPeeled = false;
- for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
- CaseCluster &CC = Clusters[Index];
- if (CC.Prob < TopCaseProb)
- continue;
- TopCaseProb = CC.Prob;
- PeeledCaseIndex = Index;
- SwitchPeeled = true;
- }
- if (!SwitchPeeled)
- return SwitchMBB;
- LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
- << TopCaseProb << "\n");
- // Record the MBB for the peeled switch statement.
- MachineFunction::iterator BBI(SwitchMBB);
- ++BBI;
- MachineBasicBlock *PeeledSwitchMBB =
- FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
- FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
- ExportFromCurrentBlock(SI.getCondition());
- auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
- SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
- nullptr, nullptr, TopCaseProb.getCompl()};
- lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
- Clusters.erase(PeeledCaseIt);
- for (CaseCluster &CC : Clusters) {
- LLVM_DEBUG(
- dbgs() << "Scale the probablity for one cluster, before scaling: "
- << CC.Prob << "\n");
- CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
- LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
- }
- PeeledCaseProb = TopCaseProb;
- return PeeledSwitchMBB;
- }
- void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
- // Extract cases from the switch.
- BranchProbabilityInfo *BPI = FuncInfo.BPI;
- CaseClusterVector Clusters;
- Clusters.reserve(SI.getNumCases());
- for (auto I : SI.cases()) {
- MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
- const ConstantInt *CaseVal = I.getCaseValue();
- BranchProbability Prob =
- BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
- : BranchProbability(1, SI.getNumCases() + 1);
- Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
- }
- MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
- // Cluster adjacent cases with the same destination. We do this at all
- // optimization levels because it's cheap to do and will make codegen faster
- // if there are many clusters.
- sortAndRangeify(Clusters);
- // The branch probablity of the peeled case.
- BranchProbability PeeledCaseProb = BranchProbability::getZero();
- MachineBasicBlock *PeeledSwitchMBB =
- peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
- // If there is only the default destination, jump there directly.
- MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
- if (Clusters.empty()) {
- assert(PeeledSwitchMBB == SwitchMBB);
- SwitchMBB->addSuccessor(DefaultMBB);
- if (DefaultMBB != NextBlock(SwitchMBB)) {
- DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
- getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
- }
- return;
- }
- SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
- SL->findBitTestClusters(Clusters, &SI);
- LLVM_DEBUG({
- dbgs() << "Case clusters: ";
- for (const CaseCluster &C : Clusters) {
- if (C.Kind == CC_JumpTable)
- dbgs() << "JT:";
- if (C.Kind == CC_BitTests)
- dbgs() << "BT:";
- C.Low->getValue().print(dbgs(), true);
- if (C.Low != C.High) {
- dbgs() << '-';
- C.High->getValue().print(dbgs(), true);
- }
- dbgs() << ' ';
- }
- dbgs() << '\n';
- });
- assert(!Clusters.empty());
- SwitchWorkList WorkList;
- CaseClusterIt First = Clusters.begin();
- CaseClusterIt Last = Clusters.end() - 1;
- auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
- // Scale the branchprobability for DefaultMBB if the peel occurs and
- // DefaultMBB is not replaced.
- if (PeeledCaseProb != BranchProbability::getZero() &&
- DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
- DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
- WorkList.push_back(
- {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
- while (!WorkList.empty()) {
- SwitchWorkListItem W = WorkList.pop_back_val();
- unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
- if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
- !DefaultMBB->getParent()->getFunction().hasMinSize()) {
- // For optimized builds, lower large range as a balanced binary tree.
- splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
- continue;
- }
- lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
- }
- }
- void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- auto DL = getCurSDLoc();
- EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- setValue(&I, DAG.getStepVector(DL, ResultVT));
- }
- void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- SDLoc DL = getCurSDLoc();
- SDValue V = getValue(I.getOperand(0));
- assert(VT == V.getValueType() && "Malformed vector.reverse!");
- if (VT.isScalableVector()) {
- setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
- return;
- }
- // Use VECTOR_SHUFFLE for the fixed-length vector
- // to maintain existing behavior.
- SmallVector<int, 8> Mask;
- unsigned NumElts = VT.getVectorMinNumElements();
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(NumElts - 1 - i);
- setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
- }
- void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
- ValueVTs);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0) return;
- SmallVector<SDValue, 4> Values(NumValues);
- SDValue Op = getValue(I.getOperand(0));
- for (unsigned i = 0; i != NumValues; ++i)
- Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
- SDValue(Op.getNode(), Op.getResNo() + i));
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
- DAG.getVTList(ValueVTs), Values));
- }
- void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- SDLoc DL = getCurSDLoc();
- SDValue V1 = getValue(I.getOperand(0));
- SDValue V2 = getValue(I.getOperand(1));
- int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
- // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
- if (VT.isScalableVector()) {
- MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
- setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
- DAG.getConstant(Imm, DL, IdxVT)));
- return;
- }
- unsigned NumElts = VT.getVectorNumElements();
- uint64_t Idx = (NumElts + Imm) % NumElts;
- // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
- SmallVector<int, 8> Mask;
- for (unsigned i = 0; i < NumElts; ++i)
- Mask.push_back(Idx + i);
- setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
- }
|