123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722 |
- //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the SelectionDAG::LegalizeVectors method.
- //
- // The vector legalizer looks for vector operations which might need to be
- // scalarized and legalizes them. This is a separate step from Legalize because
- // scalarizing can introduce illegal types. For example, suppose we have an
- // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
- // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
- // operation, which introduces nodes with the illegal type i64 which must be
- // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
- // the operation must be unrolled, which introduces nodes with the illegal
- // type i8 which must be promoted.
- //
- // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
- // or operations that happen to take a vector which are custom-lowered;
- // the legalization for such operations never produces nodes
- // with illegal types, so it's okay to put off legalizing them until
- // SelectionDAG::Legalize runs.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/CodeGen/ISDOpcodes.h"
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/CodeGen/SelectionDAGNodes.h"
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/CodeGen/ValueTypes.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MachineValueType.h"
- #include <cassert>
- #include <cstdint>
- #include <iterator>
- #include <utility>
- using namespace llvm;
- #define DEBUG_TYPE "legalizevectorops"
- namespace {
- class VectorLegalizer {
- SelectionDAG& DAG;
- const TargetLowering &TLI;
- bool Changed = false; // Keep track of whether anything changed
- /// For nodes that are of legal width, and that have more than one use, this
- /// map indicates what regularized operand to use. This allows us to avoid
- /// legalizing the same thing more than once.
- SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
- /// Adds a node to the translation cache.
- void AddLegalizedOperand(SDValue From, SDValue To) {
- LegalizedNodes.insert(std::make_pair(From, To));
- // If someone requests legalization of the new node, return itself.
- if (From != To)
- LegalizedNodes.insert(std::make_pair(To, To));
- }
- /// Legalizes the given node.
- SDValue LegalizeOp(SDValue Op);
- /// Assuming the node is legal, "legalize" the results.
- SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
- /// Make sure Results are legal and update the translation cache.
- SDValue RecursivelyLegalizeResults(SDValue Op,
- MutableArrayRef<SDValue> Results);
- /// Wrapper to interface LowerOperation with a vector of Results.
- /// Returns false if the target wants to use default expansion. Otherwise
- /// returns true. If return is true and the Results are empty, then the
- /// target wants to keep the input node as is.
- bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
- /// Implements unrolling a VSETCC.
- SDValue UnrollVSETCC(SDNode *Node);
- /// Implement expand-based legalization of vector operations.
- ///
- /// This is just a high-level routine to dispatch to specific code paths for
- /// operations to legalize them.
- void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
- /// FP_TO_SINT isn't legal.
- void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
- /// SINT_TO_FLOAT and SHR on vectors isn't legal.
- void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
- SDValue ExpandSEXTINREG(SDNode *Node);
- /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
- ///
- /// Shuffles the low lanes of the operand into place and bitcasts to the proper
- /// type. The contents of the bits in the extended part of each element are
- /// undef.
- SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
- /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
- ///
- /// Shuffles the low lanes of the operand into place, bitcasts to the proper
- /// type, then shifts left and arithmetic shifts right to introduce a sign
- /// extension.
- SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
- /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
- ///
- /// Shuffles the low lanes of the operand into place and blends zeros into
- /// the remaining lanes, finally bitcasting to the proper type.
- SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
- /// Expand bswap of vectors into a shuffle if legal.
- SDValue ExpandBSWAP(SDNode *Node);
- /// Implement vselect in terms of XOR, AND, OR when blend is not
- /// supported by the target.
- SDValue ExpandVSELECT(SDNode *Node);
- SDValue ExpandVP_SELECT(SDNode *Node);
- SDValue ExpandVP_MERGE(SDNode *Node);
- SDValue ExpandVP_REM(SDNode *Node);
- SDValue ExpandSELECT(SDNode *Node);
- std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
- SDValue ExpandStore(SDNode *N);
- SDValue ExpandFNEG(SDNode *Node);
- void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- /// Implements vector promotion.
- ///
- /// This is essentially just bitcasting the operands to a different type and
- /// bitcasting the result back to the original type.
- void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- /// Implements [SU]INT_TO_FP vector promotion.
- ///
- /// This is a [zs]ext of the input operand to a larger integer type.
- void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- /// Implements FP_TO_[SU]INT vector promotion of the result type.
- ///
- /// It is promoted to a larger integer type. The result is then
- /// truncated back to the original type.
- void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
- public:
- VectorLegalizer(SelectionDAG& dag) :
- DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
- /// Begin legalizer the vector operations in the DAG.
- bool Run();
- };
- } // end anonymous namespace
- bool VectorLegalizer::Run() {
- // Before we start legalizing vector nodes, check if there are any vectors.
- bool HasVectors = false;
- for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
- E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
- // Check if the values of the nodes contain vectors. We don't need to check
- // the operands because we are going to check their values at some point.
- HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
- // If we found a vector node we can start the legalization.
- if (HasVectors)
- break;
- }
- // If this basic block has no vectors then no need to legalize vectors.
- if (!HasVectors)
- return false;
- // The legalize process is inherently a bottom-up recursive process (users
- // legalize their uses before themselves). Given infinite stack space, we
- // could just start legalizing on the root and traverse the whole graph. In
- // practice however, this causes us to run out of stack space on large basic
- // blocks. To avoid this problem, compute an ordering of the nodes where each
- // node is only legalized after all of its operands are legalized.
- DAG.AssignTopologicalOrder();
- for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
- E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
- LegalizeOp(SDValue(&*I, 0));
- // Finally, it's possible the root changed. Get the new root.
- SDValue OldRoot = DAG.getRoot();
- assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
- DAG.setRoot(LegalizedNodes[OldRoot]);
- LegalizedNodes.clear();
- // Remove dead nodes now.
- DAG.RemoveDeadNodes();
- return Changed;
- }
- SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
- assert(Op->getNumValues() == Result->getNumValues() &&
- "Unexpected number of results");
- // Generic legalization: just pass the operand through.
- for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
- AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
- return SDValue(Result, Op.getResNo());
- }
- SDValue
- VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
- MutableArrayRef<SDValue> Results) {
- assert(Results.size() == Op->getNumValues() &&
- "Unexpected number of results");
- // Make sure that the generated code is itself legal.
- for (unsigned i = 0, e = Results.size(); i != e; ++i) {
- Results[i] = LegalizeOp(Results[i]);
- AddLegalizedOperand(Op.getValue(i), Results[i]);
- }
- return Results[Op.getResNo()];
- }
- SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
- // Note that LegalizeOp may be reentered even from single-use nodes, which
- // means that we always must cache transformed nodes.
- DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
- if (I != LegalizedNodes.end()) return I->second;
- // Legalize the operands
- SmallVector<SDValue, 8> Ops;
- for (const SDValue &Oper : Op->op_values())
- Ops.push_back(LegalizeOp(Oper));
- SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
- bool HasVectorValueOrOp =
- llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
- llvm::any_of(Node->op_values(),
- [](SDValue O) { return O.getValueType().isVector(); });
- if (!HasVectorValueOrOp)
- return TranslateLegalizeResults(Op, Node);
- TargetLowering::LegalizeAction Action = TargetLowering::Legal;
- EVT ValVT;
- switch (Op.getOpcode()) {
- default:
- return TranslateLegalizeResults(Op, Node);
- case ISD::LOAD: {
- LoadSDNode *LD = cast<LoadSDNode>(Node);
- ISD::LoadExtType ExtType = LD->getExtensionType();
- EVT LoadedVT = LD->getMemoryVT();
- if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD)
- Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT);
- break;
- }
- case ISD::STORE: {
- StoreSDNode *ST = cast<StoreSDNode>(Node);
- EVT StVT = ST->getMemoryVT();
- MVT ValVT = ST->getValue().getSimpleValueType();
- if (StVT.isVector() && ST->isTruncatingStore())
- Action = TLI.getTruncStoreAction(ValVT, StVT);
- break;
- }
- case ISD::MERGE_VALUES:
- Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
- // This operation lies about being legal: when it claims to be legal,
- // it should actually be expanded.
- if (Action == TargetLowering::Legal)
- Action = TargetLowering::Expand;
- break;
- #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
- case ISD::STRICT_##DAGN:
- #include "llvm/IR/ConstrainedOps.def"
- ValVT = Node->getValueType(0);
- if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
- Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
- ValVT = Node->getOperand(1).getValueType();
- Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
- // If we're asked to expand a strict vector floating-point operation,
- // by default we're going to simply unroll it. That is usually the
- // best approach, except in the case where the resulting strict (scalar)
- // operations would themselves use the fallback mutation to non-strict.
- // In that specific case, just do the fallback on the vector op.
- if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
- TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
- TargetLowering::Legal) {
- EVT EltVT = ValVT.getVectorElementType();
- if (TLI.getOperationAction(Node->getOpcode(), EltVT)
- == TargetLowering::Expand &&
- TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
- == TargetLowering::Legal)
- Action = TargetLowering::Legal;
- }
- break;
- case ISD::ADD:
- case ISD::SUB:
- case ISD::MUL:
- case ISD::MULHS:
- case ISD::MULHU:
- case ISD::SDIV:
- case ISD::UDIV:
- case ISD::SREM:
- case ISD::UREM:
- case ISD::SDIVREM:
- case ISD::UDIVREM:
- case ISD::FADD:
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FREM:
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR:
- case ISD::SHL:
- case ISD::SRA:
- case ISD::SRL:
- case ISD::FSHL:
- case ISD::FSHR:
- case ISD::ROTL:
- case ISD::ROTR:
- case ISD::ABS:
- case ISD::BSWAP:
- case ISD::BITREVERSE:
- case ISD::CTLZ:
- case ISD::CTTZ:
- case ISD::CTLZ_ZERO_UNDEF:
- case ISD::CTTZ_ZERO_UNDEF:
- case ISD::CTPOP:
- case ISD::SELECT:
- case ISD::VSELECT:
- case ISD::SELECT_CC:
- case ISD::ZERO_EXTEND:
- case ISD::ANY_EXTEND:
- case ISD::TRUNCATE:
- case ISD::SIGN_EXTEND:
- case ISD::FP_TO_SINT:
- case ISD::FP_TO_UINT:
- case ISD::FNEG:
- case ISD::FABS:
- case ISD::FMINNUM:
- case ISD::FMAXNUM:
- case ISD::FMINNUM_IEEE:
- case ISD::FMAXNUM_IEEE:
- case ISD::FMINIMUM:
- case ISD::FMAXIMUM:
- case ISD::FCOPYSIGN:
- case ISD::FSQRT:
- case ISD::FSIN:
- case ISD::FCOS:
- case ISD::FPOWI:
- case ISD::FPOW:
- case ISD::FLOG:
- case ISD::FLOG2:
- case ISD::FLOG10:
- case ISD::FEXP:
- case ISD::FEXP2:
- case ISD::FCEIL:
- case ISD::FTRUNC:
- case ISD::FRINT:
- case ISD::FNEARBYINT:
- case ISD::FROUND:
- case ISD::FROUNDEVEN:
- case ISD::FFLOOR:
- case ISD::FP_ROUND:
- case ISD::FP_EXTEND:
- case ISD::FMA:
- case ISD::SIGN_EXTEND_INREG:
- case ISD::ANY_EXTEND_VECTOR_INREG:
- case ISD::SIGN_EXTEND_VECTOR_INREG:
- case ISD::ZERO_EXTEND_VECTOR_INREG:
- case ISD::SMIN:
- case ISD::SMAX:
- case ISD::UMIN:
- case ISD::UMAX:
- case ISD::SMUL_LOHI:
- case ISD::UMUL_LOHI:
- case ISD::SADDO:
- case ISD::UADDO:
- case ISD::SSUBO:
- case ISD::USUBO:
- case ISD::SMULO:
- case ISD::UMULO:
- case ISD::FCANONICALIZE:
- case ISD::SADDSAT:
- case ISD::UADDSAT:
- case ISD::SSUBSAT:
- case ISD::USUBSAT:
- case ISD::SSHLSAT:
- case ISD::USHLSAT:
- case ISD::FP_TO_SINT_SAT:
- case ISD::FP_TO_UINT_SAT:
- case ISD::MGATHER:
- Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
- break;
- case ISD::SMULFIX:
- case ISD::SMULFIXSAT:
- case ISD::UMULFIX:
- case ISD::UMULFIXSAT:
- case ISD::SDIVFIX:
- case ISD::SDIVFIXSAT:
- case ISD::UDIVFIX:
- case ISD::UDIVFIXSAT: {
- unsigned Scale = Node->getConstantOperandVal(2);
- Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
- Node->getValueType(0), Scale);
- break;
- }
- case ISD::SINT_TO_FP:
- case ISD::UINT_TO_FP:
- case ISD::VECREDUCE_ADD:
- case ISD::VECREDUCE_MUL:
- case ISD::VECREDUCE_AND:
- case ISD::VECREDUCE_OR:
- case ISD::VECREDUCE_XOR:
- case ISD::VECREDUCE_SMAX:
- case ISD::VECREDUCE_SMIN:
- case ISD::VECREDUCE_UMAX:
- case ISD::VECREDUCE_UMIN:
- case ISD::VECREDUCE_FADD:
- case ISD::VECREDUCE_FMUL:
- case ISD::VECREDUCE_FMAX:
- case ISD::VECREDUCE_FMIN:
- Action = TLI.getOperationAction(Node->getOpcode(),
- Node->getOperand(0).getValueType());
- break;
- case ISD::VECREDUCE_SEQ_FADD:
- case ISD::VECREDUCE_SEQ_FMUL:
- Action = TLI.getOperationAction(Node->getOpcode(),
- Node->getOperand(1).getValueType());
- break;
- case ISD::SETCC: {
- MVT OpVT = Node->getOperand(0).getSimpleValueType();
- ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
- Action = TLI.getCondCodeAction(CCCode, OpVT);
- if (Action == TargetLowering::Legal)
- Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
- break;
- }
- #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...) \
- case ISD::VPID: { \
- EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS)) \
- : Node->getOperand(LEGALPOS).getValueType(); \
- if (ISD::VPID == ISD::VP_SETCC) { \
- ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); \
- Action = TLI.getCondCodeAction(CCCode, LegalizeVT.getSimpleVT()); \
- if (Action != TargetLowering::Legal) \
- break; \
- } \
- Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT); \
- } break;
- #include "llvm/IR/VPIntrinsics.def"
- }
- LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
- SmallVector<SDValue, 8> ResultVals;
- switch (Action) {
- default: llvm_unreachable("This action is not supported yet!");
- case TargetLowering::Promote:
- assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) &&
- "This action is not supported yet!");
- LLVM_DEBUG(dbgs() << "Promoting\n");
- Promote(Node, ResultVals);
- assert(!ResultVals.empty() && "No results for promotion?");
- break;
- case TargetLowering::Legal:
- LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
- break;
- case TargetLowering::Custom:
- LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
- if (LowerOperationWrapper(Node, ResultVals))
- break;
- LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
- [[fallthrough]];
- case TargetLowering::Expand:
- LLVM_DEBUG(dbgs() << "Expanding\n");
- Expand(Node, ResultVals);
- break;
- }
- if (ResultVals.empty())
- return TranslateLegalizeResults(Op, Node);
- Changed = true;
- return RecursivelyLegalizeResults(Op, ResultVals);
- }
- // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we
- // merge them somehow?
- bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
- if (!Res.getNode())
- return false;
- if (Res == SDValue(Node, 0))
- return true;
- // If the original node has one result, take the return value from
- // LowerOperation as is. It might not be result number 0.
- if (Node->getNumValues() == 1) {
- Results.push_back(Res);
- return true;
- }
- // If the original node has multiple results, then the return node should
- // have the same number of results.
- assert((Node->getNumValues() == Res->getNumValues()) &&
- "Lowering returned the wrong number of results!");
- // Places new result values base on N result number.
- for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
- Results.push_back(Res.getValue(I));
- return true;
- }
- void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
- // For a few operations there is a specific concept for promotion based on
- // the operand's type.
- switch (Node->getOpcode()) {
- case ISD::SINT_TO_FP:
- case ISD::UINT_TO_FP:
- case ISD::STRICT_SINT_TO_FP:
- case ISD::STRICT_UINT_TO_FP:
- // "Promote" the operation by extending the operand.
- PromoteINT_TO_FP(Node, Results);
- return;
- case ISD::FP_TO_UINT:
- case ISD::FP_TO_SINT:
- case ISD::STRICT_FP_TO_UINT:
- case ISD::STRICT_FP_TO_SINT:
- // Promote the operation by extending the operand.
- PromoteFP_TO_INT(Node, Results);
- return;
- case ISD::FP_ROUND:
- case ISD::FP_EXTEND:
- // These operations are used to do promotion so they can't be promoted
- // themselves.
- llvm_unreachable("Don't know how to promote this operation!");
- }
- // There are currently two cases of vector promotion:
- // 1) Bitcasting a vector of integers to a different type to a vector of the
- // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
- // 2) Extending a vector of floats to a vector of the same number of larger
- // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
- assert(Node->getNumValues() == 1 &&
- "Can't promote a vector with multiple results!");
- MVT VT = Node->getSimpleValueType(0);
- MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
- SDLoc dl(Node);
- SmallVector<SDValue, 4> Operands(Node->getNumOperands());
- for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
- if (Node->getOperand(j).getValueType().isVector())
- if (Node->getOperand(j)
- .getValueType()
- .getVectorElementType()
- .isFloatingPoint() &&
- NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
- Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
- else
- Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
- else
- Operands[j] = Node->getOperand(j);
- }
- SDValue Res =
- DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
- if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
- (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
- NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
- Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res,
- DAG.getIntPtrConstant(0, dl, /*isTarget=*/true));
- else
- Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
- Results.push_back(Res);
- }
- void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- // INT_TO_FP operations may require the input operand be promoted even
- // when the type is otherwise legal.
- bool IsStrict = Node->isStrictFPOpcode();
- MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
- MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
- assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
- "Vectors have different number of elements!");
- SDLoc dl(Node);
- SmallVector<SDValue, 4> Operands(Node->getNumOperands());
- unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
- Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
- ? ISD::ZERO_EXTEND
- : ISD::SIGN_EXTEND;
- for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
- if (Node->getOperand(j).getValueType().isVector())
- Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
- else
- Operands[j] = Node->getOperand(j);
- }
- if (IsStrict) {
- SDValue Res = DAG.getNode(Node->getOpcode(), dl,
- {Node->getValueType(0), MVT::Other}, Operands);
- Results.push_back(Res);
- Results.push_back(Res.getValue(1));
- return;
- }
- SDValue Res =
- DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
- Results.push_back(Res);
- }
- // For FP_TO_INT we promote the result type to a vector type with wider
- // elements and then truncate the result. This is different from the default
- // PromoteVector which uses bitcast to promote thus assumning that the
- // promoted vector type has the same overall size.
- void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- MVT VT = Node->getSimpleValueType(0);
- MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
- bool IsStrict = Node->isStrictFPOpcode();
- assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
- "Vectors have different number of elements!");
- unsigned NewOpc = Node->getOpcode();
- // Change FP_TO_UINT to FP_TO_SINT if possible.
- // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
- if (NewOpc == ISD::FP_TO_UINT &&
- TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
- NewOpc = ISD::FP_TO_SINT;
- if (NewOpc == ISD::STRICT_FP_TO_UINT &&
- TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
- NewOpc = ISD::STRICT_FP_TO_SINT;
- SDLoc dl(Node);
- SDValue Promoted, Chain;
- if (IsStrict) {
- Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
- {Node->getOperand(0), Node->getOperand(1)});
- Chain = Promoted.getValue(1);
- } else
- Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
- // Assert that the converted value fits in the original type. If it doesn't
- // (eg: because the value being converted is too big), then the result of the
- // original operation was undefined anyway, so the assert is still correct.
- if (Node->getOpcode() == ISD::FP_TO_UINT ||
- Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
- NewOpc = ISD::AssertZext;
- else
- NewOpc = ISD::AssertSext;
- Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
- DAG.getValueType(VT.getScalarType()));
- Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
- Results.push_back(Promoted);
- if (IsStrict)
- Results.push_back(Chain);
- }
- std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
- LoadSDNode *LD = cast<LoadSDNode>(N);
- return TLI.scalarizeVectorLoad(LD, DAG);
- }
- SDValue VectorLegalizer::ExpandStore(SDNode *N) {
- StoreSDNode *ST = cast<StoreSDNode>(N);
- SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
- return TF;
- }
- void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
- switch (Node->getOpcode()) {
- case ISD::LOAD: {
- std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
- Results.push_back(Tmp.first);
- Results.push_back(Tmp.second);
- return;
- }
- case ISD::STORE:
- Results.push_back(ExpandStore(Node));
- return;
- case ISD::MERGE_VALUES:
- for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
- Results.push_back(Node->getOperand(i));
- return;
- case ISD::SIGN_EXTEND_INREG:
- Results.push_back(ExpandSEXTINREG(Node));
- return;
- case ISD::ANY_EXTEND_VECTOR_INREG:
- Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
- return;
- case ISD::SIGN_EXTEND_VECTOR_INREG:
- Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
- return;
- case ISD::ZERO_EXTEND_VECTOR_INREG:
- Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
- return;
- case ISD::BSWAP:
- Results.push_back(ExpandBSWAP(Node));
- return;
- case ISD::VP_BSWAP:
- Results.push_back(TLI.expandVPBSWAP(Node, DAG));
- return;
- case ISD::VSELECT:
- Results.push_back(ExpandVSELECT(Node));
- return;
- case ISD::VP_SELECT:
- Results.push_back(ExpandVP_SELECT(Node));
- return;
- case ISD::VP_SREM:
- case ISD::VP_UREM:
- if (SDValue Expanded = ExpandVP_REM(Node)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::SELECT:
- Results.push_back(ExpandSELECT(Node));
- return;
- case ISD::SELECT_CC: {
- if (Node->getValueType(0).isScalableVector()) {
- EVT CondVT = TLI.getSetCCResultType(
- DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
- SDValue SetCC =
- DAG.getNode(ISD::SETCC, SDLoc(Node), CondVT, Node->getOperand(0),
- Node->getOperand(1), Node->getOperand(4));
- Results.push_back(DAG.getSelect(SDLoc(Node), Node->getValueType(0), SetCC,
- Node->getOperand(2),
- Node->getOperand(3)));
- return;
- }
- break;
- }
- case ISD::FP_TO_UINT:
- ExpandFP_TO_UINT(Node, Results);
- return;
- case ISD::UINT_TO_FP:
- ExpandUINT_TO_FLOAT(Node, Results);
- return;
- case ISD::FNEG:
- Results.push_back(ExpandFNEG(Node));
- return;
- case ISD::FSUB:
- ExpandFSUB(Node, Results);
- return;
- case ISD::SETCC:
- case ISD::VP_SETCC:
- ExpandSETCC(Node, Results);
- return;
- case ISD::ABS:
- if (SDValue Expanded = TLI.expandABS(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::BITREVERSE:
- ExpandBITREVERSE(Node, Results);
- return;
- case ISD::VP_BITREVERSE:
- if (SDValue Expanded = TLI.expandVPBITREVERSE(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::CTPOP:
- if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::VP_CTPOP:
- if (SDValue Expanded = TLI.expandVPCTPOP(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::CTLZ:
- case ISD::CTLZ_ZERO_UNDEF:
- if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::VP_CTLZ:
- case ISD::VP_CTLZ_ZERO_UNDEF:
- if (SDValue Expanded = TLI.expandVPCTLZ(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::CTTZ:
- case ISD::CTTZ_ZERO_UNDEF:
- if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::VP_CTTZ:
- case ISD::VP_CTTZ_ZERO_UNDEF:
- if (SDValue Expanded = TLI.expandVPCTTZ(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::FSHL:
- case ISD::VP_FSHL:
- case ISD::FSHR:
- case ISD::VP_FSHR:
- if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::ROTL:
- case ISD::ROTR:
- if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::FMINNUM:
- case ISD::FMAXNUM:
- if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::SMIN:
- case ISD::SMAX:
- case ISD::UMIN:
- case ISD::UMAX:
- if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::UADDO:
- case ISD::USUBO:
- ExpandUADDSUBO(Node, Results);
- return;
- case ISD::SADDO:
- case ISD::SSUBO:
- ExpandSADDSUBO(Node, Results);
- return;
- case ISD::UMULO:
- case ISD::SMULO:
- ExpandMULO(Node, Results);
- return;
- case ISD::USUBSAT:
- case ISD::SSUBSAT:
- case ISD::UADDSAT:
- case ISD::SADDSAT:
- if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::USHLSAT:
- case ISD::SSHLSAT:
- if (SDValue Expanded = TLI.expandShlSat(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::FP_TO_SINT_SAT:
- case ISD::FP_TO_UINT_SAT:
- // Expand the fpsosisat if it is scalable to prevent it from unrolling below.
- if (Node->getValueType(0).isScalableVector()) {
- if (SDValue Expanded = TLI.expandFP_TO_INT_SAT(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- }
- break;
- case ISD::SMULFIX:
- case ISD::UMULFIX:
- if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
- Results.push_back(Expanded);
- return;
- }
- break;
- case ISD::SMULFIXSAT:
- case ISD::UMULFIXSAT:
- // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
- // why. Maybe it results in worse codegen compared to the unroll for some
- // targets? This should probably be investigated. And if we still prefer to
- // unroll an explanation could be helpful.
- break;
- case ISD::SDIVFIX:
- case ISD::UDIVFIX:
- ExpandFixedPointDiv(Node, Results);
- return;
- case ISD::SDIVFIXSAT:
- case ISD::UDIVFIXSAT:
- break;
- #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
- case ISD::STRICT_##DAGN:
- #include "llvm/IR/ConstrainedOps.def"
- ExpandStrictFPOp(Node, Results);
- return;
- case ISD::VECREDUCE_ADD:
- case ISD::VECREDUCE_MUL:
- case ISD::VECREDUCE_AND:
- case ISD::VECREDUCE_OR:
- case ISD::VECREDUCE_XOR:
- case ISD::VECREDUCE_SMAX:
- case ISD::VECREDUCE_SMIN:
- case ISD::VECREDUCE_UMAX:
- case ISD::VECREDUCE_UMIN:
- case ISD::VECREDUCE_FADD:
- case ISD::VECREDUCE_FMUL:
- case ISD::VECREDUCE_FMAX:
- case ISD::VECREDUCE_FMIN:
- Results.push_back(TLI.expandVecReduce(Node, DAG));
- return;
- case ISD::VECREDUCE_SEQ_FADD:
- case ISD::VECREDUCE_SEQ_FMUL:
- Results.push_back(TLI.expandVecReduceSeq(Node, DAG));
- return;
- case ISD::SREM:
- case ISD::UREM:
- ExpandREM(Node, Results);
- return;
- case ISD::VP_MERGE:
- Results.push_back(ExpandVP_MERGE(Node));
- return;
- }
- Results.push_back(DAG.UnrollVectorOp(Node));
- }
- SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
- // Lower a select instruction where the condition is a scalar and the
- // operands are vectors. Lower this select to VSELECT and implement it
- // using XOR AND OR. The selector bit is broadcasted.
- EVT VT = Node->getValueType(0);
- SDLoc DL(Node);
- SDValue Mask = Node->getOperand(0);
- SDValue Op1 = Node->getOperand(1);
- SDValue Op2 = Node->getOperand(2);
- assert(VT.isVector() && !Mask.getValueType().isVector()
- && Op1.getValueType() == Op2.getValueType() && "Invalid type");
- // If we can't even use the basic vector operations of
- // AND,OR,XOR, we will have to scalarize the op.
- // Notice that the operation may be 'promoted' which means that it is
- // 'bitcasted' to another type which is handled.
- // Also, we need to be able to construct a splat vector using either
- // BUILD_VECTOR or SPLAT_VECTOR.
- // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to
- // BUILD_VECTOR?
- if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR
- : ISD::SPLAT_VECTOR,
- VT) == TargetLowering::Expand)
- return DAG.UnrollVectorOp(Node);
- // Generate a mask operand.
- EVT MaskTy = VT.changeVectorElementTypeToInteger();
- // What is the size of each element in the vector mask.
- EVT BitTy = MaskTy.getScalarType();
- Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy),
- DAG.getConstant(0, DL, BitTy));
- // Broadcast the mask so that the entire vector is all one or all zero.
- Mask = DAG.getSplat(MaskTy, DL, Mask);
- // Bitcast the operands to be the same type as the mask.
- // This is needed when we select between FP types because
- // the mask is a vector of integers.
- Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
- Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
- SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy);
- Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
- Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
- SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
- return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
- }
- SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
- EVT VT = Node->getValueType(0);
- // Make sure that the SRA and SHL instructions are available.
- if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
- return DAG.UnrollVectorOp(Node);
- SDLoc DL(Node);
- EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
- unsigned BW = VT.getScalarSizeInBits();
- unsigned OrigBW = OrigTy.getScalarSizeInBits();
- SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
- SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
- return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
- }
- // Generically expand a vector anyext in register to a shuffle of the relevant
- // lanes into the appropriate locations, with other lanes left undef.
- SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
- SDLoc DL(Node);
- EVT VT = Node->getValueType(0);
- int NumElements = VT.getVectorNumElements();
- SDValue Src = Node->getOperand(0);
- EVT SrcVT = Src.getValueType();
- int NumSrcElements = SrcVT.getVectorNumElements();
- // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
- // into a larger vector type.
- if (SrcVT.bitsLE(VT)) {
- assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
- "ANY_EXTEND_VECTOR_INREG vector size mismatch");
- NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
- SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
- NumSrcElements);
- Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
- Src, DAG.getVectorIdxConstant(0, DL));
- }
- // Build a base mask of undef shuffles.
- SmallVector<int, 16> ShuffleMask;
- ShuffleMask.resize(NumSrcElements, -1);
- // Place the extended lanes into the correct locations.
- int ExtLaneScale = NumSrcElements / NumElements;
- int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
- for (int i = 0; i < NumElements; ++i)
- ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
- return DAG.getNode(
- ISD::BITCAST, DL, VT,
- DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
- }
- SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
- SDLoc DL(Node);
- EVT VT = Node->getValueType(0);
- SDValue Src = Node->getOperand(0);
- EVT SrcVT = Src.getValueType();
- // First build an any-extend node which can be legalized above when we
- // recurse through it.
- SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
- // Now we need sign extend. Do this by shifting the elements. Even if these
- // aren't legal operations, they have a better chance of being legalized
- // without full scalarization than the sign extension does.
- unsigned EltWidth = VT.getScalarSizeInBits();
- unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
- SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
- return DAG.getNode(ISD::SRA, DL, VT,
- DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
- ShiftAmount);
- }
- // Generically expand a vector zext in register to a shuffle of the relevant
- // lanes into the appropriate locations, a blend of zero into the high bits,
- // and a bitcast to the wider element type.
- SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
- SDLoc DL(Node);
- EVT VT = Node->getValueType(0);
- int NumElements = VT.getVectorNumElements();
- SDValue Src = Node->getOperand(0);
- EVT SrcVT = Src.getValueType();
- int NumSrcElements = SrcVT.getVectorNumElements();
- // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
- // into a larger vector type.
- if (SrcVT.bitsLE(VT)) {
- assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
- "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
- NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
- SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
- NumSrcElements);
- Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
- Src, DAG.getVectorIdxConstant(0, DL));
- }
- // Build up a zero vector to blend into this one.
- SDValue Zero = DAG.getConstant(0, DL, SrcVT);
- // Shuffle the incoming lanes into the correct position, and pull all other
- // lanes from the zero vector.
- auto ShuffleMask = llvm::to_vector<16>(llvm::seq<int>(0, NumSrcElements));
- int ExtLaneScale = NumSrcElements / NumElements;
- int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
- for (int i = 0; i < NumElements; ++i)
- ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
- return DAG.getNode(ISD::BITCAST, DL, VT,
- DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
- }
- static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
- int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
- for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
- for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
- ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
- }
- SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
- EVT VT = Node->getValueType(0);
- // Scalable vectors can't use shuffle expansion.
- if (VT.isScalableVector())
- return TLI.expandBSWAP(Node, DAG);
- // Generate a byte wise shuffle mask for the BSWAP.
- SmallVector<int, 16> ShuffleMask;
- createBSWAPShuffleMask(VT, ShuffleMask);
- EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
- // Only emit a shuffle if the mask is legal.
- if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) {
- SDLoc DL(Node);
- SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
- Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
- return DAG.getNode(ISD::BITCAST, DL, VT, Op);
- }
- // If we have the appropriate vector bit operations, it is better to use them
- // than unrolling and expanding each component.
- if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
- TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
- TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
- TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
- return TLI.expandBSWAP(Node, DAG);
- // Otherwise unroll.
- return DAG.UnrollVectorOp(Node);
- }
- void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- EVT VT = Node->getValueType(0);
- // We can't unroll or use shuffles for scalable vectors.
- if (VT.isScalableVector()) {
- Results.push_back(TLI.expandBITREVERSE(Node, DAG));
- return;
- }
- // If we have the scalar operation, it's probably cheaper to unroll it.
- if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
- SDValue Tmp = DAG.UnrollVectorOp(Node);
- Results.push_back(Tmp);
- return;
- }
- // If the vector element width is a whole number of bytes, test if its legal
- // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
- // vector. This greatly reduces the number of bit shifts necessary.
- unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
- if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
- SmallVector<int, 16> BSWAPMask;
- createBSWAPShuffleMask(VT, BSWAPMask);
- EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
- if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
- (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
- (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
- TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
- TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
- TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
- SDLoc DL(Node);
- SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
- Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
- BSWAPMask);
- Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
- Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
- Results.push_back(Op);
- return;
- }
- }
- // If we have the appropriate vector bit operations, it is better to use them
- // than unrolling and expanding each component.
- if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
- TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
- TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
- TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) {
- Results.push_back(TLI.expandBITREVERSE(Node, DAG));
- return;
- }
- // Otherwise unroll.
- SDValue Tmp = DAG.UnrollVectorOp(Node);
- Results.push_back(Tmp);
- }
- SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
- // Implement VSELECT in terms of XOR, AND, OR
- // on platforms which do not support blend natively.
- SDLoc DL(Node);
- SDValue Mask = Node->getOperand(0);
- SDValue Op1 = Node->getOperand(1);
- SDValue Op2 = Node->getOperand(2);
- EVT VT = Mask.getValueType();
- // If we can't even use the basic vector operations of
- // AND,OR,XOR, we will have to scalarize the op.
- // Notice that the operation may be 'promoted' which means that it is
- // 'bitcasted' to another type which is handled.
- if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand)
- return DAG.UnrollVectorOp(Node);
- // This operation also isn't safe with AND, OR, XOR when the boolean type is
- // 0/1 and the select operands aren't also booleans, as we need an all-ones
- // vector constant to mask with.
- // FIXME: Sign extend 1 to all ones if that's legal on the target.
- auto BoolContents = TLI.getBooleanContents(Op1.getValueType());
- if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent &&
- !(BoolContents == TargetLowering::ZeroOrOneBooleanContent &&
- Op1.getValueType().getVectorElementType() == MVT::i1))
- return DAG.UnrollVectorOp(Node);
- // If the mask and the type are different sizes, unroll the vector op. This
- // can occur when getSetCCResultType returns something that is different in
- // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
- if (VT.getSizeInBits() != Op1.getValueSizeInBits())
- return DAG.UnrollVectorOp(Node);
- // Bitcast the operands to be the same type as the mask.
- // This is needed when we select between FP types because
- // the mask is a vector of integers.
- Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
- Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
- SDValue NotMask = DAG.getNOT(DL, Mask, VT);
- Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
- Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
- SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
- return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
- }
- SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) {
- // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which
- // do not support it natively.
- SDLoc DL(Node);
- SDValue Mask = Node->getOperand(0);
- SDValue Op1 = Node->getOperand(1);
- SDValue Op2 = Node->getOperand(2);
- SDValue EVL = Node->getOperand(3);
- EVT VT = Mask.getValueType();
- // If we can't even use the basic vector operations of
- // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op.
- if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand)
- return DAG.UnrollVectorOp(Node);
- // This operation also isn't safe when the operands aren't also booleans.
- if (Op1.getValueType().getVectorElementType() != MVT::i1)
- return DAG.UnrollVectorOp(Node);
- SDValue Ones = DAG.getAllOnesConstant(DL, VT);
- SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Mask, EVL);
- Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Mask, EVL);
- Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Mask, EVL);
- return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Mask, EVL);
- }
- SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) {
- // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector
- // indices less than the EVL/pivot are true. Combine that with the original
- // mask for a full-length mask. Use a full-length VSELECT to select between
- // the true and false values.
- SDLoc DL(Node);
- SDValue Mask = Node->getOperand(0);
- SDValue Op1 = Node->getOperand(1);
- SDValue Op2 = Node->getOperand(2);
- SDValue EVL = Node->getOperand(3);
- EVT MaskVT = Mask.getValueType();
- bool IsFixedLen = MaskVT.isFixedLengthVector();
- EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), EVL.getValueType(),
- MaskVT.getVectorElementCount());
- // If we can't construct the EVL mask efficiently, it's better to unroll.
- if ((IsFixedLen &&
- !TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, EVLVecVT)) ||
- (!IsFixedLen &&
- (!TLI.isOperationLegalOrCustom(ISD::STEP_VECTOR, EVLVecVT) ||
- !TLI.isOperationLegalOrCustom(ISD::SPLAT_VECTOR, EVLVecVT))))
- return DAG.UnrollVectorOp(Node);
- // If using a SETCC would result in a different type than the mask type,
- // unroll.
- if (TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
- EVLVecVT) != MaskVT)
- return DAG.UnrollVectorOp(Node);
- SDValue StepVec = DAG.getStepVector(DL, EVLVecVT);
- SDValue SplatEVL = DAG.getSplat(EVLVecVT, DL, EVL);
- SDValue EVLMask =
- DAG.getSetCC(DL, MaskVT, StepVec, SplatEVL, ISD::CondCode::SETULT);
- SDValue FullMask = DAG.getNode(ISD::AND, DL, MaskVT, Mask, EVLMask);
- return DAG.getSelect(DL, Node->getValueType(0), FullMask, Op1, Op2);
- }
- SDValue VectorLegalizer::ExpandVP_REM(SDNode *Node) {
- // Implement VP_SREM/UREM in terms of VP_SDIV/VP_UDIV, VP_MUL, VP_SUB.
- EVT VT = Node->getValueType(0);
- unsigned DivOpc = Node->getOpcode() == ISD::VP_SREM ? ISD::VP_SDIV : ISD::VP_UDIV;
- if (!TLI.isOperationLegalOrCustom(DivOpc, VT) ||
- !TLI.isOperationLegalOrCustom(ISD::VP_MUL, VT) ||
- !TLI.isOperationLegalOrCustom(ISD::VP_SUB, VT))
- return SDValue();
- SDLoc DL(Node);
- SDValue Dividend = Node->getOperand(0);
- SDValue Divisor = Node->getOperand(1);
- SDValue Mask = Node->getOperand(2);
- SDValue EVL = Node->getOperand(3);
- // X % Y -> X-X/Y*Y
- SDValue Div = DAG.getNode(DivOpc, DL, VT, Dividend, Divisor, Mask, EVL);
- SDValue Mul = DAG.getNode(ISD::VP_MUL, DL, VT, Divisor, Div, Mask, EVL);
- return DAG.getNode(ISD::VP_SUB, DL, VT, Dividend, Mul, Mask, EVL);
- }
- void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- // Attempt to expand using TargetLowering.
- SDValue Result, Chain;
- if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
- Results.push_back(Result);
- if (Node->isStrictFPOpcode())
- Results.push_back(Chain);
- return;
- }
- // Otherwise go ahead and unroll.
- if (Node->isStrictFPOpcode()) {
- UnrollStrictFPOp(Node, Results);
- return;
- }
- Results.push_back(DAG.UnrollVectorOp(Node));
- }
- void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- bool IsStrict = Node->isStrictFPOpcode();
- unsigned OpNo = IsStrict ? 1 : 0;
- SDValue Src = Node->getOperand(OpNo);
- EVT VT = Src.getValueType();
- SDLoc DL(Node);
- // Attempt to expand using TargetLowering.
- SDValue Result;
- SDValue Chain;
- if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
- Results.push_back(Result);
- if (IsStrict)
- Results.push_back(Chain);
- return;
- }
- // Make sure that the SINT_TO_FP and SRL instructions are available.
- if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
- TargetLowering::Expand) ||
- (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
- TargetLowering::Expand)) ||
- TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
- if (IsStrict) {
- UnrollStrictFPOp(Node, Results);
- return;
- }
- Results.push_back(DAG.UnrollVectorOp(Node));
- return;
- }
- unsigned BW = VT.getScalarSizeInBits();
- assert((BW == 64 || BW == 32) &&
- "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
- SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
- // Constants to clear the upper part of the word.
- // Notice that we can also use SHL+SHR, but using a constant is slightly
- // faster on x86.
- uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
- SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
- // Two to the power of half-word-size.
- SDValue TWOHW =
- DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
- // Clear upper part of LO, lower HI
- SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
- SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
- if (IsStrict) {
- // Convert hi and lo to floats
- // Convert the hi part back to the upper values
- // TODO: Can any fast-math-flags be set on these nodes?
- SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
- {Node->getValueType(0), MVT::Other},
- {Node->getOperand(0), HI});
- fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
- {fHI.getValue(1), fHI, TWOHW});
- SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
- {Node->getValueType(0), MVT::Other},
- {Node->getOperand(0), LO});
- SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
- fLO.getValue(1));
- // Add the two halves
- SDValue Result =
- DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
- {TF, fHI, fLO});
- Results.push_back(Result);
- Results.push_back(Result.getValue(1));
- return;
- }
- // Convert hi and lo to floats
- // Convert the hi part back to the upper values
- // TODO: Can any fast-math-flags be set on these nodes?
- SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
- fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
- SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
- // Add the two halves
- Results.push_back(
- DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
- }
- SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
- if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
- SDLoc DL(Node);
- SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
- // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
- return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
- Node->getOperand(0));
- }
- return DAG.UnrollVectorOp(Node);
- }
- void VectorLegalizer::ExpandFSUB(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
- // we can defer this to operation legalization where it will be lowered as
- // a+(-b).
- EVT VT = Node->getValueType(0);
- if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
- TLI.isOperationLegalOrCustom(ISD::FADD, VT))
- return; // Defer to LegalizeDAG
- SDValue Tmp = DAG.UnrollVectorOp(Node);
- Results.push_back(Tmp);
- }
- void VectorLegalizer::ExpandSETCC(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- bool NeedInvert = false;
- bool IsVP = Node->getOpcode() == ISD::VP_SETCC;
- SDLoc dl(Node);
- MVT OpVT = Node->getOperand(0).getSimpleValueType();
- ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
- if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) {
- Results.push_back(UnrollVSETCC(Node));
- return;
- }
- SDValue Chain;
- SDValue LHS = Node->getOperand(0);
- SDValue RHS = Node->getOperand(1);
- SDValue CC = Node->getOperand(2);
- SDValue Mask, EVL;
- if (IsVP) {
- Mask = Node->getOperand(3);
- EVL = Node->getOperand(4);
- }
- bool Legalized =
- TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, RHS, CC, Mask,
- EVL, NeedInvert, dl, Chain);
- if (Legalized) {
- // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
- // condition code, create a new SETCC node.
- if (CC.getNode()) {
- if (!IsVP)
- LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC,
- Node->getFlags());
- else
- LHS = DAG.getNode(ISD::VP_SETCC, dl, Node->getValueType(0),
- {LHS, RHS, CC, Mask, EVL}, Node->getFlags());
- }
- // If we expanded the SETCC by inverting the condition code, then wrap
- // the existing SETCC in a NOT to restore the intended condition.
- if (NeedInvert) {
- if (!IsVP)
- LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0));
- else
- LHS = DAG.getVPLogicalNOT(dl, LHS, Mask, EVL, LHS->getValueType(0));
- }
- } else {
- // Otherwise, SETCC for the given comparison type must be completely
- // illegal; expand it into a SELECT_CC.
- EVT VT = Node->getValueType(0);
- LHS =
- DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS,
- DAG.getBoolConstant(true, dl, VT, LHS.getValueType()),
- DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC);
- LHS->setFlags(Node->getFlags());
- }
- Results.push_back(LHS);
- }
- void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- SDValue Result, Overflow;
- TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
- Results.push_back(Result);
- Results.push_back(Overflow);
- }
- void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- SDValue Result, Overflow;
- TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
- Results.push_back(Result);
- Results.push_back(Overflow);
- }
- void VectorLegalizer::ExpandMULO(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- SDValue Result, Overflow;
- if (!TLI.expandMULO(Node, Result, Overflow, DAG))
- std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
- Results.push_back(Result);
- Results.push_back(Overflow);
- }
- void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- SDNode *N = Node;
- if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
- N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
- Results.push_back(Expanded);
- }
- void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
- ExpandUINT_TO_FLOAT(Node, Results);
- return;
- }
- if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
- ExpandFP_TO_UINT(Node, Results);
- return;
- }
- UnrollStrictFPOp(Node, Results);
- }
- void VectorLegalizer::ExpandREM(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
- "Expected REM node");
- SDValue Result;
- if (!TLI.expandREM(Node, Result, DAG))
- Result = DAG.UnrollVectorOp(Node);
- Results.push_back(Result);
- }
- void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
- SmallVectorImpl<SDValue> &Results) {
- EVT VT = Node->getValueType(0);
- EVT EltVT = VT.getVectorElementType();
- unsigned NumElems = VT.getVectorNumElements();
- unsigned NumOpers = Node->getNumOperands();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT TmpEltVT = EltVT;
- if (Node->getOpcode() == ISD::STRICT_FSETCC ||
- Node->getOpcode() == ISD::STRICT_FSETCCS)
- TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
- *DAG.getContext(), TmpEltVT);
- EVT ValueVTs[] = {TmpEltVT, MVT::Other};
- SDValue Chain = Node->getOperand(0);
- SDLoc dl(Node);
- SmallVector<SDValue, 32> OpValues;
- SmallVector<SDValue, 32> OpChains;
- for (unsigned i = 0; i < NumElems; ++i) {
- SmallVector<SDValue, 4> Opers;
- SDValue Idx = DAG.getVectorIdxConstant(i, dl);
- // The Chain is the first operand.
- Opers.push_back(Chain);
- // Now process the remaining operands.
- for (unsigned j = 1; j < NumOpers; ++j) {
- SDValue Oper = Node->getOperand(j);
- EVT OperVT = Oper.getValueType();
- if (OperVT.isVector())
- Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
- OperVT.getVectorElementType(), Oper, Idx);
- Opers.push_back(Oper);
- }
- SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
- SDValue ScalarResult = ScalarOp.getValue(0);
- SDValue ScalarChain = ScalarOp.getValue(1);
- if (Node->getOpcode() == ISD::STRICT_FSETCC ||
- Node->getOpcode() == ISD::STRICT_FSETCCS)
- ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
- DAG.getAllOnesConstant(dl, EltVT),
- DAG.getConstant(0, dl, EltVT));
- OpValues.push_back(ScalarResult);
- OpChains.push_back(ScalarChain);
- }
- SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
- SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
- Results.push_back(Result);
- Results.push_back(NewChain);
- }
- SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
- EVT VT = Node->getValueType(0);
- unsigned NumElems = VT.getVectorNumElements();
- EVT EltVT = VT.getVectorElementType();
- SDValue LHS = Node->getOperand(0);
- SDValue RHS = Node->getOperand(1);
- SDValue CC = Node->getOperand(2);
- EVT TmpEltVT = LHS.getValueType().getVectorElementType();
- SDLoc dl(Node);
- SmallVector<SDValue, 8> Ops(NumElems);
- for (unsigned i = 0; i < NumElems; ++i) {
- SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
- DAG.getVectorIdxConstant(i, dl));
- SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
- DAG.getVectorIdxConstant(i, dl));
- Ops[i] = DAG.getNode(ISD::SETCC, dl,
- TLI.getSetCCResultType(DAG.getDataLayout(),
- *DAG.getContext(), TmpEltVT),
- LHSElem, RHSElem, CC);
- Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT),
- DAG.getConstant(0, dl, EltVT));
- }
- return DAG.getBuildVector(VT, dl, Ops);
- }
- bool SelectionDAG::LegalizeVectors() {
- return VectorLegalizer(*this).Run();
- }
|