1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049220502205122052220532205422055220562205722058220592206022061220622206322064220652206622067220682206922070220712207222073220742207522076220772207822079220802208122082220832208422085220862208722088220892209022091220922209322094220952209622097220982209922100221012210222103221042210522106221072210822109221102211122112221132211422115221162211722118221192212022121221222212322124221252212622127221282212922130221312213222133221342213522136221372213822139221402214122142221432214422145221462214722148221492215022151221522215322154221552215622157221582215922160221612216222163221642216522166221672216822169221702217122172221732217422175221762217722178221792218022181221822218322184221852218622187221882218922190221912219222193221942219522196221972219822199222002220122202222032220422205222062220722208222092221022211222122221322214222152221622217222182221922220222212222222223222242222522226222272222822229222302223122232222332223422235222362223722238222392224022241222422224322244222452224622247222482224922250222512225222253222542225522256222572225822259222602226122262222632226422265222662226722268222692227022271222722227322274222752227622277222782227922280222812228222283222842228522286222872228822289222902229122292222932229422295222962229722298222992230022301223022230322304223052230622307223082230922310223112231222313223142231522316223172231822319223202232122322223232232422325223262232722328223292233022331223322233322334223352233622337223382233922340223412234222343223442234522346223472234822349223502235122352223532235422355223562235722358223592236022361223622236322364223652236622367223682236922370223712237222373223742237522376223772237822379223802238122382223832238422385223862238722388223892239022391223922239322394223952239622397223982239922400224012240222403224042240522406224072240822409224102241122412224132241422415224162241722418224192242022421224222242322424224252242622427224282242922430224312243222433224342243522436224372243822439224402244122442224432244422445224462244722448224492245022451224522245322454224552245622457224582245922460224612246222463224642246522466224672246822469224702247122472224732247422475224762247722478224792248022481224822248322484224852248622487224882248922490224912249222493224942249522496224972249822499225002250122502225032250422505225062250722508225092251022511225122251322514225152251622517225182251922520225212252222523225242252522526225272252822529225302253122532225332253422535225362253722538225392254022541225422254322544225452254622547225482254922550225512255222553225542255522556225572255822559225602256122562225632256422565225662256722568225692257022571225722257322574225752257622577225782257922580225812258222583225842258522586225872258822589225902259122592225932259422595225962259722598225992260022601226022260322604226052260622607226082260922610226112261222613226142261522616226172261822619226202262122622226232262422625226262262722628226292263022631226322263322634226352263622637226382263922640226412264222643226442264522646226472264822649226502265122652226532265422655226562265722658226592266022661226622266322664226652266622667226682266922670226712267222673226742267522676226772267822679226802268122682226832268422685226862268722688226892269022691226922269322694226952269622697226982269922700227012270222703227042270522706227072270822709227102271122712227132271422715227162271722718227192272022721227222272322724227252272622727227282272922730227312273222733227342273522736227372273822739227402274122742227432274422745227462274722748227492275022751227522275322754227552275622757227582275922760227612276222763227642276522766227672276822769227702277122772227732277422775227762277722778227792278022781227822278322784227852278622787227882278922790227912279222793227942279522796227972279822799228002280122802228032280422805228062280722808228092281022811228122281322814228152281622817228182281922820228212282222823228242282522826228272282822829228302283122832228332283422835228362283722838228392284022841228422284322844228452284622847228482284922850228512285222853228542285522856228572285822859228602286122862228632286422865228662286722868228692287022871228722287322874228752287622877228782287922880228812288222883228842288522886228872288822889228902289122892228932289422895228962289722898228992290022901229022290322904229052290622907229082290922910229112291222913229142291522916229172291822919229202292122922229232292422925229262292722928229292293022931229322293322934229352293622937229382293922940229412294222943229442294522946229472294822949229502295122952229532295422955229562295722958229592296022961229622296322964229652296622967229682296922970229712297222973229742297522976229772297822979229802298122982229832298422985229862298722988229892299022991229922299322994229952299622997229982299923000230012300223003230042300523006230072300823009230102301123012230132301423015230162301723018230192302023021230222302323024230252302623027230282302923030230312303223033230342303523036230372303823039230402304123042230432304423045230462304723048230492305023051230522305323054230552305623057230582305923060230612306223063230642306523066230672306823069230702307123072230732307423075230762307723078230792308023081230822308323084230852308623087230882308923090230912309223093230942309523096230972309823099231002310123102231032310423105231062310723108231092311023111231122311323114231152311623117231182311923120231212312223123231242312523126231272312823129231302313123132231332313423135231362313723138231392314023141231422314323144231452314623147231482314923150231512315223153231542315523156231572315823159231602316123162231632316423165231662316723168231692317023171231722317323174231752317623177231782317923180231812318223183231842318523186231872318823189231902319123192231932319423195231962319723198231992320023201232022320323204232052320623207232082320923210232112321223213232142321523216232172321823219232202322123222232232322423225232262322723228232292323023231232322323323234232352323623237232382323923240232412324223243232442324523246232472324823249232502325123252232532325423255232562325723258232592326023261232622326323264232652326623267232682326923270232712327223273232742327523276232772327823279232802328123282232832328423285232862328723288232892329023291232922329323294232952329623297232982329923300233012330223303233042330523306233072330823309233102331123312233132331423315233162331723318233192332023321233222332323324233252332623327233282332923330233312333223333233342333523336233372333823339233402334123342233432334423345233462334723348233492335023351233522335323354233552335623357233582335923360233612336223363233642336523366233672336823369233702337123372233732337423375233762337723378233792338023381233822338323384233852338623387233882338923390233912339223393233942339523396233972339823399234002340123402234032340423405234062340723408234092341023411234122341323414234152341623417234182341923420234212342223423234242342523426234272342823429234302343123432234332343423435234362343723438234392344023441234422344323444234452344623447234482344923450234512345223453234542345523456234572345823459234602346123462234632346423465234662346723468234692347023471234722347323474234752347623477234782347923480234812348223483234842348523486234872348823489234902349123492234932349423495234962349723498234992350023501235022350323504235052350623507235082350923510235112351223513235142351523516235172351823519235202352123522235232352423525235262352723528235292353023531235322353323534235352353623537235382353923540235412354223543235442354523546235472354823549235502355123552235532355423555235562355723558235592356023561235622356323564235652356623567235682356923570235712357223573235742357523576235772357823579235802358123582235832358423585235862358723588235892359023591235922359323594235952359623597235982359923600236012360223603236042360523606236072360823609236102361123612236132361423615236162361723618236192362023621236222362323624236252362623627236282362923630236312363223633236342363523636236372363823639236402364123642236432364423645236462364723648236492365023651236522365323654236552365623657236582365923660236612366223663236642366523666236672366823669236702367123672236732367423675236762367723678236792368023681236822368323684236852368623687236882368923690236912369223693236942369523696236972369823699237002370123702237032370423705237062370723708237092371023711237122371323714237152371623717237182371923720237212372223723237242372523726237272372823729237302373123732237332373423735237362373723738237392374023741237422374323744237452374623747237482374923750237512375223753237542375523756237572375823759237602376123762237632376423765237662376723768237692377023771237722377323774237752377623777237782377923780237812378223783237842378523786237872378823789237902379123792237932379423795237962379723798237992380023801238022380323804238052380623807238082380923810238112381223813238142381523816238172381823819238202382123822238232382423825238262382723828238292383023831238322383323834238352383623837238382383923840238412384223843238442384523846238472384823849238502385123852238532385423855238562385723858238592386023861238622386323864238652386623867238682386923870238712387223873238742387523876238772387823879238802388123882238832388423885238862388723888238892389023891238922389323894238952389623897238982389923900239012390223903239042390523906239072390823909239102391123912239132391423915239162391723918239192392023921239222392323924239252392623927239282392923930239312393223933239342393523936239372393823939239402394123942239432394423945239462394723948239492395023951239522395323954239552395623957239582395923960239612396223963239642396523966239672396823969239702397123972239732397423975239762397723978239792398023981239822398323984239852398623987239882398923990239912399223993239942399523996239972399823999240002400124002240032400424005240062400724008240092401024011240122401324014240152401624017240182401924020240212402224023240242402524026240272402824029240302403124032240332403424035240362403724038240392404024041240422404324044240452404624047240482404924050240512405224053240542405524056240572405824059240602406124062240632406424065240662406724068240692407024071240722407324074240752407624077240782407924080240812408224083240842408524086240872408824089240902409124092240932409424095240962409724098240992410024101241022410324104241052410624107241082410924110241112411224113241142411524116241172411824119241202412124122241232412424125241262412724128241292413024131241322413324134241352413624137241382413924140241412414224143241442414524146241472414824149241502415124152241532415424155241562415724158241592416024161241622416324164241652416624167241682416924170241712417224173241742417524176241772417824179241802418124182241832418424185241862418724188241892419024191241922419324194241952419624197241982419924200242012420224203242042420524206242072420824209242102421124212242132421424215242162421724218242192422024221242222422324224242252422624227242282422924230242312423224233242342423524236242372423824239242402424124242242432424424245242462424724248242492425024251242522425324254242552425624257242582425924260242612426224263242642426524266242672426824269242702427124272242732427424275242762427724278242792428024281242822428324284242852428624287242882428924290242912429224293242942429524296242972429824299243002430124302243032430424305243062430724308243092431024311243122431324314243152431624317243182431924320243212432224323243242432524326243272432824329243302433124332243332433424335243362433724338243392434024341243422434324344243452434624347243482434924350243512435224353243542435524356243572435824359243602436124362243632436424365243662436724368243692437024371243722437324374243752437624377243782437924380243812438224383243842438524386243872438824389243902439124392243932439424395243962439724398243992440024401244022440324404244052440624407244082440924410244112441224413244142441524416244172441824419244202442124422244232442424425244262442724428244292443024431244322443324434244352443624437244382443924440244412444224443244442444524446244472444824449244502445124452244532445424455244562445724458244592446024461244622446324464244652446624467244682446924470244712447224473244742447524476244772447824479244802448124482244832448424485244862448724488244892449024491244922449324494244952449624497244982449924500245012450224503245042450524506245072450824509245102451124512245132451424515245162451724518245192452024521245222452324524245252452624527245282452924530245312453224533245342453524536245372453824539245402454124542245432454424545245462454724548245492455024551245522455324554245552455624557245582455924560245612456224563245642456524566245672456824569245702457124572245732457424575245762457724578245792458024581245822458324584245852458624587245882458924590245912459224593245942459524596245972459824599246002460124602246032460424605246062460724608246092461024611246122461324614246152461624617246182461924620246212462224623246242462524626246272462824629246302463124632246332463424635246362463724638246392464024641246422464324644246452464624647246482464924650246512465224653246542465524656246572465824659246602466124662246632466424665246662466724668246692467024671246722467324674246752467624677246782467924680246812468224683246842468524686246872468824689246902469124692246932469424695246962469724698246992470024701247022470324704247052470624707247082470924710247112471224713247142471524716247172471824719247202472124722247232472424725247262472724728247292473024731247322473324734247352473624737247382473924740247412474224743247442474524746247472474824749247502475124752247532475424755247562475724758247592476024761247622476324764247652476624767247682476924770247712477224773247742477524776247772477824779247802478124782247832478424785247862478724788247892479024791247922479324794247952479624797247982479924800248012480224803248042480524806248072480824809248102481124812248132481424815248162481724818248192482024821248222482324824248252482624827248282482924830248312483224833248342483524836248372483824839248402484124842248432484424845248462484724848248492485024851248522485324854248552485624857248582485924860248612486224863248642486524866248672486824869248702487124872248732487424875248762487724878248792488024881248822488324884248852488624887248882488924890248912489224893248942489524896248972489824899249002490124902249032490424905249062490724908249092491024911249122491324914249152491624917249182491924920249212492224923249242492524926249272492824929249302493124932249332493424935249362493724938249392494024941249422494324944249452494624947249482494924950249512495224953249542495524956249572495824959249602496124962249632496424965249662496724968249692497024971249722497324974249752497624977249782497924980249812498224983249842498524986249872498824989249902499124992249932499424995249962499724998249992500025001250022500325004250052500625007250082500925010250112501225013250142501525016250172501825019250202502125022250232502425025250262502725028250292503025031250322503325034250352503625037250382503925040250412504225043250442504525046250472504825049250502505125052250532505425055250562505725058250592506025061250622506325064250652506625067250682506925070250712507225073250742507525076250772507825079250802508125082250832508425085250862508725088250892509025091250922509325094250952509625097250982509925100251012510225103251042510525106251072510825109251102511125112251132511425115251162511725118251192512025121251222512325124251252512625127251282512925130251312513225133251342513525136251372513825139251402514125142251432514425145251462514725148251492515025151251522515325154251552515625157251582515925160251612516225163251642516525166251672516825169251702517125172251732517425175251762517725178251792518025181251822518325184251852518625187251882518925190251912519225193251942519525196251972519825199252002520125202252032520425205252062520725208252092521025211252122521325214252152521625217252182521925220252212522225223252242522525226252272522825229252302523125232252332523425235252362523725238252392524025241252422524325244252452524625247252482524925250252512525225253252542525525256252572525825259252602526125262252632526425265252662526725268252692527025271252722527325274252752527625277252782527925280252812528225283252842528525286252872528825289252902529125292252932529425295252962529725298252992530025301253022530325304253052530625307253082530925310253112531225313253142531525316253172531825319253202532125322253232532425325253262532725328253292533025331253322533325334253352533625337253382533925340253412534225343253442534525346253472534825349253502535125352253532535425355253562535725358253592536025361253622536325364253652536625367253682536925370253712537225373253742537525376253772537825379253802538125382253832538425385253862538725388253892539025391253922539325394253952539625397253982539925400254012540225403254042540525406254072540825409254102541125412254132541425415254162541725418254192542025421254222542325424254252542625427254282542925430254312543225433254342543525436254372543825439254402544125442254432544425445254462544725448254492545025451254522545325454254552545625457254582545925460254612546225463254642546525466254672546825469254702547125472254732547425475254762547725478254792548025481254822548325484254852548625487254882548925490254912549225493254942549525496254972549825499255002550125502255032550425505255062550725508255092551025511255122551325514255152551625517255182551925520255212552225523255242552525526255272552825529255302553125532255332553425535255362553725538255392554025541255422554325544255452554625547255482554925550255512555225553255542555525556255572555825559255602556125562255632556425565255662556725568255692557025571255722557325574255752557625577255782557925580255812558225583255842558525586255872558825589255902559125592255932559425595255962559725598255992560025601256022560325604256052560625607256082560925610256112561225613256142561525616256172561825619256202562125622256232562425625256262562725628256292563025631256322563325634256352563625637256382563925640256412564225643256442564525646256472564825649256502565125652256532565425655256562565725658256592566025661256622566325664256652566625667256682566925670256712567225673256742567525676256772567825679256802568125682256832568425685256862568725688256892569025691256922569325694256952569625697256982569925700257012570225703257042570525706257072570825709257102571125712257132571425715257162571725718257192572025721257222572325724257252572625727257282572925730257312573225733257342573525736257372573825739257402574125742257432574425745257462574725748257492575025751257522575325754257552575625757257582575925760257612576225763257642576525766257672576825769257702577125772257732577425775257762577725778257792578025781257822578325784257852578625787257882578925790257912579225793257942579525796257972579825799258002580125802258032580425805258062580725808258092581025811258122581325814258152581625817258182581925820258212582225823258242582525826258272582825829258302583125832258332583425835258362583725838258392584025841258422584325844258452584625847258482584925850258512585225853258542585525856258572585825859258602586125862258632586425865258662586725868258692587025871258722587325874258752587625877258782587925880258812588225883258842588525886258872588825889258902589125892258932589425895258962589725898258992590025901259022590325904259052590625907259082590925910259112591225913259142591525916259172591825919259202592125922259232592425925259262592725928259292593025931259322593325934259352593625937259382593925940259412594225943259442594525946259472594825949259502595125952259532595425955259562595725958259592596025961259622596325964259652596625967259682596925970259712597225973259742597525976259772597825979259802598125982259832598425985259862598725988259892599025991259922599325994259952599625997259982599926000260012600226003260042600526006260072600826009260102601126012260132601426015260162601726018260192602026021260222602326024260252602626027260282602926030260312603226033260342603526036260372603826039260402604126042260432604426045260462604726048260492605026051260522605326054260552605626057260582605926060260612606226063260642606526066260672606826069260702607126072260732607426075260762607726078260792608026081260822608326084260852608626087260882608926090260912609226093260942609526096260972609826099261002610126102261032610426105261062610726108261092611026111261122611326114261152611626117261182611926120261212612226123261242612526126261272612826129261302613126132261332613426135261362613726138261392614026141261422614326144261452614626147261482614926150261512615226153261542615526156261572615826159261602616126162261632616426165261662616726168261692617026171261722617326174261752617626177261782617926180261812618226183261842618526186261872618826189261902619126192261932619426195261962619726198261992620026201262022620326204262052620626207262082620926210262112621226213262142621526216262172621826219262202622126222262232622426225262262622726228262292623026231262322623326234262352623626237262382623926240262412624226243262442624526246262472624826249262502625126252262532625426255262562625726258262592626026261262622626326264262652626626267262682626926270262712627226273262742627526276262772627826279262802628126282262832628426285262862628726288262892629026291262922629326294262952629626297262982629926300263012630226303263042630526306263072630826309263102631126312263132631426315263162631726318263192632026321263222632326324263252632626327263282632926330263312633226333263342633526336263372633826339263402634126342263432634426345263462634726348263492635026351263522635326354263552635626357263582635926360263612636226363263642636526366263672636826369263702637126372263732637426375263762637726378263792638026381263822638326384263852638626387263882638926390263912639226393263942639526396263972639826399264002640126402264032640426405264062640726408264092641026411264122641326414264152641626417264182641926420264212642226423264242642526426264272642826429264302643126432264332643426435264362643726438264392644026441264422644326444264452644626447264482644926450264512645226453264542645526456264572645826459264602646126462 |
- //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
- // both before and after the DAG is legalized.
- //
- // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
- // primarily intended to handle simplification opportunities that are implicit
- // in the LLVM IR and exposed by the various codegen lowering phases.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/IntervalMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallBitVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/MemoryLocation.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/CodeGen/DAGCombine.h"
- #include "llvm/CodeGen/ISDOpcodes.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineMemOperand.h"
- #include "llvm/CodeGen/RuntimeLibcalls.h"
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
- #include "llvm/CodeGen/SelectionDAGNodes.h"
- #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/CodeGen/ValueTypes.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CodeGen.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/MachineValueType.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Target/TargetOptions.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <functional>
- #include <iterator>
- #include <optional>
- #include <string>
- #include <tuple>
- #include <utility>
- #include <variant>
- using namespace llvm;
- #define DEBUG_TYPE "dagcombine"
- STATISTIC(NodesCombined , "Number of dag nodes combined");
- STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
- STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
- STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
- STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
- STATISTIC(SlicedLoads, "Number of load sliced");
- STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops");
- static cl::opt<bool>
- CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
- cl::desc("Enable DAG combiner's use of IR alias analysis"));
- static cl::opt<bool>
- UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
- cl::desc("Enable DAG combiner's use of TBAA"));
- #ifndef NDEBUG
- static cl::opt<std::string>
- CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
- cl::desc("Only use DAG-combiner alias analysis in this"
- " function"));
- #endif
- /// Hidden option to stress test load slicing, i.e., when this option
- /// is enabled, load slicing bypasses most of its profitability guards.
- static cl::opt<bool>
- StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
- cl::desc("Bypass the profitability model of load slicing"),
- cl::init(false));
- static cl::opt<bool>
- MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
- cl::desc("DAG combiner may split indexing from loads"));
- static cl::opt<bool>
- EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true),
- cl::desc("DAG combiner enable merging multiple stores "
- "into a wider store"));
- static cl::opt<unsigned> TokenFactorInlineLimit(
- "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048),
- cl::desc("Limit the number of operands to inline for Token Factors"));
- static cl::opt<unsigned> StoreMergeDependenceLimit(
- "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10),
- cl::desc("Limit the number of times for the same StoreNode and RootNode "
- "to bail out in store merging dependence check"));
- static cl::opt<bool> EnableReduceLoadOpStoreWidth(
- "combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true),
- cl::desc("DAG combiner enable reducing the width of load/op/store "
- "sequence"));
- static cl::opt<bool> EnableShrinkLoadReplaceStoreWithStore(
- "combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true),
- cl::desc("DAG combiner enable load/<replace bytes>/store with "
- "a narrower store"));
- static cl::opt<bool> EnableVectorFCopySignExtendRound(
- "combiner-vector-fcopysign-extend-round", cl::Hidden, cl::init(false),
- cl::desc(
- "Enable merging extends and rounds into FCOPYSIGN on vector types"));
- namespace {
- class DAGCombiner {
- SelectionDAG &DAG;
- const TargetLowering &TLI;
- const SelectionDAGTargetInfo *STI;
- CombineLevel Level = BeforeLegalizeTypes;
- CodeGenOpt::Level OptLevel;
- bool LegalDAG = false;
- bool LegalOperations = false;
- bool LegalTypes = false;
- bool ForCodeSize;
- bool DisableGenericCombines;
- /// Worklist of all of the nodes that need to be simplified.
- ///
- /// This must behave as a stack -- new nodes to process are pushed onto the
- /// back and when processing we pop off of the back.
- ///
- /// The worklist will not contain duplicates but may contain null entries
- /// due to nodes being deleted from the underlying DAG.
- SmallVector<SDNode *, 64> Worklist;
- /// Mapping from an SDNode to its position on the worklist.
- ///
- /// This is used to find and remove nodes from the worklist (by nulling
- /// them) when they are deleted from the underlying DAG. It relies on
- /// stable indices of nodes within the worklist.
- DenseMap<SDNode *, unsigned> WorklistMap;
- /// This records all nodes attempted to add to the worklist since we
- /// considered a new worklist entry. As we keep do not add duplicate nodes
- /// in the worklist, this is different from the tail of the worklist.
- SmallSetVector<SDNode *, 32> PruningList;
- /// Set of nodes which have been combined (at least once).
- ///
- /// This is used to allow us to reliably add any operands of a DAG node
- /// which have not yet been combined to the worklist.
- SmallPtrSet<SDNode *, 32> CombinedNodes;
- /// Map from candidate StoreNode to the pair of RootNode and count.
- /// The count is used to track how many times we have seen the StoreNode
- /// with the same RootNode bail out in dependence check. If we have seen
- /// the bail out for the same pair many times over a limit, we won't
- /// consider the StoreNode with the same RootNode as store merging
- /// candidate again.
- DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap;
- // AA - Used for DAG load/store alias analysis.
- AliasAnalysis *AA;
- /// When an instruction is simplified, add all users of the instruction to
- /// the work lists because they might get more simplified now.
- void AddUsersToWorklist(SDNode *N) {
- for (SDNode *Node : N->uses())
- AddToWorklist(Node);
- }
- /// Convenient shorthand to add a node and all of its user to the worklist.
- void AddToWorklistWithUsers(SDNode *N) {
- AddUsersToWorklist(N);
- AddToWorklist(N);
- }
- // Prune potentially dangling nodes. This is called after
- // any visit to a node, but should also be called during a visit after any
- // failed combine which may have created a DAG node.
- void clearAddedDanglingWorklistEntries() {
- // Check any nodes added to the worklist to see if they are prunable.
- while (!PruningList.empty()) {
- auto *N = PruningList.pop_back_val();
- if (N->use_empty())
- recursivelyDeleteUnusedNodes(N);
- }
- }
- SDNode *getNextWorklistEntry() {
- // Before we do any work, remove nodes that are not in use.
- clearAddedDanglingWorklistEntries();
- SDNode *N = nullptr;
- // The Worklist holds the SDNodes in order, but it may contain null
- // entries.
- while (!N && !Worklist.empty()) {
- N = Worklist.pop_back_val();
- }
- if (N) {
- bool GoodWorklistEntry = WorklistMap.erase(N);
- (void)GoodWorklistEntry;
- assert(GoodWorklistEntry &&
- "Found a worklist entry without a corresponding map entry!");
- }
- return N;
- }
- /// Call the node-specific routine that folds each particular type of node.
- SDValue visit(SDNode *N);
- public:
- DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL)
- : DAG(D), TLI(D.getTargetLoweringInfo()),
- STI(D.getSubtarget().getSelectionDAGInfo()), OptLevel(OL), AA(AA) {
- ForCodeSize = DAG.shouldOptForSize();
- DisableGenericCombines = STI && STI->disableGenericCombines(OptLevel);
- MaximumLegalStoreInBits = 0;
- // We use the minimum store size here, since that's all we can guarantee
- // for the scalable vector types.
- for (MVT VT : MVT::all_valuetypes())
- if (EVT(VT).isSimple() && VT != MVT::Other &&
- TLI.isTypeLegal(EVT(VT)) &&
- VT.getSizeInBits().getKnownMinValue() >= MaximumLegalStoreInBits)
- MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinValue();
- }
- void ConsiderForPruning(SDNode *N) {
- // Mark this for potential pruning.
- PruningList.insert(N);
- }
- /// Add to the worklist making sure its instance is at the back (next to be
- /// processed.)
- void AddToWorklist(SDNode *N) {
- assert(N->getOpcode() != ISD::DELETED_NODE &&
- "Deleted Node added to Worklist");
- // Skip handle nodes as they can't usefully be combined and confuse the
- // zero-use deletion strategy.
- if (N->getOpcode() == ISD::HANDLENODE)
- return;
- ConsiderForPruning(N);
- if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second)
- Worklist.push_back(N);
- }
- /// Remove all instances of N from the worklist.
- void removeFromWorklist(SDNode *N) {
- CombinedNodes.erase(N);
- PruningList.remove(N);
- StoreRootCountMap.erase(N);
- auto It = WorklistMap.find(N);
- if (It == WorklistMap.end())
- return; // Not in the worklist.
- // Null out the entry rather than erasing it to avoid a linear operation.
- Worklist[It->second] = nullptr;
- WorklistMap.erase(It);
- }
- void deleteAndRecombine(SDNode *N);
- bool recursivelyDeleteUnusedNodes(SDNode *N);
- /// Replaces all uses of the results of one DAG node with new values.
- SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
- bool AddTo = true);
- /// Replaces all uses of the results of one DAG node with new values.
- SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
- return CombineTo(N, &Res, 1, AddTo);
- }
- /// Replaces all uses of the results of one DAG node with new values.
- SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
- bool AddTo = true) {
- SDValue To[] = { Res0, Res1 };
- return CombineTo(N, To, 2, AddTo);
- }
- void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
- private:
- unsigned MaximumLegalStoreInBits;
- /// Check the specified integer node value to see if it can be simplified or
- /// if things it uses can be simplified by bit propagation.
- /// If so, return true.
- bool SimplifyDemandedBits(SDValue Op) {
- unsigned BitWidth = Op.getScalarValueSizeInBits();
- APInt DemandedBits = APInt::getAllOnes(BitWidth);
- return SimplifyDemandedBits(Op, DemandedBits);
- }
- bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) {
- TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
- KnownBits Known;
- if (!TLI.SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, false))
- return false;
- // Revisit the node.
- AddToWorklist(Op.getNode());
- CommitTargetLoweringOpt(TLO);
- return true;
- }
- /// Check the specified vector node value to see if it can be simplified or
- /// if things it uses can be simplified as it only uses some of the
- /// elements. If so, return true.
- bool SimplifyDemandedVectorElts(SDValue Op) {
- // TODO: For now just pretend it cannot be simplified.
- if (Op.getValueType().isScalableVector())
- return false;
- unsigned NumElts = Op.getValueType().getVectorNumElements();
- APInt DemandedElts = APInt::getAllOnes(NumElts);
- return SimplifyDemandedVectorElts(Op, DemandedElts);
- }
- bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
- const APInt &DemandedElts,
- bool AssumeSingleUse = false);
- bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
- bool AssumeSingleUse = false);
- bool CombineToPreIndexedLoadStore(SDNode *N);
- bool CombineToPostIndexedLoadStore(SDNode *N);
- SDValue SplitIndexingFromLoad(LoadSDNode *LD);
- bool SliceUpLoad(SDNode *N);
- // Scalars have size 0 to distinguish from singleton vectors.
- SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD);
- bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val);
- bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val);
- /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
- /// load.
- ///
- /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
- /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
- /// \param EltNo index of the vector element to load.
- /// \param OriginalLoad load that EVE came from to be replaced.
- /// \returns EVE on success SDValue() on failure.
- SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
- SDValue EltNo,
- LoadSDNode *OriginalLoad);
- void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
- SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
- SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
- SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
- SDValue PromoteIntBinOp(SDValue Op);
- SDValue PromoteIntShiftOp(SDValue Op);
- SDValue PromoteExtend(SDValue Op);
- bool PromoteLoad(SDValue Op);
- SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
- SDValue RHS, SDValue True, SDValue False,
- ISD::CondCode CC);
- /// Call the node-specific routine that knows how to fold each
- /// particular type of node. If that doesn't do anything, try the
- /// target-specific DAG combines.
- SDValue combine(SDNode *N);
- // Visitation implementation - Implement dag node combining for different
- // node types. The semantics are as follows:
- // Return Value:
- // SDValue.getNode() == 0 - No change was made
- // SDValue.getNode() == N - N was replaced, is dead and has been handled.
- // otherwise - N should be replaced by the returned Operand.
- //
- SDValue visitTokenFactor(SDNode *N);
- SDValue visitMERGE_VALUES(SDNode *N);
- SDValue visitADD(SDNode *N);
- SDValue visitADDLike(SDNode *N);
- SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference);
- SDValue visitSUB(SDNode *N);
- SDValue visitADDSAT(SDNode *N);
- SDValue visitSUBSAT(SDNode *N);
- SDValue visitADDC(SDNode *N);
- SDValue visitADDO(SDNode *N);
- SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N);
- SDValue visitSUBC(SDNode *N);
- SDValue visitSUBO(SDNode *N);
- SDValue visitADDE(SDNode *N);
- SDValue visitADDCARRY(SDNode *N);
- SDValue visitSADDO_CARRY(SDNode *N);
- SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N);
- SDValue visitSUBE(SDNode *N);
- SDValue visitSUBCARRY(SDNode *N);
- SDValue visitSSUBO_CARRY(SDNode *N);
- SDValue visitMUL(SDNode *N);
- SDValue visitMULFIX(SDNode *N);
- SDValue useDivRem(SDNode *N);
- SDValue visitSDIV(SDNode *N);
- SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N);
- SDValue visitUDIV(SDNode *N);
- SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N);
- SDValue visitREM(SDNode *N);
- SDValue visitMULHU(SDNode *N);
- SDValue visitMULHS(SDNode *N);
- SDValue visitAVG(SDNode *N);
- SDValue visitSMUL_LOHI(SDNode *N);
- SDValue visitUMUL_LOHI(SDNode *N);
- SDValue visitMULO(SDNode *N);
- SDValue visitIMINMAX(SDNode *N);
- SDValue visitAND(SDNode *N);
- SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N);
- SDValue visitOR(SDNode *N);
- SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N);
- SDValue visitXOR(SDNode *N);
- SDValue SimplifyVCastOp(SDNode *N, const SDLoc &DL);
- SDValue SimplifyVBinOp(SDNode *N, const SDLoc &DL);
- SDValue visitSHL(SDNode *N);
- SDValue visitSRA(SDNode *N);
- SDValue visitSRL(SDNode *N);
- SDValue visitFunnelShift(SDNode *N);
- SDValue visitSHLSAT(SDNode *N);
- SDValue visitRotate(SDNode *N);
- SDValue visitABS(SDNode *N);
- SDValue visitBSWAP(SDNode *N);
- SDValue visitBITREVERSE(SDNode *N);
- SDValue visitCTLZ(SDNode *N);
- SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
- SDValue visitCTTZ(SDNode *N);
- SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
- SDValue visitCTPOP(SDNode *N);
- SDValue visitSELECT(SDNode *N);
- SDValue visitVSELECT(SDNode *N);
- SDValue visitSELECT_CC(SDNode *N);
- SDValue visitSETCC(SDNode *N);
- SDValue visitSETCCCARRY(SDNode *N);
- SDValue visitSIGN_EXTEND(SDNode *N);
- SDValue visitZERO_EXTEND(SDNode *N);
- SDValue visitANY_EXTEND(SDNode *N);
- SDValue visitAssertExt(SDNode *N);
- SDValue visitAssertAlign(SDNode *N);
- SDValue visitSIGN_EXTEND_INREG(SDNode *N);
- SDValue visitEXTEND_VECTOR_INREG(SDNode *N);
- SDValue visitTRUNCATE(SDNode *N);
- SDValue visitBITCAST(SDNode *N);
- SDValue visitFREEZE(SDNode *N);
- SDValue visitBUILD_PAIR(SDNode *N);
- SDValue visitFADD(SDNode *N);
- SDValue visitSTRICT_FADD(SDNode *N);
- SDValue visitFSUB(SDNode *N);
- SDValue visitFMUL(SDNode *N);
- SDValue visitFMA(SDNode *N);
- SDValue visitFDIV(SDNode *N);
- SDValue visitFREM(SDNode *N);
- SDValue visitFSQRT(SDNode *N);
- SDValue visitFCOPYSIGN(SDNode *N);
- SDValue visitFPOW(SDNode *N);
- SDValue visitSINT_TO_FP(SDNode *N);
- SDValue visitUINT_TO_FP(SDNode *N);
- SDValue visitFP_TO_SINT(SDNode *N);
- SDValue visitFP_TO_UINT(SDNode *N);
- SDValue visitFP_ROUND(SDNode *N);
- SDValue visitFP_EXTEND(SDNode *N);
- SDValue visitFNEG(SDNode *N);
- SDValue visitFABS(SDNode *N);
- SDValue visitFCEIL(SDNode *N);
- SDValue visitFTRUNC(SDNode *N);
- SDValue visitFFLOOR(SDNode *N);
- SDValue visitFMinMax(SDNode *N);
- SDValue visitBRCOND(SDNode *N);
- SDValue visitBR_CC(SDNode *N);
- SDValue visitLOAD(SDNode *N);
- SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
- SDValue replaceStoreOfFPConstant(StoreSDNode *ST);
- bool refineExtractVectorEltIntoMultipleNarrowExtractVectorElts(SDNode *N);
- SDValue visitSTORE(SDNode *N);
- SDValue visitLIFETIME_END(SDNode *N);
- SDValue visitINSERT_VECTOR_ELT(SDNode *N);
- SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
- SDValue visitBUILD_VECTOR(SDNode *N);
- SDValue visitCONCAT_VECTORS(SDNode *N);
- SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
- SDValue visitVECTOR_SHUFFLE(SDNode *N);
- SDValue visitSCALAR_TO_VECTOR(SDNode *N);
- SDValue visitINSERT_SUBVECTOR(SDNode *N);
- SDValue visitMLOAD(SDNode *N);
- SDValue visitMSTORE(SDNode *N);
- SDValue visitMGATHER(SDNode *N);
- SDValue visitMSCATTER(SDNode *N);
- SDValue visitVPGATHER(SDNode *N);
- SDValue visitVPSCATTER(SDNode *N);
- SDValue visitFP_TO_FP16(SDNode *N);
- SDValue visitFP16_TO_FP(SDNode *N);
- SDValue visitFP_TO_BF16(SDNode *N);
- SDValue visitVECREDUCE(SDNode *N);
- SDValue visitVPOp(SDNode *N);
- SDValue visitFADDForFMACombine(SDNode *N);
- SDValue visitFSUBForFMACombine(SDNode *N);
- SDValue visitFMULForFMADistributiveCombine(SDNode *N);
- SDValue XformToShuffleWithZero(SDNode *N);
- bool reassociationCanBreakAddressingModePattern(unsigned Opc,
- const SDLoc &DL,
- SDNode *N,
- SDValue N0,
- SDValue N1);
- SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0,
- SDValue N1);
- SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
- SDValue N1, SDNodeFlags Flags);
- SDValue visitShiftByConstant(SDNode *N);
- SDValue foldSelectOfConstants(SDNode *N);
- SDValue foldVSelectOfConstants(SDNode *N);
- SDValue foldBinOpIntoSelect(SDNode *BO);
- bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
- SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N);
- SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2);
- SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
- SDValue N2, SDValue N3, ISD::CondCode CC,
- bool NotExtCompare = false);
- SDValue convertSelectOfFPConstantsToLoadOffset(
- const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
- ISD::CondCode CC);
- SDValue foldSignChangeInBitcast(SDNode *N);
- SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1,
- SDValue N2, SDValue N3, ISD::CondCode CC);
- SDValue foldSelectOfBinops(SDNode *N);
- SDValue foldSextSetcc(SDNode *N);
- SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
- const SDLoc &DL);
- SDValue foldSubToUSubSat(EVT DstVT, SDNode *N);
- SDValue foldABSToABD(SDNode *N);
- SDValue unfoldMaskedMerge(SDNode *N);
- SDValue unfoldExtremeBitClearingToShifts(SDNode *N);
- SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
- const SDLoc &DL, bool foldBooleans);
- SDValue rebuildSetCC(SDValue N);
- bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
- SDValue &CC, bool MatchStrict = false) const;
- bool isOneUseSetCC(SDValue N) const;
- SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
- unsigned HiOp);
- SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
- SDValue CombineExtLoad(SDNode *N);
- SDValue CombineZExtLogicopShiftLoad(SDNode *N);
- SDValue combineRepeatedFPDivisors(SDNode *N);
- SDValue mergeInsertEltWithShuffle(SDNode *N, unsigned InsIndex);
- SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex);
- SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
- SDValue BuildSDIV(SDNode *N);
- SDValue BuildSDIVPow2(SDNode *N);
- SDValue BuildUDIV(SDNode *N);
- SDValue BuildSREMPow2(SDNode *N);
- SDValue buildOptimizedSREM(SDValue N0, SDValue N1, SDNode *N);
- SDValue BuildLogBase2(SDValue V, const SDLoc &DL);
- SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags);
- SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags);
- SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags);
- SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip);
- SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations,
- SDNodeFlags Flags, bool Reciprocal);
- SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations,
- SDNodeFlags Flags, bool Reciprocal);
- SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
- bool DemandHighBits = true);
- SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
- SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
- SDValue InnerPos, SDValue InnerNeg, bool HasPos,
- unsigned PosOpcode, unsigned NegOpcode,
- const SDLoc &DL);
- SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg,
- SDValue InnerPos, SDValue InnerNeg, bool HasPos,
- unsigned PosOpcode, unsigned NegOpcode,
- const SDLoc &DL);
- SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL);
- SDValue MatchLoadCombine(SDNode *N);
- SDValue mergeTruncStores(StoreSDNode *N);
- SDValue reduceLoadWidth(SDNode *N);
- SDValue ReduceLoadOpStoreWidth(SDNode *N);
- SDValue splitMergedValStore(StoreSDNode *ST);
- SDValue TransformFPLoadStorePair(SDNode *N);
- SDValue convertBuildVecZextToZext(SDNode *N);
- SDValue convertBuildVecZextToBuildVecWithZeros(SDNode *N);
- SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
- SDValue reduceBuildVecTruncToBitCast(SDNode *N);
- SDValue reduceBuildVecToShuffle(SDNode *N);
- SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N,
- ArrayRef<int> VectorMask, SDValue VecIn1,
- SDValue VecIn2, unsigned LeftIdx,
- bool DidSplitVec);
- SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast);
- /// Walk up chain skipping non-aliasing memory nodes,
- /// looking for aliasing nodes and adding them to the Aliases vector.
- void GatherAllAliases(SDNode *N, SDValue OriginalChain,
- SmallVectorImpl<SDValue> &Aliases);
- /// Return true if there is any possibility that the two addresses overlap.
- bool mayAlias(SDNode *Op0, SDNode *Op1) const;
- /// Walk up chain skipping non-aliasing memory nodes, looking for a better
- /// chain (aliasing node.)
- SDValue FindBetterChain(SDNode *N, SDValue Chain);
- /// Try to replace a store and any possibly adjacent stores on
- /// consecutive chains with better chains. Return true only if St is
- /// replaced.
- ///
- /// Notice that other chains may still be replaced even if the function
- /// returns false.
- bool findBetterNeighborChains(StoreSDNode *St);
- // Helper for findBetterNeighborChains. Walk up store chain add additional
- // chained stores that do not overlap and can be parallelized.
- bool parallelizeChainedStores(StoreSDNode *St);
- /// Holds a pointer to an LSBaseSDNode as well as information on where it
- /// is located in a sequence of memory operations connected by a chain.
- struct MemOpLink {
- // Ptr to the mem node.
- LSBaseSDNode *MemNode;
- // Offset from the base ptr.
- int64_t OffsetFromBase;
- MemOpLink(LSBaseSDNode *N, int64_t Offset)
- : MemNode(N), OffsetFromBase(Offset) {}
- };
- // Classify the origin of a stored value.
- enum class StoreSource { Unknown, Constant, Extract, Load };
- StoreSource getStoreSource(SDValue StoreVal) {
- switch (StoreVal.getOpcode()) {
- case ISD::Constant:
- case ISD::ConstantFP:
- return StoreSource::Constant;
- case ISD::EXTRACT_VECTOR_ELT:
- case ISD::EXTRACT_SUBVECTOR:
- return StoreSource::Extract;
- case ISD::LOAD:
- return StoreSource::Load;
- default:
- return StoreSource::Unknown;
- }
- }
- /// This is a helper function for visitMUL to check the profitability
- /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
- /// MulNode is the original multiply, AddNode is (add x, c1),
- /// and ConstNode is c2.
- bool isMulAddWithConstProfitable(SDNode *MulNode, SDValue AddNode,
- SDValue ConstNode);
- /// This is a helper function for visitAND and visitZERO_EXTEND. Returns
- /// true if the (and (load x) c) pattern matches an extload. ExtVT returns
- /// the type of the loaded value to be extended.
- bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
- EVT LoadResultTy, EVT &ExtVT);
- /// Helper function to calculate whether the given Load/Store can have its
- /// width reduced to ExtVT.
- bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType,
- EVT &MemVT, unsigned ShAmt = 0);
- /// Used by BackwardsPropagateMask to find suitable loads.
- bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads,
- SmallPtrSetImpl<SDNode*> &NodesWithConsts,
- ConstantSDNode *Mask, SDNode *&NodeToMask);
- /// Attempt to propagate a given AND node back to load leaves so that they
- /// can be combined into narrow loads.
- bool BackwardsPropagateMask(SDNode *N);
- /// Helper function for mergeConsecutiveStores which merges the component
- /// store chains.
- SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
- unsigned NumStores);
- /// This is a helper function for mergeConsecutiveStores. When the source
- /// elements of the consecutive stores are all constants or all extracted
- /// vector elements, try to merge them into one larger store introducing
- /// bitcasts if necessary. \return True if a merged store was created.
- bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
- EVT MemVT, unsigned NumStores,
- bool IsConstantSrc, bool UseVector,
- bool UseTrunc);
- /// This is a helper function for mergeConsecutiveStores. Stores that
- /// potentially may be merged with St are placed in StoreNodes. RootNode is
- /// a chain predecessor to all store candidates.
- void getStoreMergeCandidates(StoreSDNode *St,
- SmallVectorImpl<MemOpLink> &StoreNodes,
- SDNode *&Root);
- /// Helper function for mergeConsecutiveStores. Checks if candidate stores
- /// have indirect dependency through their operands. RootNode is the
- /// predecessor to all stores calculated by getStoreMergeCandidates and is
- /// used to prune the dependency check. \return True if safe to merge.
- bool checkMergeStoreCandidatesForDependencies(
- SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
- SDNode *RootNode);
- /// This is a helper function for mergeConsecutiveStores. Given a list of
- /// store candidates, find the first N that are consecutive in memory.
- /// Returns 0 if there are not at least 2 consecutive stores to try merging.
- unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes,
- int64_t ElementSizeBytes) const;
- /// This is a helper function for mergeConsecutiveStores. It is used for
- /// store chains that are composed entirely of constant values.
- bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes,
- unsigned NumConsecutiveStores,
- EVT MemVT, SDNode *Root, bool AllowVectors);
- /// This is a helper function for mergeConsecutiveStores. It is used for
- /// store chains that are composed entirely of extracted vector elements.
- /// When extracting multiple vector elements, try to store them in one
- /// vector store rather than a sequence of scalar stores.
- bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes,
- unsigned NumConsecutiveStores, EVT MemVT,
- SDNode *Root);
- /// This is a helper function for mergeConsecutiveStores. It is used for
- /// store chains that are composed entirely of loaded values.
- bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes,
- unsigned NumConsecutiveStores, EVT MemVT,
- SDNode *Root, bool AllowVectors,
- bool IsNonTemporalStore, bool IsNonTemporalLoad);
- /// Merge consecutive store operations into a wide store.
- /// This optimization uses wide integers or vectors when possible.
- /// \return true if stores were merged.
- bool mergeConsecutiveStores(StoreSDNode *St);
- /// Try to transform a truncation where C is a constant:
- /// (trunc (and X, C)) -> (and (trunc X), (trunc C))
- ///
- /// \p N needs to be a truncation and its first operand an AND. Other
- /// requirements are checked by the function (e.g. that trunc is
- /// single-use) and if missed an empty SDValue is returned.
- SDValue distributeTruncateThroughAnd(SDNode *N);
- /// Helper function to determine whether the target supports operation
- /// given by \p Opcode for type \p VT, that is, whether the operation
- /// is legal or custom before legalizing operations, and whether is
- /// legal (but not custom) after legalization.
- bool hasOperation(unsigned Opcode, EVT VT) {
- return TLI.isOperationLegalOrCustom(Opcode, VT, LegalOperations);
- }
- public:
- /// Runs the dag combiner on all nodes in the work list
- void Run(CombineLevel AtLevel);
- SelectionDAG &getDAG() const { return DAG; }
- /// Returns a type large enough to hold any valid shift amount - before type
- /// legalization these can be huge.
- EVT getShiftAmountTy(EVT LHSTy) {
- assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
- return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes);
- }
- /// This method returns true if we are running before type legalization or
- /// if the specified VT is legal.
- bool isTypeLegal(const EVT &VT) {
- if (!LegalTypes) return true;
- return TLI.isTypeLegal(VT);
- }
- /// Convenience wrapper around TargetLowering::getSetCCResultType
- EVT getSetCCResultType(EVT VT) const {
- return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- }
- void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
- SDValue OrigLoad, SDValue ExtLoad,
- ISD::NodeType ExtType);
- };
- /// This class is a DAGUpdateListener that removes any deleted
- /// nodes from the worklist.
- class WorklistRemover : public SelectionDAG::DAGUpdateListener {
- DAGCombiner &DC;
- public:
- explicit WorklistRemover(DAGCombiner &dc)
- : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
- void NodeDeleted(SDNode *N, SDNode *E) override {
- DC.removeFromWorklist(N);
- }
- };
- class WorklistInserter : public SelectionDAG::DAGUpdateListener {
- DAGCombiner &DC;
- public:
- explicit WorklistInserter(DAGCombiner &dc)
- : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
- // FIXME: Ideally we could add N to the worklist, but this causes exponential
- // compile time costs in large DAGs, e.g. Halide.
- void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); }
- };
- } // end anonymous namespace
- //===----------------------------------------------------------------------===//
- // TargetLowering::DAGCombinerInfo implementation
- //===----------------------------------------------------------------------===//
- void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
- ((DAGCombiner*)DC)->AddToWorklist(N);
- }
- SDValue TargetLowering::DAGCombinerInfo::
- CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
- return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
- }
- SDValue TargetLowering::DAGCombinerInfo::
- CombineTo(SDNode *N, SDValue Res, bool AddTo) {
- return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
- }
- SDValue TargetLowering::DAGCombinerInfo::
- CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
- return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
- }
- bool TargetLowering::DAGCombinerInfo::
- recursivelyDeleteUnusedNodes(SDNode *N) {
- return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N);
- }
- void TargetLowering::DAGCombinerInfo::
- CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
- return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
- }
- //===----------------------------------------------------------------------===//
- // Helper Functions
- //===----------------------------------------------------------------------===//
- void DAGCombiner::deleteAndRecombine(SDNode *N) {
- removeFromWorklist(N);
- // If the operands of this node are only used by the node, they will now be
- // dead. Make sure to re-visit them and recursively delete dead nodes.
- for (const SDValue &Op : N->ops())
- // For an operand generating multiple values, one of the values may
- // become dead allowing further simplification (e.g. split index
- // arithmetic from an indexed load).
- if (Op->hasOneUse() || Op->getNumValues() > 1)
- AddToWorklist(Op.getNode());
- DAG.DeleteNode(N);
- }
- // APInts must be the same size for most operations, this helper
- // function zero extends the shorter of the pair so that they match.
- // We provide an Offset so that we can create bitwidths that won't overflow.
- static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) {
- unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth());
- LHS = LHS.zext(Bits);
- RHS = RHS.zext(Bits);
- }
- // Return true if this node is a setcc, or is a select_cc
- // that selects between the target values used for true and false, making it
- // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
- // the appropriate nodes based on the type of node we are checking. This
- // simplifies life a bit for the callers.
- bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
- SDValue &CC, bool MatchStrict) const {
- if (N.getOpcode() == ISD::SETCC) {
- LHS = N.getOperand(0);
- RHS = N.getOperand(1);
- CC = N.getOperand(2);
- return true;
- }
- if (MatchStrict &&
- (N.getOpcode() == ISD::STRICT_FSETCC ||
- N.getOpcode() == ISD::STRICT_FSETCCS)) {
- LHS = N.getOperand(1);
- RHS = N.getOperand(2);
- CC = N.getOperand(3);
- return true;
- }
- if (N.getOpcode() != ISD::SELECT_CC || !TLI.isConstTrueVal(N.getOperand(2)) ||
- !TLI.isConstFalseVal(N.getOperand(3)))
- return false;
- if (TLI.getBooleanContents(N.getValueType()) ==
- TargetLowering::UndefinedBooleanContent)
- return false;
- LHS = N.getOperand(0);
- RHS = N.getOperand(1);
- CC = N.getOperand(4);
- return true;
- }
- /// Return true if this is a SetCC-equivalent operation with only one use.
- /// If this is true, it allows the users to invert the operation for free when
- /// it is profitable to do so.
- bool DAGCombiner::isOneUseSetCC(SDValue N) const {
- SDValue N0, N1, N2;
- if (isSetCCEquivalent(N, N0, N1, N2) && N->hasOneUse())
- return true;
- return false;
- }
- static bool isConstantSplatVectorMaskForType(SDNode *N, EVT ScalarTy) {
- if (!ScalarTy.isSimple())
- return false;
- uint64_t MaskForTy = 0ULL;
- switch (ScalarTy.getSimpleVT().SimpleTy) {
- case MVT::i8:
- MaskForTy = 0xFFULL;
- break;
- case MVT::i16:
- MaskForTy = 0xFFFFULL;
- break;
- case MVT::i32:
- MaskForTy = 0xFFFFFFFFULL;
- break;
- default:
- return false;
- break;
- }
- APInt Val;
- if (ISD::isConstantSplatVector(N, Val))
- return Val.getLimitedValue() == MaskForTy;
- return false;
- }
- // Determines if it is a constant integer or a splat/build vector of constant
- // integers (and undefs).
- // Do not permit build vector implicit truncation.
- static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) {
- if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N))
- return !(Const->isOpaque() && NoOpaques);
- if (N.getOpcode() != ISD::BUILD_VECTOR && N.getOpcode() != ISD::SPLAT_VECTOR)
- return false;
- unsigned BitWidth = N.getScalarValueSizeInBits();
- for (const SDValue &Op : N->op_values()) {
- if (Op.isUndef())
- continue;
- ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op);
- if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth ||
- (Const->isOpaque() && NoOpaques))
- return false;
- }
- return true;
- }
- // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
- // undef's.
- static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) {
- if (V.getOpcode() != ISD::BUILD_VECTOR)
- return false;
- return isConstantOrConstantVector(V, NoOpaques) ||
- ISD::isBuildVectorOfConstantFPSDNodes(V.getNode());
- }
- // Determine if this an indexed load with an opaque target constant index.
- static bool canSplitIdx(LoadSDNode *LD) {
- return MaySplitLoadIndex &&
- (LD->getOperand(2).getOpcode() != ISD::TargetConstant ||
- !cast<ConstantSDNode>(LD->getOperand(2))->isOpaque());
- }
- bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc,
- const SDLoc &DL,
- SDNode *N,
- SDValue N0,
- SDValue N1) {
- // Currently this only tries to ensure we don't undo the GEP splits done by
- // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this,
- // we check if the following transformation would be problematic:
- // (load/store (add, (add, x, offset1), offset2)) ->
- // (load/store (add, x, offset1+offset2)).
- // (load/store (add, (add, x, y), offset2)) ->
- // (load/store (add, (add, x, offset2), y)).
- if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD)
- return false;
- auto *C2 = dyn_cast<ConstantSDNode>(N1);
- if (!C2)
- return false;
- const APInt &C2APIntVal = C2->getAPIntValue();
- if (C2APIntVal.getSignificantBits() > 64)
- return false;
- if (auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- if (N0.hasOneUse())
- return false;
- const APInt &C1APIntVal = C1->getAPIntValue();
- const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal;
- if (CombinedValueIntVal.getSignificantBits() > 64)
- return false;
- const int64_t CombinedValue = CombinedValueIntVal.getSExtValue();
- for (SDNode *Node : N->uses()) {
- if (auto *LoadStore = dyn_cast<MemSDNode>(Node)) {
- // Is x[offset2] already not a legal addressing mode? If so then
- // reassociating the constants breaks nothing (we test offset2 because
- // that's the one we hope to fold into the load or store).
- TargetLoweringBase::AddrMode AM;
- AM.HasBaseReg = true;
- AM.BaseOffs = C2APIntVal.getSExtValue();
- EVT VT = LoadStore->getMemoryVT();
- unsigned AS = LoadStore->getAddressSpace();
- Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
- if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
- continue;
- // Would x[offset1+offset2] still be a legal addressing mode?
- AM.BaseOffs = CombinedValue;
- if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
- return true;
- }
- }
- } else {
- if (auto *GA = dyn_cast<GlobalAddressSDNode>(N0.getOperand(1)))
- if (GA->getOpcode() == ISD::GlobalAddress && TLI.isOffsetFoldingLegal(GA))
- return false;
- for (SDNode *Node : N->uses()) {
- auto *LoadStore = dyn_cast<MemSDNode>(Node);
- if (!LoadStore)
- return false;
- // Is x[offset2] a legal addressing mode? If so then
- // reassociating the constants breaks address pattern
- TargetLoweringBase::AddrMode AM;
- AM.HasBaseReg = true;
- AM.BaseOffs = C2APIntVal.getSExtValue();
- EVT VT = LoadStore->getMemoryVT();
- unsigned AS = LoadStore->getAddressSpace();
- Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
- if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
- return false;
- }
- return true;
- }
- return false;
- }
- // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression
- // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc.
- SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL,
- SDValue N0, SDValue N1) {
- EVT VT = N0.getValueType();
- if (N0.getOpcode() != Opc)
- return SDValue();
- SDValue N00 = N0.getOperand(0);
- SDValue N01 = N0.getOperand(1);
- if (DAG.isConstantIntBuildVectorOrConstantInt(peekThroughBitcasts(N01))) {
- if (DAG.isConstantIntBuildVectorOrConstantInt(peekThroughBitcasts(N1))) {
- // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2))
- if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, {N01, N1}))
- return DAG.getNode(Opc, DL, VT, N00, OpNode);
- return SDValue();
- }
- if (TLI.isReassocProfitable(DAG, N0, N1)) {
- // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
- // iff (op x, c1) has one use
- SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N00, N1);
- return DAG.getNode(Opc, DL, VT, OpNode, N01);
- }
- }
- // Check for repeated operand logic simplifications.
- if (Opc == ISD::AND || Opc == ISD::OR) {
- // (N00 & N01) & N00 --> N00 & N01
- // (N00 & N01) & N01 --> N00 & N01
- // (N00 | N01) | N00 --> N00 | N01
- // (N00 | N01) | N01 --> N00 | N01
- if (N1 == N00 || N1 == N01)
- return N0;
- }
- if (Opc == ISD::XOR) {
- // (N00 ^ N01) ^ N00 --> N01
- if (N1 == N00)
- return N01;
- // (N00 ^ N01) ^ N01 --> N00
- if (N1 == N01)
- return N00;
- }
- if (TLI.isReassocProfitable(DAG, N0, N1)) {
- if (N1 != N01) {
- // Reassociate if (op N00, N1) already exist
- if (SDNode *NE = DAG.getNodeIfExists(Opc, DAG.getVTList(VT), {N00, N1})) {
- // if Op (Op N00, N1), N01 already exist
- // we need to stop reassciate to avoid dead loop
- if (!DAG.doesNodeExist(Opc, DAG.getVTList(VT), {SDValue(NE, 0), N01}))
- return DAG.getNode(Opc, DL, VT, SDValue(NE, 0), N01);
- }
- }
- if (N1 != N00) {
- // Reassociate if (op N01, N1) already exist
- if (SDNode *NE = DAG.getNodeIfExists(Opc, DAG.getVTList(VT), {N01, N1})) {
- // if Op (Op N01, N1), N00 already exist
- // we need to stop reassciate to avoid dead loop
- if (!DAG.doesNodeExist(Opc, DAG.getVTList(VT), {SDValue(NE, 0), N00}))
- return DAG.getNode(Opc, DL, VT, SDValue(NE, 0), N00);
- }
- }
- }
- return SDValue();
- }
- // Try to reassociate commutative binops.
- SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
- SDValue N1, SDNodeFlags Flags) {
- assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative.");
- // Floating-point reassociation is not allowed without loose FP math.
- if (N0.getValueType().isFloatingPoint() ||
- N1.getValueType().isFloatingPoint())
- if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros())
- return SDValue();
- if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1))
- return Combined;
- if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0))
- return Combined;
- return SDValue();
- }
- SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
- bool AddTo) {
- assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
- ++NodesCombined;
- LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: ";
- To[0].dump(&DAG);
- dbgs() << " and " << NumTo - 1 << " other values\n");
- for (unsigned i = 0, e = NumTo; i != e; ++i)
- assert((!To[i].getNode() ||
- N->getValueType(i) == To[i].getValueType()) &&
- "Cannot combine value to value of different type!");
- WorklistRemover DeadNodes(*this);
- DAG.ReplaceAllUsesWith(N, To);
- if (AddTo) {
- // Push the new nodes and any users onto the worklist
- for (unsigned i = 0, e = NumTo; i != e; ++i) {
- if (To[i].getNode())
- AddToWorklistWithUsers(To[i].getNode());
- }
- }
- // Finally, if the node is now dead, remove it from the graph. The node
- // may not be dead if the replacement process recursively simplified to
- // something else needing this node.
- if (N->use_empty())
- deleteAndRecombine(N);
- return SDValue(N, 0);
- }
- void DAGCombiner::
- CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
- // Replace the old value with the new one.
- ++NodesCombined;
- LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.dump(&DAG);
- dbgs() << "\nWith: "; TLO.New.dump(&DAG); dbgs() << '\n');
- // Replace all uses.
- DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
- // Push the new node and any (possibly new) users onto the worklist.
- AddToWorklistWithUsers(TLO.New.getNode());
- // Finally, if the node is now dead, remove it from the graph.
- recursivelyDeleteUnusedNodes(TLO.Old.getNode());
- }
- /// Check the specified integer node value to see if it can be simplified or if
- /// things it uses can be simplified by bit propagation. If so, return true.
- bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
- const APInt &DemandedElts,
- bool AssumeSingleUse) {
- TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
- KnownBits Known;
- if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0,
- AssumeSingleUse))
- return false;
- // Revisit the node.
- AddToWorklist(Op.getNode());
- CommitTargetLoweringOpt(TLO);
- return true;
- }
- /// Check the specified vector node value to see if it can be simplified or
- /// if things it uses can be simplified as it only uses some of the elements.
- /// If so, return true.
- bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op,
- const APInt &DemandedElts,
- bool AssumeSingleUse) {
- TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
- APInt KnownUndef, KnownZero;
- if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero,
- TLO, 0, AssumeSingleUse))
- return false;
- // Revisit the node.
- AddToWorklist(Op.getNode());
- CommitTargetLoweringOpt(TLO);
- return true;
- }
- void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
- SDLoc DL(Load);
- EVT VT = Load->getValueType(0);
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0));
- LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: ";
- Trunc.dump(&DAG); dbgs() << '\n');
- DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
- DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
- AddToWorklist(Trunc.getNode());
- recursivelyDeleteUnusedNodes(Load);
- }
- SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
- Replace = false;
- SDLoc DL(Op);
- if (ISD::isUNINDEXEDLoad(Op.getNode())) {
- LoadSDNode *LD = cast<LoadSDNode>(Op);
- EVT MemVT = LD->getMemoryVT();
- ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
- : LD->getExtensionType();
- Replace = true;
- return DAG.getExtLoad(ExtType, DL, PVT,
- LD->getChain(), LD->getBasePtr(),
- MemVT, LD->getMemOperand());
- }
- unsigned Opc = Op.getOpcode();
- switch (Opc) {
- default: break;
- case ISD::AssertSext:
- if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT))
- return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1));
- break;
- case ISD::AssertZext:
- if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT))
- return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1));
- break;
- case ISD::Constant: {
- unsigned ExtOpc =
- Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
- return DAG.getNode(ExtOpc, DL, PVT, Op);
- }
- }
- if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
- return SDValue();
- return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op);
- }
- SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
- if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
- return SDValue();
- EVT OldVT = Op.getValueType();
- SDLoc DL(Op);
- bool Replace = false;
- SDValue NewOp = PromoteOperand(Op, PVT, Replace);
- if (!NewOp.getNode())
- return SDValue();
- AddToWorklist(NewOp.getNode());
- if (Replace)
- ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
- return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp,
- DAG.getValueType(OldVT));
- }
- SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
- EVT OldVT = Op.getValueType();
- SDLoc DL(Op);
- bool Replace = false;
- SDValue NewOp = PromoteOperand(Op, PVT, Replace);
- if (!NewOp.getNode())
- return SDValue();
- AddToWorklist(NewOp.getNode());
- if (Replace)
- ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
- return DAG.getZeroExtendInReg(NewOp, DL, OldVT);
- }
- /// Promote the specified integer binary operation if the target indicates it is
- /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
- /// i32 since i16 instructions are longer.
- SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
- if (!LegalOperations)
- return SDValue();
- EVT VT = Op.getValueType();
- if (VT.isVector() || !VT.isInteger())
- return SDValue();
- // If operation type is 'undesirable', e.g. i16 on x86, consider
- // promoting it.
- unsigned Opc = Op.getOpcode();
- if (TLI.isTypeDesirableForOp(Opc, VT))
- return SDValue();
- EVT PVT = VT;
- // Consult target whether it is a good idea to promote this operation and
- // what's the right type to promote it to.
- if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
- assert(PVT != VT && "Don't know what type to promote to!");
- LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG));
- bool Replace0 = false;
- SDValue N0 = Op.getOperand(0);
- SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
- bool Replace1 = false;
- SDValue N1 = Op.getOperand(1);
- SDValue NN1 = PromoteOperand(N1, PVT, Replace1);
- SDLoc DL(Op);
- SDValue RV =
- DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1));
- // We are always replacing N0/N1's use in N and only need additional
- // replacements if there are additional uses.
- // Note: We are checking uses of the *nodes* (SDNode) rather than values
- // (SDValue) here because the node may reference multiple values
- // (for example, the chain value of a load node).
- Replace0 &= !N0->hasOneUse();
- Replace1 &= (N0 != N1) && !N1->hasOneUse();
- // Combine Op here so it is preserved past replacements.
- CombineTo(Op.getNode(), RV);
- // If operands have a use ordering, make sure we deal with
- // predecessor first.
- if (Replace0 && Replace1 && N0->isPredecessorOf(N1.getNode())) {
- std::swap(N0, N1);
- std::swap(NN0, NN1);
- }
- if (Replace0) {
- AddToWorklist(NN0.getNode());
- ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
- }
- if (Replace1) {
- AddToWorklist(NN1.getNode());
- ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
- }
- return Op;
- }
- return SDValue();
- }
- /// Promote the specified integer shift operation if the target indicates it is
- /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
- /// i32 since i16 instructions are longer.
- SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
- if (!LegalOperations)
- return SDValue();
- EVT VT = Op.getValueType();
- if (VT.isVector() || !VT.isInteger())
- return SDValue();
- // If operation type is 'undesirable', e.g. i16 on x86, consider
- // promoting it.
- unsigned Opc = Op.getOpcode();
- if (TLI.isTypeDesirableForOp(Opc, VT))
- return SDValue();
- EVT PVT = VT;
- // Consult target whether it is a good idea to promote this operation and
- // what's the right type to promote it to.
- if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
- assert(PVT != VT && "Don't know what type to promote to!");
- LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG));
- bool Replace = false;
- SDValue N0 = Op.getOperand(0);
- if (Opc == ISD::SRA)
- N0 = SExtPromoteOperand(N0, PVT);
- else if (Opc == ISD::SRL)
- N0 = ZExtPromoteOperand(N0, PVT);
- else
- N0 = PromoteOperand(N0, PVT, Replace);
- if (!N0.getNode())
- return SDValue();
- SDLoc DL(Op);
- SDValue N1 = Op.getOperand(1);
- SDValue RV =
- DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1));
- if (Replace)
- ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
- // Deal with Op being deleted.
- if (Op && Op.getOpcode() != ISD::DELETED_NODE)
- return RV;
- }
- return SDValue();
- }
- SDValue DAGCombiner::PromoteExtend(SDValue Op) {
- if (!LegalOperations)
- return SDValue();
- EVT VT = Op.getValueType();
- if (VT.isVector() || !VT.isInteger())
- return SDValue();
- // If operation type is 'undesirable', e.g. i16 on x86, consider
- // promoting it.
- unsigned Opc = Op.getOpcode();
- if (TLI.isTypeDesirableForOp(Opc, VT))
- return SDValue();
- EVT PVT = VT;
- // Consult target whether it is a good idea to promote this operation and
- // what's the right type to promote it to.
- if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
- assert(PVT != VT && "Don't know what type to promote to!");
- // fold (aext (aext x)) -> (aext x)
- // fold (aext (zext x)) -> (zext x)
- // fold (aext (sext x)) -> (sext x)
- LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG));
- return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
- }
- return SDValue();
- }
- bool DAGCombiner::PromoteLoad(SDValue Op) {
- if (!LegalOperations)
- return false;
- if (!ISD::isUNINDEXEDLoad(Op.getNode()))
- return false;
- EVT VT = Op.getValueType();
- if (VT.isVector() || !VT.isInteger())
- return false;
- // If operation type is 'undesirable', e.g. i16 on x86, consider
- // promoting it.
- unsigned Opc = Op.getOpcode();
- if (TLI.isTypeDesirableForOp(Opc, VT))
- return false;
- EVT PVT = VT;
- // Consult target whether it is a good idea to promote this operation and
- // what's the right type to promote it to.
- if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
- assert(PVT != VT && "Don't know what type to promote to!");
- SDLoc DL(Op);
- SDNode *N = Op.getNode();
- LoadSDNode *LD = cast<LoadSDNode>(N);
- EVT MemVT = LD->getMemoryVT();
- ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
- : LD->getExtensionType();
- SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT,
- LD->getChain(), LD->getBasePtr(),
- MemVT, LD->getMemOperand());
- SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);
- LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: ";
- Result.dump(&DAG); dbgs() << '\n');
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
- AddToWorklist(Result.getNode());
- recursivelyDeleteUnusedNodes(N);
- return true;
- }
- return false;
- }
- /// Recursively delete a node which has no uses and any operands for
- /// which it is the only use.
- ///
- /// Note that this both deletes the nodes and removes them from the worklist.
- /// It also adds any nodes who have had a user deleted to the worklist as they
- /// may now have only one use and subject to other combines.
- bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
- if (!N->use_empty())
- return false;
- SmallSetVector<SDNode *, 16> Nodes;
- Nodes.insert(N);
- do {
- N = Nodes.pop_back_val();
- if (!N)
- continue;
- if (N->use_empty()) {
- for (const SDValue &ChildN : N->op_values())
- Nodes.insert(ChildN.getNode());
- removeFromWorklist(N);
- DAG.DeleteNode(N);
- } else {
- AddToWorklist(N);
- }
- } while (!Nodes.empty());
- return true;
- }
- //===----------------------------------------------------------------------===//
- // Main DAG Combiner implementation
- //===----------------------------------------------------------------------===//
- void DAGCombiner::Run(CombineLevel AtLevel) {
- // set the instance variables, so that the various visit routines may use it.
- Level = AtLevel;
- LegalDAG = Level >= AfterLegalizeDAG;
- LegalOperations = Level >= AfterLegalizeVectorOps;
- LegalTypes = Level >= AfterLegalizeTypes;
- WorklistInserter AddNodes(*this);
- // Add all the dag nodes to the worklist.
- for (SDNode &Node : DAG.allnodes())
- AddToWorklist(&Node);
- // Create a dummy node (which is not added to allnodes), that adds a reference
- // to the root node, preventing it from being deleted, and tracking any
- // changes of the root.
- HandleSDNode Dummy(DAG.getRoot());
- // While we have a valid worklist entry node, try to combine it.
- while (SDNode *N = getNextWorklistEntry()) {
- // If N has no uses, it is dead. Make sure to revisit all N's operands once
- // N is deleted from the DAG, since they too may now be dead or may have a
- // reduced number of uses, allowing other xforms.
- if (recursivelyDeleteUnusedNodes(N))
- continue;
- WorklistRemover DeadNodes(*this);
- // If this combine is running after legalizing the DAG, re-legalize any
- // nodes pulled off the worklist.
- if (LegalDAG) {
- SmallSetVector<SDNode *, 16> UpdatedNodes;
- bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
- for (SDNode *LN : UpdatedNodes)
- AddToWorklistWithUsers(LN);
- if (!NIsValid)
- continue;
- }
- LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
- // Add any operands of the new node which have not yet been combined to the
- // worklist as well. Because the worklist uniques things already, this
- // won't repeatedly process the same operand.
- CombinedNodes.insert(N);
- for (const SDValue &ChildN : N->op_values())
- if (!CombinedNodes.count(ChildN.getNode()))
- AddToWorklist(ChildN.getNode());
- SDValue RV = combine(N);
- if (!RV.getNode())
- continue;
- ++NodesCombined;
- // If we get back the same node we passed in, rather than a new node or
- // zero, we know that the node must have defined multiple values and
- // CombineTo was used. Since CombineTo takes care of the worklist
- // mechanics for us, we have no work to do in this case.
- if (RV.getNode() == N)
- continue;
- assert(N->getOpcode() != ISD::DELETED_NODE &&
- RV.getOpcode() != ISD::DELETED_NODE &&
- "Node was deleted but visit returned new node!");
- LLVM_DEBUG(dbgs() << " ... into: "; RV.dump(&DAG));
- if (N->getNumValues() == RV->getNumValues())
- DAG.ReplaceAllUsesWith(N, RV.getNode());
- else {
- assert(N->getValueType(0) == RV.getValueType() &&
- N->getNumValues() == 1 && "Type mismatch");
- DAG.ReplaceAllUsesWith(N, &RV);
- }
- // Push the new node and any users onto the worklist. Omit this if the
- // new node is the EntryToken (e.g. if a store managed to get optimized
- // out), because re-visiting the EntryToken and its users will not uncover
- // any additional opportunities, but there may be a large number of such
- // users, potentially causing compile time explosion.
- if (RV.getOpcode() != ISD::EntryToken) {
- AddToWorklist(RV.getNode());
- AddUsersToWorklist(RV.getNode());
- }
- // Finally, if the node is now dead, remove it from the graph. The node
- // may not be dead if the replacement process recursively simplified to
- // something else needing this node. This will also take care of adding any
- // operands which have lost a user to the worklist.
- recursivelyDeleteUnusedNodes(N);
- }
- // If the root changed (e.g. it was a dead load, update the root).
- DAG.setRoot(Dummy.getValue());
- DAG.RemoveDeadNodes();
- }
- SDValue DAGCombiner::visit(SDNode *N) {
- switch (N->getOpcode()) {
- default: break;
- case ISD::TokenFactor: return visitTokenFactor(N);
- case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
- case ISD::ADD: return visitADD(N);
- case ISD::SUB: return visitSUB(N);
- case ISD::SADDSAT:
- case ISD::UADDSAT: return visitADDSAT(N);
- case ISD::SSUBSAT:
- case ISD::USUBSAT: return visitSUBSAT(N);
- case ISD::ADDC: return visitADDC(N);
- case ISD::SADDO:
- case ISD::UADDO: return visitADDO(N);
- case ISD::SUBC: return visitSUBC(N);
- case ISD::SSUBO:
- case ISD::USUBO: return visitSUBO(N);
- case ISD::ADDE: return visitADDE(N);
- case ISD::ADDCARRY: return visitADDCARRY(N);
- case ISD::SADDO_CARRY: return visitSADDO_CARRY(N);
- case ISD::SUBE: return visitSUBE(N);
- case ISD::SUBCARRY: return visitSUBCARRY(N);
- case ISD::SSUBO_CARRY: return visitSSUBO_CARRY(N);
- case ISD::SMULFIX:
- case ISD::SMULFIXSAT:
- case ISD::UMULFIX:
- case ISD::UMULFIXSAT: return visitMULFIX(N);
- case ISD::MUL: return visitMUL(N);
- case ISD::SDIV: return visitSDIV(N);
- case ISD::UDIV: return visitUDIV(N);
- case ISD::SREM:
- case ISD::UREM: return visitREM(N);
- case ISD::MULHU: return visitMULHU(N);
- case ISD::MULHS: return visitMULHS(N);
- case ISD::AVGFLOORS:
- case ISD::AVGFLOORU:
- case ISD::AVGCEILS:
- case ISD::AVGCEILU: return visitAVG(N);
- case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
- case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
- case ISD::SMULO:
- case ISD::UMULO: return visitMULO(N);
- case ISD::SMIN:
- case ISD::SMAX:
- case ISD::UMIN:
- case ISD::UMAX: return visitIMINMAX(N);
- case ISD::AND: return visitAND(N);
- case ISD::OR: return visitOR(N);
- case ISD::XOR: return visitXOR(N);
- case ISD::SHL: return visitSHL(N);
- case ISD::SRA: return visitSRA(N);
- case ISD::SRL: return visitSRL(N);
- case ISD::ROTR:
- case ISD::ROTL: return visitRotate(N);
- case ISD::FSHL:
- case ISD::FSHR: return visitFunnelShift(N);
- case ISD::SSHLSAT:
- case ISD::USHLSAT: return visitSHLSAT(N);
- case ISD::ABS: return visitABS(N);
- case ISD::BSWAP: return visitBSWAP(N);
- case ISD::BITREVERSE: return visitBITREVERSE(N);
- case ISD::CTLZ: return visitCTLZ(N);
- case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N);
- case ISD::CTTZ: return visitCTTZ(N);
- case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N);
- case ISD::CTPOP: return visitCTPOP(N);
- case ISD::SELECT: return visitSELECT(N);
- case ISD::VSELECT: return visitVSELECT(N);
- case ISD::SELECT_CC: return visitSELECT_CC(N);
- case ISD::SETCC: return visitSETCC(N);
- case ISD::SETCCCARRY: return visitSETCCCARRY(N);
- case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
- case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
- case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
- case ISD::AssertSext:
- case ISD::AssertZext: return visitAssertExt(N);
- case ISD::AssertAlign: return visitAssertAlign(N);
- case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
- case ISD::SIGN_EXTEND_VECTOR_INREG:
- case ISD::ZERO_EXTEND_VECTOR_INREG:
- case ISD::ANY_EXTEND_VECTOR_INREG: return visitEXTEND_VECTOR_INREG(N);
- case ISD::TRUNCATE: return visitTRUNCATE(N);
- case ISD::BITCAST: return visitBITCAST(N);
- case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
- case ISD::FADD: return visitFADD(N);
- case ISD::STRICT_FADD: return visitSTRICT_FADD(N);
- case ISD::FSUB: return visitFSUB(N);
- case ISD::FMUL: return visitFMUL(N);
- case ISD::FMA: return visitFMA(N);
- case ISD::FDIV: return visitFDIV(N);
- case ISD::FREM: return visitFREM(N);
- case ISD::FSQRT: return visitFSQRT(N);
- case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
- case ISD::FPOW: return visitFPOW(N);
- case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
- case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
- case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
- case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
- case ISD::FP_ROUND: return visitFP_ROUND(N);
- case ISD::FP_EXTEND: return visitFP_EXTEND(N);
- case ISD::FNEG: return visitFNEG(N);
- case ISD::FABS: return visitFABS(N);
- case ISD::FFLOOR: return visitFFLOOR(N);
- case ISD::FMINNUM:
- case ISD::FMAXNUM:
- case ISD::FMINIMUM:
- case ISD::FMAXIMUM: return visitFMinMax(N);
- case ISD::FCEIL: return visitFCEIL(N);
- case ISD::FTRUNC: return visitFTRUNC(N);
- case ISD::BRCOND: return visitBRCOND(N);
- case ISD::BR_CC: return visitBR_CC(N);
- case ISD::LOAD: return visitLOAD(N);
- case ISD::STORE: return visitSTORE(N);
- case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
- case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
- case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
- case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
- case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
- case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
- case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N);
- case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N);
- case ISD::MGATHER: return visitMGATHER(N);
- case ISD::MLOAD: return visitMLOAD(N);
- case ISD::MSCATTER: return visitMSCATTER(N);
- case ISD::MSTORE: return visitMSTORE(N);
- case ISD::LIFETIME_END: return visitLIFETIME_END(N);
- case ISD::FP_TO_FP16: return visitFP_TO_FP16(N);
- case ISD::FP16_TO_FP: return visitFP16_TO_FP(N);
- case ISD::FP_TO_BF16: return visitFP_TO_BF16(N);
- case ISD::FREEZE: return visitFREEZE(N);
- case ISD::VECREDUCE_FADD:
- case ISD::VECREDUCE_FMUL:
- case ISD::VECREDUCE_ADD:
- case ISD::VECREDUCE_MUL:
- case ISD::VECREDUCE_AND:
- case ISD::VECREDUCE_OR:
- case ISD::VECREDUCE_XOR:
- case ISD::VECREDUCE_SMAX:
- case ISD::VECREDUCE_SMIN:
- case ISD::VECREDUCE_UMAX:
- case ISD::VECREDUCE_UMIN:
- case ISD::VECREDUCE_FMAX:
- case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N);
- #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) case ISD::SDOPC:
- #include "llvm/IR/VPIntrinsics.def"
- return visitVPOp(N);
- }
- return SDValue();
- }
- SDValue DAGCombiner::combine(SDNode *N) {
- SDValue RV;
- if (!DisableGenericCombines)
- RV = visit(N);
- // If nothing happened, try a target-specific DAG combine.
- if (!RV.getNode()) {
- assert(N->getOpcode() != ISD::DELETED_NODE &&
- "Node was deleted but visit returned NULL!");
- if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
- TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
- // Expose the DAG combiner to the target combiner impls.
- TargetLowering::DAGCombinerInfo
- DagCombineInfo(DAG, Level, false, this);
- RV = TLI.PerformDAGCombine(N, DagCombineInfo);
- }
- }
- // If nothing happened still, try promoting the operation.
- if (!RV.getNode()) {
- switch (N->getOpcode()) {
- default: break;
- case ISD::ADD:
- case ISD::SUB:
- case ISD::MUL:
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR:
- RV = PromoteIntBinOp(SDValue(N, 0));
- break;
- case ISD::SHL:
- case ISD::SRA:
- case ISD::SRL:
- RV = PromoteIntShiftOp(SDValue(N, 0));
- break;
- case ISD::SIGN_EXTEND:
- case ISD::ZERO_EXTEND:
- case ISD::ANY_EXTEND:
- RV = PromoteExtend(SDValue(N, 0));
- break;
- case ISD::LOAD:
- if (PromoteLoad(SDValue(N, 0)))
- RV = SDValue(N, 0);
- break;
- }
- }
- // If N is a commutative binary node, try to eliminate it if the commuted
- // version is already present in the DAG.
- if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode())) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- // Constant operands are canonicalized to RHS.
- if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) {
- SDValue Ops[] = {N1, N0};
- SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
- N->getFlags());
- if (CSENode)
- return SDValue(CSENode, 0);
- }
- }
- return RV;
- }
- /// Given a node, return its input chain if it has one, otherwise return a null
- /// sd operand.
- static SDValue getInputChainForNode(SDNode *N) {
- if (unsigned NumOps = N->getNumOperands()) {
- if (N->getOperand(0).getValueType() == MVT::Other)
- return N->getOperand(0);
- if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
- return N->getOperand(NumOps-1);
- for (unsigned i = 1; i < NumOps-1; ++i)
- if (N->getOperand(i).getValueType() == MVT::Other)
- return N->getOperand(i);
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
- // If N has two operands, where one has an input chain equal to the other,
- // the 'other' chain is redundant.
- if (N->getNumOperands() == 2) {
- if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
- return N->getOperand(0);
- if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
- return N->getOperand(1);
- }
- // Don't simplify token factors if optnone.
- if (OptLevel == CodeGenOpt::None)
- return SDValue();
- // Don't simplify the token factor if the node itself has too many operands.
- if (N->getNumOperands() > TokenFactorInlineLimit)
- return SDValue();
- // If the sole user is a token factor, we should make sure we have a
- // chance to merge them together. This prevents TF chains from inhibiting
- // optimizations.
- if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor)
- AddToWorklist(*(N->use_begin()));
- SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
- SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
- SmallPtrSet<SDNode*, 16> SeenOps;
- bool Changed = false; // If we should replace this token factor.
- // Start out with this token factor.
- TFs.push_back(N);
- // Iterate through token factors. The TFs grows when new token factors are
- // encountered.
- for (unsigned i = 0; i < TFs.size(); ++i) {
- // Limit number of nodes to inline, to avoid quadratic compile times.
- // We have to add the outstanding Token Factors to Ops, otherwise we might
- // drop Ops from the resulting Token Factors.
- if (Ops.size() > TokenFactorInlineLimit) {
- for (unsigned j = i; j < TFs.size(); j++)
- Ops.emplace_back(TFs[j], 0);
- // Drop unprocessed Token Factors from TFs, so we do not add them to the
- // combiner worklist later.
- TFs.resize(i);
- break;
- }
- SDNode *TF = TFs[i];
- // Check each of the operands.
- for (const SDValue &Op : TF->op_values()) {
- switch (Op.getOpcode()) {
- case ISD::EntryToken:
- // Entry tokens don't need to be added to the list. They are
- // redundant.
- Changed = true;
- break;
- case ISD::TokenFactor:
- if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) {
- // Queue up for processing.
- TFs.push_back(Op.getNode());
- Changed = true;
- break;
- }
- [[fallthrough]];
- default:
- // Only add if it isn't already in the list.
- if (SeenOps.insert(Op.getNode()).second)
- Ops.push_back(Op);
- else
- Changed = true;
- break;
- }
- }
- }
- // Re-visit inlined Token Factors, to clean them up in case they have been
- // removed. Skip the first Token Factor, as this is the current node.
- for (unsigned i = 1, e = TFs.size(); i < e; i++)
- AddToWorklist(TFs[i]);
- // Remove Nodes that are chained to another node in the list. Do so
- // by walking up chains breath-first stopping when we've seen
- // another operand. In general we must climb to the EntryNode, but we can exit
- // early if we find all remaining work is associated with just one operand as
- // no further pruning is possible.
- // List of nodes to search through and original Ops from which they originate.
- SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist;
- SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op.
- SmallPtrSet<SDNode *, 16> SeenChains;
- bool DidPruneOps = false;
- unsigned NumLeftToConsider = 0;
- for (const SDValue &Op : Ops) {
- Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++));
- OpWorkCount.push_back(1);
- }
- auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) {
- // If this is an Op, we can remove the op from the list. Remark any
- // search associated with it as from the current OpNumber.
- if (SeenOps.contains(Op)) {
- Changed = true;
- DidPruneOps = true;
- unsigned OrigOpNumber = 0;
- while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op)
- OrigOpNumber++;
- assert((OrigOpNumber != Ops.size()) &&
- "expected to find TokenFactor Operand");
- // Re-mark worklist from OrigOpNumber to OpNumber
- for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) {
- if (Worklist[i].second == OrigOpNumber) {
- Worklist[i].second = OpNumber;
- }
- }
- OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber];
- OpWorkCount[OrigOpNumber] = 0;
- NumLeftToConsider--;
- }
- // Add if it's a new chain
- if (SeenChains.insert(Op).second) {
- OpWorkCount[OpNumber]++;
- Worklist.push_back(std::make_pair(Op, OpNumber));
- }
- };
- for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) {
- // We need at least be consider at least 2 Ops to prune.
- if (NumLeftToConsider <= 1)
- break;
- auto CurNode = Worklist[i].first;
- auto CurOpNumber = Worklist[i].second;
- assert((OpWorkCount[CurOpNumber] > 0) &&
- "Node should not appear in worklist");
- switch (CurNode->getOpcode()) {
- case ISD::EntryToken:
- // Hitting EntryToken is the only way for the search to terminate without
- // hitting
- // another operand's search. Prevent us from marking this operand
- // considered.
- NumLeftToConsider++;
- break;
- case ISD::TokenFactor:
- for (const SDValue &Op : CurNode->op_values())
- AddToWorklist(i, Op.getNode(), CurOpNumber);
- break;
- case ISD::LIFETIME_START:
- case ISD::LIFETIME_END:
- case ISD::CopyFromReg:
- case ISD::CopyToReg:
- AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber);
- break;
- default:
- if (auto *MemNode = dyn_cast<MemSDNode>(CurNode))
- AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber);
- break;
- }
- OpWorkCount[CurOpNumber]--;
- if (OpWorkCount[CurOpNumber] == 0)
- NumLeftToConsider--;
- }
- // If we've changed things around then replace token factor.
- if (Changed) {
- SDValue Result;
- if (Ops.empty()) {
- // The entry token is the only possible outcome.
- Result = DAG.getEntryNode();
- } else {
- if (DidPruneOps) {
- SmallVector<SDValue, 8> PrunedOps;
- //
- for (const SDValue &Op : Ops) {
- if (SeenChains.count(Op.getNode()) == 0)
- PrunedOps.push_back(Op);
- }
- Result = DAG.getTokenFactor(SDLoc(N), PrunedOps);
- } else {
- Result = DAG.getTokenFactor(SDLoc(N), Ops);
- }
- }
- return Result;
- }
- return SDValue();
- }
- /// MERGE_VALUES can always be eliminated.
- SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
- WorklistRemover DeadNodes(*this);
- // Replacing results may cause a different MERGE_VALUES to suddenly
- // be CSE'd with N, and carry its uses with it. Iterate until no
- // uses remain, to ensure that the node can be safely deleted.
- // First add the users of this node to the work list so that they
- // can be tried again once they have new operands.
- AddUsersToWorklist(N);
- do {
- // Do as a single replacement to avoid rewalking use lists.
- SmallVector<SDValue, 8> Ops;
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
- Ops.push_back(N->getOperand(i));
- DAG.ReplaceAllUsesWith(N, Ops.data());
- } while (!N->use_empty());
- deleteAndRecombine(N);
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
- /// ConstantSDNode pointer else nullptr.
- static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) {
- ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N);
- return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
- }
- /// Return true if 'Use' is a load or a store that uses N as its base pointer
- /// and that N may be folded in the load / store addressing mode.
- static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- EVT VT;
- unsigned AS;
- if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
- if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
- return false;
- VT = LD->getMemoryVT();
- AS = LD->getAddressSpace();
- } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
- if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
- return false;
- VT = ST->getMemoryVT();
- AS = ST->getAddressSpace();
- } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(Use)) {
- if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
- return false;
- VT = LD->getMemoryVT();
- AS = LD->getAddressSpace();
- } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(Use)) {
- if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
- return false;
- VT = ST->getMemoryVT();
- AS = ST->getAddressSpace();
- } else {
- return false;
- }
- TargetLowering::AddrMode AM;
- if (N->getOpcode() == ISD::ADD) {
- AM.HasBaseReg = true;
- ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
- if (Offset)
- // [reg +/- imm]
- AM.BaseOffs = Offset->getSExtValue();
- else
- // [reg +/- reg]
- AM.Scale = 1;
- } else if (N->getOpcode() == ISD::SUB) {
- AM.HasBaseReg = true;
- ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
- if (Offset)
- // [reg +/- imm]
- AM.BaseOffs = -Offset->getSExtValue();
- else
- // [reg +/- reg]
- AM.Scale = 1;
- } else {
- return false;
- }
- return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
- VT.getTypeForEVT(*DAG.getContext()), AS);
- }
- /// This inverts a canonicalization in IR that replaces a variable select arm
- /// with an identity constant. Codegen improves if we re-use the variable
- /// operand rather than load a constant. This can also be converted into a
- /// masked vector operation if the target supports it.
- static SDValue foldSelectWithIdentityConstant(SDNode *N, SelectionDAG &DAG,
- bool ShouldCommuteOperands) {
- // Match a select as operand 1. The identity constant that we are looking for
- // is only valid as operand 1 of a non-commutative binop.
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- if (ShouldCommuteOperands)
- std::swap(N0, N1);
- // TODO: Should this apply to scalar select too?
- if (N1.getOpcode() != ISD::VSELECT || !N1.hasOneUse())
- return SDValue();
- // We can't hoist div/rem because of immediate UB (not speculatable).
- unsigned Opcode = N->getOpcode();
- if (!DAG.isSafeToSpeculativelyExecute(Opcode))
- return SDValue();
- EVT VT = N->getValueType(0);
- SDValue Cond = N1.getOperand(0);
- SDValue TVal = N1.getOperand(1);
- SDValue FVal = N1.getOperand(2);
- // This transform increases uses of N0, so freeze it to be safe.
- // binop N0, (vselect Cond, IDC, FVal) --> vselect Cond, N0, (binop N0, FVal)
- unsigned OpNo = ShouldCommuteOperands ? 0 : 1;
- if (isNeutralConstant(Opcode, N->getFlags(), TVal, OpNo)) {
- SDValue F0 = DAG.getFreeze(N0);
- SDValue NewBO = DAG.getNode(Opcode, SDLoc(N), VT, F0, FVal, N->getFlags());
- return DAG.getSelect(SDLoc(N), VT, Cond, F0, NewBO);
- }
- // binop N0, (vselect Cond, TVal, IDC) --> vselect Cond, (binop N0, TVal), N0
- if (isNeutralConstant(Opcode, N->getFlags(), FVal, OpNo)) {
- SDValue F0 = DAG.getFreeze(N0);
- SDValue NewBO = DAG.getNode(Opcode, SDLoc(N), VT, F0, TVal, N->getFlags());
- return DAG.getSelect(SDLoc(N), VT, Cond, NewBO, F0);
- }
- return SDValue();
- }
- SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) {
- assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 &&
- "Unexpected binary operator");
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- auto BinOpcode = BO->getOpcode();
- EVT VT = BO->getValueType(0);
- if (TLI.shouldFoldSelectWithIdentityConstant(BinOpcode, VT)) {
- if (SDValue Sel = foldSelectWithIdentityConstant(BO, DAG, false))
- return Sel;
- if (TLI.isCommutativeBinOp(BO->getOpcode()))
- if (SDValue Sel = foldSelectWithIdentityConstant(BO, DAG, true))
- return Sel;
- }
- // Don't do this unless the old select is going away. We want to eliminate the
- // binary operator, not replace a binop with a select.
- // TODO: Handle ISD::SELECT_CC.
- unsigned SelOpNo = 0;
- SDValue Sel = BO->getOperand(0);
- if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) {
- SelOpNo = 1;
- Sel = BO->getOperand(1);
- }
- if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse())
- return SDValue();
- SDValue CT = Sel.getOperand(1);
- if (!isConstantOrConstantVector(CT, true) &&
- !DAG.isConstantFPBuildVectorOrConstantFP(CT))
- return SDValue();
- SDValue CF = Sel.getOperand(2);
- if (!isConstantOrConstantVector(CF, true) &&
- !DAG.isConstantFPBuildVectorOrConstantFP(CF))
- return SDValue();
- // Bail out if any constants are opaque because we can't constant fold those.
- // The exception is "and" and "or" with either 0 or -1 in which case we can
- // propagate non constant operands into select. I.e.:
- // and (select Cond, 0, -1), X --> select Cond, 0, X
- // or X, (select Cond, -1, 0) --> select Cond, -1, X
- bool CanFoldNonConst =
- (BinOpcode == ISD::AND || BinOpcode == ISD::OR) &&
- ((isNullOrNullSplat(CT) && isAllOnesOrAllOnesSplat(CF)) ||
- (isNullOrNullSplat(CF) && isAllOnesOrAllOnesSplat(CT)));
- SDValue CBO = BO->getOperand(SelOpNo ^ 1);
- if (!CanFoldNonConst &&
- !isConstantOrConstantVector(CBO, true) &&
- !DAG.isConstantFPBuildVectorOrConstantFP(CBO))
- return SDValue();
- SDLoc DL(Sel);
- SDValue NewCT, NewCF;
- if (CanFoldNonConst) {
- // If CBO is an opaque constant, we can't rely on getNode to constant fold.
- if ((BinOpcode == ISD::AND && isNullOrNullSplat(CT)) ||
- (BinOpcode == ISD::OR && isAllOnesOrAllOnesSplat(CT)))
- NewCT = CT;
- else
- NewCT = CBO;
- if ((BinOpcode == ISD::AND && isNullOrNullSplat(CF)) ||
- (BinOpcode == ISD::OR && isAllOnesOrAllOnesSplat(CF)))
- NewCF = CF;
- else
- NewCF = CBO;
- } else {
- // We have a select-of-constants followed by a binary operator with a
- // constant. Eliminate the binop by pulling the constant math into the
- // select. Example: add (select Cond, CT, CF), CBO --> select Cond, CT +
- // CBO, CF + CBO
- NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT)
- : DAG.getNode(BinOpcode, DL, VT, CT, CBO);
- if (!CanFoldNonConst && !NewCT.isUndef() &&
- !isConstantOrConstantVector(NewCT, true) &&
- !DAG.isConstantFPBuildVectorOrConstantFP(NewCT))
- return SDValue();
- NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF)
- : DAG.getNode(BinOpcode, DL, VT, CF, CBO);
- if (!CanFoldNonConst && !NewCF.isUndef() &&
- !isConstantOrConstantVector(NewCF, true) &&
- !DAG.isConstantFPBuildVectorOrConstantFP(NewCF))
- return SDValue();
- }
- SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF);
- SelectOp->setFlags(BO->getFlags());
- return SelectOp;
- }
- static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) {
- assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
- "Expecting add or sub");
- // Match a constant operand and a zext operand for the math instruction:
- // add Z, C
- // sub C, Z
- bool IsAdd = N->getOpcode() == ISD::ADD;
- SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0);
- SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1);
- auto *CN = dyn_cast<ConstantSDNode>(C);
- if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND)
- return SDValue();
- // Match the zext operand as a setcc of a boolean.
- if (Z.getOperand(0).getOpcode() != ISD::SETCC ||
- Z.getOperand(0).getValueType() != MVT::i1)
- return SDValue();
- // Match the compare as: setcc (X & 1), 0, eq.
- SDValue SetCC = Z.getOperand(0);
- ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
- if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) ||
- SetCC.getOperand(0).getOpcode() != ISD::AND ||
- !isOneConstant(SetCC.getOperand(0).getOperand(1)))
- return SDValue();
- // We are adding/subtracting a constant and an inverted low bit. Turn that
- // into a subtract/add of the low bit with incremented/decremented constant:
- // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
- // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
- EVT VT = C.getValueType();
- SDLoc DL(N);
- SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT);
- SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) :
- DAG.getConstant(CN->getAPIntValue() - 1, DL, VT);
- return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit);
- }
- /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
- /// a shift and add with a different constant.
- static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) {
- assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
- "Expecting add or sub");
- // We need a constant operand for the add/sub, and the other operand is a
- // logical shift right: add (srl), C or sub C, (srl).
- bool IsAdd = N->getOpcode() == ISD::ADD;
- SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0);
- SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1);
- if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) ||
- ShiftOp.getOpcode() != ISD::SRL)
- return SDValue();
- // The shift must be of a 'not' value.
- SDValue Not = ShiftOp.getOperand(0);
- if (!Not.hasOneUse() || !isBitwiseNot(Not))
- return SDValue();
- // The shift must be moving the sign bit to the least-significant-bit.
- EVT VT = ShiftOp.getValueType();
- SDValue ShAmt = ShiftOp.getOperand(1);
- ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
- if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1))
- return SDValue();
- // Eliminate the 'not' by adjusting the shift and add/sub constant:
- // add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
- // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
- SDLoc DL(N);
- if (SDValue NewC = DAG.FoldConstantArithmetic(
- IsAdd ? ISD::ADD : ISD::SUB, DL, VT,
- {ConstantOp, DAG.getConstant(1, DL, VT)})) {
- SDValue NewShift = DAG.getNode(IsAdd ? ISD::SRA : ISD::SRL, DL, VT,
- Not.getOperand(0), ShAmt);
- return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC);
- }
- return SDValue();
- }
- static bool isADDLike(SDValue V, const SelectionDAG &DAG) {
- unsigned Opcode = V.getOpcode();
- if (Opcode == ISD::OR)
- return DAG.haveNoCommonBitsSet(V.getOperand(0), V.getOperand(1));
- if (Opcode == ISD::XOR)
- return isMinSignedConstant(V.getOperand(1));
- return false;
- }
- /// Try to fold a node that behaves like an ADD (note that N isn't necessarily
- /// an ISD::ADD here, it could for example be an ISD::OR if we know that there
- /// are no common bits set in the operands).
- SDValue DAGCombiner::visitADDLike(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- SDLoc DL(N);
- // fold (add x, undef) -> undef
- if (N0.isUndef())
- return N0;
- if (N1.isUndef())
- return N1;
- // fold (add c1, c2) -> c1+c2
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1}))
- return C;
- // canonicalize constant to RHS
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
- // fold vector ops
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
- return FoldedVOp;
- // fold (add x, 0) -> x, vector edition
- if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
- return N0;
- }
- // fold (add x, 0) -> x
- if (isNullConstant(N1))
- return N0;
- if (N0.getOpcode() == ISD::SUB) {
- SDValue N00 = N0.getOperand(0);
- SDValue N01 = N0.getOperand(1);
- // fold ((A-c1)+c2) -> (A+(c2-c1))
- if (SDValue Sub = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N01}))
- return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub);
- // fold ((c1-A)+c2) -> (c1+c2)-A
- if (SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N00}))
- return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
- }
- // add (sext i1 X), 1 -> zext (not i1 X)
- // We don't transform this pattern:
- // add (zext i1 X), -1 -> sext (not i1 X)
- // because most (?) targets generate better code for the zext form.
- if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() &&
- isOneOrOneSplat(N1)) {
- SDValue X = N0.getOperand(0);
- if ((!LegalOperations ||
- (TLI.isOperationLegal(ISD::XOR, X.getValueType()) &&
- TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) &&
- X.getScalarValueSizeInBits() == 1) {
- SDValue Not = DAG.getNOT(DL, X, X.getValueType());
- return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not);
- }
- }
- // Fold (add (or x, c0), c1) -> (add x, (c0 + c1))
- // iff (or x, c0) is equivalent to (add x, c0).
- // Fold (add (xor x, c0), c1) -> (add x, (c0 + c1))
- // iff (xor x, c0) is equivalent to (add x, c0).
- if (isADDLike(N0, DAG)) {
- SDValue N01 = N0.getOperand(1);
- if (SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N01}))
- return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add);
- }
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
- // reassociate add
- if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N, N0, N1)) {
- if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags()))
- return RADD;
- // Reassociate (add (or x, c), y) -> (add add(x, y), c)) if (or x, c) is
- // equivalent to (add x, c).
- // Reassociate (add (xor x, c), y) -> (add add(x, y), c)) if (xor x, c) is
- // equivalent to (add x, c).
- auto ReassociateAddOr = [&](SDValue N0, SDValue N1) {
- if (isADDLike(N0, DAG) && N0.hasOneUse() &&
- isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) {
- return DAG.getNode(ISD::ADD, DL, VT,
- DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)),
- N0.getOperand(1));
- }
- return SDValue();
- };
- if (SDValue Add = ReassociateAddOr(N0, N1))
- return Add;
- if (SDValue Add = ReassociateAddOr(N1, N0))
- return Add;
- }
- // fold ((0-A) + B) -> B-A
- if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0)))
- return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
- // fold (A + (0-B)) -> A-B
- if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
- return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1));
- // fold (A+(B-A)) -> B
- if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
- return N1.getOperand(0);
- // fold ((B-A)+A) -> B
- if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
- return N0.getOperand(0);
- // fold ((A-B)+(C-A)) -> (C-B)
- if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
- N0.getOperand(0) == N1.getOperand(1))
- return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
- N0.getOperand(1));
- // fold ((A-B)+(B-C)) -> (A-C)
- if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
- N0.getOperand(1) == N1.getOperand(0))
- return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
- N1.getOperand(1));
- // fold (A+(B-(A+C))) to (B-C)
- if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
- N0 == N1.getOperand(1).getOperand(0))
- return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
- N1.getOperand(1).getOperand(1));
- // fold (A+(B-(C+A))) to (B-C)
- if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
- N0 == N1.getOperand(1).getOperand(1))
- return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
- N1.getOperand(1).getOperand(0));
- // fold (A+((B-A)+or-C)) to (B+or-C)
- if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
- N1.getOperand(0).getOpcode() == ISD::SUB &&
- N0 == N1.getOperand(0).getOperand(1))
- return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0),
- N1.getOperand(1));
- // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
- if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
- N0->hasOneUse() && N1->hasOneUse()) {
- SDValue N00 = N0.getOperand(0);
- SDValue N01 = N0.getOperand(1);
- SDValue N10 = N1.getOperand(0);
- SDValue N11 = N1.getOperand(1);
- if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10))
- return DAG.getNode(ISD::SUB, DL, VT,
- DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
- DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
- }
- // fold (add (umax X, C), -C) --> (usubsat X, C)
- if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) {
- auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) {
- return (!Max && !Op) ||
- (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue()));
- };
- if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT,
- /*AllowUndefs*/ true))
- return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0),
- N0.getOperand(1));
- }
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
- if (isOneOrOneSplat(N1)) {
- // fold (add (xor a, -1), 1) -> (sub 0, a)
- if (isBitwiseNot(N0))
- return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
- N0.getOperand(0));
- // fold (add (add (xor a, -1), b), 1) -> (sub b, a)
- if (N0.getOpcode() == ISD::ADD) {
- SDValue A, Xor;
- if (isBitwiseNot(N0.getOperand(0))) {
- A = N0.getOperand(1);
- Xor = N0.getOperand(0);
- } else if (isBitwiseNot(N0.getOperand(1))) {
- A = N0.getOperand(0);
- Xor = N0.getOperand(1);
- }
- if (Xor)
- return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0));
- }
- // Look for:
- // add (add x, y), 1
- // And if the target does not like this form then turn into:
- // sub y, (xor x, -1)
- if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.getOpcode() == ISD::ADD &&
- N0.hasOneUse()) {
- SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
- DAG.getAllOnesConstant(DL, VT));
- return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not);
- }
- }
- // (x - y) + -1 -> add (xor y, -1), x
- if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
- isAllOnesOrAllOnesSplat(N1)) {
- SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1);
- return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0));
- }
- if (SDValue Combined = visitADDLikeCommutative(N0, N1, N))
- return Combined;
- if (SDValue Combined = visitADDLikeCommutative(N1, N0, N))
- return Combined;
- return SDValue();
- }
- SDValue DAGCombiner::visitADD(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- SDLoc DL(N);
- if (SDValue Combined = visitADDLike(N))
- return Combined;
- if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
- return V;
- if (SDValue V = foldAddSubOfSignBit(N, DAG))
- return V;
- // fold (a+b) -> (a|b) iff a and b share no bits.
- if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
- DAG.haveNoCommonBitsSet(N0, N1))
- return DAG.getNode(ISD::OR, DL, VT, N0, N1);
- // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
- if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) {
- const APInt &C0 = N0->getConstantOperandAPInt(0);
- const APInt &C1 = N1->getConstantOperandAPInt(0);
- return DAG.getVScale(DL, VT, C0 + C1);
- }
- // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2)
- if (N0.getOpcode() == ISD::ADD &&
- N0.getOperand(1).getOpcode() == ISD::VSCALE &&
- N1.getOpcode() == ISD::VSCALE) {
- const APInt &VS0 = N0.getOperand(1)->getConstantOperandAPInt(0);
- const APInt &VS1 = N1->getConstantOperandAPInt(0);
- SDValue VS = DAG.getVScale(DL, VT, VS0 + VS1);
- return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS);
- }
- // Fold (add step_vector(c1), step_vector(c2) to step_vector(c1+c2))
- if (N0.getOpcode() == ISD::STEP_VECTOR &&
- N1.getOpcode() == ISD::STEP_VECTOR) {
- const APInt &C0 = N0->getConstantOperandAPInt(0);
- const APInt &C1 = N1->getConstantOperandAPInt(0);
- APInt NewStep = C0 + C1;
- return DAG.getStepVector(DL, VT, NewStep);
- }
- // Fold a + step_vector(c1) + step_vector(c2) to a + step_vector(c1+c2)
- if (N0.getOpcode() == ISD::ADD &&
- N0.getOperand(1).getOpcode() == ISD::STEP_VECTOR &&
- N1.getOpcode() == ISD::STEP_VECTOR) {
- const APInt &SV0 = N0.getOperand(1)->getConstantOperandAPInt(0);
- const APInt &SV1 = N1->getConstantOperandAPInt(0);
- APInt NewStep = SV0 + SV1;
- SDValue SV = DAG.getStepVector(DL, VT, NewStep);
- return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), SV);
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitADDSAT(SDNode *N) {
- unsigned Opcode = N->getOpcode();
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- SDLoc DL(N);
- // fold (add_sat x, undef) -> -1
- if (N0.isUndef() || N1.isUndef())
- return DAG.getAllOnesConstant(DL, VT);
- // fold (add_sat c1, c2) -> c3
- if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
- return C;
- // canonicalize constant to RHS
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(Opcode, DL, VT, N1, N0);
- // fold vector ops
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
- return FoldedVOp;
- // fold (add_sat x, 0) -> x, vector edition
- if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
- return N0;
- }
- // fold (add_sat x, 0) -> x
- if (isNullConstant(N1))
- return N0;
- // If it cannot overflow, transform into an add.
- if (Opcode == ISD::UADDSAT)
- if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
- return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
- return SDValue();
- }
- static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) {
- bool Masked = false;
- // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
- while (true) {
- if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) {
- V = V.getOperand(0);
- continue;
- }
- if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) {
- Masked = true;
- V = V.getOperand(0);
- continue;
- }
- break;
- }
- // If this is not a carry, return.
- if (V.getResNo() != 1)
- return SDValue();
- if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY &&
- V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO)
- return SDValue();
- EVT VT = V->getValueType(0);
- if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT))
- return SDValue();
- // If the result is masked, then no matter what kind of bool it is we can
- // return. If it isn't, then we need to make sure the bool type is either 0 or
- // 1 and not other values.
- if (Masked ||
- TLI.getBooleanContents(V.getValueType()) ==
- TargetLoweringBase::ZeroOrOneBooleanContent)
- return V;
- return SDValue();
- }
- /// Given the operands of an add/sub operation, see if the 2nd operand is a
- /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
- /// the opcode and bypass the mask operation.
- static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1,
- SelectionDAG &DAG, const SDLoc &DL) {
- if (N1.getOpcode() == ISD::ZERO_EXTEND)
- N1 = N1.getOperand(0);
- if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1)))
- return SDValue();
- EVT VT = N0.getValueType();
- SDValue N10 = N1.getOperand(0);
- if (N10.getValueType() != VT && N10.getOpcode() == ISD::TRUNCATE)
- N10 = N10.getOperand(0);
- if (N10.getValueType() != VT)
- return SDValue();
- if (DAG.ComputeNumSignBits(N10) != VT.getScalarSizeInBits())
- return SDValue();
- // add N0, (and (AssertSext X, i1), 1) --> sub N0, X
- // sub N0, (and (AssertSext X, i1), 1) --> add N0, X
- return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N10);
- }
- /// Helper for doing combines based on N0 and N1 being added to each other.
- SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1,
- SDNode *LocReference) {
- EVT VT = N0.getValueType();
- SDLoc DL(LocReference);
- // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
- if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB &&
- isNullOrNullSplat(N1.getOperand(0).getOperand(0)))
- return DAG.getNode(ISD::SUB, DL, VT, N0,
- DAG.getNode(ISD::SHL, DL, VT,
- N1.getOperand(0).getOperand(1),
- N1.getOperand(1)));
- if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL))
- return V;
- // Look for:
- // add (add x, 1), y
- // And if the target does not like this form then turn into:
- // sub y, (xor x, -1)
- if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.getOpcode() == ISD::ADD &&
- N0.hasOneUse() && isOneOrOneSplat(N0.getOperand(1))) {
- SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
- DAG.getAllOnesConstant(DL, VT));
- return DAG.getNode(ISD::SUB, DL, VT, N1, Not);
- }
- if (N0.getOpcode() == ISD::SUB && N0.hasOneUse()) {
- // Hoist one-use subtraction by non-opaque constant:
- // (x - C) + y -> (x + y) - C
- // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
- if (isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
- SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1);
- return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
- }
- // Hoist one-use subtraction from non-opaque constant:
- // (C - x) + y -> (y - x) + C
- if (isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
- SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
- return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0));
- }
- }
- // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
- // rather than 'add 0/-1' (the zext should get folded).
- // add (sext i1 Y), X --> sub X, (zext i1 Y)
- if (N0.getOpcode() == ISD::SIGN_EXTEND &&
- N0.getOperand(0).getScalarValueSizeInBits() == 1 &&
- TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) {
- SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
- return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
- }
- // add X, (sextinreg Y i1) -> sub X, (and Y 1)
- if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
- VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
- if (TN->getVT() == MVT::i1) {
- SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
- DAG.getConstant(1, DL, VT));
- return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
- }
- }
- // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
- if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) &&
- N1.getResNo() == 0)
- return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(),
- N0, N1.getOperand(0), N1.getOperand(2));
- // (add X, Carry) -> (addcarry X, 0, Carry)
- if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
- if (SDValue Carry = getAsCarry(TLI, N1))
- return DAG.getNode(ISD::ADDCARRY, DL,
- DAG.getVTList(VT, Carry.getValueType()), N0,
- DAG.getConstant(0, DL, VT), Carry);
- return SDValue();
- }
- SDValue DAGCombiner::visitADDC(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- SDLoc DL(N);
- // If the flag result is dead, turn this into an ADD.
- if (!N->hasAnyUseOfValue(1))
- return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
- DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
- // canonicalize constant to RHS.
- ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- if (N0C && !N1C)
- return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0);
- // fold (addc x, 0) -> x + no carry out
- if (isNullConstant(N1))
- return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
- DL, MVT::Glue));
- // If it cannot overflow, transform into an add.
- if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
- return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
- DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
- return SDValue();
- }
- /**
- * Flips a boolean if it is cheaper to compute. If the Force parameters is set,
- * then the flip also occurs if computing the inverse is the same cost.
- * This function returns an empty SDValue in case it cannot flip the boolean
- * without increasing the cost of the computation. If you want to flip a boolean
- * no matter what, use DAG.getLogicalNOT.
- */
- static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG,
- const TargetLowering &TLI,
- bool Force) {
- if (Force && isa<ConstantSDNode>(V))
- return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType());
- if (V.getOpcode() != ISD::XOR)
- return SDValue();
- ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false);
- if (!Const)
- return SDValue();
- EVT VT = V.getValueType();
- bool IsFlip = false;
- switch(TLI.getBooleanContents(VT)) {
- case TargetLowering::ZeroOrOneBooleanContent:
- IsFlip = Const->isOne();
- break;
- case TargetLowering::ZeroOrNegativeOneBooleanContent:
- IsFlip = Const->isAllOnes();
- break;
- case TargetLowering::UndefinedBooleanContent:
- IsFlip = (Const->getAPIntValue() & 0x01) == 1;
- break;
- }
- if (IsFlip)
- return V.getOperand(0);
- if (Force)
- return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType());
- return SDValue();
- }
- SDValue DAGCombiner::visitADDO(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- bool IsSigned = (ISD::SADDO == N->getOpcode());
- EVT CarryVT = N->getValueType(1);
- SDLoc DL(N);
- // If the flag result is dead, turn this into an ADD.
- if (!N->hasAnyUseOfValue(1))
- return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
- DAG.getUNDEF(CarryVT));
- // canonicalize constant to RHS.
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
- // fold (addo x, 0) -> x + no carry out
- if (isNullOrNullSplat(N1))
- return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
- if (!IsSigned) {
- // If it cannot overflow, transform into an add.
- if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
- return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
- DAG.getConstant(0, DL, CarryVT));
- // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
- if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) {
- SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(),
- DAG.getConstant(0, DL, VT), N0.getOperand(0));
- return CombineTo(
- N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1)));
- }
- if (SDValue Combined = visitUADDOLike(N0, N1, N))
- return Combined;
- if (SDValue Combined = visitUADDOLike(N1, N0, N))
- return Combined;
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) {
- EVT VT = N0.getValueType();
- if (VT.isVector())
- return SDValue();
- // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
- // If Y + 1 cannot overflow.
- if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) {
- SDValue Y = N1.getOperand(0);
- SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType());
- if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never)
- return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y,
- N1.getOperand(2));
- }
- // (uaddo X, Carry) -> (addcarry X, 0, Carry)
- if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
- if (SDValue Carry = getAsCarry(TLI, N1))
- return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0,
- DAG.getConstant(0, SDLoc(N), VT), Carry);
- return SDValue();
- }
- SDValue DAGCombiner::visitADDE(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue CarryIn = N->getOperand(2);
- // canonicalize constant to RHS
- ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- if (N0C && !N1C)
- return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
- N1, N0, CarryIn);
- // fold (adde x, y, false) -> (addc x, y)
- if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
- return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
- return SDValue();
- }
- SDValue DAGCombiner::visitADDCARRY(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue CarryIn = N->getOperand(2);
- SDLoc DL(N);
- // canonicalize constant to RHS
- ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- if (N0C && !N1C)
- return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn);
- // fold (addcarry x, y, false) -> (uaddo x, y)
- if (isNullConstant(CarryIn)) {
- if (!LegalOperations ||
- TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0)))
- return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1);
- }
- // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
- if (isNullConstant(N0) && isNullConstant(N1)) {
- EVT VT = N0.getValueType();
- EVT CarryVT = CarryIn.getValueType();
- SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT);
- AddToWorklist(CarryExt.getNode());
- return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt,
- DAG.getConstant(1, DL, VT)),
- DAG.getConstant(0, DL, CarryVT));
- }
- if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N))
- return Combined;
- if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N))
- return Combined;
- // We want to avoid useless duplication.
- // TODO: This is done automatically for binary operations. As ADDCARRY is
- // not a binary operation, this is not really possible to leverage this
- // existing mechanism for it. However, if more operations require the same
- // deduplication logic, then it may be worth generalize.
- SDValue Ops[] = {N1, N0, CarryIn};
- SDNode *CSENode =
- DAG.getNodeIfExists(ISD::ADDCARRY, N->getVTList(), Ops, N->getFlags());
- if (CSENode)
- return SDValue(CSENode, 0);
- return SDValue();
- }
- SDValue DAGCombiner::visitSADDO_CARRY(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue CarryIn = N->getOperand(2);
- SDLoc DL(N);
- // canonicalize constant to RHS
- ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- if (N0C && !N1C)
- return DAG.getNode(ISD::SADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn);
- // fold (saddo_carry x, y, false) -> (saddo x, y)
- if (isNullConstant(CarryIn)) {
- if (!LegalOperations ||
- TLI.isOperationLegalOrCustom(ISD::SADDO, N->getValueType(0)))
- return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, N1);
- }
- return SDValue();
- }
- /**
- * If we are facing some sort of diamond carry propapagtion pattern try to
- * break it up to generate something like:
- * (addcarry X, 0, (addcarry A, B, Z):Carry)
- *
- * The end result is usually an increase in operation required, but because the
- * carry is now linearized, other transforms can kick in and optimize the DAG.
- *
- * Patterns typically look something like
- * (uaddo A, B)
- * / \
- * Carry Sum
- * | \
- * | (addcarry *, 0, Z)
- * | /
- * \ Carry
- * | /
- * (addcarry X, *, *)
- *
- * But numerous variation exist. Our goal is to identify A, B, X and Z and
- * produce a combine with a single path for carry propagation.
- */
- static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG,
- SDValue X, SDValue Carry0, SDValue Carry1,
- SDNode *N) {
- if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1)
- return SDValue();
- if (Carry1.getOpcode() != ISD::UADDO)
- return SDValue();
- SDValue Z;
- /**
- * First look for a suitable Z. It will present itself in the form of
- * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true
- */
- if (Carry0.getOpcode() == ISD::ADDCARRY &&
- isNullConstant(Carry0.getOperand(1))) {
- Z = Carry0.getOperand(2);
- } else if (Carry0.getOpcode() == ISD::UADDO &&
- isOneConstant(Carry0.getOperand(1))) {
- EVT VT = Combiner.getSetCCResultType(Carry0.getValueType());
- Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT);
- } else {
- // We couldn't find a suitable Z.
- return SDValue();
- }
- auto cancelDiamond = [&](SDValue A,SDValue B) {
- SDLoc DL(N);
- SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z);
- Combiner.AddToWorklist(NewY.getNode());
- return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X,
- DAG.getConstant(0, DL, X.getValueType()),
- NewY.getValue(1));
- };
- /**
- * (uaddo A, B)
- * |
- * Sum
- * |
- * (addcarry *, 0, Z)
- */
- if (Carry0.getOperand(0) == Carry1.getValue(0)) {
- return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1));
- }
- /**
- * (addcarry A, 0, Z)
- * |
- * Sum
- * |
- * (uaddo *, B)
- */
- if (Carry1.getOperand(0) == Carry0.getValue(0)) {
- return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1));
- }
- if (Carry1.getOperand(1) == Carry0.getValue(0)) {
- return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0));
- }
- return SDValue();
- }
- // If we are facing some sort of diamond carry/borrow in/out pattern try to
- // match patterns like:
- //
- // (uaddo A, B) CarryIn
- // | \ |
- // | \ |
- // PartialSum PartialCarryOutX /
- // | | /
- // | ____|____________/
- // | / |
- // (uaddo *, *) \________
- // | \ \
- // | \ |
- // | PartialCarryOutY |
- // | \ |
- // | \ /
- // AddCarrySum | ______/
- // | /
- // CarryOut = (or *, *)
- //
- // And generate ADDCARRY (or SUBCARRY) with two result values:
- //
- // {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn)
- //
- // Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with
- // a single path for carry/borrow out propagation:
- static SDValue combineCarryDiamond(SelectionDAG &DAG, const TargetLowering &TLI,
- SDValue N0, SDValue N1, SDNode *N) {
- SDValue Carry0 = getAsCarry(TLI, N0);
- if (!Carry0)
- return SDValue();
- SDValue Carry1 = getAsCarry(TLI, N1);
- if (!Carry1)
- return SDValue();
- unsigned Opcode = Carry0.getOpcode();
- if (Opcode != Carry1.getOpcode())
- return SDValue();
- if (Opcode != ISD::UADDO && Opcode != ISD::USUBO)
- return SDValue();
- // Canonicalize the add/sub of A and B (the top node in the above ASCII art)
- // as Carry0 and the add/sub of the carry in as Carry1 (the middle node).
- if (Carry1.getNode()->isOperandOf(Carry0.getNode()))
- std::swap(Carry0, Carry1);
- // Check if nodes are connected in expected way.
- if (Carry1.getOperand(0) != Carry0.getValue(0) &&
- Carry1.getOperand(1) != Carry0.getValue(0))
- return SDValue();
- // The carry in value must be on the righthand side for subtraction.
- unsigned CarryInOperandNum =
- Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0;
- if (Opcode == ISD::USUBO && CarryInOperandNum != 1)
- return SDValue();
- SDValue CarryIn = Carry1.getOperand(CarryInOperandNum);
- unsigned NewOp = Opcode == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY;
- if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType()))
- return SDValue();
- // Verify that the carry/borrow in is plausibly a carry/borrow bit.
- // TODO: make getAsCarry() aware of how partial carries are merged.
- if (CarryIn.getOpcode() != ISD::ZERO_EXTEND)
- return SDValue();
- CarryIn = CarryIn.getOperand(0);
- if (CarryIn.getValueType() != MVT::i1)
- return SDValue();
- SDLoc DL(N);
- SDValue Merged =
- DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0),
- Carry0.getOperand(1), CarryIn);
- // Please note that because we have proven that the result of the UADDO/USUBO
- // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can
- // therefore prove that if the first UADDO/USUBO overflows, the second
- // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the
- // maximum value.
- //
- // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry
- // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow)
- //
- // This is important because it means that OR and XOR can be used to merge
- // carry flags; and that AND can return a constant zero.
- //
- // TODO: match other operations that can merge flags (ADD, etc)
- DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0));
- if (N->getOpcode() == ISD::AND)
- return DAG.getConstant(0, DL, MVT::i1);
- return Merged.getValue(1);
- }
- SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn,
- SDNode *N) {
- // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry.
- if (isBitwiseNot(N0))
- if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) {
- SDLoc DL(N);
- SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1,
- N0.getOperand(0), NotC);
- return CombineTo(
- N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1)));
- }
- // Iff the flag result is dead:
- // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
- // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo
- // or the dependency between the instructions.
- if ((N0.getOpcode() == ISD::ADD ||
- (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 &&
- N0.getValue(1) != CarryIn)) &&
- isNullConstant(N1) && !N->hasAnyUseOfValue(1))
- return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(),
- N0.getOperand(0), N0.getOperand(1), CarryIn);
- /**
- * When one of the addcarry argument is itself a carry, we may be facing
- * a diamond carry propagation. In which case we try to transform the DAG
- * to ensure linear carry propagation if that is possible.
- */
- if (auto Y = getAsCarry(TLI, N1)) {
- // Because both are carries, Y and Z can be swapped.
- if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N))
- return R;
- if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N))
- return R;
- }
- return SDValue();
- }
- // Attempt to create a USUBSAT(LHS, RHS) node with DstVT, performing a
- // clamp/truncation if necessary.
- static SDValue getTruncatedUSUBSAT(EVT DstVT, EVT SrcVT, SDValue LHS,
- SDValue RHS, SelectionDAG &DAG,
- const SDLoc &DL) {
- assert(DstVT.getScalarSizeInBits() <= SrcVT.getScalarSizeInBits() &&
- "Illegal truncation");
- if (DstVT == SrcVT)
- return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS);
- // If the LHS is zero-extended then we can perform the USUBSAT as DstVT by
- // clamping RHS.
- APInt UpperBits = APInt::getBitsSetFrom(SrcVT.getScalarSizeInBits(),
- DstVT.getScalarSizeInBits());
- if (!DAG.MaskedValueIsZero(LHS, UpperBits))
- return SDValue();
- SDValue SatLimit =
- DAG.getConstant(APInt::getLowBitsSet(SrcVT.getScalarSizeInBits(),
- DstVT.getScalarSizeInBits()),
- DL, SrcVT);
- RHS = DAG.getNode(ISD::UMIN, DL, SrcVT, RHS, SatLimit);
- RHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, RHS);
- LHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, LHS);
- return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS);
- }
- // Try to find umax(a,b) - b or a - umin(a,b) patterns that may be converted to
- // usubsat(a,b), optionally as a truncated type.
- SDValue DAGCombiner::foldSubToUSubSat(EVT DstVT, SDNode *N) {
- if (N->getOpcode() != ISD::SUB ||
- !(!LegalOperations || hasOperation(ISD::USUBSAT, DstVT)))
- return SDValue();
- EVT SubVT = N->getValueType(0);
- SDValue Op0 = N->getOperand(0);
- SDValue Op1 = N->getOperand(1);
- // Try to find umax(a,b) - b or a - umin(a,b) patterns
- // they may be converted to usubsat(a,b).
- if (Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
- SDValue MaxLHS = Op0.getOperand(0);
- SDValue MaxRHS = Op0.getOperand(1);
- if (MaxLHS == Op1)
- return getTruncatedUSUBSAT(DstVT, SubVT, MaxRHS, Op1, DAG, SDLoc(N));
- if (MaxRHS == Op1)
- return getTruncatedUSUBSAT(DstVT, SubVT, MaxLHS, Op1, DAG, SDLoc(N));
- }
- if (Op1.getOpcode() == ISD::UMIN && Op1.hasOneUse()) {
- SDValue MinLHS = Op1.getOperand(0);
- SDValue MinRHS = Op1.getOperand(1);
- if (MinLHS == Op0)
- return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinRHS, DAG, SDLoc(N));
- if (MinRHS == Op0)
- return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinLHS, DAG, SDLoc(N));
- }
- // sub(a,trunc(umin(zext(a),b))) -> usubsat(a,trunc(umin(b,SatLimit)))
- if (Op1.getOpcode() == ISD::TRUNCATE &&
- Op1.getOperand(0).getOpcode() == ISD::UMIN &&
- Op1.getOperand(0).hasOneUse()) {
- SDValue MinLHS = Op1.getOperand(0).getOperand(0);
- SDValue MinRHS = Op1.getOperand(0).getOperand(1);
- if (MinLHS.getOpcode() == ISD::ZERO_EXTEND && MinLHS.getOperand(0) == Op0)
- return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinLHS, MinRHS,
- DAG, SDLoc(N));
- if (MinRHS.getOpcode() == ISD::ZERO_EXTEND && MinRHS.getOperand(0) == Op0)
- return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinRHS, MinLHS,
- DAG, SDLoc(N));
- }
- return SDValue();
- }
- // Since it may not be valid to emit a fold to zero for vector initializers
- // check if we can before folding.
- static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT,
- SelectionDAG &DAG, bool LegalOperations) {
- if (!VT.isVector())
- return DAG.getConstant(0, DL, VT);
- if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
- return DAG.getConstant(0, DL, VT);
- return SDValue();
- }
- SDValue DAGCombiner::visitSUB(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- SDLoc DL(N);
- auto PeekThroughFreeze = [](SDValue N) {
- if (N->getOpcode() == ISD::FREEZE && N.hasOneUse())
- return N->getOperand(0);
- return N;
- };
- // fold (sub x, x) -> 0
- // FIXME: Refactor this and xor and other similar operations together.
- if (PeekThroughFreeze(N0) == PeekThroughFreeze(N1))
- return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
- // fold (sub c1, c2) -> c3
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1}))
- return C;
- // fold vector ops
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
- return FoldedVOp;
- // fold (sub x, 0) -> x, vector edition
- if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
- return N0;
- }
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
- ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
- // fold (sub x, c) -> (add x, -c)
- if (N1C) {
- return DAG.getNode(ISD::ADD, DL, VT, N0,
- DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
- }
- if (isNullOrNullSplat(N0)) {
- unsigned BitWidth = VT.getScalarSizeInBits();
- // Right-shifting everything out but the sign bit followed by negation is
- // the same as flipping arithmetic/logical shift type without the negation:
- // -(X >>u 31) -> (X >>s 31)
- // -(X >>s 31) -> (X >>u 31)
- if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) {
- ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1));
- if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) {
- auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA;
- if (!LegalOperations || TLI.isOperationLegal(NewSh, VT))
- return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1));
- }
- }
- // 0 - X --> 0 if the sub is NUW.
- if (N->getFlags().hasNoUnsignedWrap())
- return N0;
- if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) {
- // N1 is either 0 or the minimum signed value. If the sub is NSW, then
- // N1 must be 0 because negating the minimum signed value is undefined.
- if (N->getFlags().hasNoSignedWrap())
- return N0;
- // 0 - X --> X if X is 0 or the minimum signed value.
- return N1;
- }
- // Convert 0 - abs(x).
- if (N1.getOpcode() == ISD::ABS && N1.hasOneUse() &&
- !TLI.isOperationLegalOrCustom(ISD::ABS, VT))
- if (SDValue Result = TLI.expandABS(N1.getNode(), DAG, true))
- return Result;
- // Fold neg(splat(neg(x)) -> splat(x)
- if (VT.isVector()) {
- SDValue N1S = DAG.getSplatValue(N1, true);
- if (N1S && N1S.getOpcode() == ISD::SUB &&
- isNullConstant(N1S.getOperand(0)))
- return DAG.getSplat(VT, DL, N1S.getOperand(1));
- }
- }
- // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
- if (isAllOnesOrAllOnesSplat(N0))
- return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
- // fold (A - (0-B)) -> A+B
- if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
- return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1));
- // fold A-(A-B) -> B
- if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
- return N1.getOperand(1);
- // fold (A+B)-A -> B
- if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
- return N0.getOperand(1);
- // fold (A+B)-B -> A
- if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
- return N0.getOperand(0);
- // fold (A+C1)-C2 -> A+(C1-C2)
- if (N0.getOpcode() == ISD::ADD) {
- SDValue N01 = N0.getOperand(1);
- if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N01, N1}))
- return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC);
- }
- // fold C2-(A+C1) -> (C2-C1)-A
- if (N1.getOpcode() == ISD::ADD) {
- SDValue N11 = N1.getOperand(1);
- if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11}))
- return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0));
- }
- // fold (A-C1)-C2 -> A-(C1+C2)
- if (N0.getOpcode() == ISD::SUB) {
- SDValue N01 = N0.getOperand(1);
- if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N01, N1}))
- return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC);
- }
- // fold (c1-A)-c2 -> (c1-c2)-A
- if (N0.getOpcode() == ISD::SUB) {
- SDValue N00 = N0.getOperand(0);
- if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N00, N1}))
- return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1));
- }
- // fold ((A+(B+or-C))-B) -> A+or-C
- if (N0.getOpcode() == ISD::ADD &&
- (N0.getOperand(1).getOpcode() == ISD::SUB ||
- N0.getOperand(1).getOpcode() == ISD::ADD) &&
- N0.getOperand(1).getOperand(0) == N1)
- return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0),
- N0.getOperand(1).getOperand(1));
- // fold ((A+(C+B))-B) -> A+C
- if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD &&
- N0.getOperand(1).getOperand(1) == N1)
- return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0),
- N0.getOperand(1).getOperand(0));
- // fold ((A-(B-C))-C) -> A-B
- if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB &&
- N0.getOperand(1).getOperand(1) == N1)
- return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
- N0.getOperand(1).getOperand(0));
- // fold (A-(B-C)) -> A+(C-B)
- if (N1.getOpcode() == ISD::SUB && N1.hasOneUse())
- return DAG.getNode(ISD::ADD, DL, VT, N0,
- DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1),
- N1.getOperand(0)));
- // A - (A & B) -> A & (~B)
- if (N1.getOpcode() == ISD::AND) {
- SDValue A = N1.getOperand(0);
- SDValue B = N1.getOperand(1);
- if (A != N0)
- std::swap(A, B);
- if (A == N0 &&
- (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true))) {
- SDValue InvB =
- DAG.getNode(ISD::XOR, DL, VT, B, DAG.getAllOnesConstant(DL, VT));
- return DAG.getNode(ISD::AND, DL, VT, A, InvB);
- }
- }
- // fold (X - (-Y * Z)) -> (X + (Y * Z))
- if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) {
- if (N1.getOperand(0).getOpcode() == ISD::SUB &&
- isNullOrNullSplat(N1.getOperand(0).getOperand(0))) {
- SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
- N1.getOperand(0).getOperand(1),
- N1.getOperand(1));
- return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
- }
- if (N1.getOperand(1).getOpcode() == ISD::SUB &&
- isNullOrNullSplat(N1.getOperand(1).getOperand(0))) {
- SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
- N1.getOperand(0),
- N1.getOperand(1).getOperand(1));
- return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
- }
- }
- // If either operand of a sub is undef, the result is undef
- if (N0.isUndef())
- return N0;
- if (N1.isUndef())
- return N1;
- if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
- return V;
- if (SDValue V = foldAddSubOfSignBit(N, DAG))
- return V;
- if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N)))
- return V;
- if (SDValue V = foldSubToUSubSat(VT, N))
- return V;
- // (x - y) - 1 -> add (xor y, -1), x
- if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && isOneOrOneSplat(N1)) {
- SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1),
- DAG.getAllOnesConstant(DL, VT));
- return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0));
- }
- // Look for:
- // sub y, (xor x, -1)
- // And if the target does not like this form then turn into:
- // add (add x, y), 1
- if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) {
- SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0));
- return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT));
- }
- // Hoist one-use addition by non-opaque constant:
- // (x + C) - y -> (x - y) + C
- if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() &&
- isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
- SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
- return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1));
- }
- // y - (x + C) -> (y - x) - C
- if (N1.getOpcode() == ISD::ADD && N1.hasOneUse() &&
- isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) {
- SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0));
- return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1));
- }
- // (x - C) - y -> (x - y) - C
- // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
- if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
- isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
- SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
- return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1));
- }
- // (C - x) - y -> C - (x + y)
- if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
- isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
- SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1);
- return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add);
- }
- // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
- // rather than 'sub 0/1' (the sext should get folded).
- // sub X, (zext i1 Y) --> add X, (sext i1 Y)
- if (N1.getOpcode() == ISD::ZERO_EXTEND &&
- N1.getOperand(0).getScalarValueSizeInBits() == 1 &&
- TLI.getBooleanContents(VT) ==
- TargetLowering::ZeroOrNegativeOneBooleanContent) {
- SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0));
- return DAG.getNode(ISD::ADD, DL, VT, N0, SExt);
- }
- // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
- if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
- if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) {
- SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1);
- SDValue S0 = N1.getOperand(0);
- if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0))
- if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1)))
- if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1))
- return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0);
- }
- }
- // If the relocation model supports it, consider symbol offsets.
- if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
- if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
- // fold (sub Sym, c) -> Sym-c
- if (N1C && GA->getOpcode() == ISD::GlobalAddress)
- return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
- GA->getOffset() -
- (uint64_t)N1C->getSExtValue());
- // fold (sub Sym+c1, Sym+c2) -> c1-c2
- if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
- if (GA->getGlobal() == GB->getGlobal())
- return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
- DL, VT);
- }
- // sub X, (sextinreg Y i1) -> add X, (and Y 1)
- if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
- VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
- if (TN->getVT() == MVT::i1) {
- SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
- DAG.getConstant(1, DL, VT));
- return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
- }
- }
- // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C))
- if (N1.getOpcode() == ISD::VSCALE && N1.hasOneUse()) {
- const APInt &IntVal = N1.getConstantOperandAPInt(0);
- return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal));
- }
- // canonicalize (sub X, step_vector(C)) to (add X, step_vector(-C))
- if (N1.getOpcode() == ISD::STEP_VECTOR && N1.hasOneUse()) {
- APInt NewStep = -N1.getConstantOperandAPInt(0);
- return DAG.getNode(ISD::ADD, DL, VT, N0,
- DAG.getStepVector(DL, VT, NewStep));
- }
- // Prefer an add for more folding potential and possibly better codegen:
- // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
- if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) {
- SDValue ShAmt = N1.getOperand(1);
- ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
- if (ShAmtC &&
- ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) {
- SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt);
- return DAG.getNode(ISD::ADD, DL, VT, N0, SRA);
- }
- }
- // As with the previous fold, prefer add for more folding potential.
- // Subtracting SMIN/0 is the same as adding SMIN/0:
- // N0 - (X << BW-1) --> N0 + (X << BW-1)
- if (N1.getOpcode() == ISD::SHL) {
- ConstantSDNode *ShlC = isConstOrConstSplat(N1.getOperand(1));
- if (ShlC && ShlC->getAPIntValue() == VT.getScalarSizeInBits() - 1)
- return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
- }
- // (sub (subcarry X, 0, Carry), Y) -> (subcarry X, Y, Carry)
- if (N0.getOpcode() == ISD::SUBCARRY && isNullConstant(N0.getOperand(1)) &&
- N0.getResNo() == 0 && N0.hasOneUse())
- return DAG.getNode(ISD::SUBCARRY, DL, N0->getVTList(),
- N0.getOperand(0), N1, N0.getOperand(2));
- if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) {
- // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry)
- if (SDValue Carry = getAsCarry(TLI, N0)) {
- SDValue X = N1;
- SDValue Zero = DAG.getConstant(0, DL, VT);
- SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X);
- return DAG.getNode(ISD::ADDCARRY, DL,
- DAG.getVTList(VT, Carry.getValueType()), NegX, Zero,
- Carry);
- }
- }
- // If there's no chance of borrowing from adjacent bits, then sub is xor:
- // sub C0, X --> xor X, C0
- if (ConstantSDNode *C0 = isConstOrConstSplat(N0)) {
- if (!C0->isOpaque()) {
- const APInt &C0Val = C0->getAPIntValue();
- const APInt &MaybeOnes = ~DAG.computeKnownBits(N1).Zero;
- if ((C0Val - MaybeOnes) == (C0Val ^ MaybeOnes))
- return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
- }
- }
- // max(a,b) - min(a,b) --> abd(a,b)
- auto MatchSubMaxMin = [&](unsigned Max, unsigned Min, unsigned Abd) {
- if (N0.getOpcode() != Max || N1.getOpcode() != Min)
- return SDValue();
- if ((N0.getOperand(0) != N1.getOperand(0) ||
- N0.getOperand(1) != N1.getOperand(1)) &&
- (N0.getOperand(0) != N1.getOperand(1) ||
- N0.getOperand(1) != N1.getOperand(0)))
- return SDValue();
- if (!TLI.isOperationLegalOrCustom(Abd, VT))
- return SDValue();
- return DAG.getNode(Abd, DL, VT, N0.getOperand(0), N0.getOperand(1));
- };
- if (SDValue R = MatchSubMaxMin(ISD::SMAX, ISD::SMIN, ISD::ABDS))
- return R;
- if (SDValue R = MatchSubMaxMin(ISD::UMAX, ISD::UMIN, ISD::ABDU))
- return R;
- return SDValue();
- }
- SDValue DAGCombiner::visitSUBSAT(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- SDLoc DL(N);
- // fold (sub_sat x, undef) -> 0
- if (N0.isUndef() || N1.isUndef())
- return DAG.getConstant(0, DL, VT);
- // fold (sub_sat x, x) -> 0
- if (N0 == N1)
- return DAG.getConstant(0, DL, VT);
- // fold (sub_sat c1, c2) -> c3
- if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1}))
- return C;
- // fold vector ops
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
- return FoldedVOp;
- // fold (sub_sat x, 0) -> x, vector edition
- if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
- return N0;
- }
- // fold (sub_sat x, 0) -> x
- if (isNullConstant(N1))
- return N0;
- return SDValue();
- }
- SDValue DAGCombiner::visitSUBC(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- SDLoc DL(N);
- // If the flag result is dead, turn this into an SUB.
- if (!N->hasAnyUseOfValue(1))
- return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
- DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
- // fold (subc x, x) -> 0 + no borrow
- if (N0 == N1)
- return CombineTo(N, DAG.getConstant(0, DL, VT),
- DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
- // fold (subc x, 0) -> x + no borrow
- if (isNullConstant(N1))
- return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
- // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
- if (isAllOnesConstant(N0))
- return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
- DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
- return SDValue();
- }
- SDValue DAGCombiner::visitSUBO(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- bool IsSigned = (ISD::SSUBO == N->getOpcode());
- EVT CarryVT = N->getValueType(1);
- SDLoc DL(N);
- // If the flag result is dead, turn this into an SUB.
- if (!N->hasAnyUseOfValue(1))
- return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
- DAG.getUNDEF(CarryVT));
- // fold (subo x, x) -> 0 + no borrow
- if (N0 == N1)
- return CombineTo(N, DAG.getConstant(0, DL, VT),
- DAG.getConstant(0, DL, CarryVT));
- ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
- // fold (subox, c) -> (addo x, -c)
- if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) {
- return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0,
- DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
- }
- // fold (subo x, 0) -> x + no borrow
- if (isNullOrNullSplat(N1))
- return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
- // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
- if (!IsSigned && isAllOnesOrAllOnesSplat(N0))
- return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
- DAG.getConstant(0, DL, CarryVT));
- return SDValue();
- }
- SDValue DAGCombiner::visitSUBE(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue CarryIn = N->getOperand(2);
- // fold (sube x, y, false) -> (subc x, y)
- if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
- return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
- return SDValue();
- }
- SDValue DAGCombiner::visitSUBCARRY(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue CarryIn = N->getOperand(2);
- // fold (subcarry x, y, false) -> (usubo x, y)
- if (isNullConstant(CarryIn)) {
- if (!LegalOperations ||
- TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0)))
- return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1);
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitSSUBO_CARRY(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue CarryIn = N->getOperand(2);
- // fold (ssubo_carry x, y, false) -> (ssubo x, y)
- if (isNullConstant(CarryIn)) {
- if (!LegalOperations ||
- TLI.isOperationLegalOrCustom(ISD::SSUBO, N->getValueType(0)))
- return DAG.getNode(ISD::SSUBO, SDLoc(N), N->getVTList(), N0, N1);
- }
- return SDValue();
- }
- // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and
- // UMULFIXSAT here.
- SDValue DAGCombiner::visitMULFIX(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue Scale = N->getOperand(2);
- EVT VT = N0.getValueType();
- // fold (mulfix x, undef, scale) -> 0
- if (N0.isUndef() || N1.isUndef())
- return DAG.getConstant(0, SDLoc(N), VT);
- // Canonicalize constant to RHS (vector doesn't have to splat)
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale);
- // fold (mulfix x, 0, scale) -> 0
- if (isNullConstant(N1))
- return DAG.getConstant(0, SDLoc(N), VT);
- return SDValue();
- }
- SDValue DAGCombiner::visitMUL(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- SDLoc DL(N);
- // fold (mul x, undef) -> 0
- if (N0.isUndef() || N1.isUndef())
- return DAG.getConstant(0, DL, VT);
- // fold (mul c1, c2) -> c1*c2
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, DL, VT, {N0, N1}))
- return C;
- // canonicalize constant to RHS (vector doesn't have to splat)
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(ISD::MUL, DL, VT, N1, N0);
- bool N1IsConst = false;
- bool N1IsOpaqueConst = false;
- APInt ConstValue1;
- // fold vector ops
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
- return FoldedVOp;
- N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1);
- assert((!N1IsConst ||
- ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) &&
- "Splat APInt should be element width");
- } else {
- N1IsConst = isa<ConstantSDNode>(N1);
- if (N1IsConst) {
- ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue();
- N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
- }
- }
- // fold (mul x, 0) -> 0
- if (N1IsConst && ConstValue1.isZero())
- return N1;
- // fold (mul x, 1) -> x
- if (N1IsConst && ConstValue1.isOne())
- return N0;
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
- // fold (mul x, -1) -> 0-x
- if (N1IsConst && ConstValue1.isAllOnes())
- return DAG.getNegative(N0, DL, VT);
- // fold (mul x, (1 << c)) -> x << c
- if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
- DAG.isKnownToBeAPowerOfTwo(N1) &&
- (!VT.isVector() || Level <= AfterLegalizeVectorOps)) {
- SDValue LogBase2 = BuildLogBase2(N1, DL);
- EVT ShiftVT = getShiftAmountTy(N0.getValueType());
- SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
- return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc);
- }
- // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
- if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isNegatedPowerOf2()) {
- unsigned Log2Val = (-ConstValue1).logBase2();
- // FIXME: If the input is something that is easily negated (e.g. a
- // single-use add), we should put the negate there.
- return DAG.getNode(ISD::SUB, DL, VT,
- DAG.getConstant(0, DL, VT),
- DAG.getNode(ISD::SHL, DL, VT, N0,
- DAG.getConstant(Log2Val, DL,
- getShiftAmountTy(N0.getValueType()))));
- }
- // Attempt to reuse an existing umul_lohi/smul_lohi node, but only if the
- // hi result is in use in case we hit this mid-legalization.
- for (unsigned LoHiOpc : {ISD::UMUL_LOHI, ISD::SMUL_LOHI}) {
- if (!LegalOperations || TLI.isOperationLegalOrCustom(LoHiOpc, VT)) {
- SDVTList LoHiVT = DAG.getVTList(VT, VT);
- // TODO: Can we match commutable operands with getNodeIfExists?
- if (SDNode *LoHi = DAG.getNodeIfExists(LoHiOpc, LoHiVT, {N0, N1}))
- if (LoHi->hasAnyUseOfValue(1))
- return SDValue(LoHi, 0);
- if (SDNode *LoHi = DAG.getNodeIfExists(LoHiOpc, LoHiVT, {N1, N0}))
- if (LoHi->hasAnyUseOfValue(1))
- return SDValue(LoHi, 0);
- }
- }
- // Try to transform:
- // (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub.
- // mul x, (2^N + 1) --> add (shl x, N), x
- // mul x, (2^N - 1) --> sub (shl x, N), x
- // Examples: x * 33 --> (x << 5) + x
- // x * 15 --> (x << 4) - x
- // x * -33 --> -((x << 5) + x)
- // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
- // (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub.
- // mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M))
- // mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M))
- // Examples: x * 0x8800 --> (x << 15) + (x << 11)
- // x * 0xf800 --> (x << 16) - (x << 11)
- // x * -0x8800 --> -((x << 15) + (x << 11))
- // x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16)
- if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) {
- // TODO: We could handle more general decomposition of any constant by
- // having the target set a limit on number of ops and making a
- // callback to determine that sequence (similar to sqrt expansion).
- unsigned MathOp = ISD::DELETED_NODE;
- APInt MulC = ConstValue1.abs();
- // The constant `2` should be treated as (2^0 + 1).
- unsigned TZeros = MulC == 2 ? 0 : MulC.countTrailingZeros();
- MulC.lshrInPlace(TZeros);
- if ((MulC - 1).isPowerOf2())
- MathOp = ISD::ADD;
- else if ((MulC + 1).isPowerOf2())
- MathOp = ISD::SUB;
- if (MathOp != ISD::DELETED_NODE) {
- unsigned ShAmt =
- MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2();
- ShAmt += TZeros;
- assert(ShAmt < VT.getScalarSizeInBits() &&
- "multiply-by-constant generated out of bounds shift");
- SDValue Shl =
- DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT));
- SDValue R =
- TZeros ? DAG.getNode(MathOp, DL, VT, Shl,
- DAG.getNode(ISD::SHL, DL, VT, N0,
- DAG.getConstant(TZeros, DL, VT)))
- : DAG.getNode(MathOp, DL, VT, Shl, N0);
- if (ConstValue1.isNegative())
- R = DAG.getNegative(R, DL, VT);
- return R;
- }
- }
- // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
- if (N0.getOpcode() == ISD::SHL) {
- SDValue N01 = N0.getOperand(1);
- if (SDValue C3 = DAG.FoldConstantArithmetic(ISD::SHL, DL, VT, {N1, N01}))
- return DAG.getNode(ISD::MUL, DL, VT, N0.getOperand(0), C3);
- }
- // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
- // use.
- {
- SDValue Sh, Y;
- // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
- if (N0.getOpcode() == ISD::SHL &&
- isConstantOrConstantVector(N0.getOperand(1)) && N0->hasOneUse()) {
- Sh = N0; Y = N1;
- } else if (N1.getOpcode() == ISD::SHL &&
- isConstantOrConstantVector(N1.getOperand(1)) &&
- N1->hasOneUse()) {
- Sh = N1; Y = N0;
- }
- if (Sh.getNode()) {
- SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, Sh.getOperand(0), Y);
- return DAG.getNode(ISD::SHL, DL, VT, Mul, Sh.getOperand(1));
- }
- }
- // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
- if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
- N0.getOpcode() == ISD::ADD &&
- DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
- isMulAddWithConstProfitable(N, N0, N1))
- return DAG.getNode(
- ISD::ADD, DL, VT,
- DAG.getNode(ISD::MUL, SDLoc(N0), VT, N0.getOperand(0), N1),
- DAG.getNode(ISD::MUL, SDLoc(N1), VT, N0.getOperand(1), N1));
- // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)).
- ConstantSDNode *NC1 = isConstOrConstSplat(N1);
- if (N0.getOpcode() == ISD::VSCALE && NC1) {
- const APInt &C0 = N0.getConstantOperandAPInt(0);
- const APInt &C1 = NC1->getAPIntValue();
- return DAG.getVScale(DL, VT, C0 * C1);
- }
- // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
- APInt MulVal;
- if (N0.getOpcode() == ISD::STEP_VECTOR &&
- ISD::isConstantSplatVector(N1.getNode(), MulVal)) {
- const APInt &C0 = N0.getConstantOperandAPInt(0);
- APInt NewStep = C0 * MulVal;
- return DAG.getStepVector(DL, VT, NewStep);
- }
- // Fold ((mul x, 0/undef) -> 0,
- // (mul x, 1) -> x) -> x)
- // -> and(x, mask)
- // We can replace vectors with '0' and '1' factors with a clearing mask.
- if (VT.isFixedLengthVector()) {
- unsigned NumElts = VT.getVectorNumElements();
- SmallBitVector ClearMask;
- ClearMask.reserve(NumElts);
- auto IsClearMask = [&ClearMask](ConstantSDNode *V) {
- if (!V || V->isZero()) {
- ClearMask.push_back(true);
- return true;
- }
- ClearMask.push_back(false);
- return V->isOne();
- };
- if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::AND, VT)) &&
- ISD::matchUnaryPredicate(N1, IsClearMask, /*AllowUndefs*/ true)) {
- assert(N1.getOpcode() == ISD::BUILD_VECTOR && "Unknown constant vector");
- EVT LegalSVT = N1.getOperand(0).getValueType();
- SDValue Zero = DAG.getConstant(0, DL, LegalSVT);
- SDValue AllOnes = DAG.getAllOnesConstant(DL, LegalSVT);
- SmallVector<SDValue, 16> Mask(NumElts, AllOnes);
- for (unsigned I = 0; I != NumElts; ++I)
- if (ClearMask[I])
- Mask[I] = Zero;
- return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getBuildVector(VT, DL, Mask));
- }
- }
- // reassociate mul
- if (SDValue RMUL = reassociateOps(ISD::MUL, DL, N0, N1, N->getFlags()))
- return RMUL;
- // Simplify the operands using demanded-bits information.
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
- return SDValue();
- }
- /// Return true if divmod libcall is available.
- static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
- const TargetLowering &TLI) {
- RTLIB::Libcall LC;
- EVT NodeType = Node->getValueType(0);
- if (!NodeType.isSimple())
- return false;
- switch (NodeType.getSimpleVT().SimpleTy) {
- default: return false; // No libcall for vector types.
- case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
- case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
- case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
- case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
- case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
- }
- return TLI.getLibcallName(LC) != nullptr;
- }
- /// Issue divrem if both quotient and remainder are needed.
- SDValue DAGCombiner::useDivRem(SDNode *Node) {
- if (Node->use_empty())
- return SDValue(); // This is a dead node, leave it alone.
- unsigned Opcode = Node->getOpcode();
- bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
- unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
- // DivMod lib calls can still work on non-legal types if using lib-calls.
- EVT VT = Node->getValueType(0);
- if (VT.isVector() || !VT.isInteger())
- return SDValue();
- if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT))
- return SDValue();
- // If DIVREM is going to get expanded into a libcall,
- // but there is no libcall available, then don't combine.
- if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
- !isDivRemLibcallAvailable(Node, isSigned, TLI))
- return SDValue();
- // If div is legal, it's better to do the normal expansion
- unsigned OtherOpcode = 0;
- if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
- OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
- if (TLI.isOperationLegalOrCustom(Opcode, VT))
- return SDValue();
- } else {
- OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
- if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
- return SDValue();
- }
- SDValue Op0 = Node->getOperand(0);
- SDValue Op1 = Node->getOperand(1);
- SDValue combined;
- for (SDNode *User : Op0->uses()) {
- if (User == Node || User->getOpcode() == ISD::DELETED_NODE ||
- User->use_empty())
- continue;
- // Convert the other matching node(s), too;
- // otherwise, the DIVREM may get target-legalized into something
- // target-specific that we won't be able to recognize.
- unsigned UserOpc = User->getOpcode();
- if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
- User->getOperand(0) == Op0 &&
- User->getOperand(1) == Op1) {
- if (!combined) {
- if (UserOpc == OtherOpcode) {
- SDVTList VTs = DAG.getVTList(VT, VT);
- combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
- } else if (UserOpc == DivRemOpc) {
- combined = SDValue(User, 0);
- } else {
- assert(UserOpc == Opcode);
- continue;
- }
- }
- if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
- CombineTo(User, combined);
- else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
- CombineTo(User, combined.getValue(1));
- }
- }
- return combined;
- }
- static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- unsigned Opc = N->getOpcode();
- bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc);
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
- // X / undef -> undef
- // X % undef -> undef
- // X / 0 -> undef
- // X % 0 -> undef
- // NOTE: This includes vectors where any divisor element is zero/undef.
- if (DAG.isUndef(Opc, {N0, N1}))
- return DAG.getUNDEF(VT);
- // undef / X -> 0
- // undef % X -> 0
- if (N0.isUndef())
- return DAG.getConstant(0, DL, VT);
- // 0 / X -> 0
- // 0 % X -> 0
- ConstantSDNode *N0C = isConstOrConstSplat(N0);
- if (N0C && N0C->isZero())
- return N0;
- // X / X -> 1
- // X % X -> 0
- if (N0 == N1)
- return DAG.getConstant(IsDiv ? 1 : 0, DL, VT);
- // X / 1 -> X
- // X % 1 -> 0
- // If this is a boolean op (single-bit element type), we can't have
- // division-by-zero or remainder-by-zero, so assume the divisor is 1.
- // TODO: Similarly, if we're zero-extending a boolean divisor, then assume
- // it's a 1.
- if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1))
- return IsDiv ? N0 : DAG.getConstant(0, DL, VT);
- return SDValue();
- }
- SDValue DAGCombiner::visitSDIV(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- EVT CCVT = getSetCCResultType(VT);
- SDLoc DL(N);
- // fold (sdiv c1, c2) -> c1/c2
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1}))
- return C;
- // fold vector ops
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
- return FoldedVOp;
- // fold (sdiv X, -1) -> 0-X
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
- if (N1C && N1C->isAllOnes())
- return DAG.getNegative(N0, DL, VT);
- // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
- if (N1C && N1C->getAPIntValue().isMinSignedValue())
- return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
- DAG.getConstant(1, DL, VT),
- DAG.getConstant(0, DL, VT));
- if (SDValue V = simplifyDivRem(N, DAG))
- return V;
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
- // If we know the sign bits of both operands are zero, strength reduce to a
- // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
- if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
- return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
- if (SDValue V = visitSDIVLike(N0, N1, N)) {
- // If the corresponding remainder node exists, update its users with
- // (Dividend - (Quotient * Divisor).
- if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(),
- { N0, N1 })) {
- SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
- SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
- AddToWorklist(Mul.getNode());
- AddToWorklist(Sub.getNode());
- CombineTo(RemNode, Sub);
- }
- return V;
- }
- // sdiv, srem -> sdivrem
- // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
- // true. Otherwise, we break the simplification logic in visitREM().
- AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
- if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
- if (SDValue DivRem = useDivRem(N))
- return DivRem;
- return SDValue();
- }
- static bool isDivisorPowerOfTwo(SDValue Divisor) {
- // Helper for determining whether a value is a power-2 constant scalar or a
- // vector of such elements.
- auto IsPowerOfTwo = [](ConstantSDNode *C) {
- if (C->isZero() || C->isOpaque())
- return false;
- if (C->getAPIntValue().isPowerOf2())
- return true;
- if (C->getAPIntValue().isNegatedPowerOf2())
- return true;
- return false;
- };
- return ISD::matchUnaryPredicate(Divisor, IsPowerOfTwo);
- }
- SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) {
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
- EVT CCVT = getSetCCResultType(VT);
- unsigned BitWidth = VT.getScalarSizeInBits();
- // fold (sdiv X, pow2) -> simple ops after legalize
- // FIXME: We check for the exact bit here because the generic lowering gives
- // better results in that case. The target-specific lowering should learn how
- // to handle exact sdivs efficiently.
- if (!N->getFlags().hasExact() && isDivisorPowerOfTwo(N1)) {
- // Target-specific implementation of sdiv x, pow2.
- if (SDValue Res = BuildSDIVPow2(N))
- return Res;
- // Create constants that are functions of the shift amount value.
- EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
- SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy);
- SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1);
- C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy);
- SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1);
- if (!isConstantOrConstantVector(Inexact))
- return SDValue();
- // Splat the sign bit into the register
- SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0,
- DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy));
- AddToWorklist(Sign.getNode());
- // Add (N0 < 0) ? abs2 - 1 : 0;
- SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact);
- AddToWorklist(Srl.getNode());
- SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl);
- AddToWorklist(Add.getNode());
- SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1);
- AddToWorklist(Sra.getNode());
- // Special case: (sdiv X, 1) -> X
- // Special Case: (sdiv X, -1) -> 0-X
- SDValue One = DAG.getConstant(1, DL, VT);
- SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
- SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ);
- SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ);
- SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes);
- Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra);
- // If dividing by a positive value, we're done. Otherwise, the result must
- // be negated.
- SDValue Zero = DAG.getConstant(0, DL, VT);
- SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra);
- // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
- SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT);
- SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra);
- return Res;
- }
- // If integer divide is expensive and we satisfy the requirements, emit an
- // alternate sequence. Targets may check function attributes for size/speed
- // trade-offs.
- AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
- if (isConstantOrConstantVector(N1) &&
- !TLI.isIntDivCheap(N->getValueType(0), Attr))
- if (SDValue Op = BuildSDIV(N))
- return Op;
- return SDValue();
- }
- SDValue DAGCombiner::visitUDIV(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- EVT CCVT = getSetCCResultType(VT);
- SDLoc DL(N);
- // fold (udiv c1, c2) -> c1/c2
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1}))
- return C;
- // fold vector ops
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
- return FoldedVOp;
- // fold (udiv X, -1) -> select(X == -1, 1, 0)
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
- if (N1C && N1C->isAllOnes() && CCVT.isVector() == VT.isVector()) {
- return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
- DAG.getConstant(1, DL, VT),
- DAG.getConstant(0, DL, VT));
- }
- if (SDValue V = simplifyDivRem(N, DAG))
- return V;
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
- if (SDValue V = visitUDIVLike(N0, N1, N)) {
- // If the corresponding remainder node exists, update its users with
- // (Dividend - (Quotient * Divisor).
- if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(),
- { N0, N1 })) {
- SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
- SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
- AddToWorklist(Mul.getNode());
- AddToWorklist(Sub.getNode());
- CombineTo(RemNode, Sub);
- }
- return V;
- }
- // sdiv, srem -> sdivrem
- // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
- // true. Otherwise, we break the simplification logic in visitREM().
- AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
- if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
- if (SDValue DivRem = useDivRem(N))
- return DivRem;
- return SDValue();
- }
- SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) {
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
- // fold (udiv x, (1 << c)) -> x >>u c
- if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
- DAG.isKnownToBeAPowerOfTwo(N1)) {
- SDValue LogBase2 = BuildLogBase2(N1, DL);
- AddToWorklist(LogBase2.getNode());
- EVT ShiftVT = getShiftAmountTy(N0.getValueType());
- SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
- AddToWorklist(Trunc.getNode());
- return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
- }
- // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
- if (N1.getOpcode() == ISD::SHL) {
- SDValue N10 = N1.getOperand(0);
- if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) &&
- DAG.isKnownToBeAPowerOfTwo(N10)) {
- SDValue LogBase2 = BuildLogBase2(N10, DL);
- AddToWorklist(LogBase2.getNode());
- EVT ADDVT = N1.getOperand(1).getValueType();
- SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT);
- AddToWorklist(Trunc.getNode());
- SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc);
- AddToWorklist(Add.getNode());
- return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
- }
- }
- // fold (udiv x, c) -> alternate
- AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
- if (isConstantOrConstantVector(N1) &&
- !TLI.isIntDivCheap(N->getValueType(0), Attr))
- if (SDValue Op = BuildUDIV(N))
- return Op;
- return SDValue();
- }
- SDValue DAGCombiner::buildOptimizedSREM(SDValue N0, SDValue N1, SDNode *N) {
- if (!N->getFlags().hasExact() && isDivisorPowerOfTwo(N1) &&
- !DAG.doesNodeExist(ISD::SDIV, N->getVTList(), {N0, N1})) {
- // Target-specific implementation of srem x, pow2.
- if (SDValue Res = BuildSREMPow2(N))
- return Res;
- }
- return SDValue();
- }
- // handles ISD::SREM and ISD::UREM
- SDValue DAGCombiner::visitREM(SDNode *N) {
- unsigned Opcode = N->getOpcode();
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- EVT CCVT = getSetCCResultType(VT);
- bool isSigned = (Opcode == ISD::SREM);
- SDLoc DL(N);
- // fold (rem c1, c2) -> c1%c2
- if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
- return C;
- // fold (urem X, -1) -> select(FX == -1, 0, FX)
- // Freeze the numerator to avoid a miscompile with an undefined value.
- if (!isSigned && llvm::isAllOnesOrAllOnesSplat(N1, /*AllowUndefs*/ false) &&
- CCVT.isVector() == VT.isVector()) {
- SDValue F0 = DAG.getFreeze(N0);
- SDValue EqualsNeg1 = DAG.getSetCC(DL, CCVT, F0, N1, ISD::SETEQ);
- return DAG.getSelect(DL, VT, EqualsNeg1, DAG.getConstant(0, DL, VT), F0);
- }
- if (SDValue V = simplifyDivRem(N, DAG))
- return V;
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
- if (isSigned) {
- // If we know the sign bits of both operands are zero, strength reduce to a
- // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
- if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
- return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
- } else {
- if (DAG.isKnownToBeAPowerOfTwo(N1)) {
- // fold (urem x, pow2) -> (and x, pow2-1)
- SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
- SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
- AddToWorklist(Add.getNode());
- return DAG.getNode(ISD::AND, DL, VT, N0, Add);
- }
- // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
- // fold (urem x, (lshr pow2, y)) -> (and x, (add (lshr pow2, y), -1))
- // TODO: We should sink the following into isKnownToBePowerOfTwo
- // using a OrZero parameter analogous to our handling in ValueTracking.
- if ((N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) &&
- DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) {
- SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
- SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
- AddToWorklist(Add.getNode());
- return DAG.getNode(ISD::AND, DL, VT, N0, Add);
- }
- }
- AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
- // If X/C can be simplified by the division-by-constant logic, lower
- // X%C to the equivalent of X-X/C*C.
- // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
- // speculative DIV must not cause a DIVREM conversion. We guard against this
- // by skipping the simplification if isIntDivCheap(). When div is not cheap,
- // combine will not return a DIVREM. Regardless, checking cheapness here
- // makes sense since the simplification results in fatter code.
- if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) {
- if (isSigned) {
- // check if we can build faster implementation for srem
- if (SDValue OptimizedRem = buildOptimizedSREM(N0, N1, N))
- return OptimizedRem;
- }
- SDValue OptimizedDiv =
- isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N);
- if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != N) {
- // If the equivalent Div node also exists, update its users.
- unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
- if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(),
- { N0, N1 }))
- CombineTo(DivNode, OptimizedDiv);
- SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
- SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
- AddToWorklist(OptimizedDiv.getNode());
- AddToWorklist(Mul.getNode());
- return Sub;
- }
- }
- // sdiv, srem -> sdivrem
- if (SDValue DivRem = useDivRem(N))
- return DivRem.getValue(1);
- return SDValue();
- }
- SDValue DAGCombiner::visitMULHS(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- // fold (mulhs c1, c2)
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHS, DL, VT, {N0, N1}))
- return C;
- // canonicalize constant to RHS.
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(ISD::MULHS, DL, N->getVTList(), N1, N0);
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
- return FoldedVOp;
- // fold (mulhs x, 0) -> 0
- // do not return N1, because undef node may exist.
- if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
- return DAG.getConstant(0, DL, VT);
- }
- // fold (mulhs x, 0) -> 0
- if (isNullConstant(N1))
- return N1;
- // fold (mulhs x, 1) -> (sra x, size(x)-1)
- if (isOneConstant(N1))
- return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0,
- DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL,
- getShiftAmountTy(N0.getValueType())));
- // fold (mulhs x, undef) -> 0
- if (N0.isUndef() || N1.isUndef())
- return DAG.getConstant(0, DL, VT);
- // If the type twice as wide is legal, transform the mulhs to a wider multiply
- // plus a shift.
- if (!TLI.isOperationLegalOrCustom(ISD::MULHS, VT) && VT.isSimple() &&
- !VT.isVector()) {
- MVT Simple = VT.getSimpleVT();
- unsigned SimpleSize = Simple.getSizeInBits();
- EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
- if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
- N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
- N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
- N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
- N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
- DAG.getConstant(SimpleSize, DL,
- getShiftAmountTy(N1.getValueType())));
- return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
- }
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitMULHU(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- // fold (mulhu c1, c2)
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHU, DL, VT, {N0, N1}))
- return C;
- // canonicalize constant to RHS.
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(ISD::MULHU, DL, N->getVTList(), N1, N0);
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
- return FoldedVOp;
- // fold (mulhu x, 0) -> 0
- // do not return N1, because undef node may exist.
- if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
- return DAG.getConstant(0, DL, VT);
- }
- // fold (mulhu x, 0) -> 0
- if (isNullConstant(N1))
- return N1;
- // fold (mulhu x, 1) -> 0
- if (isOneConstant(N1))
- return DAG.getConstant(0, DL, N0.getValueType());
- // fold (mulhu x, undef) -> 0
- if (N0.isUndef() || N1.isUndef())
- return DAG.getConstant(0, DL, VT);
- // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
- if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
- DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) {
- unsigned NumEltBits = VT.getScalarSizeInBits();
- SDValue LogBase2 = BuildLogBase2(N1, DL);
- SDValue SRLAmt = DAG.getNode(
- ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2);
- EVT ShiftVT = getShiftAmountTy(N0.getValueType());
- SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT);
- return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
- }
- // If the type twice as wide is legal, transform the mulhu to a wider multiply
- // plus a shift.
- if (!TLI.isOperationLegalOrCustom(ISD::MULHU, VT) && VT.isSimple() &&
- !VT.isVector()) {
- MVT Simple = VT.getSimpleVT();
- unsigned SimpleSize = Simple.getSizeInBits();
- EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
- if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
- N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
- N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
- N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
- N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
- DAG.getConstant(SimpleSize, DL,
- getShiftAmountTy(N1.getValueType())));
- return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
- }
- }
- // Simplify the operands using demanded-bits information.
- // We don't have demanded bits support for MULHU so this just enables constant
- // folding based on known bits.
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
- return SDValue();
- }
- SDValue DAGCombiner::visitAVG(SDNode *N) {
- unsigned Opcode = N->getOpcode();
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- // fold (avg c1, c2)
- if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
- return C;
- // canonicalize constant to RHS.
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(Opcode, DL, N->getVTList(), N1, N0);
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
- return FoldedVOp;
- // fold (avgfloor x, 0) -> x >> 1
- if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) {
- if (Opcode == ISD::AVGFLOORS)
- return DAG.getNode(ISD::SRA, DL, VT, N0, DAG.getConstant(1, DL, VT));
- if (Opcode == ISD::AVGFLOORU)
- return DAG.getNode(ISD::SRL, DL, VT, N0, DAG.getConstant(1, DL, VT));
- }
- }
- // fold (avg x, undef) -> x
- if (N0.isUndef())
- return N1;
- if (N1.isUndef())
- return N0;
- // TODO If we use avg for scalars anywhere, we can add (avgfl x, 0) -> x >> 1
- return SDValue();
- }
- /// Perform optimizations common to nodes that compute two values. LoOp and HiOp
- /// give the opcodes for the two computations that are being performed. Return
- /// true if a simplification was made.
- SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
- unsigned HiOp) {
- // If the high half is not needed, just compute the low half.
- bool HiExists = N->hasAnyUseOfValue(1);
- if (!HiExists && (!LegalOperations ||
- TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
- SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
- return CombineTo(N, Res, Res);
- }
- // If the low half is not needed, just compute the high half.
- bool LoExists = N->hasAnyUseOfValue(0);
- if (!LoExists && (!LegalOperations ||
- TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) {
- SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
- return CombineTo(N, Res, Res);
- }
- // If both halves are used, return as it is.
- if (LoExists && HiExists)
- return SDValue();
- // If the two computed results can be simplified separately, separate them.
- if (LoExists) {
- SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
- AddToWorklist(Lo.getNode());
- SDValue LoOpt = combine(Lo.getNode());
- if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
- (!LegalOperations ||
- TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType())))
- return CombineTo(N, LoOpt, LoOpt);
- }
- if (HiExists) {
- SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
- AddToWorklist(Hi.getNode());
- SDValue HiOpt = combine(Hi.getNode());
- if (HiOpt.getNode() && HiOpt != Hi &&
- (!LegalOperations ||
- TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType())))
- return CombineTo(N, HiOpt, HiOpt);
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
- if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
- return Res;
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- // canonicalize constant to RHS (vector doesn't have to splat)
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(ISD::SMUL_LOHI, DL, N->getVTList(), N1, N0);
- // If the type is twice as wide is legal, transform the mulhu to a wider
- // multiply plus a shift.
- if (VT.isSimple() && !VT.isVector()) {
- MVT Simple = VT.getSimpleVT();
- unsigned SimpleSize = Simple.getSizeInBits();
- EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
- if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
- SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
- SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
- Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
- // Compute the high part as N1.
- Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
- DAG.getConstant(SimpleSize, DL,
- getShiftAmountTy(Lo.getValueType())));
- Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
- // Compute the low part as N0.
- Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
- return CombineTo(N, Lo, Hi);
- }
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
- if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
- return Res;
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- // canonicalize constant to RHS (vector doesn't have to splat)
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(ISD::UMUL_LOHI, DL, N->getVTList(), N1, N0);
- // (umul_lohi N0, 0) -> (0, 0)
- if (isNullConstant(N1)) {
- SDValue Zero = DAG.getConstant(0, DL, VT);
- return CombineTo(N, Zero, Zero);
- }
- // (umul_lohi N0, 1) -> (N0, 0)
- if (isOneConstant(N1)) {
- SDValue Zero = DAG.getConstant(0, DL, VT);
- return CombineTo(N, N0, Zero);
- }
- // If the type is twice as wide is legal, transform the mulhu to a wider
- // multiply plus a shift.
- if (VT.isSimple() && !VT.isVector()) {
- MVT Simple = VT.getSimpleVT();
- unsigned SimpleSize = Simple.getSizeInBits();
- EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
- if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
- SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
- SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
- Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
- // Compute the high part as N1.
- Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
- DAG.getConstant(SimpleSize, DL,
- getShiftAmountTy(Lo.getValueType())));
- Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
- // Compute the low part as N0.
- Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
- return CombineTo(N, Lo, Hi);
- }
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitMULO(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- bool IsSigned = (ISD::SMULO == N->getOpcode());
- EVT CarryVT = N->getValueType(1);
- SDLoc DL(N);
- ConstantSDNode *N0C = isConstOrConstSplat(N0);
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
- // fold operation with constant operands.
- // TODO: Move this to FoldConstantArithmetic when it supports nodes with
- // multiple results.
- if (N0C && N1C) {
- bool Overflow;
- APInt Result =
- IsSigned ? N0C->getAPIntValue().smul_ov(N1C->getAPIntValue(), Overflow)
- : N0C->getAPIntValue().umul_ov(N1C->getAPIntValue(), Overflow);
- return CombineTo(N, DAG.getConstant(Result, DL, VT),
- DAG.getBoolConstant(Overflow, DL, CarryVT, CarryVT));
- }
- // canonicalize constant to RHS.
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
- // fold (mulo x, 0) -> 0 + no carry out
- if (isNullOrNullSplat(N1))
- return CombineTo(N, DAG.getConstant(0, DL, VT),
- DAG.getConstant(0, DL, CarryVT));
- // (mulo x, 2) -> (addo x, x)
- // FIXME: This needs a freeze.
- if (N1C && N1C->getAPIntValue() == 2 &&
- (!IsSigned || VT.getScalarSizeInBits() > 2))
- return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL,
- N->getVTList(), N0, N0);
- if (IsSigned) {
- // A 1 bit SMULO overflows if both inputs are 1.
- if (VT.getScalarSizeInBits() == 1) {
- SDValue And = DAG.getNode(ISD::AND, DL, VT, N0, N1);
- return CombineTo(N, And,
- DAG.getSetCC(DL, CarryVT, And,
- DAG.getConstant(0, DL, VT), ISD::SETNE));
- }
- // Multiplying n * m significant bits yields a result of n + m significant
- // bits. If the total number of significant bits does not exceed the
- // result bit width (minus 1), there is no overflow.
- unsigned SignBits = DAG.ComputeNumSignBits(N0);
- if (SignBits > 1)
- SignBits += DAG.ComputeNumSignBits(N1);
- if (SignBits > VT.getScalarSizeInBits() + 1)
- return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1),
- DAG.getConstant(0, DL, CarryVT));
- } else {
- KnownBits N1Known = DAG.computeKnownBits(N1);
- KnownBits N0Known = DAG.computeKnownBits(N0);
- bool Overflow;
- (void)N0Known.getMaxValue().umul_ov(N1Known.getMaxValue(), Overflow);
- if (!Overflow)
- return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1),
- DAG.getConstant(0, DL, CarryVT));
- }
- return SDValue();
- }
- // Function to calculate whether the Min/Max pair of SDNodes (potentially
- // swapped around) make a signed saturate pattern, clamping to between a signed
- // saturate of -2^(BW-1) and 2^(BW-1)-1, or an unsigned saturate of 0 and 2^BW.
- // Returns the node being clamped and the bitwidth of the clamp in BW. Should
- // work with both SMIN/SMAX nodes and setcc/select combo. The operands are the
- // same as SimplifySelectCC. N0<N1 ? N2 : N3.
- static SDValue isSaturatingMinMax(SDValue N0, SDValue N1, SDValue N2,
- SDValue N3, ISD::CondCode CC, unsigned &BW,
- bool &Unsigned) {
- auto isSignedMinMax = [&](SDValue N0, SDValue N1, SDValue N2, SDValue N3,
- ISD::CondCode CC) {
- // The compare and select operand should be the same or the select operands
- // should be truncated versions of the comparison.
- if (N0 != N2 && (N2.getOpcode() != ISD::TRUNCATE || N0 != N2.getOperand(0)))
- return 0;
- // The constants need to be the same or a truncated version of each other.
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
- ConstantSDNode *N3C = isConstOrConstSplat(N3);
- if (!N1C || !N3C)
- return 0;
- const APInt &C1 = N1C->getAPIntValue();
- const APInt &C2 = N3C->getAPIntValue();
- if (C1.getBitWidth() < C2.getBitWidth() || C1 != C2.sext(C1.getBitWidth()))
- return 0;
- return CC == ISD::SETLT ? ISD::SMIN : (CC == ISD::SETGT ? ISD::SMAX : 0);
- };
- // Check the initial value is a SMIN/SMAX equivalent.
- unsigned Opcode0 = isSignedMinMax(N0, N1, N2, N3, CC);
- if (!Opcode0)
- return SDValue();
- SDValue N00, N01, N02, N03;
- ISD::CondCode N0CC;
- switch (N0.getOpcode()) {
- case ISD::SMIN:
- case ISD::SMAX:
- N00 = N02 = N0.getOperand(0);
- N01 = N03 = N0.getOperand(1);
- N0CC = N0.getOpcode() == ISD::SMIN ? ISD::SETLT : ISD::SETGT;
- break;
- case ISD::SELECT_CC:
- N00 = N0.getOperand(0);
- N01 = N0.getOperand(1);
- N02 = N0.getOperand(2);
- N03 = N0.getOperand(3);
- N0CC = cast<CondCodeSDNode>(N0.getOperand(4))->get();
- break;
- case ISD::SELECT:
- case ISD::VSELECT:
- if (N0.getOperand(0).getOpcode() != ISD::SETCC)
- return SDValue();
- N00 = N0.getOperand(0).getOperand(0);
- N01 = N0.getOperand(0).getOperand(1);
- N02 = N0.getOperand(1);
- N03 = N0.getOperand(2);
- N0CC = cast<CondCodeSDNode>(N0.getOperand(0).getOperand(2))->get();
- break;
- default:
- return SDValue();
- }
- unsigned Opcode1 = isSignedMinMax(N00, N01, N02, N03, N0CC);
- if (!Opcode1 || Opcode0 == Opcode1)
- return SDValue();
- ConstantSDNode *MinCOp = isConstOrConstSplat(Opcode0 == ISD::SMIN ? N1 : N01);
- ConstantSDNode *MaxCOp = isConstOrConstSplat(Opcode0 == ISD::SMIN ? N01 : N1);
- if (!MinCOp || !MaxCOp || MinCOp->getValueType(0) != MaxCOp->getValueType(0))
- return SDValue();
- const APInt &MinC = MinCOp->getAPIntValue();
- const APInt &MaxC = MaxCOp->getAPIntValue();
- APInt MinCPlus1 = MinC + 1;
- if (-MaxC == MinCPlus1 && MinCPlus1.isPowerOf2()) {
- BW = MinCPlus1.exactLogBase2() + 1;
- Unsigned = false;
- return N02;
- }
- if (MaxC == 0 && MinCPlus1.isPowerOf2()) {
- BW = MinCPlus1.exactLogBase2();
- Unsigned = true;
- return N02;
- }
- return SDValue();
- }
- static SDValue PerformMinMaxFpToSatCombine(SDValue N0, SDValue N1, SDValue N2,
- SDValue N3, ISD::CondCode CC,
- SelectionDAG &DAG) {
- unsigned BW;
- bool Unsigned;
- SDValue Fp = isSaturatingMinMax(N0, N1, N2, N3, CC, BW, Unsigned);
- if (!Fp || Fp.getOpcode() != ISD::FP_TO_SINT)
- return SDValue();
- EVT FPVT = Fp.getOperand(0).getValueType();
- EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), BW);
- if (FPVT.isVector())
- NewVT = EVT::getVectorVT(*DAG.getContext(), NewVT,
- FPVT.getVectorElementCount());
- unsigned NewOpc = Unsigned ? ISD::FP_TO_UINT_SAT : ISD::FP_TO_SINT_SAT;
- if (!DAG.getTargetLoweringInfo().shouldConvertFpToSat(NewOpc, FPVT, NewVT))
- return SDValue();
- SDLoc DL(Fp);
- SDValue Sat = DAG.getNode(NewOpc, DL, NewVT, Fp.getOperand(0),
- DAG.getValueType(NewVT.getScalarType()));
- return Unsigned ? DAG.getZExtOrTrunc(Sat, DL, N2->getValueType(0))
- : DAG.getSExtOrTrunc(Sat, DL, N2->getValueType(0));
- }
- static SDValue PerformUMinFpToSatCombine(SDValue N0, SDValue N1, SDValue N2,
- SDValue N3, ISD::CondCode CC,
- SelectionDAG &DAG) {
- // We are looking for UMIN(FPTOUI(X), (2^n)-1), which may have come via a
- // select/vselect/select_cc. The two operands pairs for the select (N2/N3) may
- // be truncated versions of the the setcc (N0/N1).
- if ((N0 != N2 &&
- (N2.getOpcode() != ISD::TRUNCATE || N0 != N2.getOperand(0))) ||
- N0.getOpcode() != ISD::FP_TO_UINT || CC != ISD::SETULT)
- return SDValue();
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
- ConstantSDNode *N3C = isConstOrConstSplat(N3);
- if (!N1C || !N3C)
- return SDValue();
- const APInt &C1 = N1C->getAPIntValue();
- const APInt &C3 = N3C->getAPIntValue();
- if (!(C1 + 1).isPowerOf2() || C1.getBitWidth() < C3.getBitWidth() ||
- C1 != C3.zext(C1.getBitWidth()))
- return SDValue();
- unsigned BW = (C1 + 1).exactLogBase2();
- EVT FPVT = N0.getOperand(0).getValueType();
- EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), BW);
- if (FPVT.isVector())
- NewVT = EVT::getVectorVT(*DAG.getContext(), NewVT,
- FPVT.getVectorElementCount());
- if (!DAG.getTargetLoweringInfo().shouldConvertFpToSat(ISD::FP_TO_UINT_SAT,
- FPVT, NewVT))
- return SDValue();
- SDValue Sat =
- DAG.getNode(ISD::FP_TO_UINT_SAT, SDLoc(N0), NewVT, N0.getOperand(0),
- DAG.getValueType(NewVT.getScalarType()));
- return DAG.getZExtOrTrunc(Sat, SDLoc(N0), N3.getValueType());
- }
- SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- unsigned Opcode = N->getOpcode();
- SDLoc DL(N);
- // fold operation with constant operands.
- if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
- return C;
- // If the operands are the same, this is a no-op.
- if (N0 == N1)
- return N0;
- // canonicalize constant to RHS
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(Opcode, DL, VT, N1, N0);
- // fold vector ops
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
- return FoldedVOp;
- // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
- // Only do this if the current op isn't legal and the flipped is.
- if (!TLI.isOperationLegal(Opcode, VT) &&
- (N0.isUndef() || DAG.SignBitIsZero(N0)) &&
- (N1.isUndef() || DAG.SignBitIsZero(N1))) {
- unsigned AltOpcode;
- switch (Opcode) {
- case ISD::SMIN: AltOpcode = ISD::UMIN; break;
- case ISD::SMAX: AltOpcode = ISD::UMAX; break;
- case ISD::UMIN: AltOpcode = ISD::SMIN; break;
- case ISD::UMAX: AltOpcode = ISD::SMAX; break;
- default: llvm_unreachable("Unknown MINMAX opcode");
- }
- if (TLI.isOperationLegal(AltOpcode, VT))
- return DAG.getNode(AltOpcode, DL, VT, N0, N1);
- }
- if (Opcode == ISD::SMIN || Opcode == ISD::SMAX)
- if (SDValue S = PerformMinMaxFpToSatCombine(
- N0, N1, N0, N1, Opcode == ISD::SMIN ? ISD::SETLT : ISD::SETGT, DAG))
- return S;
- if (Opcode == ISD::UMIN)
- if (SDValue S = PerformUMinFpToSatCombine(N0, N1, N0, N1, ISD::SETULT, DAG))
- return S;
- // Simplify the operands using demanded-bits information.
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
- return SDValue();
- }
- /// If this is a bitwise logic instruction and both operands have the same
- /// opcode, try to sink the other opcode after the logic instruction.
- SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) {
- SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- unsigned LogicOpcode = N->getOpcode();
- unsigned HandOpcode = N0.getOpcode();
- assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR ||
- LogicOpcode == ISD::XOR) && "Expected logic opcode");
- assert(HandOpcode == N1.getOpcode() && "Bad input!");
- // Bail early if none of these transforms apply.
- if (N0.getNumOperands() == 0)
- return SDValue();
- // FIXME: We should check number of uses of the operands to not increase
- // the instruction count for all transforms.
- // Handle size-changing casts.
- SDValue X = N0.getOperand(0);
- SDValue Y = N1.getOperand(0);
- EVT XVT = X.getValueType();
- SDLoc DL(N);
- if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND ||
- HandOpcode == ISD::SIGN_EXTEND) {
- // If both operands have other uses, this transform would create extra
- // instructions without eliminating anything.
- if (!N0.hasOneUse() && !N1.hasOneUse())
- return SDValue();
- // We need matching integer source types.
- if (XVT != Y.getValueType())
- return SDValue();
- // Don't create an illegal op during or after legalization. Don't ever
- // create an unsupported vector op.
- if ((VT.isVector() || LegalOperations) &&
- !TLI.isOperationLegalOrCustom(LogicOpcode, XVT))
- return SDValue();
- // Avoid infinite looping with PromoteIntBinOp.
- // TODO: Should we apply desirable/legal constraints to all opcodes?
- if (HandOpcode == ISD::ANY_EXTEND && LegalTypes &&
- !TLI.isTypeDesirableForOp(LogicOpcode, XVT))
- return SDValue();
- // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
- SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
- return DAG.getNode(HandOpcode, DL, VT, Logic);
- }
- // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
- if (HandOpcode == ISD::TRUNCATE) {
- // If both operands have other uses, this transform would create extra
- // instructions without eliminating anything.
- if (!N0.hasOneUse() && !N1.hasOneUse())
- return SDValue();
- // We need matching source types.
- if (XVT != Y.getValueType())
- return SDValue();
- // Don't create an illegal op during or after legalization.
- if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT))
- return SDValue();
- // Be extra careful sinking truncate. If it's free, there's no benefit in
- // widening a binop. Also, don't create a logic op on an illegal type.
- if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT))
- return SDValue();
- if (!TLI.isTypeLegal(XVT))
- return SDValue();
- SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
- return DAG.getNode(HandOpcode, DL, VT, Logic);
- }
- // For binops SHL/SRL/SRA/AND:
- // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
- if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL ||
- HandOpcode == ISD::SRA || HandOpcode == ISD::AND) &&
- N0.getOperand(1) == N1.getOperand(1)) {
- // If either operand has other uses, this transform is not an improvement.
- if (!N0.hasOneUse() || !N1.hasOneUse())
- return SDValue();
- SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
- return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1));
- }
- // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
- if (HandOpcode == ISD::BSWAP) {
- // If either operand has other uses, this transform is not an improvement.
- if (!N0.hasOneUse() || !N1.hasOneUse())
- return SDValue();
- SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
- return DAG.getNode(HandOpcode, DL, VT, Logic);
- }
- // For funnel shifts FSHL/FSHR:
- // logic_op (OP x, x1, s), (OP y, y1, s) -->
- // --> OP (logic_op x, y), (logic_op, x1, y1), s
- if ((HandOpcode == ISD::FSHL || HandOpcode == ISD::FSHR) &&
- N0.getOperand(2) == N1.getOperand(2)) {
- if (!N0.hasOneUse() || !N1.hasOneUse())
- return SDValue();
- SDValue X1 = N0.getOperand(1);
- SDValue Y1 = N1.getOperand(1);
- SDValue S = N0.getOperand(2);
- SDValue Logic0 = DAG.getNode(LogicOpcode, DL, VT, X, Y);
- SDValue Logic1 = DAG.getNode(LogicOpcode, DL, VT, X1, Y1);
- return DAG.getNode(HandOpcode, DL, VT, Logic0, Logic1, S);
- }
- // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
- // Only perform this optimization up until type legalization, before
- // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
- // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
- // we don't want to undo this promotion.
- // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
- // on scalars.
- if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) &&
- Level <= AfterLegalizeTypes) {
- // Input types must be integer and the same.
- if (XVT.isInteger() && XVT == Y.getValueType() &&
- !(VT.isVector() && TLI.isTypeLegal(VT) &&
- !XVT.isVector() && !TLI.isTypeLegal(XVT))) {
- SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
- return DAG.getNode(HandOpcode, DL, VT, Logic);
- }
- }
- // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
- // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
- // If both shuffles use the same mask, and both shuffle within a single
- // vector, then it is worthwhile to move the swizzle after the operation.
- // The type-legalizer generates this pattern when loading illegal
- // vector types from memory. In many cases this allows additional shuffle
- // optimizations.
- // There are other cases where moving the shuffle after the xor/and/or
- // is profitable even if shuffles don't perform a swizzle.
- // If both shuffles use the same mask, and both shuffles have the same first
- // or second operand, then it might still be profitable to move the shuffle
- // after the xor/and/or operation.
- if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
- auto *SVN0 = cast<ShuffleVectorSDNode>(N0);
- auto *SVN1 = cast<ShuffleVectorSDNode>(N1);
- assert(X.getValueType() == Y.getValueType() &&
- "Inputs to shuffles are not the same type");
- // Check that both shuffles use the same mask. The masks are known to be of
- // the same length because the result vector type is the same.
- // Check also that shuffles have only one use to avoid introducing extra
- // instructions.
- if (!SVN0->hasOneUse() || !SVN1->hasOneUse() ||
- !SVN0->getMask().equals(SVN1->getMask()))
- return SDValue();
- // Don't try to fold this node if it requires introducing a
- // build vector of all zeros that might be illegal at this stage.
- SDValue ShOp = N0.getOperand(1);
- if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
- ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
- // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
- if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
- SDValue Logic = DAG.getNode(LogicOpcode, DL, VT,
- N0.getOperand(0), N1.getOperand(0));
- return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask());
- }
- // Don't try to fold this node if it requires introducing a
- // build vector of all zeros that might be illegal at this stage.
- ShOp = N0.getOperand(0);
- if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
- ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
- // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
- if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) {
- SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1),
- N1.getOperand(1));
- return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask());
- }
- }
- return SDValue();
- }
- /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
- SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
- const SDLoc &DL) {
- SDValue LL, LR, RL, RR, N0CC, N1CC;
- if (!isSetCCEquivalent(N0, LL, LR, N0CC) ||
- !isSetCCEquivalent(N1, RL, RR, N1CC))
- return SDValue();
- assert(N0.getValueType() == N1.getValueType() &&
- "Unexpected operand types for bitwise logic op");
- assert(LL.getValueType() == LR.getValueType() &&
- RL.getValueType() == RR.getValueType() &&
- "Unexpected operand types for setcc");
- // If we're here post-legalization or the logic op type is not i1, the logic
- // op type must match a setcc result type. Also, all folds require new
- // operations on the left and right operands, so those types must match.
- EVT VT = N0.getValueType();
- EVT OpVT = LL.getValueType();
- if (LegalOperations || VT.getScalarType() != MVT::i1)
- if (VT != getSetCCResultType(OpVT))
- return SDValue();
- if (OpVT != RL.getValueType())
- return SDValue();
- ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get();
- ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get();
- bool IsInteger = OpVT.isInteger();
- if (LR == RR && CC0 == CC1 && IsInteger) {
- bool IsZero = isNullOrNullSplat(LR);
- bool IsNeg1 = isAllOnesOrAllOnesSplat(LR);
- // All bits clear?
- bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero;
- // All sign bits clear?
- bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1;
- // Any bits set?
- bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero;
- // Any sign bits set?
- bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero;
- // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
- // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
- // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
- // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
- if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) {
- SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL);
- AddToWorklist(Or.getNode());
- return DAG.getSetCC(DL, VT, Or, LR, CC1);
- }
- // All bits set?
- bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1;
- // All sign bits set?
- bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero;
- // Any bits clear?
- bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1;
- // Any sign bits clear?
- bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1;
- // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
- // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
- // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
- // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
- if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) {
- SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL);
- AddToWorklist(And.getNode());
- return DAG.getSetCC(DL, VT, And, LR, CC1);
- }
- }
- // TODO: What is the 'or' equivalent of this fold?
- // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
- if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 &&
- IsInteger && CC0 == ISD::SETNE &&
- ((isNullConstant(LR) && isAllOnesConstant(RR)) ||
- (isAllOnesConstant(LR) && isNullConstant(RR)))) {
- SDValue One = DAG.getConstant(1, DL, OpVT);
- SDValue Two = DAG.getConstant(2, DL, OpVT);
- SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One);
- AddToWorklist(Add.getNode());
- return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE);
- }
- // Try more general transforms if the predicates match and the only user of
- // the compares is the 'and' or 'or'.
- if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 &&
- N0.hasOneUse() && N1.hasOneUse()) {
- // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
- // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
- if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) {
- SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR);
- SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR);
- SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR);
- SDValue Zero = DAG.getConstant(0, DL, OpVT);
- return DAG.getSetCC(DL, VT, Or, Zero, CC1);
- }
- // Turn compare of constants whose difference is 1 bit into add+and+setcc.
- if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) {
- // Match a shared variable operand and 2 non-opaque constant operands.
- auto MatchDiffPow2 = [&](ConstantSDNode *C0, ConstantSDNode *C1) {
- // The difference of the constants must be a single bit.
- const APInt &CMax =
- APIntOps::umax(C0->getAPIntValue(), C1->getAPIntValue());
- const APInt &CMin =
- APIntOps::umin(C0->getAPIntValue(), C1->getAPIntValue());
- return !C0->isOpaque() && !C1->isOpaque() && (CMax - CMin).isPowerOf2();
- };
- if (LL == RL && ISD::matchBinaryPredicate(LR, RR, MatchDiffPow2)) {
- // and/or (setcc X, CMax, ne), (setcc X, CMin, ne/eq) -->
- // setcc ((sub X, CMin), ~(CMax - CMin)), 0, ne/eq
- SDValue Max = DAG.getNode(ISD::UMAX, DL, OpVT, LR, RR);
- SDValue Min = DAG.getNode(ISD::UMIN, DL, OpVT, LR, RR);
- SDValue Offset = DAG.getNode(ISD::SUB, DL, OpVT, LL, Min);
- SDValue Diff = DAG.getNode(ISD::SUB, DL, OpVT, Max, Min);
- SDValue Mask = DAG.getNOT(DL, Diff, OpVT);
- SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Offset, Mask);
- SDValue Zero = DAG.getConstant(0, DL, OpVT);
- return DAG.getSetCC(DL, VT, And, Zero, CC0);
- }
- }
- }
- // Canonicalize equivalent operands to LL == RL.
- if (LL == RR && LR == RL) {
- CC1 = ISD::getSetCCSwappedOperands(CC1);
- std::swap(RL, RR);
- }
- // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
- // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
- if (LL == RL && LR == RR) {
- ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT)
- : ISD::getSetCCOrOperation(CC0, CC1, OpVT);
- if (NewCC != ISD::SETCC_INVALID &&
- (!LegalOperations ||
- (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) &&
- TLI.isOperationLegal(ISD::SETCC, OpVT))))
- return DAG.getSetCC(DL, VT, LL, LR, NewCC);
- }
- return SDValue();
- }
- /// This contains all DAGCombine rules which reduce two values combined by
- /// an And operation to a single value. This makes them reusable in the context
- /// of visitSELECT(). Rules involving constants are not included as
- /// visitSELECT() already handles those cases.
- SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) {
- EVT VT = N1.getValueType();
- SDLoc DL(N);
- // fold (and x, undef) -> 0
- if (N0.isUndef() || N1.isUndef())
- return DAG.getConstant(0, DL, VT);
- if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL))
- return V;
- // TODO: Rewrite this to return a new 'AND' instead of using CombineTo.
- if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
- VT.getSizeInBits() <= 64 && N0->hasOneUse()) {
- if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
- // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
- // immediate for an add, but it is legal if its top c2 bits are set,
- // transform the ADD so the immediate doesn't need to be materialized
- // in a register.
- APInt ADDC = ADDI->getAPIntValue();
- APInt SRLC = SRLI->getAPIntValue();
- if (ADDC.getMinSignedBits() <= 64 &&
- SRLC.ult(VT.getSizeInBits()) &&
- !TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
- APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
- SRLC.getZExtValue());
- if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
- ADDC |= Mask;
- if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
- SDLoc DL0(N0);
- SDValue NewAdd =
- DAG.getNode(ISD::ADD, DL0, VT,
- N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
- CombineTo(N0.getNode(), NewAdd);
- // Return N so it doesn't get rechecked!
- return SDValue(N, 0);
- }
- }
- }
- }
- }
- }
- // Reduce bit extract of low half of an integer to the narrower type.
- // (and (srl i64:x, K), KMask) ->
- // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
- if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
- if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) {
- if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- unsigned Size = VT.getSizeInBits();
- const APInt &AndMask = CAnd->getAPIntValue();
- unsigned ShiftBits = CShift->getZExtValue();
- // Bail out, this node will probably disappear anyway.
- if (ShiftBits == 0)
- return SDValue();
- unsigned MaskBits = AndMask.countTrailingOnes();
- EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2);
- if (AndMask.isMask() &&
- // Required bits must not span the two halves of the integer and
- // must fit in the half size type.
- (ShiftBits + MaskBits <= Size / 2) &&
- TLI.isNarrowingProfitable(VT, HalfVT) &&
- TLI.isTypeDesirableForOp(ISD::AND, HalfVT) &&
- TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) &&
- TLI.isTruncateFree(VT, HalfVT) &&
- TLI.isZExtFree(HalfVT, VT)) {
- // The isNarrowingProfitable is to avoid regressions on PPC and
- // AArch64 which match a few 64-bit bit insert / bit extract patterns
- // on downstream users of this. Those patterns could probably be
- // extended to handle extensions mixed in.
- SDValue SL(N0);
- assert(MaskBits <= Size);
- // Extracting the highest bit of the low half.
- EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout());
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT,
- N0.getOperand(0));
- SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT);
- SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT);
- SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK);
- SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask);
- return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And);
- }
- }
- }
- }
- return SDValue();
- }
- bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
- EVT LoadResultTy, EVT &ExtVT) {
- if (!AndC->getAPIntValue().isMask())
- return false;
- unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes();
- ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
- EVT LoadedVT = LoadN->getMemoryVT();
- if (ExtVT == LoadedVT &&
- (!LegalOperations ||
- TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) {
- // ZEXTLOAD will match without needing to change the size of the value being
- // loaded.
- return true;
- }
- // Do not change the width of a volatile or atomic loads.
- if (!LoadN->isSimple())
- return false;
- // Do not generate loads of non-round integer types since these can
- // be expensive (and would be wrong if the type is not byte sized).
- if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound())
- return false;
- if (LegalOperations &&
- !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))
- return false;
- if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT))
- return false;
- return true;
- }
- bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST,
- ISD::LoadExtType ExtType, EVT &MemVT,
- unsigned ShAmt) {
- if (!LDST)
- return false;
- // Only allow byte offsets.
- if (ShAmt % 8)
- return false;
- // Do not generate loads of non-round integer types since these can
- // be expensive (and would be wrong if the type is not byte sized).
- if (!MemVT.isRound())
- return false;
- // Don't change the width of a volatile or atomic loads.
- if (!LDST->isSimple())
- return false;
- EVT LdStMemVT = LDST->getMemoryVT();
- // Bail out when changing the scalable property, since we can't be sure that
- // we're actually narrowing here.
- if (LdStMemVT.isScalableVector() != MemVT.isScalableVector())
- return false;
- // Verify that we are actually reducing a load width here.
- if (LdStMemVT.bitsLT(MemVT))
- return false;
- // Ensure that this isn't going to produce an unsupported memory access.
- if (ShAmt) {
- assert(ShAmt % 8 == 0 && "ShAmt is byte offset");
- const unsigned ByteShAmt = ShAmt / 8;
- const Align LDSTAlign = LDST->getAlign();
- const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt);
- if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
- LDST->getAddressSpace(), NarrowAlign,
- LDST->getMemOperand()->getFlags()))
- return false;
- }
- // It's not possible to generate a constant of extended or untyped type.
- EVT PtrType = LDST->getBasePtr().getValueType();
- if (PtrType == MVT::Untyped || PtrType.isExtended())
- return false;
- if (isa<LoadSDNode>(LDST)) {
- LoadSDNode *Load = cast<LoadSDNode>(LDST);
- // Don't transform one with multiple uses, this would require adding a new
- // load.
- if (!SDValue(Load, 0).hasOneUse())
- return false;
- if (LegalOperations &&
- !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT))
- return false;
- // For the transform to be legal, the load must produce only two values
- // (the value loaded and the chain). Don't transform a pre-increment
- // load, for example, which produces an extra value. Otherwise the
- // transformation is not equivalent, and the downstream logic to replace
- // uses gets things wrong.
- if (Load->getNumValues() > 2)
- return false;
- // If the load that we're shrinking is an extload and we're not just
- // discarding the extension we can't simply shrink the load. Bail.
- // TODO: It would be possible to merge the extensions in some cases.
- if (Load->getExtensionType() != ISD::NON_EXTLOAD &&
- Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
- return false;
- if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT))
- return false;
- } else {
- assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode");
- StoreSDNode *Store = cast<StoreSDNode>(LDST);
- // Can't write outside the original store
- if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
- return false;
- if (LegalOperations &&
- !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT))
- return false;
- }
- return true;
- }
- bool DAGCombiner::SearchForAndLoads(SDNode *N,
- SmallVectorImpl<LoadSDNode*> &Loads,
- SmallPtrSetImpl<SDNode*> &NodesWithConsts,
- ConstantSDNode *Mask,
- SDNode *&NodeToMask) {
- // Recursively search for the operands, looking for loads which can be
- // narrowed.
- for (SDValue Op : N->op_values()) {
- if (Op.getValueType().isVector())
- return false;
- // Some constants may need fixing up later if they are too large.
- if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
- if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) &&
- (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue())
- NodesWithConsts.insert(N);
- continue;
- }
- if (!Op.hasOneUse())
- return false;
- switch(Op.getOpcode()) {
- case ISD::LOAD: {
- auto *Load = cast<LoadSDNode>(Op);
- EVT ExtVT;
- if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) &&
- isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) {
- // ZEXTLOAD is already small enough.
- if (Load->getExtensionType() == ISD::ZEXTLOAD &&
- ExtVT.bitsGE(Load->getMemoryVT()))
- continue;
- // Use LE to convert equal sized loads to zext.
- if (ExtVT.bitsLE(Load->getMemoryVT()))
- Loads.push_back(Load);
- continue;
- }
- return false;
- }
- case ISD::ZERO_EXTEND:
- case ISD::AssertZext: {
- unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes();
- EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
- EVT VT = Op.getOpcode() == ISD::AssertZext ?
- cast<VTSDNode>(Op.getOperand(1))->getVT() :
- Op.getOperand(0).getValueType();
- // We can accept extending nodes if the mask is wider or an equal
- // width to the original type.
- if (ExtVT.bitsGE(VT))
- continue;
- break;
- }
- case ISD::OR:
- case ISD::XOR:
- case ISD::AND:
- if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask,
- NodeToMask))
- return false;
- continue;
- }
- // Allow one node which will masked along with any loads found.
- if (NodeToMask)
- return false;
- // Also ensure that the node to be masked only produces one data result.
- NodeToMask = Op.getNode();
- if (NodeToMask->getNumValues() > 1) {
- bool HasValue = false;
- for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) {
- MVT VT = SDValue(NodeToMask, i).getSimpleValueType();
- if (VT != MVT::Glue && VT != MVT::Other) {
- if (HasValue) {
- NodeToMask = nullptr;
- return false;
- }
- HasValue = true;
- }
- }
- assert(HasValue && "Node to be masked has no data result?");
- }
- }
- return true;
- }
- bool DAGCombiner::BackwardsPropagateMask(SDNode *N) {
- auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
- if (!Mask)
- return false;
- if (!Mask->getAPIntValue().isMask())
- return false;
- // No need to do anything if the and directly uses a load.
- if (isa<LoadSDNode>(N->getOperand(0)))
- return false;
- SmallVector<LoadSDNode*, 8> Loads;
- SmallPtrSet<SDNode*, 2> NodesWithConsts;
- SDNode *FixupNode = nullptr;
- if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) {
- if (Loads.size() == 0)
- return false;
- LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump());
- SDValue MaskOp = N->getOperand(1);
- // If it exists, fixup the single node we allow in the tree that needs
- // masking.
- if (FixupNode) {
- LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump());
- SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode),
- FixupNode->getValueType(0),
- SDValue(FixupNode, 0), MaskOp);
- DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And);
- if (And.getOpcode() == ISD ::AND)
- DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp);
- }
- // Narrow any constants that need it.
- for (auto *LogicN : NodesWithConsts) {
- SDValue Op0 = LogicN->getOperand(0);
- SDValue Op1 = LogicN->getOperand(1);
- if (isa<ConstantSDNode>(Op0))
- std::swap(Op0, Op1);
- SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(),
- Op1, MaskOp);
- DAG.UpdateNodeOperands(LogicN, Op0, And);
- }
- // Create narrow loads.
- for (auto *Load : Loads) {
- LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump());
- SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0),
- SDValue(Load, 0), MaskOp);
- DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And);
- if (And.getOpcode() == ISD ::AND)
- And = SDValue(
- DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0);
- SDValue NewLoad = reduceLoadWidth(And.getNode());
- assert(NewLoad &&
- "Shouldn't be masking the load if it can't be narrowed");
- CombineTo(Load, NewLoad, NewLoad.getValue(1));
- }
- DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode());
- return true;
- }
- return false;
- }
- // Unfold
- // x & (-1 'logical shift' y)
- // To
- // (x 'opposite logical shift' y) 'logical shift' y
- // if it is better for performance.
- SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) {
- assert(N->getOpcode() == ISD::AND);
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- // Do we actually prefer shifts over mask?
- if (!TLI.shouldFoldMaskToVariableShiftPair(N0))
- return SDValue();
- // Try to match (-1 '[outer] logical shift' y)
- unsigned OuterShift;
- unsigned InnerShift; // The opposite direction to the OuterShift.
- SDValue Y; // Shift amount.
- auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool {
- if (!M.hasOneUse())
- return false;
- OuterShift = M->getOpcode();
- if (OuterShift == ISD::SHL)
- InnerShift = ISD::SRL;
- else if (OuterShift == ISD::SRL)
- InnerShift = ISD::SHL;
- else
- return false;
- if (!isAllOnesConstant(M->getOperand(0)))
- return false;
- Y = M->getOperand(1);
- return true;
- };
- SDValue X;
- if (matchMask(N1))
- X = N0;
- else if (matchMask(N0))
- X = N1;
- else
- return SDValue();
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
- // tmp = x 'opposite logical shift' y
- SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y);
- // ret = tmp 'logical shift' y
- SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y);
- return T1;
- }
- /// Try to replace shift/logic that tests if a bit is clear with mask + setcc.
- /// For a target with a bit test, this is expected to become test + set and save
- /// at least 1 instruction.
- static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) {
- assert(And->getOpcode() == ISD::AND && "Expected an 'and' op");
- // This is probably not worthwhile without a supported type.
- EVT VT = And->getValueType(0);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (!TLI.isTypeLegal(VT))
- return SDValue();
- // Look through an optional extension.
- SDValue And0 = And->getOperand(0), And1 = And->getOperand(1);
- if (And0.getOpcode() == ISD::ANY_EXTEND && And0.hasOneUse())
- And0 = And0.getOperand(0);
- if (!isOneConstant(And1) || !And0.hasOneUse())
- return SDValue();
- SDValue Src = And0;
- // Attempt to find a 'not' op.
- // TODO: Should we favor test+set even without the 'not' op?
- bool FoundNot = false;
- if (isBitwiseNot(Src)) {
- FoundNot = true;
- Src = Src.getOperand(0);
- // Look though an optional truncation. The source operand may not be the
- // same type as the original 'and', but that is ok because we are masking
- // off everything but the low bit.
- if (Src.getOpcode() == ISD::TRUNCATE && Src.hasOneUse())
- Src = Src.getOperand(0);
- }
- // Match a shift-right by constant.
- if (Src.getOpcode() != ISD::SRL || !Src.hasOneUse())
- return SDValue();
- // We might have looked through casts that make this transform invalid.
- // TODO: If the source type is wider than the result type, do the mask and
- // compare in the source type.
- unsigned VTBitWidth = VT.getScalarSizeInBits();
- SDValue ShiftAmt = Src.getOperand(1);
- auto *ShiftAmtC = dyn_cast<ConstantSDNode>(ShiftAmt);
- if (!ShiftAmtC || !ShiftAmtC->getAPIntValue().ult(VTBitWidth))
- return SDValue();
- // Set source to shift source.
- Src = Src.getOperand(0);
- // Try again to find a 'not' op.
- // TODO: Should we favor test+set even with two 'not' ops?
- if (!FoundNot) {
- if (!isBitwiseNot(Src))
- return SDValue();
- Src = Src.getOperand(0);
- }
- if (!TLI.hasBitTest(Src, ShiftAmt))
- return SDValue();
- // Turn this into a bit-test pattern using mask op + setcc:
- // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0
- // and (srl (not X), C)), 1 --> (and X, 1<<C) == 0
- SDLoc DL(And);
- SDValue X = DAG.getZExtOrTrunc(Src, DL, VT);
- EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- SDValue Mask = DAG.getConstant(
- APInt::getOneBitSet(VTBitWidth, ShiftAmtC->getZExtValue()), DL, VT);
- SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask);
- SDValue Zero = DAG.getConstant(0, DL, VT);
- SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ);
- return DAG.getZExtOrTrunc(Setcc, DL, VT);
- }
- /// For targets that support usubsat, match a bit-hack form of that operation
- /// that ends in 'and' and convert it.
- static SDValue foldAndToUsubsat(SDNode *N, SelectionDAG &DAG) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N1.getValueType();
- // Canonicalize SRA as operand 1.
- if (N0.getOpcode() == ISD::SRA)
- std::swap(N0, N1);
- // xor/add with SMIN (signmask) are logically equivalent.
- if (N0.getOpcode() != ISD::XOR && N0.getOpcode() != ISD::ADD)
- return SDValue();
- if (N1.getOpcode() != ISD::SRA || !N0.hasOneUse() || !N1.hasOneUse() ||
- N0.getOperand(0) != N1.getOperand(0))
- return SDValue();
- unsigned BitWidth = VT.getScalarSizeInBits();
- ConstantSDNode *XorC = isConstOrConstSplat(N0.getOperand(1), true);
- ConstantSDNode *SraC = isConstOrConstSplat(N1.getOperand(1), true);
- if (!XorC || !XorC->getAPIntValue().isSignMask() ||
- !SraC || SraC->getAPIntValue() != BitWidth - 1)
- return SDValue();
- // (i8 X ^ 128) & (i8 X s>> 7) --> usubsat X, 128
- // (i8 X + 128) & (i8 X s>> 7) --> usubsat X, 128
- SDLoc DL(N);
- SDValue SignMask = DAG.getConstant(XorC->getAPIntValue(), DL, VT);
- return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), SignMask);
- }
- /// Given a bitwise logic operation N with a matching bitwise logic operand,
- /// fold a pattern where 2 of the source operands are identically shifted
- /// values. For example:
- /// ((X0 << Y) | Z) | (X1 << Y) --> ((X0 | X1) << Y) | Z
- static SDValue foldLogicOfShifts(SDNode *N, SDValue LogicOp, SDValue ShiftOp,
- SelectionDAG &DAG) {
- unsigned LogicOpcode = N->getOpcode();
- assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR ||
- LogicOpcode == ISD::XOR)
- && "Expected bitwise logic operation");
- if (!LogicOp.hasOneUse() || !ShiftOp.hasOneUse())
- return SDValue();
- // Match another bitwise logic op and a shift.
- unsigned ShiftOpcode = ShiftOp.getOpcode();
- if (LogicOp.getOpcode() != LogicOpcode ||
- !(ShiftOpcode == ISD::SHL || ShiftOpcode == ISD::SRL ||
- ShiftOpcode == ISD::SRA))
- return SDValue();
- // Match another shift op inside the first logic operand. Handle both commuted
- // possibilities.
- // LOGIC (LOGIC (SH X0, Y), Z), (SH X1, Y) --> LOGIC (SH (LOGIC X0, X1), Y), Z
- // LOGIC (LOGIC Z, (SH X0, Y)), (SH X1, Y) --> LOGIC (SH (LOGIC X0, X1), Y), Z
- SDValue X1 = ShiftOp.getOperand(0);
- SDValue Y = ShiftOp.getOperand(1);
- SDValue X0, Z;
- if (LogicOp.getOperand(0).getOpcode() == ShiftOpcode &&
- LogicOp.getOperand(0).getOperand(1) == Y) {
- X0 = LogicOp.getOperand(0).getOperand(0);
- Z = LogicOp.getOperand(1);
- } else if (LogicOp.getOperand(1).getOpcode() == ShiftOpcode &&
- LogicOp.getOperand(1).getOperand(1) == Y) {
- X0 = LogicOp.getOperand(1).getOperand(0);
- Z = LogicOp.getOperand(0);
- } else {
- return SDValue();
- }
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- SDValue LogicX = DAG.getNode(LogicOpcode, DL, VT, X0, X1);
- SDValue NewShift = DAG.getNode(ShiftOpcode, DL, VT, LogicX, Y);
- return DAG.getNode(LogicOpcode, DL, VT, NewShift, Z);
- }
- /// Given a tree of logic operations with shape like
- /// (LOGIC (LOGIC (X, Y), LOGIC (Z, Y)))
- /// try to match and fold shift operations with the same shift amount.
- /// For example:
- /// LOGIC (LOGIC (SH X0, Y), Z), (LOGIC (SH X1, Y), W) -->
- /// --> LOGIC (SH (LOGIC X0, X1), Y), (LOGIC Z, W)
- static SDValue foldLogicTreeOfShifts(SDNode *N, SDValue LeftHand,
- SDValue RightHand, SelectionDAG &DAG) {
- unsigned LogicOpcode = N->getOpcode();
- assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR ||
- LogicOpcode == ISD::XOR));
- if (LeftHand.getOpcode() != LogicOpcode ||
- RightHand.getOpcode() != LogicOpcode)
- return SDValue();
- if (!LeftHand.hasOneUse() || !RightHand.hasOneUse())
- return SDValue();
- // Try to match one of following patterns:
- // LOGIC (LOGIC (SH X0, Y), Z), (LOGIC (SH X1, Y), W)
- // LOGIC (LOGIC (SH X0, Y), Z), (LOGIC W, (SH X1, Y))
- // Note that foldLogicOfShifts will handle commuted versions of the left hand
- // itself.
- SDValue CombinedShifts, W;
- SDValue R0 = RightHand.getOperand(0);
- SDValue R1 = RightHand.getOperand(1);
- if ((CombinedShifts = foldLogicOfShifts(N, LeftHand, R0, DAG)))
- W = R1;
- else if ((CombinedShifts = foldLogicOfShifts(N, LeftHand, R1, DAG)))
- W = R0;
- else
- return SDValue();
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- return DAG.getNode(LogicOpcode, DL, VT, CombinedShifts, W);
- }
- SDValue DAGCombiner::visitAND(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N1.getValueType();
- // x & x --> x
- if (N0 == N1)
- return N0;
- // fold (and c1, c2) -> c1&c2
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, {N0, N1}))
- return C;
- // canonicalize constant to RHS
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
- // fold vector ops
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N)))
- return FoldedVOp;
- // fold (and x, 0) -> 0, vector edition
- if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
- // do not return N1, because undef node may exist in N1
- return DAG.getConstant(APInt::getZero(N1.getScalarValueSizeInBits()),
- SDLoc(N), N1.getValueType());
- // fold (and x, -1) -> x, vector edition
- if (ISD::isConstantSplatVectorAllOnes(N1.getNode()))
- return N0;
- // fold (and (masked_load) (splat_vec (x, ...))) to zext_masked_load
- auto *MLoad = dyn_cast<MaskedLoadSDNode>(N0);
- ConstantSDNode *Splat = isConstOrConstSplat(N1, true, true);
- if (MLoad && MLoad->getExtensionType() == ISD::EXTLOAD && Splat &&
- N1.hasOneUse()) {
- EVT LoadVT = MLoad->getMemoryVT();
- EVT ExtVT = VT;
- if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT, LoadVT)) {
- // For this AND to be a zero extension of the masked load the elements
- // of the BuildVec must mask the bottom bits of the extended element
- // type
- uint64_t ElementSize =
- LoadVT.getVectorElementType().getScalarSizeInBits();
- if (Splat->getAPIntValue().isMask(ElementSize)) {
- auto NewLoad = DAG.getMaskedLoad(
- ExtVT, SDLoc(N), MLoad->getChain(), MLoad->getBasePtr(),
- MLoad->getOffset(), MLoad->getMask(), MLoad->getPassThru(),
- LoadVT, MLoad->getMemOperand(), MLoad->getAddressingMode(),
- ISD::ZEXTLOAD, MLoad->isExpandingLoad());
- bool LoadHasOtherUsers = !N0.hasOneUse();
- CombineTo(N, NewLoad);
- if (LoadHasOtherUsers)
- CombineTo(MLoad, NewLoad.getValue(0), NewLoad.getValue(1));
- return SDValue(N, 0);
- }
- }
- }
- }
- // fold (and x, -1) -> x
- if (isAllOnesConstant(N1))
- return N0;
- // if (and x, c) is known to be zero, return 0
- unsigned BitWidth = VT.getScalarSizeInBits();
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
- if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(BitWidth)))
- return DAG.getConstant(0, SDLoc(N), VT);
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
- // reassociate and
- if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags()))
- return RAND;
- // fold (and (or x, C), D) -> D if (C & D) == D
- auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) {
- return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue());
- };
- if (N0.getOpcode() == ISD::OR &&
- ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset))
- return N1;
- // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
- if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
- SDValue N0Op0 = N0.getOperand(0);
- APInt Mask = ~N1C->getAPIntValue();
- Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits());
- if (DAG.MaskedValueIsZero(N0Op0, Mask))
- return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N0.getValueType(), N0Op0);
- }
- // fold (and (ext (and V, c1)), c2) -> (and (ext V), (and c1, (ext c2)))
- if (ISD::isExtOpcode(N0.getOpcode())) {
- unsigned ExtOpc = N0.getOpcode();
- SDValue N0Op0 = N0.getOperand(0);
- if (N0Op0.getOpcode() == ISD::AND &&
- (ExtOpc != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0Op0, VT)) &&
- DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
- DAG.isConstantIntBuildVectorOrConstantInt(N0Op0.getOperand(1)) &&
- N0->hasOneUse() && N0Op0->hasOneUse()) {
- SDLoc DL(N);
- SDValue NewMask =
- DAG.getNode(ISD::AND, DL, VT, N1,
- DAG.getNode(ExtOpc, DL, VT, N0Op0.getOperand(1)));
- return DAG.getNode(ISD::AND, DL, VT,
- DAG.getNode(ExtOpc, DL, VT, N0Op0.getOperand(0)),
- NewMask);
- }
- }
- // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
- // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
- // already be zero by virtue of the width of the base type of the load.
- //
- // the 'X' node here can either be nothing or an extract_vector_elt to catch
- // more cases.
- if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
- N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() &&
- N0.getOperand(0).getOpcode() == ISD::LOAD &&
- N0.getOperand(0).getResNo() == 0) ||
- (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) {
- LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
- N0 : N0.getOperand(0) );
- // Get the constant (if applicable) the zero'th operand is being ANDed with.
- // This can be a pure constant or a vector splat, in which case we treat the
- // vector as a scalar and use the splat value.
- APInt Constant = APInt::getZero(1);
- if (const ConstantSDNode *C = isConstOrConstSplat(
- N1, /*AllowUndef=*/false, /*AllowTruncation=*/true)) {
- Constant = C->getAPIntValue();
- } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
- APInt SplatValue, SplatUndef;
- unsigned SplatBitSize;
- bool HasAnyUndefs;
- bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
- SplatBitSize, HasAnyUndefs);
- if (IsSplat) {
- // Undef bits can contribute to a possible optimisation if set, so
- // set them.
- SplatValue |= SplatUndef;
- // The splat value may be something like "0x00FFFFFF", which means 0 for
- // the first vector value and FF for the rest, repeating. We need a mask
- // that will apply equally to all members of the vector, so AND all the
- // lanes of the constant together.
- unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits();
- // If the splat value has been compressed to a bitlength lower
- // than the size of the vector lane, we need to re-expand it to
- // the lane size.
- if (EltBitWidth > SplatBitSize)
- for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth);
- SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2)
- SplatValue |= SplatValue.shl(SplatBitSize);
- // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
- // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
- if ((SplatBitSize % EltBitWidth) == 0) {
- Constant = APInt::getAllOnes(EltBitWidth);
- for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i)
- Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth);
- }
- }
- }
- // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
- // actually legal and isn't going to get expanded, else this is a false
- // optimisation.
- bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
- Load->getValueType(0),
- Load->getMemoryVT());
- // Resize the constant to the same size as the original memory access before
- // extension. If it is still the AllOnesValue then this AND is completely
- // unneeded.
- Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits());
- bool B;
- switch (Load->getExtensionType()) {
- default: B = false; break;
- case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
- case ISD::ZEXTLOAD:
- case ISD::NON_EXTLOAD: B = true; break;
- }
- if (B && Constant.isAllOnes()) {
- // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
- // preserve semantics once we get rid of the AND.
- SDValue NewLoad(Load, 0);
- // Fold the AND away. NewLoad may get replaced immediately.
- CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
- if (Load->getExtensionType() == ISD::EXTLOAD) {
- NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
- Load->getValueType(0), SDLoc(Load),
- Load->getChain(), Load->getBasePtr(),
- Load->getOffset(), Load->getMemoryVT(),
- Load->getMemOperand());
- // Replace uses of the EXTLOAD with the new ZEXTLOAD.
- if (Load->getNumValues() == 3) {
- // PRE/POST_INC loads have 3 values.
- SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
- NewLoad.getValue(2) };
- CombineTo(Load, To, 3, true);
- } else {
- CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
- }
- }
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- }
- // Try to convert a constant mask AND into a shuffle clear mask.
- if (VT.isVector())
- if (SDValue Shuffle = XformToShuffleWithZero(N))
- return Shuffle;
- if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N))
- return Combined;
- if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR && N0.hasOneUse() && N1C &&
- ISD::isExtOpcode(N0.getOperand(0).getOpcode())) {
- SDValue Ext = N0.getOperand(0);
- EVT ExtVT = Ext->getValueType(0);
- SDValue Extendee = Ext->getOperand(0);
- unsigned ScalarWidth = Extendee.getValueType().getScalarSizeInBits();
- if (N1C->getAPIntValue().isMask(ScalarWidth) &&
- (!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, ExtVT))) {
- // (and (extract_subvector (zext|anyext|sext v) _) iN_mask)
- // => (extract_subvector (iN_zeroext v))
- SDValue ZeroExtExtendee =
- DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), ExtVT, Extendee);
- return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), VT, ZeroExtExtendee,
- N0.getOperand(1));
- }
- }
- // fold (and (masked_gather x)) -> (zext_masked_gather x)
- if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) {
- EVT MemVT = GN0->getMemoryVT();
- EVT ScalarVT = MemVT.getScalarType();
- if (SDValue(GN0, 0).hasOneUse() &&
- isConstantSplatVectorMaskForType(N1.getNode(), ScalarVT) &&
- TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) {
- SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(),
- GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()};
- SDValue ZExtLoad = DAG.getMaskedGather(
- DAG.getVTList(VT, MVT::Other), MemVT, SDLoc(N), Ops,
- GN0->getMemOperand(), GN0->getIndexType(), ISD::ZEXTLOAD);
- CombineTo(N, ZExtLoad);
- AddToWorklist(ZExtLoad.getNode());
- // Avoid recheck of N.
- return SDValue(N, 0);
- }
- }
- // fold (and (load x), 255) -> (zextload x, i8)
- // fold (and (extload x, i16), 255) -> (zextload x, i8)
- if (N1C && N0.getOpcode() == ISD::LOAD && !VT.isVector())
- if (SDValue Res = reduceLoadWidth(N))
- return Res;
- if (LegalTypes) {
- // Attempt to propagate the AND back up to the leaves which, if they're
- // loads, can be combined to narrow loads and the AND node can be removed.
- // Perform after legalization so that extend nodes will already be
- // combined into the loads.
- if (BackwardsPropagateMask(N))
- return SDValue(N, 0);
- }
- if (SDValue Combined = visitANDLike(N0, N1, N))
- return Combined;
- // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
- if (N0.getOpcode() == N1.getOpcode())
- if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
- return V;
- if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG))
- return R;
- if (SDValue R = foldLogicOfShifts(N, N1, N0, DAG))
- return R;
- // Masking the negated extension of a boolean is just the zero-extended
- // boolean:
- // and (sub 0, zext(bool X)), 1 --> zext(bool X)
- // and (sub 0, sext(bool X)), 1 --> zext(bool X)
- //
- // Note: the SimplifyDemandedBits fold below can make an information-losing
- // transform, and then we have no way to find this better fold.
- if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) {
- if (isNullOrNullSplat(N0.getOperand(0))) {
- SDValue SubRHS = N0.getOperand(1);
- if (SubRHS.getOpcode() == ISD::ZERO_EXTEND &&
- SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
- return SubRHS;
- if (SubRHS.getOpcode() == ISD::SIGN_EXTEND &&
- SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
- return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0));
- }
- }
- // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
- // fold (and (sra)) -> (and (srl)) when possible.
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
- // fold (zext_inreg (extload x)) -> (zextload x)
- // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
- if (ISD::isUNINDEXEDLoad(N0.getNode()) &&
- (ISD::isEXTLoad(N0.getNode()) ||
- (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- EVT MemVT = LN0->getMemoryVT();
- // If we zero all the possible extended bits, then we can turn this into
- // a zextload if we are running before legalize or the operation is legal.
- unsigned ExtBitSize = N1.getScalarValueSizeInBits();
- unsigned MemBitSize = MemVT.getScalarSizeInBits();
- APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize);
- if (DAG.MaskedValueIsZero(N1, ExtBits) &&
- ((!LegalOperations && LN0->isSimple()) ||
- TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
- SDValue ExtLoad =
- DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(),
- LN0->getBasePtr(), MemVT, LN0->getMemOperand());
- AddToWorklist(N);
- CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- }
- // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
- if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
- if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
- N0.getOperand(1), false))
- return BSwap;
- }
- if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N))
- return Shifts;
- if (SDValue V = combineShiftAnd1ToBitTest(N, DAG))
- return V;
- // Recognize the following pattern:
- //
- // AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask)
- //
- // where bitmask is a mask that clears the upper bits of AndVT. The
- // number of bits in bitmask must be a power of two.
- auto IsAndZeroExtMask = [](SDValue LHS, SDValue RHS) {
- if (LHS->getOpcode() != ISD::SIGN_EXTEND)
- return false;
- auto *C = dyn_cast<ConstantSDNode>(RHS);
- if (!C)
- return false;
- if (!C->getAPIntValue().isMask(
- LHS.getOperand(0).getValueType().getFixedSizeInBits()))
- return false;
- return true;
- };
- // Replace (and (sign_extend ...) #bitmask) with (zero_extend ...).
- if (IsAndZeroExtMask(N0, N1))
- return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0.getOperand(0));
- if (hasOperation(ISD::USUBSAT, VT))
- if (SDValue V = foldAndToUsubsat(N, DAG))
- return V;
- // Postpone until legalization completed to avoid interference with bswap
- // folding
- if (LegalOperations || VT.isVector())
- if (SDValue R = foldLogicTreeOfShifts(N, N0, N1, DAG))
- return R;
- return SDValue();
- }
- /// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
- SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
- bool DemandHighBits) {
- if (!LegalOperations)
- return SDValue();
- EVT VT = N->getValueType(0);
- if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
- return SDValue();
- if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
- return SDValue();
- // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
- bool LookPassAnd0 = false;
- bool LookPassAnd1 = false;
- if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
- std::swap(N0, N1);
- if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
- std::swap(N0, N1);
- if (N0.getOpcode() == ISD::AND) {
- if (!N0->hasOneUse())
- return SDValue();
- ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
- // Also handle 0xffff since the LHS is guaranteed to have zeros there.
- // This is needed for X86.
- if (!N01C || (N01C->getZExtValue() != 0xFF00 &&
- N01C->getZExtValue() != 0xFFFF))
- return SDValue();
- N0 = N0.getOperand(0);
- LookPassAnd0 = true;
- }
- if (N1.getOpcode() == ISD::AND) {
- if (!N1->hasOneUse())
- return SDValue();
- ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
- if (!N11C || N11C->getZExtValue() != 0xFF)
- return SDValue();
- N1 = N1.getOperand(0);
- LookPassAnd1 = true;
- }
- if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
- std::swap(N0, N1);
- if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
- return SDValue();
- if (!N0->hasOneUse() || !N1->hasOneUse())
- return SDValue();
- ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
- ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
- if (!N01C || !N11C)
- return SDValue();
- if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
- return SDValue();
- // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
- SDValue N00 = N0->getOperand(0);
- if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
- if (!N00->hasOneUse())
- return SDValue();
- ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
- if (!N001C || N001C->getZExtValue() != 0xFF)
- return SDValue();
- N00 = N00.getOperand(0);
- LookPassAnd0 = true;
- }
- SDValue N10 = N1->getOperand(0);
- if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
- if (!N10->hasOneUse())
- return SDValue();
- ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
- // Also allow 0xFFFF since the bits will be shifted out. This is needed
- // for X86.
- if (!N101C || (N101C->getZExtValue() != 0xFF00 &&
- N101C->getZExtValue() != 0xFFFF))
- return SDValue();
- N10 = N10.getOperand(0);
- LookPassAnd1 = true;
- }
- if (N00 != N10)
- return SDValue();
- // Make sure everything beyond the low halfword gets set to zero since the SRL
- // 16 will clear the top bits.
- unsigned OpSizeInBits = VT.getSizeInBits();
- if (OpSizeInBits > 16) {
- // If the left-shift isn't masked out then the only way this is a bswap is
- // if all bits beyond the low 8 are 0. In that case the entire pattern
- // reduces to a left shift anyway: leave it for other parts of the combiner.
- if (DemandHighBits && !LookPassAnd0)
- return SDValue();
- // However, if the right shift isn't masked out then it might be because
- // it's not needed. See if we can spot that too. If the high bits aren't
- // demanded, we only need bits 23:16 to be zero. Otherwise, we need all
- // upper bits to be zero.
- if (!LookPassAnd1) {
- unsigned HighBit = DemandHighBits ? OpSizeInBits : 24;
- if (!DAG.MaskedValueIsZero(N10,
- APInt::getBitsSet(OpSizeInBits, 16, HighBit)))
- return SDValue();
- }
- }
- SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
- if (OpSizeInBits > 16) {
- SDLoc DL(N);
- Res = DAG.getNode(ISD::SRL, DL, VT, Res,
- DAG.getConstant(OpSizeInBits - 16, DL,
- getShiftAmountTy(VT)));
- }
- return Res;
- }
- /// Return true if the specified node is an element that makes up a 32-bit
- /// packed halfword byteswap.
- /// ((x & 0x000000ff) << 8) |
- /// ((x & 0x0000ff00) >> 8) |
- /// ((x & 0x00ff0000) << 8) |
- /// ((x & 0xff000000) >> 8)
- static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
- if (!N->hasOneUse())
- return false;
- unsigned Opc = N.getOpcode();
- if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
- return false;
- SDValue N0 = N.getOperand(0);
- unsigned Opc0 = N0.getOpcode();
- if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL)
- return false;
- ConstantSDNode *N1C = nullptr;
- // SHL or SRL: look upstream for AND mask operand
- if (Opc == ISD::AND)
- N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
- else if (Opc0 == ISD::AND)
- N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
- if (!N1C)
- return false;
- unsigned MaskByteOffset;
- switch (N1C->getZExtValue()) {
- default:
- return false;
- case 0xFF: MaskByteOffset = 0; break;
- case 0xFF00: MaskByteOffset = 1; break;
- case 0xFFFF:
- // In case demanded bits didn't clear the bits that will be shifted out.
- // This is needed for X86.
- if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) {
- MaskByteOffset = 1;
- break;
- }
- return false;
- case 0xFF0000: MaskByteOffset = 2; break;
- case 0xFF000000: MaskByteOffset = 3; break;
- }
- // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
- if (Opc == ISD::AND) {
- if (MaskByteOffset == 0 || MaskByteOffset == 2) {
- // (x >> 8) & 0xff
- // (x >> 8) & 0xff0000
- if (Opc0 != ISD::SRL)
- return false;
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
- if (!C || C->getZExtValue() != 8)
- return false;
- } else {
- // (x << 8) & 0xff00
- // (x << 8) & 0xff000000
- if (Opc0 != ISD::SHL)
- return false;
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
- if (!C || C->getZExtValue() != 8)
- return false;
- }
- } else if (Opc == ISD::SHL) {
- // (x & 0xff) << 8
- // (x & 0xff0000) << 8
- if (MaskByteOffset != 0 && MaskByteOffset != 2)
- return false;
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
- if (!C || C->getZExtValue() != 8)
- return false;
- } else { // Opc == ISD::SRL
- // (x & 0xff00) >> 8
- // (x & 0xff000000) >> 8
- if (MaskByteOffset != 1 && MaskByteOffset != 3)
- return false;
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
- if (!C || C->getZExtValue() != 8)
- return false;
- }
- if (Parts[MaskByteOffset])
- return false;
- Parts[MaskByteOffset] = N0.getOperand(0).getNode();
- return true;
- }
- // Match 2 elements of a packed halfword bswap.
- static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) {
- if (N.getOpcode() == ISD::OR)
- return isBSwapHWordElement(N.getOperand(0), Parts) &&
- isBSwapHWordElement(N.getOperand(1), Parts);
- if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) {
- ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1));
- if (!C || C->getAPIntValue() != 16)
- return false;
- Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode();
- return true;
- }
- return false;
- }
- // Match this pattern:
- // (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff))
- // And rewrite this to:
- // (rotr (bswap A), 16)
- static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI,
- SelectionDAG &DAG, SDNode *N, SDValue N0,
- SDValue N1, EVT VT, EVT ShiftAmountTy) {
- assert(N->getOpcode() == ISD::OR && VT == MVT::i32 &&
- "MatchBSwapHWordOrAndAnd: expecting i32");
- if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
- return SDValue();
- if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND)
- return SDValue();
- // TODO: this is too restrictive; lifting this restriction requires more tests
- if (!N0->hasOneUse() || !N1->hasOneUse())
- return SDValue();
- ConstantSDNode *Mask0 = isConstOrConstSplat(N0.getOperand(1));
- ConstantSDNode *Mask1 = isConstOrConstSplat(N1.getOperand(1));
- if (!Mask0 || !Mask1)
- return SDValue();
- if (Mask0->getAPIntValue() != 0xff00ff00 ||
- Mask1->getAPIntValue() != 0x00ff00ff)
- return SDValue();
- SDValue Shift0 = N0.getOperand(0);
- SDValue Shift1 = N1.getOperand(0);
- if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL)
- return SDValue();
- ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1));
- ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1));
- if (!ShiftAmt0 || !ShiftAmt1)
- return SDValue();
- if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8)
- return SDValue();
- if (Shift0.getOperand(0) != Shift1.getOperand(0))
- return SDValue();
- SDLoc DL(N);
- SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0));
- SDValue ShAmt = DAG.getConstant(16, DL, ShiftAmountTy);
- return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
- }
- /// Match a 32-bit packed halfword bswap. That is
- /// ((x & 0x000000ff) << 8) |
- /// ((x & 0x0000ff00) >> 8) |
- /// ((x & 0x00ff0000) << 8) |
- /// ((x & 0xff000000) >> 8)
- /// => (rotl (bswap x), 16)
- SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
- if (!LegalOperations)
- return SDValue();
- EVT VT = N->getValueType(0);
- if (VT != MVT::i32)
- return SDValue();
- if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
- return SDValue();
- if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT,
- getShiftAmountTy(VT)))
- return BSwap;
- // Try again with commuted operands.
- if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT,
- getShiftAmountTy(VT)))
- return BSwap;
- // Look for either
- // (or (bswaphpair), (bswaphpair))
- // (or (or (bswaphpair), (and)), (and))
- // (or (or (and), (bswaphpair)), (and))
- SDNode *Parts[4] = {};
- if (isBSwapHWordPair(N0, Parts)) {
- // (or (or (and), (and)), (or (and), (and)))
- if (!isBSwapHWordPair(N1, Parts))
- return SDValue();
- } else if (N0.getOpcode() == ISD::OR) {
- // (or (or (or (and), (and)), (and)), (and))
- if (!isBSwapHWordElement(N1, Parts))
- return SDValue();
- SDValue N00 = N0.getOperand(0);
- SDValue N01 = N0.getOperand(1);
- if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) &&
- !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts)))
- return SDValue();
- } else {
- return SDValue();
- }
- // Make sure the parts are all coming from the same node.
- if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
- return SDValue();
- SDLoc DL(N);
- SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
- SDValue(Parts[0], 0));
- // Result of the bswap should be rotated by 16. If it's not legal, then
- // do (x << 16) | (x >> 16).
- SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT));
- if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
- return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
- if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
- return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
- return DAG.getNode(ISD::OR, DL, VT,
- DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
- DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
- }
- /// This contains all DAGCombine rules which reduce two values combined by
- /// an Or operation to a single value \see visitANDLike().
- SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) {
- EVT VT = N1.getValueType();
- SDLoc DL(N);
- // fold (or x, undef) -> -1
- if (!LegalOperations && (N0.isUndef() || N1.isUndef()))
- return DAG.getAllOnesConstant(DL, VT);
- if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL))
- return V;
- // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
- if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
- // Don't increase # computations.
- (N0->hasOneUse() || N1->hasOneUse())) {
- // We can only do this xform if we know that bits from X that are set in C2
- // but not in C1 are already zero. Likewise for Y.
- if (const ConstantSDNode *N0O1C =
- getAsNonOpaqueConstant(N0.getOperand(1))) {
- if (const ConstantSDNode *N1O1C =
- getAsNonOpaqueConstant(N1.getOperand(1))) {
- // We can only do this xform if we know that bits from X that are set in
- // C2 but not in C1 are already zero. Likewise for Y.
- const APInt &LHSMask = N0O1C->getAPIntValue();
- const APInt &RHSMask = N1O1C->getAPIntValue();
- if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
- DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
- SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
- N0.getOperand(0), N1.getOperand(0));
- return DAG.getNode(ISD::AND, DL, VT, X,
- DAG.getConstant(LHSMask | RHSMask, DL, VT));
- }
- }
- }
- }
- // (or (and X, M), (and X, N)) -> (and X, (or M, N))
- if (N0.getOpcode() == ISD::AND &&
- N1.getOpcode() == ISD::AND &&
- N0.getOperand(0) == N1.getOperand(0) &&
- // Don't increase # computations.
- (N0->hasOneUse() || N1->hasOneUse())) {
- SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
- N0.getOperand(1), N1.getOperand(1));
- return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X);
- }
- return SDValue();
- }
- /// OR combines for which the commuted variant will be tried as well.
- static SDValue visitORCommutative(SelectionDAG &DAG, SDValue N0, SDValue N1,
- SDNode *N) {
- EVT VT = N0.getValueType();
- if (N0.getOpcode() == ISD::AND) {
- SDValue N00 = N0.getOperand(0);
- SDValue N01 = N0.getOperand(1);
- // fold or (and x, y), x --> x
- if (N00 == N1 || N01 == N1)
- return N1;
- // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y)
- // TODO: Set AllowUndefs = true.
- if (getBitwiseNotOperand(N01, N00,
- /* AllowUndefs */ false) == N1)
- return DAG.getNode(ISD::OR, SDLoc(N), VT, N00, N1);
- // fold (or (and (xor Y, -1), X), Y) -> (or X, Y)
- if (getBitwiseNotOperand(N00, N01,
- /* AllowUndefs */ false) == N1)
- return DAG.getNode(ISD::OR, SDLoc(N), VT, N01, N1);
- }
- if (N0.getOpcode() == ISD::XOR) {
- // fold or (xor x, y), x --> or x, y
- // or (xor x, y), (x and/or y) --> or x, y
- SDValue N00 = N0.getOperand(0);
- SDValue N01 = N0.getOperand(1);
- if (N00 == N1)
- return DAG.getNode(ISD::OR, SDLoc(N), VT, N01, N1);
- if (N01 == N1)
- return DAG.getNode(ISD::OR, SDLoc(N), VT, N00, N1);
- if (N1.getOpcode() == ISD::AND || N1.getOpcode() == ISD::OR) {
- SDValue N10 = N1.getOperand(0);
- SDValue N11 = N1.getOperand(1);
- if ((N00 == N10 && N01 == N11) || (N00 == N11 && N01 == N10))
- return DAG.getNode(ISD::OR, SDLoc(N), VT, N00, N01);
- }
- }
- if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG))
- return R;
- auto peekThroughZext = [](SDValue V) {
- if (V->getOpcode() == ISD::ZERO_EXTEND)
- return V->getOperand(0);
- return V;
- };
- // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y
- if (N0.getOpcode() == ISD::FSHL && N1.getOpcode() == ISD::SHL &&
- N0.getOperand(0) == N1.getOperand(0) &&
- peekThroughZext(N0.getOperand(2)) == peekThroughZext(N1.getOperand(1)))
- return N0;
- // (fshr ?, X, Y) | (srl X, Y) --> fshr ?, X, Y
- if (N0.getOpcode() == ISD::FSHR && N1.getOpcode() == ISD::SRL &&
- N0.getOperand(1) == N1.getOperand(0) &&
- peekThroughZext(N0.getOperand(2)) == peekThroughZext(N1.getOperand(1)))
- return N0;
- return SDValue();
- }
- SDValue DAGCombiner::visitOR(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N1.getValueType();
- // x | x --> x
- if (N0 == N1)
- return N0;
- // fold (or c1, c2) -> c1|c2
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, {N0, N1}))
- return C;
- // canonicalize constant to RHS
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
- // fold vector ops
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N)))
- return FoldedVOp;
- // fold (or x, 0) -> x, vector edition
- if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
- return N0;
- // fold (or x, -1) -> -1, vector edition
- if (ISD::isConstantSplatVectorAllOnes(N1.getNode()))
- // do not return N1, because undef node may exist in N1
- return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType());
- // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
- // Do this only if the resulting type / shuffle is legal.
- auto *SV0 = dyn_cast<ShuffleVectorSDNode>(N0);
- auto *SV1 = dyn_cast<ShuffleVectorSDNode>(N1);
- if (SV0 && SV1 && TLI.isTypeLegal(VT)) {
- bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode());
- bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode());
- bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
- bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode());
- // Ensure both shuffles have a zero input.
- if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) {
- assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!");
- assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!");
- bool CanFold = true;
- int NumElts = VT.getVectorNumElements();
- SmallVector<int, 4> Mask(NumElts, -1);
- for (int i = 0; i != NumElts; ++i) {
- int M0 = SV0->getMaskElt(i);
- int M1 = SV1->getMaskElt(i);
- // Determine if either index is pointing to a zero vector.
- bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts));
- bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts));
- // If one element is zero and the otherside is undef, keep undef.
- // This also handles the case that both are undef.
- if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0))
- continue;
- // Make sure only one of the elements is zero.
- if (M0Zero == M1Zero) {
- CanFold = false;
- break;
- }
- assert((M0 >= 0 || M1 >= 0) && "Undef index!");
- // We have a zero and non-zero element. If the non-zero came from
- // SV0 make the index a LHS index. If it came from SV1, make it
- // a RHS index. We need to mod by NumElts because we don't care
- // which operand it came from in the original shuffles.
- Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts;
- }
- if (CanFold) {
- SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0);
- SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0);
- SDValue LegalShuffle =
- TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS,
- Mask, DAG);
- if (LegalShuffle)
- return LegalShuffle;
- }
- }
- }
- }
- // fold (or x, 0) -> x
- if (isNullConstant(N1))
- return N0;
- // fold (or x, -1) -> -1
- if (isAllOnesConstant(N1))
- return N1;
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
- // fold (or x, c) -> c iff (x & ~c) == 0
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
- return N1;
- if (SDValue Combined = visitORLike(N0, N1, N))
- return Combined;
- if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N))
- return Combined;
- // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
- if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
- return BSwap;
- if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
- return BSwap;
- // reassociate or
- if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags()))
- return ROR;
- // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
- // iff (c1 & c2) != 0 or c1/c2 are undef.
- auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) {
- return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue());
- };
- if (N0.getOpcode() == ISD::AND && N0->hasOneUse() &&
- ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) {
- if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT,
- {N1, N0.getOperand(1)})) {
- SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1);
- AddToWorklist(IOR.getNode());
- return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR);
- }
- }
- if (SDValue Combined = visitORCommutative(DAG, N0, N1, N))
- return Combined;
- if (SDValue Combined = visitORCommutative(DAG, N1, N0, N))
- return Combined;
- // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
- if (N0.getOpcode() == N1.getOpcode())
- if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
- return V;
- // See if this is some rotate idiom.
- if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N)))
- return Rot;
- if (SDValue Load = MatchLoadCombine(N))
- return Load;
- // Simplify the operands using demanded-bits information.
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
- // If OR can be rewritten into ADD, try combines based on ADD.
- if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) &&
- DAG.haveNoCommonBitsSet(N0, N1))
- if (SDValue Combined = visitADDLike(N))
- return Combined;
- // Postpone until legalization completed to avoid interference with bswap
- // folding
- if (LegalOperations || VT.isVector())
- if (SDValue R = foldLogicTreeOfShifts(N, N0, N1, DAG))
- return R;
- return SDValue();
- }
- static SDValue stripConstantMask(const SelectionDAG &DAG, SDValue Op,
- SDValue &Mask) {
- if (Op.getOpcode() == ISD::AND &&
- DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
- Mask = Op.getOperand(1);
- return Op.getOperand(0);
- }
- return Op;
- }
- /// Match "(X shl/srl V1) & V2" where V2 may not be present.
- static bool matchRotateHalf(const SelectionDAG &DAG, SDValue Op, SDValue &Shift,
- SDValue &Mask) {
- Op = stripConstantMask(DAG, Op, Mask);
- if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
- Shift = Op;
- return true;
- }
- return false;
- }
- /// Helper function for visitOR to extract the needed side of a rotate idiom
- /// from a shl/srl/mul/udiv. This is meant to handle cases where
- /// InstCombine merged some outside op with one of the shifts from
- /// the rotate pattern.
- /// \returns An empty \c SDValue if the needed shift couldn't be extracted.
- /// Otherwise, returns an expansion of \p ExtractFrom based on the following
- /// patterns:
- ///
- /// (or (add v v) (shrl v bitwidth-1)):
- /// expands (add v v) -> (shl v 1)
- ///
- /// (or (mul v c0) (shrl (mul v c1) c2)):
- /// expands (mul v c0) -> (shl (mul v c1) c3)
- ///
- /// (or (udiv v c0) (shl (udiv v c1) c2)):
- /// expands (udiv v c0) -> (shrl (udiv v c1) c3)
- ///
- /// (or (shl v c0) (shrl (shl v c1) c2)):
- /// expands (shl v c0) -> (shl (shl v c1) c3)
- ///
- /// (or (shrl v c0) (shl (shrl v c1) c2)):
- /// expands (shrl v c0) -> (shrl (shrl v c1) c3)
- ///
- /// Such that in all cases, c3+c2==bitwidth(op v c1).
- static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift,
- SDValue ExtractFrom, SDValue &Mask,
- const SDLoc &DL) {
- assert(OppShift && ExtractFrom && "Empty SDValue");
- if (OppShift.getOpcode() != ISD::SHL && OppShift.getOpcode() != ISD::SRL)
- return SDValue();
- ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask);
- // Value and Type of the shift.
- SDValue OppShiftLHS = OppShift.getOperand(0);
- EVT ShiftedVT = OppShiftLHS.getValueType();
- // Amount of the existing shift.
- ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1));
- // (add v v) -> (shl v 1)
- // TODO: Should this be a general DAG canonicalization?
- if (OppShift.getOpcode() == ISD::SRL && OppShiftCst &&
- ExtractFrom.getOpcode() == ISD::ADD &&
- ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) &&
- ExtractFrom.getOperand(0) == OppShiftLHS &&
- OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1)
- return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS,
- DAG.getShiftAmountConstant(1, ShiftedVT, DL));
- // Preconditions:
- // (or (op0 v c0) (shiftl/r (op0 v c1) c2))
- //
- // Find opcode of the needed shift to be extracted from (op0 v c0).
- unsigned Opcode = ISD::DELETED_NODE;
- bool IsMulOrDiv = false;
- // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
- // opcode or its arithmetic (mul or udiv) variant.
- auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) {
- IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant;
- if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift)
- return false;
- Opcode = NeededShift;
- return true;
- };
- // op0 must be either the needed shift opcode or the mul/udiv equivalent
- // that the needed shift can be extracted from.
- if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) &&
- (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV)))
- return SDValue();
- // op0 must be the same opcode on both sides, have the same LHS argument,
- // and produce the same value type.
- if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() ||
- OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) ||
- ShiftedVT != ExtractFrom.getValueType())
- return SDValue();
- // Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
- ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1));
- // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
- ConstantSDNode *ExtractFromCst =
- isConstOrConstSplat(ExtractFrom.getOperand(1));
- // TODO: We should be able to handle non-uniform constant vectors for these values
- // Check that we have constant values.
- if (!OppShiftCst || !OppShiftCst->getAPIntValue() ||
- !OppLHSCst || !OppLHSCst->getAPIntValue() ||
- !ExtractFromCst || !ExtractFromCst->getAPIntValue())
- return SDValue();
- // Compute the shift amount we need to extract to complete the rotate.
- const unsigned VTWidth = ShiftedVT.getScalarSizeInBits();
- if (OppShiftCst->getAPIntValue().ugt(VTWidth))
- return SDValue();
- APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue();
- // Normalize the bitwidth of the two mul/udiv/shift constant operands.
- APInt ExtractFromAmt = ExtractFromCst->getAPIntValue();
- APInt OppLHSAmt = OppLHSCst->getAPIntValue();
- zeroExtendToMatch(ExtractFromAmt, OppLHSAmt);
- // Now try extract the needed shift from the ExtractFrom op and see if the
- // result matches up with the existing shift's LHS op.
- if (IsMulOrDiv) {
- // Op to extract from is a mul or udiv by a constant.
- // Check:
- // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
- // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
- const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(),
- NeededShiftAmt.getZExtValue());
- APInt ResultAmt;
- APInt Rem;
- APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem);
- if (Rem != 0 || ResultAmt != OppLHSAmt)
- return SDValue();
- } else {
- // Op to extract from is a shift by a constant.
- // Check:
- // c2 - (bitwidth(op0 v c0) - c1) == c0
- if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc(
- ExtractFromAmt.getBitWidth()))
- return SDValue();
- }
- // Return the expanded shift op that should allow a rotate to be formed.
- EVT ShiftVT = OppShift.getOperand(1).getValueType();
- EVT ResVT = ExtractFrom.getValueType();
- SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT);
- return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode);
- }
- // Return true if we can prove that, whenever Neg and Pos are both in the
- // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
- // for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
- //
- // (or (shift1 X, Neg), (shift2 X, Pos))
- //
- // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
- // in direction shift1 by Neg. The range [0, EltSize) means that we only need
- // to consider shift amounts with defined behavior.
- //
- // The IsRotate flag should be set when the LHS of both shifts is the same.
- // Otherwise if matching a general funnel shift, it should be clear.
- static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize,
- SelectionDAG &DAG, bool IsRotate) {
- const auto &TLI = DAG.getTargetLoweringInfo();
- // If EltSize is a power of 2 then:
- //
- // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
- // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
- //
- // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
- // for the stronger condition:
- //
- // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
- //
- // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
- // we can just replace Neg with Neg' for the rest of the function.
- //
- // In other cases we check for the even stronger condition:
- //
- // Neg == EltSize - Pos [B]
- //
- // for all Neg and Pos. Note that the (or ...) then invokes undefined
- // behavior if Pos == 0 (and consequently Neg == EltSize).
- //
- // We could actually use [A] whenever EltSize is a power of 2, but the
- // only extra cases that it would match are those uninteresting ones
- // where Neg and Pos are never in range at the same time. E.g. for
- // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
- // as well as (sub 32, Pos), but:
- //
- // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
- //
- // always invokes undefined behavior for 32-bit X.
- //
- // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
- // This allows us to peek through any operations that only affect Mask's
- // un-demanded bits.
- //
- // NOTE: We can only do this when matching operations which won't modify the
- // least Log2(EltSize) significant bits and not a general funnel shift.
- unsigned MaskLoBits = 0;
- if (IsRotate && isPowerOf2_64(EltSize)) {
- unsigned Bits = Log2_64(EltSize);
- unsigned NegBits = Neg.getScalarValueSizeInBits();
- if (NegBits >= Bits) {
- APInt DemandedBits = APInt::getLowBitsSet(NegBits, Bits);
- if (SDValue Inner =
- TLI.SimplifyMultipleUseDemandedBits(Neg, DemandedBits, DAG)) {
- Neg = Inner;
- MaskLoBits = Bits;
- }
- }
- }
- // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
- if (Neg.getOpcode() != ISD::SUB)
- return false;
- ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0));
- if (!NegC)
- return false;
- SDValue NegOp1 = Neg.getOperand(1);
- // On the RHS of [A], if Pos is the result of operation on Pos' that won't
- // affect Mask's demanded bits, just replace Pos with Pos'. These operations
- // are redundant for the purpose of the equality.
- if (MaskLoBits) {
- unsigned PosBits = Pos.getScalarValueSizeInBits();
- if (PosBits >= MaskLoBits) {
- APInt DemandedBits = APInt::getLowBitsSet(PosBits, MaskLoBits);
- if (SDValue Inner =
- TLI.SimplifyMultipleUseDemandedBits(Pos, DemandedBits, DAG)) {
- Pos = Inner;
- }
- }
- }
- // The condition we need is now:
- //
- // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
- //
- // If NegOp1 == Pos then we need:
- //
- // EltSize & Mask == NegC & Mask
- //
- // (because "x & Mask" is a truncation and distributes through subtraction).
- //
- // We also need to account for a potential truncation of NegOp1 if the amount
- // has already been legalized to a shift amount type.
- APInt Width;
- if ((Pos == NegOp1) ||
- (NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0)))
- Width = NegC->getAPIntValue();
- // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
- // Then the condition we want to prove becomes:
- //
- // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
- //
- // which, again because "x & Mask" is a truncation, becomes:
- //
- // NegC & Mask == (EltSize - PosC) & Mask
- // EltSize & Mask == (NegC + PosC) & Mask
- else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
- if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
- Width = PosC->getAPIntValue() + NegC->getAPIntValue();
- else
- return false;
- } else
- return false;
- // Now we just need to check that EltSize & Mask == Width & Mask.
- if (MaskLoBits)
- // EltSize & Mask is 0 since Mask is EltSize - 1.
- return Width.getLoBits(MaskLoBits) == 0;
- return Width == EltSize;
- }
- // A subroutine of MatchRotate used once we have found an OR of two opposite
- // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
- // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
- // former being preferred if supported. InnerPos and InnerNeg are Pos and
- // Neg with outer conversions stripped away.
- SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
- SDValue Neg, SDValue InnerPos,
- SDValue InnerNeg, bool HasPos,
- unsigned PosOpcode, unsigned NegOpcode,
- const SDLoc &DL) {
- // fold (or (shl x, (*ext y)),
- // (srl x, (*ext (sub 32, y)))) ->
- // (rotl x, y) or (rotr x, (sub 32, y))
- //
- // fold (or (shl x, (*ext (sub 32, y))),
- // (srl x, (*ext y))) ->
- // (rotr x, y) or (rotl x, (sub 32, y))
- EVT VT = Shifted.getValueType();
- if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG,
- /*IsRotate*/ true)) {
- return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
- HasPos ? Pos : Neg);
- }
- return SDValue();
- }
- // A subroutine of MatchRotate used once we have found an OR of two opposite
- // shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces
- // to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the
- // former being preferred if supported. InnerPos and InnerNeg are Pos and
- // Neg with outer conversions stripped away.
- // TODO: Merge with MatchRotatePosNeg.
- SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos,
- SDValue Neg, SDValue InnerPos,
- SDValue InnerNeg, bool HasPos,
- unsigned PosOpcode, unsigned NegOpcode,
- const SDLoc &DL) {
- EVT VT = N0.getValueType();
- unsigned EltBits = VT.getScalarSizeInBits();
- // fold (or (shl x0, (*ext y)),
- // (srl x1, (*ext (sub 32, y)))) ->
- // (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y))
- //
- // fold (or (shl x0, (*ext (sub 32, y))),
- // (srl x1, (*ext y))) ->
- // (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y))
- if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG, /*IsRotate*/ N0 == N1)) {
- return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1,
- HasPos ? Pos : Neg);
- }
- // Matching the shift+xor cases, we can't easily use the xor'd shift amount
- // so for now just use the PosOpcode case if its legal.
- // TODO: When can we use the NegOpcode case?
- if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) {
- auto IsBinOpImm = [](SDValue Op, unsigned BinOpc, unsigned Imm) {
- if (Op.getOpcode() != BinOpc)
- return false;
- ConstantSDNode *Cst = isConstOrConstSplat(Op.getOperand(1));
- return Cst && (Cst->getAPIntValue() == Imm);
- };
- // fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31)))
- // -> (fshl x0, x1, y)
- if (IsBinOpImm(N1, ISD::SRL, 1) &&
- IsBinOpImm(InnerNeg, ISD::XOR, EltBits - 1) &&
- InnerPos == InnerNeg.getOperand(0) &&
- TLI.isOperationLegalOrCustom(ISD::FSHL, VT)) {
- return DAG.getNode(ISD::FSHL, DL, VT, N0, N1.getOperand(0), Pos);
- }
- // fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y))
- // -> (fshr x0, x1, y)
- if (IsBinOpImm(N0, ISD::SHL, 1) &&
- IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) &&
- InnerNeg == InnerPos.getOperand(0) &&
- TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) {
- return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg);
- }
- // fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y))
- // -> (fshr x0, x1, y)
- // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization?
- if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N0.getOperand(1) &&
- IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) &&
- InnerNeg == InnerPos.getOperand(0) &&
- TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) {
- return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg);
- }
- }
- return SDValue();
- }
- // MatchRotate - Handle an 'or' of two operands. If this is one of the many
- // idioms for rotate, and if the target supports rotation instructions, generate
- // a rot[lr]. This also matches funnel shift patterns, similar to rotation but
- // with different shifted sources.
- SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) {
- EVT VT = LHS.getValueType();
- // The target must have at least one rotate/funnel flavor.
- // We still try to match rotate by constant pre-legalization.
- // TODO: Support pre-legalization funnel-shift by constant.
- bool HasROTL = hasOperation(ISD::ROTL, VT);
- bool HasROTR = hasOperation(ISD::ROTR, VT);
- bool HasFSHL = hasOperation(ISD::FSHL, VT);
- bool HasFSHR = hasOperation(ISD::FSHR, VT);
- // If the type is going to be promoted and the target has enabled custom
- // lowering for rotate, allow matching rotate by non-constants. Only allow
- // this for scalar types.
- if (VT.isScalarInteger() && TLI.getTypeAction(*DAG.getContext(), VT) ==
- TargetLowering::TypePromoteInteger) {
- HasROTL |= TLI.getOperationAction(ISD::ROTL, VT) == TargetLowering::Custom;
- HasROTR |= TLI.getOperationAction(ISD::ROTR, VT) == TargetLowering::Custom;
- }
- if (LegalOperations && !HasROTL && !HasROTR && !HasFSHL && !HasFSHR)
- return SDValue();
- // Check for truncated rotate.
- if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE &&
- LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) {
- assert(LHS.getValueType() == RHS.getValueType());
- if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) {
- return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot);
- }
- }
- // Match "(X shl/srl V1) & V2" where V2 may not be present.
- SDValue LHSShift; // The shift.
- SDValue LHSMask; // AND value if any.
- matchRotateHalf(DAG, LHS, LHSShift, LHSMask);
- SDValue RHSShift; // The shift.
- SDValue RHSMask; // AND value if any.
- matchRotateHalf(DAG, RHS, RHSShift, RHSMask);
- // If neither side matched a rotate half, bail
- if (!LHSShift && !RHSShift)
- return SDValue();
- // InstCombine may have combined a constant shl, srl, mul, or udiv with one
- // side of the rotate, so try to handle that here. In all cases we need to
- // pass the matched shift from the opposite side to compute the opcode and
- // needed shift amount to extract. We still want to do this if both sides
- // matched a rotate half because one half may be a potential overshift that
- // can be broken down (ie if InstCombine merged two shl or srl ops into a
- // single one).
- // Have LHS side of the rotate, try to extract the needed shift from the RHS.
- if (LHSShift)
- if (SDValue NewRHSShift =
- extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL))
- RHSShift = NewRHSShift;
- // Have RHS side of the rotate, try to extract the needed shift from the LHS.
- if (RHSShift)
- if (SDValue NewLHSShift =
- extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL))
- LHSShift = NewLHSShift;
- // If a side is still missing, nothing else we can do.
- if (!RHSShift || !LHSShift)
- return SDValue();
- // At this point we've matched or extracted a shift op on each side.
- if (LHSShift.getOpcode() == RHSShift.getOpcode())
- return SDValue(); // Shifts must disagree.
- // Canonicalize shl to left side in a shl/srl pair.
- if (RHSShift.getOpcode() == ISD::SHL) {
- std::swap(LHS, RHS);
- std::swap(LHSShift, RHSShift);
- std::swap(LHSMask, RHSMask);
- }
- // Something has gone wrong - we've lost the shl/srl pair - bail.
- if (LHSShift.getOpcode() != ISD::SHL || RHSShift.getOpcode() != ISD::SRL)
- return SDValue();
- unsigned EltSizeInBits = VT.getScalarSizeInBits();
- SDValue LHSShiftArg = LHSShift.getOperand(0);
- SDValue LHSShiftAmt = LHSShift.getOperand(1);
- SDValue RHSShiftArg = RHSShift.getOperand(0);
- SDValue RHSShiftAmt = RHSShift.getOperand(1);
- auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS,
- ConstantSDNode *RHS) {
- return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits;
- };
- auto ApplyMasks = [&](SDValue Res) {
- // If there is an AND of either shifted operand, apply it to the result.
- if (LHSMask.getNode() || RHSMask.getNode()) {
- SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
- SDValue Mask = AllOnes;
- if (LHSMask.getNode()) {
- SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt);
- Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
- DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits));
- }
- if (RHSMask.getNode()) {
- SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt);
- Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
- DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits));
- }
- Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask);
- }
- return Res;
- };
- // TODO: Support pre-legalization funnel-shift by constant.
- bool IsRotate = LHSShiftArg == RHSShiftArg;
- if (!IsRotate && !(HasFSHL || HasFSHR)) {
- if (TLI.isTypeLegal(VT) && LHS.hasOneUse() && RHS.hasOneUse() &&
- ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
- // Look for a disguised rotate by constant.
- // The common shifted operand X may be hidden inside another 'or'.
- SDValue X, Y;
- auto matchOr = [&X, &Y](SDValue Or, SDValue CommonOp) {
- if (!Or.hasOneUse() || Or.getOpcode() != ISD::OR)
- return false;
- if (CommonOp == Or.getOperand(0)) {
- X = CommonOp;
- Y = Or.getOperand(1);
- return true;
- }
- if (CommonOp == Or.getOperand(1)) {
- X = CommonOp;
- Y = Or.getOperand(0);
- return true;
- }
- return false;
- };
- SDValue Res;
- if (matchOr(LHSShiftArg, RHSShiftArg)) {
- // (shl (X | Y), C1) | (srl X, C2) --> (rotl X, C1) | (shl Y, C1)
- SDValue RotX = DAG.getNode(ISD::ROTL, DL, VT, X, LHSShiftAmt);
- SDValue ShlY = DAG.getNode(ISD::SHL, DL, VT, Y, LHSShiftAmt);
- Res = DAG.getNode(ISD::OR, DL, VT, RotX, ShlY);
- } else if (matchOr(RHSShiftArg, LHSShiftArg)) {
- // (shl X, C1) | (srl (X | Y), C2) --> (rotl X, C1) | (srl Y, C2)
- SDValue RotX = DAG.getNode(ISD::ROTL, DL, VT, X, LHSShiftAmt);
- SDValue SrlY = DAG.getNode(ISD::SRL, DL, VT, Y, RHSShiftAmt);
- Res = DAG.getNode(ISD::OR, DL, VT, RotX, SrlY);
- } else {
- return SDValue();
- }
- return ApplyMasks(Res);
- }
- return SDValue(); // Requires funnel shift support.
- }
- // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
- // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
- // fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1)
- // fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2)
- // iff C1+C2 == EltSizeInBits
- if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
- SDValue Res;
- if (IsRotate && (HasROTL || HasROTR || !(HasFSHL || HasFSHR))) {
- bool UseROTL = !LegalOperations || HasROTL;
- Res = DAG.getNode(UseROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
- UseROTL ? LHSShiftAmt : RHSShiftAmt);
- } else {
- bool UseFSHL = !LegalOperations || HasFSHL;
- Res = DAG.getNode(UseFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg,
- RHSShiftArg, UseFSHL ? LHSShiftAmt : RHSShiftAmt);
- }
- return ApplyMasks(Res);
- }
- // Even pre-legalization, we can't easily rotate/funnel-shift by a variable
- // shift.
- if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR)
- return SDValue();
- // If there is a mask here, and we have a variable shift, we can't be sure
- // that we're masking out the right stuff.
- if (LHSMask.getNode() || RHSMask.getNode())
- return SDValue();
- // If the shift amount is sign/zext/any-extended just peel it off.
- SDValue LExtOp0 = LHSShiftAmt;
- SDValue RExtOp0 = RHSShiftAmt;
- if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
- LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
- LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
- LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
- (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
- RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
- RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
- RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
- LExtOp0 = LHSShiftAmt.getOperand(0);
- RExtOp0 = RHSShiftAmt.getOperand(0);
- }
- if (IsRotate && (HasROTL || HasROTR)) {
- SDValue TryL =
- MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, LExtOp0,
- RExtOp0, HasROTL, ISD::ROTL, ISD::ROTR, DL);
- if (TryL)
- return TryL;
- SDValue TryR =
- MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, RExtOp0,
- LExtOp0, HasROTR, ISD::ROTR, ISD::ROTL, DL);
- if (TryR)
- return TryR;
- }
- SDValue TryL =
- MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt, RHSShiftAmt,
- LExtOp0, RExtOp0, HasFSHL, ISD::FSHL, ISD::FSHR, DL);
- if (TryL)
- return TryL;
- SDValue TryR =
- MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
- RExtOp0, LExtOp0, HasFSHR, ISD::FSHR, ISD::FSHL, DL);
- if (TryR)
- return TryR;
- return SDValue();
- }
- namespace {
- /// Represents known origin of an individual byte in load combine pattern. The
- /// value of the byte is either constant zero or comes from memory.
- struct ByteProvider {
- // For constant zero providers Load is set to nullptr. For memory providers
- // Load represents the node which loads the byte from memory.
- // ByteOffset is the offset of the byte in the value produced by the load.
- LoadSDNode *Load = nullptr;
- unsigned ByteOffset = 0;
- unsigned VectorOffset = 0;
- ByteProvider() = default;
- static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset,
- unsigned VectorOffset) {
- return ByteProvider(Load, ByteOffset, VectorOffset);
- }
- static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0, 0); }
- bool isConstantZero() const { return !Load; }
- bool isMemory() const { return Load; }
- bool operator==(const ByteProvider &Other) const {
- return Other.Load == Load && Other.ByteOffset == ByteOffset &&
- Other.VectorOffset == VectorOffset;
- }
- private:
- ByteProvider(LoadSDNode *Load, unsigned ByteOffset, unsigned VectorOffset)
- : Load(Load), ByteOffset(ByteOffset), VectorOffset(VectorOffset) {}
- };
- } // end anonymous namespace
- /// Recursively traverses the expression calculating the origin of the requested
- /// byte of the given value. Returns std::nullopt if the provider can't be
- /// calculated.
- ///
- /// For all the values except the root of the expression, we verify that the
- /// value has exactly one use and if not then return std::nullopt. This way if
- /// the origin of the byte is returned it's guaranteed that the values which
- /// contribute to the byte are not used outside of this expression.
- /// However, there is a special case when dealing with vector loads -- we allow
- /// more than one use if the load is a vector type. Since the values that
- /// contribute to the byte ultimately come from the ExtractVectorElements of the
- /// Load, we don't care if the Load has uses other than ExtractVectorElements,
- /// because those operations are independent from the pattern to be combined.
- /// For vector loads, we simply care that the ByteProviders are adjacent
- /// positions of the same vector, and their index matches the byte that is being
- /// provided. This is captured by the \p VectorIndex algorithm. \p VectorIndex
- /// is the index used in an ExtractVectorElement, and \p StartingIndex is the
- /// byte position we are trying to provide for the LoadCombine. If these do
- /// not match, then we can not combine the vector loads. \p Index uses the
- /// byte position we are trying to provide for and is matched against the
- /// shl and load size. The \p Index algorithm ensures the requested byte is
- /// provided for by the pattern, and the pattern does not over provide bytes.
- ///
- ///
- /// The supported LoadCombine pattern for vector loads is as follows
- /// or
- /// / \
- /// or shl
- /// / \ |
- /// or shl zext
- /// / \ | |
- /// shl zext zext EVE*
- /// | | | |
- /// zext EVE* EVE* LOAD
- /// | | |
- /// EVE* LOAD LOAD
- /// |
- /// LOAD
- ///
- /// *ExtractVectorElement
- static const std::optional<ByteProvider>
- calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth,
- std::optional<uint64_t> VectorIndex,
- unsigned StartingIndex = 0) {
- // Typical i64 by i8 pattern requires recursion up to 8 calls depth
- if (Depth == 10)
- return std::nullopt;
- // Only allow multiple uses if the instruction is a vector load (in which
- // case we will use the load for every ExtractVectorElement)
- if (Depth && !Op.hasOneUse() &&
- (Op.getOpcode() != ISD::LOAD || !Op.getValueType().isVector()))
- return std::nullopt;
- // Fail to combine if we have encountered anything but a LOAD after handling
- // an ExtractVectorElement.
- if (Op.getOpcode() != ISD::LOAD && VectorIndex.has_value())
- return std::nullopt;
- unsigned BitWidth = Op.getValueSizeInBits();
- if (BitWidth % 8 != 0)
- return std::nullopt;
- unsigned ByteWidth = BitWidth / 8;
- assert(Index < ByteWidth && "invalid index requested");
- (void) ByteWidth;
- switch (Op.getOpcode()) {
- case ISD::OR: {
- auto LHS =
- calculateByteProvider(Op->getOperand(0), Index, Depth + 1, VectorIndex);
- if (!LHS)
- return std::nullopt;
- auto RHS =
- calculateByteProvider(Op->getOperand(1), Index, Depth + 1, VectorIndex);
- if (!RHS)
- return std::nullopt;
- if (LHS->isConstantZero())
- return RHS;
- if (RHS->isConstantZero())
- return LHS;
- return std::nullopt;
- }
- case ISD::SHL: {
- auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
- if (!ShiftOp)
- return std::nullopt;
- uint64_t BitShift = ShiftOp->getZExtValue();
- if (BitShift % 8 != 0)
- return std::nullopt;
- uint64_t ByteShift = BitShift / 8;
- // If we are shifting by an amount greater than the index we are trying to
- // provide, then do not provide anything. Otherwise, subtract the index by
- // the amount we shifted by.
- return Index < ByteShift
- ? ByteProvider::getConstantZero()
- : calculateByteProvider(Op->getOperand(0), Index - ByteShift,
- Depth + 1, VectorIndex, Index);
- }
- case ISD::ANY_EXTEND:
- case ISD::SIGN_EXTEND:
- case ISD::ZERO_EXTEND: {
- SDValue NarrowOp = Op->getOperand(0);
- unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
- if (NarrowBitWidth % 8 != 0)
- return std::nullopt;
- uint64_t NarrowByteWidth = NarrowBitWidth / 8;
- if (Index >= NarrowByteWidth)
- return Op.getOpcode() == ISD::ZERO_EXTEND
- ? std::optional<ByteProvider>(ByteProvider::getConstantZero())
- : std::nullopt;
- return calculateByteProvider(NarrowOp, Index, Depth + 1, VectorIndex,
- StartingIndex);
- }
- case ISD::BSWAP:
- return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1,
- Depth + 1, VectorIndex, StartingIndex);
- case ISD::EXTRACT_VECTOR_ELT: {
- auto OffsetOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
- if (!OffsetOp)
- return std::nullopt;
- VectorIndex = OffsetOp->getZExtValue();
- SDValue NarrowOp = Op->getOperand(0);
- unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
- if (NarrowBitWidth % 8 != 0)
- return std::nullopt;
- uint64_t NarrowByteWidth = NarrowBitWidth / 8;
- // Check to see if the position of the element in the vector corresponds
- // with the byte we are trying to provide for. In the case of a vector of
- // i8, this simply means the VectorIndex == StartingIndex. For non i8 cases,
- // the element will provide a range of bytes. For example, if we have a
- // vector of i16s, each element provides two bytes (V[1] provides byte 2 and
- // 3).
- if (*VectorIndex * NarrowByteWidth > StartingIndex)
- return std::nullopt;
- if ((*VectorIndex + 1) * NarrowByteWidth <= StartingIndex)
- return std::nullopt;
- return calculateByteProvider(Op->getOperand(0), Index, Depth + 1,
- VectorIndex, StartingIndex);
- }
- case ISD::LOAD: {
- auto L = cast<LoadSDNode>(Op.getNode());
- if (!L->isSimple() || L->isIndexed())
- return std::nullopt;
- unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
- if (NarrowBitWidth % 8 != 0)
- return std::nullopt;
- uint64_t NarrowByteWidth = NarrowBitWidth / 8;
- // If the width of the load does not reach byte we are trying to provide for
- // and it is not a ZEXTLOAD, then the load does not provide for the byte in
- // question
- if (Index >= NarrowByteWidth)
- return L->getExtensionType() == ISD::ZEXTLOAD
- ? std::optional<ByteProvider>(ByteProvider::getConstantZero())
- : std::nullopt;
- unsigned BPVectorIndex = VectorIndex.value_or(0U);
- return ByteProvider::getMemory(L, Index, BPVectorIndex);
- }
- }
- return std::nullopt;
- }
- static unsigned littleEndianByteAt(unsigned BW, unsigned i) {
- return i;
- }
- static unsigned bigEndianByteAt(unsigned BW, unsigned i) {
- return BW - i - 1;
- }
- // Check if the bytes offsets we are looking at match with either big or
- // little endian value loaded. Return true for big endian, false for little
- // endian, and std::nullopt if match failed.
- static std::optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets,
- int64_t FirstOffset) {
- // The endian can be decided only when it is 2 bytes at least.
- unsigned Width = ByteOffsets.size();
- if (Width < 2)
- return std::nullopt;
- bool BigEndian = true, LittleEndian = true;
- for (unsigned i = 0; i < Width; i++) {
- int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset;
- LittleEndian &= CurrentByteOffset == littleEndianByteAt(Width, i);
- BigEndian &= CurrentByteOffset == bigEndianByteAt(Width, i);
- if (!BigEndian && !LittleEndian)
- return std::nullopt;
- }
- assert((BigEndian != LittleEndian) && "It should be either big endian or"
- "little endian");
- return BigEndian;
- }
- static SDValue stripTruncAndExt(SDValue Value) {
- switch (Value.getOpcode()) {
- case ISD::TRUNCATE:
- case ISD::ZERO_EXTEND:
- case ISD::SIGN_EXTEND:
- case ISD::ANY_EXTEND:
- return stripTruncAndExt(Value.getOperand(0));
- }
- return Value;
- }
- /// Match a pattern where a wide type scalar value is stored by several narrow
- /// stores. Fold it into a single store or a BSWAP and a store if the targets
- /// supports it.
- ///
- /// Assuming little endian target:
- /// i8 *p = ...
- /// i32 val = ...
- /// p[0] = (val >> 0) & 0xFF;
- /// p[1] = (val >> 8) & 0xFF;
- /// p[2] = (val >> 16) & 0xFF;
- /// p[3] = (val >> 24) & 0xFF;
- /// =>
- /// *((i32)p) = val;
- ///
- /// i8 *p = ...
- /// i32 val = ...
- /// p[0] = (val >> 24) & 0xFF;
- /// p[1] = (val >> 16) & 0xFF;
- /// p[2] = (val >> 8) & 0xFF;
- /// p[3] = (val >> 0) & 0xFF;
- /// =>
- /// *((i32)p) = BSWAP(val);
- SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) {
- // The matching looks for "store (trunc x)" patterns that appear early but are
- // likely to be replaced by truncating store nodes during combining.
- // TODO: If there is evidence that running this later would help, this
- // limitation could be removed. Legality checks may need to be added
- // for the created store and optional bswap/rotate.
- if (LegalOperations || OptLevel == CodeGenOpt::None)
- return SDValue();
- // We only handle merging simple stores of 1-4 bytes.
- // TODO: Allow unordered atomics when wider type is legal (see D66309)
- EVT MemVT = N->getMemoryVT();
- if (!(MemVT == MVT::i8 || MemVT == MVT::i16 || MemVT == MVT::i32) ||
- !N->isSimple() || N->isIndexed())
- return SDValue();
- // Collect all of the stores in the chain.
- SDValue Chain = N->getChain();
- SmallVector<StoreSDNode *, 8> Stores = {N};
- while (auto *Store = dyn_cast<StoreSDNode>(Chain)) {
- // All stores must be the same size to ensure that we are writing all of the
- // bytes in the wide value.
- // This store should have exactly one use as a chain operand for another
- // store in the merging set. If there are other chain uses, then the
- // transform may not be safe because order of loads/stores outside of this
- // set may not be preserved.
- // TODO: We could allow multiple sizes by tracking each stored byte.
- if (Store->getMemoryVT() != MemVT || !Store->isSimple() ||
- Store->isIndexed() || !Store->hasOneUse())
- return SDValue();
- Stores.push_back(Store);
- Chain = Store->getChain();
- }
- // There is no reason to continue if we do not have at least a pair of stores.
- if (Stores.size() < 2)
- return SDValue();
- // Handle simple types only.
- LLVMContext &Context = *DAG.getContext();
- unsigned NumStores = Stores.size();
- unsigned NarrowNumBits = N->getMemoryVT().getScalarSizeInBits();
- unsigned WideNumBits = NumStores * NarrowNumBits;
- EVT WideVT = EVT::getIntegerVT(Context, WideNumBits);
- if (WideVT != MVT::i16 && WideVT != MVT::i32 && WideVT != MVT::i64)
- return SDValue();
- // Check if all bytes of the source value that we are looking at are stored
- // to the same base address. Collect offsets from Base address into OffsetMap.
- SDValue SourceValue;
- SmallVector<int64_t, 8> OffsetMap(NumStores, INT64_MAX);
- int64_t FirstOffset = INT64_MAX;
- StoreSDNode *FirstStore = nullptr;
- std::optional<BaseIndexOffset> Base;
- for (auto *Store : Stores) {
- // All the stores store different parts of the CombinedValue. A truncate is
- // required to get the partial value.
- SDValue Trunc = Store->getValue();
- if (Trunc.getOpcode() != ISD::TRUNCATE)
- return SDValue();
- // Other than the first/last part, a shift operation is required to get the
- // offset.
- int64_t Offset = 0;
- SDValue WideVal = Trunc.getOperand(0);
- if ((WideVal.getOpcode() == ISD::SRL || WideVal.getOpcode() == ISD::SRA) &&
- isa<ConstantSDNode>(WideVal.getOperand(1))) {
- // The shift amount must be a constant multiple of the narrow type.
- // It is translated to the offset address in the wide source value "y".
- //
- // x = srl y, ShiftAmtC
- // i8 z = trunc x
- // store z, ...
- uint64_t ShiftAmtC = WideVal.getConstantOperandVal(1);
- if (ShiftAmtC % NarrowNumBits != 0)
- return SDValue();
- Offset = ShiftAmtC / NarrowNumBits;
- WideVal = WideVal.getOperand(0);
- }
- // Stores must share the same source value with different offsets.
- // Truncate and extends should be stripped to get the single source value.
- if (!SourceValue)
- SourceValue = WideVal;
- else if (stripTruncAndExt(SourceValue) != stripTruncAndExt(WideVal))
- return SDValue();
- else if (SourceValue.getValueType() != WideVT) {
- if (WideVal.getValueType() == WideVT ||
- WideVal.getScalarValueSizeInBits() >
- SourceValue.getScalarValueSizeInBits())
- SourceValue = WideVal;
- // Give up if the source value type is smaller than the store size.
- if (SourceValue.getScalarValueSizeInBits() < WideVT.getScalarSizeInBits())
- return SDValue();
- }
- // Stores must share the same base address.
- BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG);
- int64_t ByteOffsetFromBase = 0;
- if (!Base)
- Base = Ptr;
- else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
- return SDValue();
- // Remember the first store.
- if (ByteOffsetFromBase < FirstOffset) {
- FirstStore = Store;
- FirstOffset = ByteOffsetFromBase;
- }
- // Map the offset in the store and the offset in the combined value, and
- // early return if it has been set before.
- if (Offset < 0 || Offset >= NumStores || OffsetMap[Offset] != INT64_MAX)
- return SDValue();
- OffsetMap[Offset] = ByteOffsetFromBase;
- }
- assert(FirstOffset != INT64_MAX && "First byte offset must be set");
- assert(FirstStore && "First store must be set");
- // Check that a store of the wide type is both allowed and fast on the target
- const DataLayout &Layout = DAG.getDataLayout();
- unsigned Fast = 0;
- bool Allowed = TLI.allowsMemoryAccess(Context, Layout, WideVT,
- *FirstStore->getMemOperand(), &Fast);
- if (!Allowed || !Fast)
- return SDValue();
- // Check if the pieces of the value are going to the expected places in memory
- // to merge the stores.
- auto checkOffsets = [&](bool MatchLittleEndian) {
- if (MatchLittleEndian) {
- for (unsigned i = 0; i != NumStores; ++i)
- if (OffsetMap[i] != i * (NarrowNumBits / 8) + FirstOffset)
- return false;
- } else { // MatchBigEndian by reversing loop counter.
- for (unsigned i = 0, j = NumStores - 1; i != NumStores; ++i, --j)
- if (OffsetMap[j] != i * (NarrowNumBits / 8) + FirstOffset)
- return false;
- }
- return true;
- };
- // Check if the offsets line up for the native data layout of this target.
- bool NeedBswap = false;
- bool NeedRotate = false;
- if (!checkOffsets(Layout.isLittleEndian())) {
- // Special-case: check if byte offsets line up for the opposite endian.
- if (NarrowNumBits == 8 && checkOffsets(Layout.isBigEndian()))
- NeedBswap = true;
- else if (NumStores == 2 && checkOffsets(Layout.isBigEndian()))
- NeedRotate = true;
- else
- return SDValue();
- }
- SDLoc DL(N);
- if (WideVT != SourceValue.getValueType()) {
- assert(SourceValue.getValueType().getScalarSizeInBits() > WideNumBits &&
- "Unexpected store value to merge");
- SourceValue = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SourceValue);
- }
- // Before legalize we can introduce illegal bswaps/rotates which will be later
- // converted to an explicit bswap sequence. This way we end up with a single
- // store and byte shuffling instead of several stores and byte shuffling.
- if (NeedBswap) {
- SourceValue = DAG.getNode(ISD::BSWAP, DL, WideVT, SourceValue);
- } else if (NeedRotate) {
- assert(WideNumBits % 2 == 0 && "Unexpected type for rotate");
- SDValue RotAmt = DAG.getConstant(WideNumBits / 2, DL, WideVT);
- SourceValue = DAG.getNode(ISD::ROTR, DL, WideVT, SourceValue, RotAmt);
- }
- SDValue NewStore =
- DAG.getStore(Chain, DL, SourceValue, FirstStore->getBasePtr(),
- FirstStore->getPointerInfo(), FirstStore->getAlign());
- // Rely on other DAG combine rules to remove the other individual stores.
- DAG.ReplaceAllUsesWith(N, NewStore.getNode());
- return NewStore;
- }
- /// Match a pattern where a wide type scalar value is loaded by several narrow
- /// loads and combined by shifts and ors. Fold it into a single load or a load
- /// and a BSWAP if the targets supports it.
- ///
- /// Assuming little endian target:
- /// i8 *a = ...
- /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
- /// =>
- /// i32 val = *((i32)a)
- ///
- /// i8 *a = ...
- /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
- /// =>
- /// i32 val = BSWAP(*((i32)a))
- ///
- /// TODO: This rule matches complex patterns with OR node roots and doesn't
- /// interact well with the worklist mechanism. When a part of the pattern is
- /// updated (e.g. one of the loads) its direct users are put into the worklist,
- /// but the root node of the pattern which triggers the load combine is not
- /// necessarily a direct user of the changed node. For example, once the address
- /// of t28 load is reassociated load combine won't be triggered:
- /// t25: i32 = add t4, Constant:i32<2>
- /// t26: i64 = sign_extend t25
- /// t27: i64 = add t2, t26
- /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
- /// t29: i32 = zero_extend t28
- /// t32: i32 = shl t29, Constant:i8<8>
- /// t33: i32 = or t23, t32
- /// As a possible fix visitLoad can check if the load can be a part of a load
- /// combine pattern and add corresponding OR roots to the worklist.
- SDValue DAGCombiner::MatchLoadCombine(SDNode *N) {
- assert(N->getOpcode() == ISD::OR &&
- "Can only match load combining against OR nodes");
- // Handles simple types only
- EVT VT = N->getValueType(0);
- if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
- return SDValue();
- unsigned ByteWidth = VT.getSizeInBits() / 8;
- bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian();
- auto MemoryByteOffset = [&] (ByteProvider P) {
- assert(P.isMemory() && "Must be a memory byte provider");
- unsigned LoadBitWidth = P.Load->getMemoryVT().getScalarSizeInBits();
- assert(LoadBitWidth % 8 == 0 &&
- "can only analyze providers for individual bytes not bit");
- unsigned LoadByteWidth = LoadBitWidth / 8;
- return IsBigEndianTarget
- ? bigEndianByteAt(LoadByteWidth, P.ByteOffset)
- : littleEndianByteAt(LoadByteWidth, P.ByteOffset);
- };
- std::optional<BaseIndexOffset> Base;
- SDValue Chain;
- SmallPtrSet<LoadSDNode *, 8> Loads;
- std::optional<ByteProvider> FirstByteProvider;
- int64_t FirstOffset = INT64_MAX;
- // Check if all the bytes of the OR we are looking at are loaded from the same
- // base address. Collect bytes offsets from Base address in ByteOffsets.
- SmallVector<int64_t, 8> ByteOffsets(ByteWidth);
- unsigned ZeroExtendedBytes = 0;
- for (int i = ByteWidth - 1; i >= 0; --i) {
- auto P =
- calculateByteProvider(SDValue(N, 0), i, 0, /*VectorIndex*/ std::nullopt,
- /*StartingIndex*/ i);
- if (!P)
- return SDValue();
- if (P->isConstantZero()) {
- // It's OK for the N most significant bytes to be 0, we can just
- // zero-extend the load.
- if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i)))
- return SDValue();
- continue;
- }
- assert(P->isMemory() && "provenance should either be memory or zero");
- LoadSDNode *L = P->Load;
- // All loads must share the same chain
- SDValue LChain = L->getChain();
- if (!Chain)
- Chain = LChain;
- else if (Chain != LChain)
- return SDValue();
- // Loads must share the same base address
- BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG);
- int64_t ByteOffsetFromBase = 0;
- // For vector loads, the expected load combine pattern will have an
- // ExtractElement for each index in the vector. While each of these
- // ExtractElements will be accessing the same base address as determined
- // by the load instruction, the actual bytes they interact with will differ
- // due to different ExtractElement indices. To accurately determine the
- // byte position of an ExtractElement, we offset the base load ptr with
- // the index multiplied by the byte size of each element in the vector.
- if (L->getMemoryVT().isVector()) {
- unsigned LoadWidthInBit = L->getMemoryVT().getScalarSizeInBits();
- if (LoadWidthInBit % 8 != 0)
- return SDValue();
- unsigned ByteOffsetFromVector = P->VectorOffset * LoadWidthInBit / 8;
- Ptr.addToOffset(ByteOffsetFromVector);
- }
- if (!Base)
- Base = Ptr;
- else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
- return SDValue();
- // Calculate the offset of the current byte from the base address
- ByteOffsetFromBase += MemoryByteOffset(*P);
- ByteOffsets[i] = ByteOffsetFromBase;
- // Remember the first byte load
- if (ByteOffsetFromBase < FirstOffset) {
- FirstByteProvider = P;
- FirstOffset = ByteOffsetFromBase;
- }
- Loads.insert(L);
- }
- assert(!Loads.empty() && "All the bytes of the value must be loaded from "
- "memory, so there must be at least one load which produces the value");
- assert(Base && "Base address of the accessed memory location must be set");
- assert(FirstOffset != INT64_MAX && "First byte offset must be set");
- bool NeedsZext = ZeroExtendedBytes > 0;
- EVT MemVT =
- EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8);
- if (!MemVT.isSimple())
- return SDValue();
- // Before legalize we can introduce too wide illegal loads which will be later
- // split into legal sized loads. This enables us to combine i64 load by i8
- // patterns to a couple of i32 loads on 32 bit targets.
- if (LegalOperations &&
- !TLI.isOperationLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD,
- MemVT))
- return SDValue();
- // Check if the bytes of the OR we are looking at match with either big or
- // little endian value load
- std::optional<bool> IsBigEndian = isBigEndian(
- ArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset);
- if (!IsBigEndian)
- return SDValue();
- assert(FirstByteProvider && "must be set");
- // Ensure that the first byte is loaded from zero offset of the first load.
- // So the combined value can be loaded from the first load address.
- if (MemoryByteOffset(*FirstByteProvider) != 0)
- return SDValue();
- LoadSDNode *FirstLoad = FirstByteProvider->Load;
- // The node we are looking at matches with the pattern, check if we can
- // replace it with a single (possibly zero-extended) load and bswap + shift if
- // needed.
- // If the load needs byte swap check if the target supports it
- bool NeedsBswap = IsBigEndianTarget != *IsBigEndian;
- // Before legalize we can introduce illegal bswaps which will be later
- // converted to an explicit bswap sequence. This way we end up with a single
- // load and byte shuffling instead of several loads and byte shuffling.
- // We do not introduce illegal bswaps when zero-extending as this tends to
- // introduce too many arithmetic instructions.
- if (NeedsBswap && (LegalOperations || NeedsZext) &&
- !TLI.isOperationLegal(ISD::BSWAP, VT))
- return SDValue();
- // If we need to bswap and zero extend, we have to insert a shift. Check that
- // it is legal.
- if (NeedsBswap && NeedsZext && LegalOperations &&
- !TLI.isOperationLegal(ISD::SHL, VT))
- return SDValue();
- // Check that a load of the wide type is both allowed and fast on the target
- unsigned Fast = 0;
- bool Allowed =
- TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
- *FirstLoad->getMemOperand(), &Fast);
- if (!Allowed || !Fast)
- return SDValue();
- SDValue NewLoad =
- DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, SDLoc(N), VT,
- Chain, FirstLoad->getBasePtr(),
- FirstLoad->getPointerInfo(), MemVT, FirstLoad->getAlign());
- // Transfer chain users from old loads to the new load.
- for (LoadSDNode *L : Loads)
- DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1));
- if (!NeedsBswap)
- return NewLoad;
- SDValue ShiftedLoad =
- NeedsZext
- ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad,
- DAG.getShiftAmountConstant(ZeroExtendedBytes * 8, VT,
- SDLoc(N), LegalOperations))
- : NewLoad;
- return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad);
- }
- // If the target has andn, bsl, or a similar bit-select instruction,
- // we want to unfold masked merge, with canonical pattern of:
- // | A | |B|
- // ((x ^ y) & m) ^ y
- // | D |
- // Into:
- // (x & m) | (y & ~m)
- // If y is a constant, m is not a 'not', and the 'andn' does not work with
- // immediates, we unfold into a different pattern:
- // ~(~x & m) & (m | y)
- // If x is a constant, m is a 'not', and the 'andn' does not work with
- // immediates, we unfold into a different pattern:
- // (x | ~m) & ~(~m & ~y)
- // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
- // the very least that breaks andnpd / andnps patterns, and because those
- // patterns are simplified in IR and shouldn't be created in the DAG
- SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) {
- assert(N->getOpcode() == ISD::XOR);
- // Don't touch 'not' (i.e. where y = -1).
- if (isAllOnesOrAllOnesSplat(N->getOperand(1)))
- return SDValue();
- EVT VT = N->getValueType(0);
- // There are 3 commutable operators in the pattern,
- // so we have to deal with 8 possible variants of the basic pattern.
- SDValue X, Y, M;
- auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) {
- if (And.getOpcode() != ISD::AND || !And.hasOneUse())
- return false;
- SDValue Xor = And.getOperand(XorIdx);
- if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
- return false;
- SDValue Xor0 = Xor.getOperand(0);
- SDValue Xor1 = Xor.getOperand(1);
- // Don't touch 'not' (i.e. where y = -1).
- if (isAllOnesOrAllOnesSplat(Xor1))
- return false;
- if (Other == Xor0)
- std::swap(Xor0, Xor1);
- if (Other != Xor1)
- return false;
- X = Xor0;
- Y = Xor1;
- M = And.getOperand(XorIdx ? 0 : 1);
- return true;
- };
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) &&
- !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0))
- return SDValue();
- // Don't do anything if the mask is constant. This should not be reachable.
- // InstCombine should have already unfolded this pattern, and DAGCombiner
- // probably shouldn't produce it, too.
- if (isa<ConstantSDNode>(M.getNode()))
- return SDValue();
- // We can transform if the target has AndNot
- if (!TLI.hasAndNot(M))
- return SDValue();
- SDLoc DL(N);
- // If Y is a constant, check that 'andn' works with immediates. Unless M is
- // a bitwise not that would already allow ANDN to be used.
- if (!TLI.hasAndNot(Y) && !isBitwiseNot(M)) {
- assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable.");
- // If not, we need to do a bit more work to make sure andn is still used.
- SDValue NotX = DAG.getNOT(DL, X, VT);
- SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M);
- SDValue NotLHS = DAG.getNOT(DL, LHS, VT);
- SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y);
- return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS);
- }
- // If X is a constant and M is a bitwise not, check that 'andn' works with
- // immediates.
- if (!TLI.hasAndNot(X) && isBitwiseNot(M)) {
- assert(TLI.hasAndNot(Y) && "Only mask is a variable? Unreachable.");
- // If not, we need to do a bit more work to make sure andn is still used.
- SDValue NotM = M.getOperand(0);
- SDValue LHS = DAG.getNode(ISD::OR, DL, VT, X, NotM);
- SDValue NotY = DAG.getNOT(DL, Y, VT);
- SDValue RHS = DAG.getNode(ISD::AND, DL, VT, NotM, NotY);
- SDValue NotRHS = DAG.getNOT(DL, RHS, VT);
- return DAG.getNode(ISD::AND, DL, VT, LHS, NotRHS);
- }
- SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M);
- SDValue NotM = DAG.getNOT(DL, M, VT);
- SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM);
- return DAG.getNode(ISD::OR, DL, VT, LHS, RHS);
- }
- SDValue DAGCombiner::visitXOR(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N0.getValueType();
- SDLoc DL(N);
- // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
- if (N0.isUndef() && N1.isUndef())
- return DAG.getConstant(0, DL, VT);
- // fold (xor x, undef) -> undef
- if (N0.isUndef())
- return N0;
- if (N1.isUndef())
- return N1;
- // fold (xor c1, c2) -> c1^c2
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1}))
- return C;
- // canonicalize constant to RHS
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- !DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
- // fold vector ops
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
- return FoldedVOp;
- // fold (xor x, 0) -> x, vector edition
- if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
- return N0;
- }
- // fold (xor x, 0) -> x
- if (isNullConstant(N1))
- return N0;
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
- // reassociate xor
- if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags()))
- return RXOR;
- // fold (a^b) -> (a|b) iff a and b share no bits.
- if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
- DAG.haveNoCommonBitsSet(N0, N1))
- return DAG.getNode(ISD::OR, DL, VT, N0, N1);
- // look for 'add-like' folds:
- // XOR(N0,MIN_SIGNED_VALUE) == ADD(N0,MIN_SIGNED_VALUE)
- if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) &&
- isMinSignedConstant(N1))
- if (SDValue Combined = visitADDLike(N))
- return Combined;
- // fold !(x cc y) -> (x !cc y)
- unsigned N0Opcode = N0.getOpcode();
- SDValue LHS, RHS, CC;
- if (TLI.isConstTrueVal(N1) &&
- isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/ true)) {
- ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
- LHS.getValueType());
- if (!LegalOperations ||
- TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
- switch (N0Opcode) {
- default:
- llvm_unreachable("Unhandled SetCC Equivalent!");
- case ISD::SETCC:
- return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC);
- case ISD::SELECT_CC:
- return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2),
- N0.getOperand(3), NotCC);
- case ISD::STRICT_FSETCC:
- case ISD::STRICT_FSETCCS: {
- if (N0.hasOneUse()) {
- // FIXME Can we handle multiple uses? Could we token factor the chain
- // results from the new/old setcc?
- SDValue SetCC =
- DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC,
- N0.getOperand(0), N0Opcode == ISD::STRICT_FSETCCS);
- CombineTo(N, SetCC);
- DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1));
- recursivelyDeleteUnusedNodes(N0.getNode());
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- break;
- }
- }
- }
- }
- // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
- if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() &&
- isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
- SDValue V = N0.getOperand(0);
- SDLoc DL0(N0);
- V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V,
- DAG.getConstant(1, DL0, V.getValueType()));
- AddToWorklist(V.getNode());
- return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V);
- }
- // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
- if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() &&
- (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
- SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
- if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) {
- unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
- N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
- N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
- AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
- return DAG.getNode(NewOpcode, DL, VT, N00, N01);
- }
- }
- // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
- if (isAllOnesConstant(N1) && N0.hasOneUse() &&
- (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
- SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
- if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) {
- unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
- N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
- N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
- AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
- return DAG.getNode(NewOpcode, DL, VT, N00, N01);
- }
- }
- // fold (not (neg x)) -> (add X, -1)
- // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if
- // Y is a constant or the subtract has a single use.
- if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB &&
- isNullConstant(N0.getOperand(0))) {
- return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1),
- DAG.getAllOnesConstant(DL, VT));
- }
- // fold (not (add X, -1)) -> (neg X)
- if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::ADD &&
- isAllOnesOrAllOnesSplat(N0.getOperand(1))) {
- return DAG.getNegative(N0.getOperand(0), DL, VT);
- }
- // fold (xor (and x, y), y) -> (and (not x), y)
- if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) {
- SDValue X = N0.getOperand(0);
- SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
- AddToWorklist(NotX.getNode());
- return DAG.getNode(ISD::AND, DL, VT, NotX, N1);
- }
- // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
- if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
- SDValue A = N0Opcode == ISD::ADD ? N0 : N1;
- SDValue S = N0Opcode == ISD::SRA ? N0 : N1;
- if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) {
- SDValue A0 = A.getOperand(0), A1 = A.getOperand(1);
- SDValue S0 = S.getOperand(0);
- if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0))
- if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1)))
- if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1))
- return DAG.getNode(ISD::ABS, DL, VT, S0);
- }
- }
- // fold (xor x, x) -> 0
- if (N0 == N1)
- return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
- // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
- // Here is a concrete example of this equivalence:
- // i16 x == 14
- // i16 shl == 1 << 14 == 16384 == 0b0100000000000000
- // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
- //
- // =>
- //
- // i16 ~1 == 0b1111111111111110
- // i16 rol(~1, 14) == 0b1011111111111111
- //
- // Some additional tips to help conceptualize this transform:
- // - Try to see the operation as placing a single zero in a value of all ones.
- // - There exists no value for x which would allow the result to contain zero.
- // - Values of x larger than the bitwidth are undefined and do not require a
- // consistent result.
- // - Pushing the zero left requires shifting one bits in from the right.
- // A rotate left of ~1 is a nice way of achieving the desired result.
- if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL &&
- isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) {
- return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT),
- N0.getOperand(1));
- }
- // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
- if (N0Opcode == N1.getOpcode())
- if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
- return V;
- if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG))
- return R;
- if (SDValue R = foldLogicOfShifts(N, N1, N0, DAG))
- return R;
- if (SDValue R = foldLogicTreeOfShifts(N, N0, N1, DAG))
- return R;
- // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
- if (SDValue MM = unfoldMaskedMerge(N))
- return MM;
- // Simplify the expression using non-local knowledge.
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
- if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N))
- return Combined;
- return SDValue();
- }
- /// If we have a shift-by-constant of a bitwise logic op that itself has a
- /// shift-by-constant operand with identical opcode, we may be able to convert
- /// that into 2 independent shifts followed by the logic op. This is a
- /// throughput improvement.
- static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) {
- // Match a one-use bitwise logic op.
- SDValue LogicOp = Shift->getOperand(0);
- if (!LogicOp.hasOneUse())
- return SDValue();
- unsigned LogicOpcode = LogicOp.getOpcode();
- if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR &&
- LogicOpcode != ISD::XOR)
- return SDValue();
- // Find a matching one-use shift by constant.
- unsigned ShiftOpcode = Shift->getOpcode();
- SDValue C1 = Shift->getOperand(1);
- ConstantSDNode *C1Node = isConstOrConstSplat(C1);
- assert(C1Node && "Expected a shift with constant operand");
- const APInt &C1Val = C1Node->getAPIntValue();
- auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp,
- const APInt *&ShiftAmtVal) {
- if (V.getOpcode() != ShiftOpcode || !V.hasOneUse())
- return false;
- ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1));
- if (!ShiftCNode)
- return false;
- // Capture the shifted operand and shift amount value.
- ShiftOp = V.getOperand(0);
- ShiftAmtVal = &ShiftCNode->getAPIntValue();
- // Shift amount types do not have to match their operand type, so check that
- // the constants are the same width.
- if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth())
- return false;
- // The fold is not valid if the sum of the shift values exceeds bitwidth.
- if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits()))
- return false;
- return true;
- };
- // Logic ops are commutative, so check each operand for a match.
- SDValue X, Y;
- const APInt *C0Val;
- if (matchFirstShift(LogicOp.getOperand(0), X, C0Val))
- Y = LogicOp.getOperand(1);
- else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val))
- Y = LogicOp.getOperand(0);
- else
- return SDValue();
- // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
- SDLoc DL(Shift);
- EVT VT = Shift->getValueType(0);
- EVT ShiftAmtVT = Shift->getOperand(1).getValueType();
- SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT);
- SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC);
- SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1);
- return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2);
- }
- /// Handle transforms common to the three shifts, when the shift amount is a
- /// constant.
- /// We are looking for: (shift being one of shl/sra/srl)
- /// shift (binop X, C0), C1
- /// And want to transform into:
- /// binop (shift X, C1), (shift C0, C1)
- SDValue DAGCombiner::visitShiftByConstant(SDNode *N) {
- assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand");
- // Do not turn a 'not' into a regular xor.
- if (isBitwiseNot(N->getOperand(0)))
- return SDValue();
- // The inner binop must be one-use, since we want to replace it.
- SDValue LHS = N->getOperand(0);
- if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level))
- return SDValue();
- // Fold shift(bitop(shift(x,c1),y), c2) -> bitop(shift(x,c1+c2),shift(y,c2)).
- if (SDValue R = combineShiftOfShiftedLogic(N, DAG))
- return R;
- // We want to pull some binops through shifts, so that we have (and (shift))
- // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
- // thing happens with address calculations, so it's important to canonicalize
- // it.
- switch (LHS.getOpcode()) {
- default:
- return SDValue();
- case ISD::OR:
- case ISD::XOR:
- case ISD::AND:
- break;
- case ISD::ADD:
- if (N->getOpcode() != ISD::SHL)
- return SDValue(); // only shl(add) not sr[al](add).
- break;
- }
- // FIXME: disable this unless the input to the binop is a shift by a constant
- // or is copy/select. Enable this in other cases when figure out it's exactly
- // profitable.
- SDValue BinOpLHSVal = LHS.getOperand(0);
- bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL ||
- BinOpLHSVal.getOpcode() == ISD::SRA ||
- BinOpLHSVal.getOpcode() == ISD::SRL) &&
- isa<ConstantSDNode>(BinOpLHSVal.getOperand(1));
- bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg ||
- BinOpLHSVal.getOpcode() == ISD::SELECT;
- if (!IsShiftByConstant && !IsCopyOrSelect)
- return SDValue();
- if (IsCopyOrSelect && N->hasOneUse())
- return SDValue();
- // Attempt to fold the constants, shifting the binop RHS by the shift amount.
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
- if (SDValue NewRHS = DAG.FoldConstantArithmetic(
- N->getOpcode(), DL, VT, {LHS.getOperand(1), N->getOperand(1)})) {
- SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0),
- N->getOperand(1));
- return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS);
- }
- return SDValue();
- }
- SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
- assert(N->getOpcode() == ISD::TRUNCATE);
- assert(N->getOperand(0).getOpcode() == ISD::AND);
- // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
- EVT TruncVT = N->getValueType(0);
- if (N->hasOneUse() && N->getOperand(0).hasOneUse() &&
- TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) {
- SDValue N01 = N->getOperand(0).getOperand(1);
- if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) {
- SDLoc DL(N);
- SDValue N00 = N->getOperand(0).getOperand(0);
- SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00);
- SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01);
- AddToWorklist(Trunc00.getNode());
- AddToWorklist(Trunc01.getNode());
- return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01);
- }
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitRotate(SDNode *N) {
- SDLoc dl(N);
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- unsigned Bitsize = VT.getScalarSizeInBits();
- // fold (rot x, 0) -> x
- if (isNullOrNullSplat(N1))
- return N0;
- // fold (rot x, c) -> x iff (c % BitSize) == 0
- if (isPowerOf2_32(Bitsize) && Bitsize > 1) {
- APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1);
- if (DAG.MaskedValueIsZero(N1, ModuloMask))
- return N0;
- }
- // fold (rot x, c) -> (rot x, c % BitSize)
- bool OutOfRange = false;
- auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) {
- OutOfRange |= C->getAPIntValue().uge(Bitsize);
- return true;
- };
- if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) {
- EVT AmtVT = N1.getValueType();
- SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT);
- if (SDValue Amt =
- DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits}))
- return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt);
- }
- // rot i16 X, 8 --> bswap X
- auto *RotAmtC = isConstOrConstSplat(N1);
- if (RotAmtC && RotAmtC->getAPIntValue() == 8 &&
- VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT))
- return DAG.getNode(ISD::BSWAP, dl, VT, N0);
- // Simplify the operands using demanded-bits information.
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
- // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
- if (N1.getOpcode() == ISD::TRUNCATE &&
- N1.getOperand(0).getOpcode() == ISD::AND) {
- if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
- return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1);
- }
- unsigned NextOp = N0.getOpcode();
- // fold (rot* (rot* x, c2), c1)
- // -> (rot* x, ((c1 % bitsize) +- (c2 % bitsize) + bitsize) % bitsize)
- if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) {
- SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1);
- SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1));
- if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) {
- EVT ShiftVT = C1->getValueType(0);
- bool SameSide = (N->getOpcode() == NextOp);
- unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB;
- SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT);
- SDValue Norm1 = DAG.FoldConstantArithmetic(ISD::UREM, dl, ShiftVT,
- {N1, BitsizeC});
- SDValue Norm2 = DAG.FoldConstantArithmetic(ISD::UREM, dl, ShiftVT,
- {N0.getOperand(1), BitsizeC});
- if (Norm1 && Norm2)
- if (SDValue CombinedShift = DAG.FoldConstantArithmetic(
- CombineOp, dl, ShiftVT, {Norm1, Norm2})) {
- CombinedShift = DAG.FoldConstantArithmetic(ISD::ADD, dl, ShiftVT,
- {CombinedShift, BitsizeC});
- SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic(
- ISD::UREM, dl, ShiftVT, {CombinedShift, BitsizeC});
- return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0),
- CombinedShiftNorm);
- }
- }
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitSHL(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- if (SDValue V = DAG.simplifyShift(N0, N1))
- return V;
- EVT VT = N0.getValueType();
- EVT ShiftVT = N1.getValueType();
- unsigned OpSizeInBits = VT.getScalarSizeInBits();
- // fold (shl c1, c2) -> c1<<c2
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N0, N1}))
- return C;
- // fold vector ops
- if (VT.isVector()) {
- if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N)))
- return FoldedVOp;
- BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
- // If setcc produces all-one true value then:
- // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
- if (N1CV && N1CV->isConstant()) {
- if (N0.getOpcode() == ISD::AND) {
- SDValue N00 = N0->getOperand(0);
- SDValue N01 = N0->getOperand(1);
- BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
- if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
- TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
- TargetLowering::ZeroOrNegativeOneBooleanContent) {
- if (SDValue C =
- DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N01, N1}))
- return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
- }
- }
- }
- }
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
- // if (shl x, c) is known to be zero, return 0
- if (DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits)))
- return DAG.getConstant(0, SDLoc(N), VT);
- // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
- if (N1.getOpcode() == ISD::TRUNCATE &&
- N1.getOperand(0).getOpcode() == ISD::AND) {
- if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
- return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1);
- }
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
- // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
- if (N0.getOpcode() == ISD::SHL) {
- auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
- ConstantSDNode *RHS) {
- APInt c1 = LHS->getAPIntValue();
- APInt c2 = RHS->getAPIntValue();
- zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
- return (c1 + c2).uge(OpSizeInBits);
- };
- if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
- return DAG.getConstant(0, SDLoc(N), VT);
- auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
- ConstantSDNode *RHS) {
- APInt c1 = LHS->getAPIntValue();
- APInt c2 = RHS->getAPIntValue();
- zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
- return (c1 + c2).ult(OpSizeInBits);
- };
- if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
- SDLoc DL(N);
- SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
- return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum);
- }
- }
- // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2))
- // For this to be valid, the second form must not preserve any of the bits
- // that are shifted out by the inner shift in the first form. This means
- // the outer shift size must be >= the number of bits added by the ext.
- // As a corollary, we don't care what kind of ext it is.
- if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
- N0.getOpcode() == ISD::ANY_EXTEND ||
- N0.getOpcode() == ISD::SIGN_EXTEND) &&
- N0.getOperand(0).getOpcode() == ISD::SHL) {
- SDValue N0Op0 = N0.getOperand(0);
- SDValue InnerShiftAmt = N0Op0.getOperand(1);
- EVT InnerVT = N0Op0.getValueType();
- uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits();
- auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
- ConstantSDNode *RHS) {
- APInt c1 = LHS->getAPIntValue();
- APInt c2 = RHS->getAPIntValue();
- zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
- return c2.uge(OpSizeInBits - InnerBitwidth) &&
- (c1 + c2).uge(OpSizeInBits);
- };
- if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange,
- /*AllowUndefs*/ false,
- /*AllowTypeMismatch*/ true))
- return DAG.getConstant(0, SDLoc(N), VT);
- auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
- ConstantSDNode *RHS) {
- APInt c1 = LHS->getAPIntValue();
- APInt c2 = RHS->getAPIntValue();
- zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
- return c2.uge(OpSizeInBits - InnerBitwidth) &&
- (c1 + c2).ult(OpSizeInBits);
- };
- if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange,
- /*AllowUndefs*/ false,
- /*AllowTypeMismatch*/ true)) {
- SDLoc DL(N);
- SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0));
- SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT);
- Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1);
- return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum);
- }
- }
- // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
- // Only fold this if the inner zext has no other uses to avoid increasing
- // the total number of instructions.
- if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
- N0.getOperand(0).getOpcode() == ISD::SRL) {
- SDValue N0Op0 = N0.getOperand(0);
- SDValue InnerShiftAmt = N0Op0.getOperand(1);
- auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) {
- APInt c1 = LHS->getAPIntValue();
- APInt c2 = RHS->getAPIntValue();
- zeroExtendToMatch(c1, c2);
- return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2);
- };
- if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual,
- /*AllowUndefs*/ false,
- /*AllowTypeMismatch*/ true)) {
- SDLoc DL(N);
- EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType();
- SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT);
- NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL);
- AddToWorklist(NewSHL.getNode());
- return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
- }
- }
- if (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) {
- auto MatchShiftAmount = [OpSizeInBits](ConstantSDNode *LHS,
- ConstantSDNode *RHS) {
- const APInt &LHSC = LHS->getAPIntValue();
- const APInt &RHSC = RHS->getAPIntValue();
- return LHSC.ult(OpSizeInBits) && RHSC.ult(OpSizeInBits) &&
- LHSC.getZExtValue() <= RHSC.getZExtValue();
- };
- SDLoc DL(N);
- // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
- // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 >= C2
- if (N0->getFlags().hasExact()) {
- if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchShiftAmount,
- /*AllowUndefs*/ false,
- /*AllowTypeMismatch*/ true)) {
- SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
- SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N1, N01);
- return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Diff);
- }
- if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchShiftAmount,
- /*AllowUndefs*/ false,
- /*AllowTypeMismatch*/ true)) {
- SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
- SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N01, N1);
- return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), Diff);
- }
- }
- // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
- // (and (srl x, (sub c1, c2), MASK)
- // Only fold this if the inner shift has no other uses -- if it does,
- // folding this will increase the total number of instructions.
- if (N0.getOpcode() == ISD::SRL &&
- (N0.getOperand(1) == N1 || N0.hasOneUse()) &&
- TLI.shouldFoldConstantShiftPairToMask(N, Level)) {
- if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchShiftAmount,
- /*AllowUndefs*/ false,
- /*AllowTypeMismatch*/ true)) {
- SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
- SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N01, N1);
- SDValue Mask = DAG.getAllOnesConstant(DL, VT);
- Mask = DAG.getNode(ISD::SHL, DL, VT, Mask, N01);
- Mask = DAG.getNode(ISD::SRL, DL, VT, Mask, Diff);
- SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Diff);
- return DAG.getNode(ISD::AND, DL, VT, Shift, Mask);
- }
- if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchShiftAmount,
- /*AllowUndefs*/ false,
- /*AllowTypeMismatch*/ true)) {
- SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
- SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N1, N01);
- SDValue Mask = DAG.getAllOnesConstant(DL, VT);
- Mask = DAG.getNode(ISD::SHL, DL, VT, Mask, N1);
- SDValue Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Diff);
- return DAG.getNode(ISD::AND, DL, VT, Shift, Mask);
- }
- }
- }
- // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
- if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) &&
- isConstantOrConstantVector(N1, /* No Opaques */ true)) {
- SDLoc DL(N);
- SDValue AllBits = DAG.getAllOnesConstant(DL, VT);
- SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1);
- return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask);
- }
- // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
- // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
- // Variant of version done on multiply, except mul by a power of 2 is turned
- // into a shift.
- if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) &&
- N0->hasOneUse() &&
- isConstantOrConstantVector(N1, /* No Opaques */ true) &&
- isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) &&
- TLI.isDesirableToCommuteWithShift(N, Level)) {
- SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
- SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
- AddToWorklist(Shl0.getNode());
- AddToWorklist(Shl1.getNode());
- return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1);
- }
- // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
- if (N0.getOpcode() == ISD::MUL && N0->hasOneUse()) {
- SDValue N01 = N0.getOperand(1);
- if (SDValue Shl =
- DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, {N01, N1}))
- return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl);
- }
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
- if (N1C && !N1C->isOpaque())
- if (SDValue NewSHL = visitShiftByConstant(N))
- return NewSHL;
- // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)).
- if (N0.getOpcode() == ISD::VSCALE && N1C) {
- const APInt &C0 = N0.getConstantOperandAPInt(0);
- const APInt &C1 = N1C->getAPIntValue();
- return DAG.getVScale(SDLoc(N), VT, C0 << C1);
- }
- // Fold (shl step_vector(C0), C1) to (step_vector(C0 << C1)).
- APInt ShlVal;
- if (N0.getOpcode() == ISD::STEP_VECTOR &&
- ISD::isConstantSplatVector(N1.getNode(), ShlVal)) {
- const APInt &C0 = N0.getConstantOperandAPInt(0);
- if (ShlVal.ult(C0.getBitWidth())) {
- APInt NewStep = C0 << ShlVal;
- return DAG.getStepVector(SDLoc(N), VT, NewStep);
- }
- }
- return SDValue();
- }
- // Transform a right shift of a multiply into a multiply-high.
- // Examples:
- // (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b)
- // (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b)
- static SDValue combineShiftToMULH(SDNode *N, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
- "SRL or SRA node is required here!");
- // Check the shift amount. Proceed with the transformation if the shift
- // amount is constant.
- ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1));
- if (!ShiftAmtSrc)
- return SDValue();
- SDLoc DL(N);
- // The operation feeding into the shift must be a multiply.
- SDValue ShiftOperand = N->getOperand(0);
- if (ShiftOperand.getOpcode() != ISD::MUL)
- return SDValue();
- // Both operands must be equivalent extend nodes.
- SDValue LeftOp = ShiftOperand.getOperand(0);
- SDValue RightOp = ShiftOperand.getOperand(1);
- bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND;
- bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND;
- if (!IsSignExt && !IsZeroExt)
- return SDValue();
- EVT NarrowVT = LeftOp.getOperand(0).getValueType();
- unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits();
- // return true if U may use the lower bits of its operands
- auto UserOfLowerBits = [NarrowVTSize](SDNode *U) {
- if (U->getOpcode() != ISD::SRL && U->getOpcode() != ISD::SRA) {
- return true;
- }
- ConstantSDNode *UShiftAmtSrc = isConstOrConstSplat(U->getOperand(1));
- if (!UShiftAmtSrc) {
- return true;
- }
- unsigned UShiftAmt = UShiftAmtSrc->getZExtValue();
- return UShiftAmt < NarrowVTSize;
- };
- // If the lower part of the MUL is also used and MUL_LOHI is supported
- // do not introduce the MULH in favor of MUL_LOHI
- unsigned MulLoHiOp = IsSignExt ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
- if (!ShiftOperand.hasOneUse() &&
- TLI.isOperationLegalOrCustom(MulLoHiOp, NarrowVT) &&
- llvm::any_of(ShiftOperand->uses(), UserOfLowerBits)) {
- return SDValue();
- }
- SDValue MulhRightOp;
- if (ConstantSDNode *Constant = isConstOrConstSplat(RightOp)) {
- unsigned ActiveBits = IsSignExt
- ? Constant->getAPIntValue().getMinSignedBits()
- : Constant->getAPIntValue().getActiveBits();
- if (ActiveBits > NarrowVTSize)
- return SDValue();
- MulhRightOp = DAG.getConstant(
- Constant->getAPIntValue().trunc(NarrowVT.getScalarSizeInBits()), DL,
- NarrowVT);
- } else {
- if (LeftOp.getOpcode() != RightOp.getOpcode())
- return SDValue();
- // Check that the two extend nodes are the same type.
- if (NarrowVT != RightOp.getOperand(0).getValueType())
- return SDValue();
- MulhRightOp = RightOp.getOperand(0);
- }
- EVT WideVT = LeftOp.getValueType();
- // Proceed with the transformation if the wide types match.
- assert((WideVT == RightOp.getValueType()) &&
- "Cannot have a multiply node with two different operand types.");
- // Proceed with the transformation if the wide type is twice as large
- // as the narrow type.
- if (WideVT.getScalarSizeInBits() != 2 * NarrowVTSize)
- return SDValue();
- // Check the shift amount with the narrow type size.
- // Proceed with the transformation if the shift amount is the width
- // of the narrow type.
- unsigned ShiftAmt = ShiftAmtSrc->getZExtValue();
- if (ShiftAmt != NarrowVTSize)
- return SDValue();
- // If the operation feeding into the MUL is a sign extend (sext),
- // we use mulhs. Othewise, zero extends (zext) use mulhu.
- unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU;
- // Combine to mulh if mulh is legal/custom for the narrow type on the target.
- if (!TLI.isOperationLegalOrCustom(MulhOpcode, NarrowVT))
- return SDValue();
- SDValue Result =
- DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0), MulhRightOp);
- return (N->getOpcode() == ISD::SRA ? DAG.getSExtOrTrunc(Result, DL, WideVT)
- : DAG.getZExtOrTrunc(Result, DL, WideVT));
- }
- SDValue DAGCombiner::visitSRA(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- if (SDValue V = DAG.simplifyShift(N0, N1))
- return V;
- EVT VT = N0.getValueType();
- unsigned OpSizeInBits = VT.getScalarSizeInBits();
- // fold (sra c1, c2) -> (sra c1, c2)
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, {N0, N1}))
- return C;
- // Arithmetic shifting an all-sign-bit value is a no-op.
- // fold (sra 0, x) -> 0
- // fold (sra -1, x) -> -1
- if (DAG.ComputeNumSignBits(N0) == OpSizeInBits)
- return N0;
- // fold vector ops
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N)))
- return FoldedVOp;
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
- // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
- // sext_inreg.
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
- if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
- unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
- EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
- if (VT.isVector())
- ExtVT = EVT::getVectorVT(*DAG.getContext(), ExtVT,
- VT.getVectorElementCount());
- if (!LegalOperations ||
- TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) ==
- TargetLowering::Legal)
- return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
- N0.getOperand(0), DAG.getValueType(ExtVT));
- // Even if we can't convert to sext_inreg, we might be able to remove
- // this shift pair if the input is already sign extended.
- if (DAG.ComputeNumSignBits(N0.getOperand(0)) > N1C->getZExtValue())
- return N0.getOperand(0);
- }
- // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
- // clamp (add c1, c2) to max shift.
- if (N0.getOpcode() == ISD::SRA) {
- SDLoc DL(N);
- EVT ShiftVT = N1.getValueType();
- EVT ShiftSVT = ShiftVT.getScalarType();
- SmallVector<SDValue, 16> ShiftValues;
- auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) {
- APInt c1 = LHS->getAPIntValue();
- APInt c2 = RHS->getAPIntValue();
- zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
- APInt Sum = c1 + c2;
- unsigned ShiftSum =
- Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue();
- ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT));
- return true;
- };
- if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) {
- SDValue ShiftValue;
- if (N1.getOpcode() == ISD::BUILD_VECTOR)
- ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues);
- else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
- assert(ShiftValues.size() == 1 &&
- "Expected matchBinaryPredicate to return one element for "
- "SPLAT_VECTORs");
- ShiftValue = DAG.getSplatVector(ShiftVT, DL, ShiftValues[0]);
- } else
- ShiftValue = ShiftValues[0];
- return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue);
- }
- }
- // fold (sra (shl X, m), (sub result_size, n))
- // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
- // result_size - n != m.
- // If truncate is free for the target sext(shl) is likely to result in better
- // code.
- if (N0.getOpcode() == ISD::SHL && N1C) {
- // Get the two constanst of the shifts, CN0 = m, CN = n.
- const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
- if (N01C) {
- LLVMContext &Ctx = *DAG.getContext();
- // Determine what the truncate's result bitsize and type would be.
- EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
- if (VT.isVector())
- TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount());
- // Determine the residual right-shift amount.
- int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
- // If the shift is not a no-op (in which case this should be just a sign
- // extend already), the truncated to type is legal, sign_extend is legal
- // on that type, and the truncate to that type is both legal and free,
- // perform the transform.
- if ((ShiftAmt > 0) &&
- TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
- TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
- TLI.isTruncateFree(VT, TruncVT)) {
- SDLoc DL(N);
- SDValue Amt = DAG.getConstant(ShiftAmt, DL,
- getShiftAmountTy(N0.getOperand(0).getValueType()));
- SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
- N0.getOperand(0), Amt);
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
- Shift);
- return DAG.getNode(ISD::SIGN_EXTEND, DL,
- N->getValueType(0), Trunc);
- }
- }
- }
- // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper.
- // sra (add (shl X, N1C), AddC), N1C -->
- // sext (add (trunc X to (width - N1C)), AddC')
- // sra (sub AddC, (shl X, N1C)), N1C -->
- // sext (sub AddC1',(trunc X to (width - N1C)))
- if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB) && N1C &&
- N0.hasOneUse()) {
- bool IsAdd = N0.getOpcode() == ISD::ADD;
- SDValue Shl = N0.getOperand(IsAdd ? 0 : 1);
- if (Shl.getOpcode() == ISD::SHL && Shl.getOperand(1) == N1 &&
- Shl.hasOneUse()) {
- // TODO: AddC does not need to be a splat.
- if (ConstantSDNode *AddC =
- isConstOrConstSplat(N0.getOperand(IsAdd ? 1 : 0))) {
- // Determine what the truncate's type would be and ask the target if
- // that is a free operation.
- LLVMContext &Ctx = *DAG.getContext();
- unsigned ShiftAmt = N1C->getZExtValue();
- EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt);
- if (VT.isVector())
- TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount());
- // TODO: The simple type check probably belongs in the default hook
- // implementation and/or target-specific overrides (because
- // non-simple types likely require masking when legalized), but
- // that restriction may conflict with other transforms.
- if (TruncVT.isSimple() && isTypeLegal(TruncVT) &&
- TLI.isTruncateFree(VT, TruncVT)) {
- SDLoc DL(N);
- SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT);
- SDValue ShiftC =
- DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt).trunc(
- TruncVT.getScalarSizeInBits()),
- DL, TruncVT);
- SDValue Add;
- if (IsAdd)
- Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC);
- else
- Add = DAG.getNode(ISD::SUB, DL, TruncVT, ShiftC, Trunc);
- return DAG.getSExtOrTrunc(Add, DL, VT);
- }
- }
- }
- }
- // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
- if (N1.getOpcode() == ISD::TRUNCATE &&
- N1.getOperand(0).getOpcode() == ISD::AND) {
- if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
- return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1);
- }
- // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
- // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
- // if c1 is equal to the number of bits the trunc removes
- // TODO - support non-uniform vector shift amounts.
- if (N0.getOpcode() == ISD::TRUNCATE &&
- (N0.getOperand(0).getOpcode() == ISD::SRL ||
- N0.getOperand(0).getOpcode() == ISD::SRA) &&
- N0.getOperand(0).hasOneUse() &&
- N0.getOperand(0).getOperand(1).hasOneUse() && N1C) {
- SDValue N0Op0 = N0.getOperand(0);
- if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
- EVT LargeVT = N0Op0.getValueType();
- unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits;
- if (LargeShift->getAPIntValue() == TruncBits) {
- SDLoc DL(N);
- EVT LargeShiftVT = getShiftAmountTy(LargeVT);
- SDValue Amt = DAG.getZExtOrTrunc(N1, DL, LargeShiftVT);
- Amt = DAG.getNode(ISD::ADD, DL, LargeShiftVT, Amt,
- DAG.getConstant(TruncBits, DL, LargeShiftVT));
- SDValue SRA =
- DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt);
- return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
- }
- }
- }
- // Simplify, based on bits shifted out of the LHS.
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
- // If the sign bit is known to be zero, switch this to a SRL.
- if (DAG.SignBitIsZero(N0))
- return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
- if (N1C && !N1C->isOpaque())
- if (SDValue NewSRA = visitShiftByConstant(N))
- return NewSRA;
- // Try to transform this shift into a multiply-high if
- // it matches the appropriate pattern detected in combineShiftToMULH.
- if (SDValue MULH = combineShiftToMULH(N, DAG, TLI))
- return MULH;
- // Attempt to convert a sra of a load into a narrower sign-extending load.
- if (SDValue NarrowLoad = reduceLoadWidth(N))
- return NarrowLoad;
- return SDValue();
- }
- SDValue DAGCombiner::visitSRL(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- if (SDValue V = DAG.simplifyShift(N0, N1))
- return V;
- EVT VT = N0.getValueType();
- EVT ShiftVT = N1.getValueType();
- unsigned OpSizeInBits = VT.getScalarSizeInBits();
- // fold (srl c1, c2) -> c1 >>u c2
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, {N0, N1}))
- return C;
- // fold vector ops
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVBinOp(N, SDLoc(N)))
- return FoldedVOp;
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
- // if (srl x, c) is known to be zero, return 0
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
- if (N1C &&
- DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits)))
- return DAG.getConstant(0, SDLoc(N), VT);
- // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
- if (N0.getOpcode() == ISD::SRL) {
- auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
- ConstantSDNode *RHS) {
- APInt c1 = LHS->getAPIntValue();
- APInt c2 = RHS->getAPIntValue();
- zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
- return (c1 + c2).uge(OpSizeInBits);
- };
- if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
- return DAG.getConstant(0, SDLoc(N), VT);
- auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
- ConstantSDNode *RHS) {
- APInt c1 = LHS->getAPIntValue();
- APInt c2 = RHS->getAPIntValue();
- zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
- return (c1 + c2).ult(OpSizeInBits);
- };
- if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
- SDLoc DL(N);
- SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
- return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum);
- }
- }
- if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
- N0.getOperand(0).getOpcode() == ISD::SRL) {
- SDValue InnerShift = N0.getOperand(0);
- // TODO - support non-uniform vector shift amounts.
- if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) {
- uint64_t c1 = N001C->getZExtValue();
- uint64_t c2 = N1C->getZExtValue();
- EVT InnerShiftVT = InnerShift.getValueType();
- EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType();
- uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
- // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2)))
- // This is only valid if the OpSizeInBits + c1 = size of inner shift.
- if (c1 + OpSizeInBits == InnerShiftSize) {
- SDLoc DL(N);
- if (c1 + c2 >= InnerShiftSize)
- return DAG.getConstant(0, DL, VT);
- SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT);
- SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT,
- InnerShift.getOperand(0), NewShiftAmt);
- return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift);
- }
- // In the more general case, we can clear the high bits after the shift:
- // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask)
- if (N0.hasOneUse() && InnerShift.hasOneUse() &&
- c1 + c2 < InnerShiftSize) {
- SDLoc DL(N);
- SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT);
- SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT,
- InnerShift.getOperand(0), NewShiftAmt);
- SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize,
- OpSizeInBits - c2),
- DL, InnerShiftVT);
- SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask);
- return DAG.getNode(ISD::TRUNCATE, DL, VT, And);
- }
- }
- }
- // fold (srl (shl x, c1), c2) -> (and (shl x, (sub c1, c2), MASK) or
- // (and (srl x, (sub c2, c1), MASK)
- if (N0.getOpcode() == ISD::SHL &&
- (N0.getOperand(1) == N1 || N0->hasOneUse()) &&
- TLI.shouldFoldConstantShiftPairToMask(N, Level)) {
- auto MatchShiftAmount = [OpSizeInBits](ConstantSDNode *LHS,
- ConstantSDNode *RHS) {
- const APInt &LHSC = LHS->getAPIntValue();
- const APInt &RHSC = RHS->getAPIntValue();
- return LHSC.ult(OpSizeInBits) && RHSC.ult(OpSizeInBits) &&
- LHSC.getZExtValue() <= RHSC.getZExtValue();
- };
- if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchShiftAmount,
- /*AllowUndefs*/ false,
- /*AllowTypeMismatch*/ true)) {
- SDLoc DL(N);
- SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
- SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N01, N1);
- SDValue Mask = DAG.getAllOnesConstant(DL, VT);
- Mask = DAG.getNode(ISD::SRL, DL, VT, Mask, N01);
- Mask = DAG.getNode(ISD::SHL, DL, VT, Mask, Diff);
- SDValue Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Diff);
- return DAG.getNode(ISD::AND, DL, VT, Shift, Mask);
- }
- if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchShiftAmount,
- /*AllowUndefs*/ false,
- /*AllowTypeMismatch*/ true)) {
- SDLoc DL(N);
- SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
- SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N1, N01);
- SDValue Mask = DAG.getAllOnesConstant(DL, VT);
- Mask = DAG.getNode(ISD::SRL, DL, VT, Mask, N1);
- SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Diff);
- return DAG.getNode(ISD::AND, DL, VT, Shift, Mask);
- }
- }
- // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
- // TODO - support non-uniform vector shift amounts.
- if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
- // Shifting in all undef bits?
- EVT SmallVT = N0.getOperand(0).getValueType();
- unsigned BitSize = SmallVT.getScalarSizeInBits();
- if (N1C->getAPIntValue().uge(BitSize))
- return DAG.getUNDEF(VT);
- if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
- uint64_t ShiftAmt = N1C->getZExtValue();
- SDLoc DL0(N0);
- SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT,
- N0.getOperand(0),
- DAG.getConstant(ShiftAmt, DL0,
- getShiftAmountTy(SmallVT)));
- AddToWorklist(SmallShift.getNode());
- APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt);
- SDLoc DL(N);
- return DAG.getNode(ISD::AND, DL, VT,
- DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
- DAG.getConstant(Mask, DL, VT));
- }
- }
- // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
- // bit, which is unmodified by sra.
- if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) {
- if (N0.getOpcode() == ISD::SRA)
- return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
- }
- // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
- if (N1C && N0.getOpcode() == ISD::CTLZ &&
- N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
- KnownBits Known = DAG.computeKnownBits(N0.getOperand(0));
- // If any of the input bits are KnownOne, then the input couldn't be all
- // zeros, thus the result of the srl will always be zero.
- if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
- // If all of the bits input the to ctlz node are known to be zero, then
- // the result of the ctlz is "32" and the result of the shift is one.
- APInt UnknownBits = ~Known.Zero;
- if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
- // Otherwise, check to see if there is exactly one bit input to the ctlz.
- if (UnknownBits.isPowerOf2()) {
- // Okay, we know that only that the single bit specified by UnknownBits
- // could be set on input to the CTLZ node. If this bit is set, the SRL
- // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
- // to an SRL/XOR pair, which is likely to simplify more.
- unsigned ShAmt = UnknownBits.countTrailingZeros();
- SDValue Op = N0.getOperand(0);
- if (ShAmt) {
- SDLoc DL(N0);
- Op = DAG.getNode(ISD::SRL, DL, VT, Op,
- DAG.getConstant(ShAmt, DL,
- getShiftAmountTy(Op.getValueType())));
- AddToWorklist(Op.getNode());
- }
- SDLoc DL(N);
- return DAG.getNode(ISD::XOR, DL, VT,
- Op, DAG.getConstant(1, DL, VT));
- }
- }
- // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
- if (N1.getOpcode() == ISD::TRUNCATE &&
- N1.getOperand(0).getOpcode() == ISD::AND) {
- if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
- return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1);
- }
- // fold operands of srl based on knowledge that the low bits are not
- // demanded.
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
- if (N1C && !N1C->isOpaque())
- if (SDValue NewSRL = visitShiftByConstant(N))
- return NewSRL;
- // Attempt to convert a srl of a load into a narrower zero-extending load.
- if (SDValue NarrowLoad = reduceLoadWidth(N))
- return NarrowLoad;
- // Here is a common situation. We want to optimize:
- //
- // %a = ...
- // %b = and i32 %a, 2
- // %c = srl i32 %b, 1
- // brcond i32 %c ...
- //
- // into
- //
- // %a = ...
- // %b = and %a, 2
- // %c = setcc eq %b, 0
- // brcond %c ...
- //
- // However when after the source operand of SRL is optimized into AND, the SRL
- // itself may not be optimized further. Look for it and add the BRCOND into
- // the worklist.
- //
- // The also tends to happen for binary operations when SimplifyDemandedBits
- // is involved.
- //
- // FIXME: This is unecessary if we process the DAG in topological order,
- // which we plan to do. This workaround can be removed once the DAG is
- // processed in topological order.
- if (N->hasOneUse()) {
- SDNode *Use = *N->use_begin();
- // Look pass the truncate.
- if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse())
- Use = *Use->use_begin();
- if (Use->getOpcode() == ISD::BRCOND || Use->getOpcode() == ISD::AND ||
- Use->getOpcode() == ISD::OR || Use->getOpcode() == ISD::XOR)
- AddToWorklist(Use);
- }
- // Try to transform this shift into a multiply-high if
- // it matches the appropriate pattern detected in combineShiftToMULH.
- if (SDValue MULH = combineShiftToMULH(N, DAG, TLI))
- return MULH;
- return SDValue();
- }
- SDValue DAGCombiner::visitFunnelShift(SDNode *N) {
- EVT VT = N->getValueType(0);
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- bool IsFSHL = N->getOpcode() == ISD::FSHL;
- unsigned BitWidth = VT.getScalarSizeInBits();
- // fold (fshl N0, N1, 0) -> N0
- // fold (fshr N0, N1, 0) -> N1
- if (isPowerOf2_32(BitWidth))
- if (DAG.MaskedValueIsZero(
- N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1)))
- return IsFSHL ? N0 : N1;
- auto IsUndefOrZero = [](SDValue V) {
- return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true);
- };
- // TODO - support non-uniform vector shift amounts.
- if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) {
- EVT ShAmtTy = N2.getValueType();
- // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
- if (Cst->getAPIntValue().uge(BitWidth)) {
- uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth);
- return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1,
- DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy));
- }
- unsigned ShAmt = Cst->getZExtValue();
- if (ShAmt == 0)
- return IsFSHL ? N0 : N1;
- // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
- // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
- // fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
- // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
- if (IsUndefOrZero(N0))
- return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1,
- DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt,
- SDLoc(N), ShAmtTy));
- if (IsUndefOrZero(N1))
- return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
- DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt,
- SDLoc(N), ShAmtTy));
- // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
- // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
- // TODO - bigendian support once we have test coverage.
- // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine?
- // TODO - permit LHS EXTLOAD if extensions are shifted out.
- if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() &&
- !DAG.getDataLayout().isBigEndian()) {
- auto *LHS = dyn_cast<LoadSDNode>(N0);
- auto *RHS = dyn_cast<LoadSDNode>(N1);
- if (LHS && RHS && LHS->isSimple() && RHS->isSimple() &&
- LHS->getAddressSpace() == RHS->getAddressSpace() &&
- (LHS->hasOneUse() || RHS->hasOneUse()) && ISD::isNON_EXTLoad(RHS) &&
- ISD::isNON_EXTLoad(LHS)) {
- if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) {
- SDLoc DL(RHS);
- uint64_t PtrOff =
- IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8);
- Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff);
- unsigned Fast = 0;
- if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
- RHS->getAddressSpace(), NewAlign,
- RHS->getMemOperand()->getFlags(), &Fast) &&
- Fast) {
- SDValue NewPtr = DAG.getMemBasePlusOffset(
- RHS->getBasePtr(), TypeSize::Fixed(PtrOff), DL);
- AddToWorklist(NewPtr.getNode());
- SDValue Load = DAG.getLoad(
- VT, DL, RHS->getChain(), NewPtr,
- RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign,
- RHS->getMemOperand()->getFlags(), RHS->getAAInfo());
- // Replace the old load's chain with the new load's chain.
- WorklistRemover DeadNodes(*this);
- DAG.ReplaceAllUsesOfValueWith(N1.getValue(1), Load.getValue(1));
- return Load;
- }
- }
- }
- }
- }
- // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
- // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
- // iff We know the shift amount is in range.
- // TODO: when is it worth doing SUB(BW, N2) as well?
- if (isPowerOf2_32(BitWidth)) {
- APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1);
- if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
- return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2);
- if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
- return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2);
- }
- // fold (fshl N0, N0, N2) -> (rotl N0, N2)
- // fold (fshr N0, N0, N2) -> (rotr N0, N2)
- // TODO: Investigate flipping this rotate if only one is legal, if funnel shift
- // is legal as well we might be better off avoiding non-constant (BW - N2).
- unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR;
- if (N0 == N1 && hasOperation(RotOpc, VT))
- return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2);
- // Simplify, based on bits shifted out of N0/N1.
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
- return SDValue();
- }
- SDValue DAGCombiner::visitSHLSAT(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- if (SDValue V = DAG.simplifyShift(N0, N1))
- return V;
- EVT VT = N0.getValueType();
- // fold (*shlsat c1, c2) -> c1<<c2
- if (SDValue C =
- DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, {N0, N1}))
- return C;
- ConstantSDNode *N1C = isConstOrConstSplat(N1);
- if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) {
- // fold (sshlsat x, c) -> (shl x, c)
- if (N->getOpcode() == ISD::SSHLSAT && N1C &&
- N1C->getAPIntValue().ult(DAG.ComputeNumSignBits(N0)))
- return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N1);
- // fold (ushlsat x, c) -> (shl x, c)
- if (N->getOpcode() == ISD::USHLSAT && N1C &&
- N1C->getAPIntValue().ule(
- DAG.computeKnownBits(N0).countMinLeadingZeros()))
- return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N1);
- }
- return SDValue();
- }
- // Given a ABS node, detect the following pattern:
- // (ABS (SUB (EXTEND a), (EXTEND b))).
- // Generates UABD/SABD instruction.
- SDValue DAGCombiner::foldABSToABD(SDNode *N) {
- EVT VT = N->getValueType(0);
- SDValue AbsOp1 = N->getOperand(0);
- SDValue Op0, Op1;
- if (AbsOp1.getOpcode() != ISD::SUB)
- return SDValue();
- Op0 = AbsOp1.getOperand(0);
- Op1 = AbsOp1.getOperand(1);
- unsigned Opc0 = Op0.getOpcode();
- // Check if the operands of the sub are (zero|sign)-extended.
- if (Opc0 != Op1.getOpcode() ||
- (Opc0 != ISD::ZERO_EXTEND && Opc0 != ISD::SIGN_EXTEND)) {
- // fold (abs (sub nsw x, y)) -> abds(x, y)
- if (AbsOp1->getFlags().hasNoSignedWrap() &&
- TLI.isOperationLegalOrCustom(ISD::ABDS, VT))
- return DAG.getNode(ISD::ABDS, SDLoc(N), VT, Op0, Op1);
- return SDValue();
- }
- EVT VT1 = Op0.getOperand(0).getValueType();
- EVT VT2 = Op1.getOperand(0).getValueType();
- unsigned ABDOpcode = (Opc0 == ISD::SIGN_EXTEND) ? ISD::ABDS : ISD::ABDU;
- // fold abs(sext(x) - sext(y)) -> zext(abds(x, y))
- // fold abs(zext(x) - zext(y)) -> zext(abdu(x, y))
- // NOTE: Extensions must be equivalent.
- if (VT1 == VT2 && TLI.isOperationLegalOrCustom(ABDOpcode, VT1)) {
- Op0 = Op0.getOperand(0);
- Op1 = Op1.getOperand(0);
- SDValue ABD = DAG.getNode(ABDOpcode, SDLoc(N), VT1, Op0, Op1);
- return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, ABD);
- }
- // fold abs(sext(x) - sext(y)) -> abds(sext(x), sext(y))
- // fold abs(zext(x) - zext(y)) -> abdu(zext(x), zext(y))
- if (TLI.isOperationLegalOrCustom(ABDOpcode, VT))
- return DAG.getNode(ABDOpcode, SDLoc(N), VT, Op0, Op1);
- return SDValue();
- }
- SDValue DAGCombiner::visitABS(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- // fold (abs c1) -> c2
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
- return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0);
- // fold (abs (abs x)) -> (abs x)
- if (N0.getOpcode() == ISD::ABS)
- return N0;
- // fold (abs x) -> x iff not-negative
- if (DAG.SignBitIsZero(N0))
- return N0;
- if (SDValue ABD = foldABSToABD(N))
- return ABD;
- // fold (abs (sign_extend_inreg x)) -> (zero_extend (abs (truncate x)))
- // iff zero_extend/truncate are free.
- if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG) {
- EVT ExtVT = cast<VTSDNode>(N0.getOperand(1))->getVT();
- if (TLI.isTruncateFree(VT, ExtVT) && TLI.isZExtFree(ExtVT, VT) &&
- TLI.isTypeDesirableForOp(ISD::ABS, ExtVT) &&
- hasOperation(ISD::ABS, ExtVT)) {
- SDLoc DL(N);
- return DAG.getNode(
- ISD::ZERO_EXTEND, DL, VT,
- DAG.getNode(ISD::ABS, DL, ExtVT,
- DAG.getNode(ISD::TRUNCATE, DL, ExtVT, N0.getOperand(0))));
- }
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitBSWAP(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- // fold (bswap c1) -> c2
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
- return DAG.getNode(ISD::BSWAP, DL, VT, N0);
- // fold (bswap (bswap x)) -> x
- if (N0.getOpcode() == ISD::BSWAP)
- return N0.getOperand(0);
- // Canonicalize bswap(bitreverse(x)) -> bitreverse(bswap(x)). If bitreverse
- // isn't supported, it will be expanded to bswap followed by a manual reversal
- // of bits in each byte. By placing bswaps before bitreverse, we can remove
- // the two bswaps if the bitreverse gets expanded.
- if (N0.getOpcode() == ISD::BITREVERSE && N0.hasOneUse()) {
- SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, N0.getOperand(0));
- return DAG.getNode(ISD::BITREVERSE, DL, VT, BSwap);
- }
- // fold (bswap shl(x,c)) -> (zext(bswap(trunc(shl(x,sub(c,bw/2))))))
- // iff x >= bw/2 (i.e. lower half is known zero)
- unsigned BW = VT.getScalarSizeInBits();
- if (BW >= 32 && N0.getOpcode() == ISD::SHL && N0.hasOneUse()) {
- auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
- EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), BW / 2);
- if (ShAmt && ShAmt->getAPIntValue().ult(BW) &&
- ShAmt->getZExtValue() >= (BW / 2) &&
- (ShAmt->getZExtValue() % 16) == 0 && TLI.isTypeLegal(HalfVT) &&
- TLI.isTruncateFree(VT, HalfVT) &&
- (!LegalOperations || hasOperation(ISD::BSWAP, HalfVT))) {
- SDValue Res = N0.getOperand(0);
- if (uint64_t NewShAmt = (ShAmt->getZExtValue() - (BW / 2)))
- Res = DAG.getNode(ISD::SHL, DL, VT, Res,
- DAG.getConstant(NewShAmt, DL, getShiftAmountTy(VT)));
- Res = DAG.getZExtOrTrunc(Res, DL, HalfVT);
- Res = DAG.getNode(ISD::BSWAP, DL, HalfVT, Res);
- return DAG.getZExtOrTrunc(Res, DL, VT);
- }
- }
- // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as
- // inverse-shift-of-bswap:
- // bswap (X u<< C) --> (bswap X) u>> C
- // bswap (X u>> C) --> (bswap X) u<< C
- if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
- N0.hasOneUse()) {
- auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
- if (ShAmt && ShAmt->getAPIntValue().ult(BW) &&
- ShAmt->getZExtValue() % 8 == 0) {
- SDValue NewSwap = DAG.getNode(ISD::BSWAP, DL, VT, N0.getOperand(0));
- unsigned InverseShift = N0.getOpcode() == ISD::SHL ? ISD::SRL : ISD::SHL;
- return DAG.getNode(InverseShift, DL, VT, NewSwap, N0.getOperand(1));
- }
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitBITREVERSE(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- // fold (bitreverse c1) -> c2
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
- return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0);
- // fold (bitreverse (bitreverse x)) -> x
- if (N0.getOpcode() == ISD::BITREVERSE)
- return N0.getOperand(0);
- return SDValue();
- }
- SDValue DAGCombiner::visitCTLZ(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- // fold (ctlz c1) -> c2
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
- return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
- // If the value is known never to be zero, switch to the undef version.
- if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) {
- if (DAG.isKnownNeverZero(N0))
- return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- // fold (ctlz_zero_undef c1) -> c2
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
- return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
- return SDValue();
- }
- SDValue DAGCombiner::visitCTTZ(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- // fold (cttz c1) -> c2
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
- return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
- // If the value is known never to be zero, switch to the undef version.
- if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) {
- if (DAG.isKnownNeverZero(N0))
- return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- // fold (cttz_zero_undef c1) -> c2
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
- return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
- return SDValue();
- }
- SDValue DAGCombiner::visitCTPOP(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- // fold (ctpop c1) -> c2
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
- return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
- return SDValue();
- }
- // FIXME: This should be checking for no signed zeros on individual operands, as
- // well as no nans.
- static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS,
- SDValue RHS,
- const TargetLowering &TLI) {
- const TargetOptions &Options = DAG.getTarget().Options;
- EVT VT = LHS.getValueType();
- return Options.NoSignedZerosFPMath && VT.isFloatingPoint() &&
- TLI.isProfitableToCombineMinNumMaxNum(VT) &&
- DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS);
- }
- static SDValue combineMinNumMaxNumImpl(const SDLoc &DL, EVT VT, SDValue LHS,
- SDValue RHS, SDValue True, SDValue False,
- ISD::CondCode CC,
- const TargetLowering &TLI,
- SelectionDAG &DAG) {
- EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
- switch (CC) {
- case ISD::SETOLT:
- case ISD::SETOLE:
- case ISD::SETLT:
- case ISD::SETLE:
- case ISD::SETULT:
- case ISD::SETULE: {
- // Since it's known never nan to get here already, either fminnum or
- // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
- // expanded in terms of it.
- unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
- if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
- return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
- unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
- if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
- return DAG.getNode(Opcode, DL, VT, LHS, RHS);
- return SDValue();
- }
- case ISD::SETOGT:
- case ISD::SETOGE:
- case ISD::SETGT:
- case ISD::SETGE:
- case ISD::SETUGT:
- case ISD::SETUGE: {
- unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
- if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
- return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
- unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
- if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
- return DAG.getNode(Opcode, DL, VT, LHS, RHS);
- return SDValue();
- }
- default:
- return SDValue();
- }
- }
- /// Generate Min/Max node
- SDValue DAGCombiner::combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
- SDValue RHS, SDValue True,
- SDValue False, ISD::CondCode CC) {
- if ((LHS == True && RHS == False) || (LHS == False && RHS == True))
- return combineMinNumMaxNumImpl(DL, VT, LHS, RHS, True, False, CC, TLI, DAG);
- // If we can't directly match this, try to see if we can pull an fneg out of
- // the select.
- SDValue NegTrue = TLI.getCheaperOrNeutralNegatedExpression(
- True, DAG, LegalOperations, ForCodeSize);
- if (!NegTrue)
- return SDValue();
- HandleSDNode NegTrueHandle(NegTrue);
- // Try to unfold an fneg from the select if we are comparing the negated
- // constant.
- //
- // select (setcc x, K) (fneg x), -K -> fneg(minnum(x, K))
- //
- // TODO: Handle fabs
- if (LHS == NegTrue) {
- // If we can't directly match this, try to see if we can pull an fneg out of
- // the select.
- SDValue NegRHS = TLI.getCheaperOrNeutralNegatedExpression(
- RHS, DAG, LegalOperations, ForCodeSize);
- if (NegRHS) {
- HandleSDNode NegRHSHandle(NegRHS);
- if (NegRHS == False) {
- SDValue Combined = combineMinNumMaxNumImpl(DL, VT, LHS, RHS, NegTrue,
- False, CC, TLI, DAG);
- if (Combined)
- return DAG.getNode(ISD::FNEG, DL, VT, Combined);
- }
- }
- }
- return SDValue();
- }
- /// If a (v)select has a condition value that is a sign-bit test, try to smear
- /// the condition operand sign-bit across the value width and use it as a mask.
- static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) {
- SDValue Cond = N->getOperand(0);
- SDValue C1 = N->getOperand(1);
- SDValue C2 = N->getOperand(2);
- if (!isConstantOrConstantVector(C1) || !isConstantOrConstantVector(C2))
- return SDValue();
- EVT VT = N->getValueType(0);
- if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() ||
- VT != Cond.getOperand(0).getValueType())
- return SDValue();
- // The inverted-condition + commuted-select variants of these patterns are
- // canonicalized to these forms in IR.
- SDValue X = Cond.getOperand(0);
- SDValue CondC = Cond.getOperand(1);
- ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
- if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) &&
- isAllOnesOrAllOnesSplat(C2)) {
- // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1
- SDLoc DL(N);
- SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
- SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
- return DAG.getNode(ISD::OR, DL, VT, Sra, C1);
- }
- if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) {
- // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1
- SDLoc DL(N);
- SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
- SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
- return DAG.getNode(ISD::AND, DL, VT, Sra, C1);
- }
- return SDValue();
- }
- static bool shouldConvertSelectOfConstantsToMath(const SDValue &Cond, EVT VT,
- const TargetLowering &TLI) {
- if (!TLI.convertSelectOfConstantsToMath(VT))
- return false;
- if (Cond.getOpcode() != ISD::SETCC || !Cond->hasOneUse())
- return true;
- if (!TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
- return true;
- ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
- if (CC == ISD::SETLT && isNullOrNullSplat(Cond.getOperand(1)))
- return true;
- if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(Cond.getOperand(1)))
- return true;
- return false;
- }
- SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) {
- SDValue Cond = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- EVT VT = N->getValueType(0);
- EVT CondVT = Cond.getValueType();
- SDLoc DL(N);
- if (!VT.isInteger())
- return SDValue();
- auto *C1 = dyn_cast<ConstantSDNode>(N1);
- auto *C2 = dyn_cast<ConstantSDNode>(N2);
- if (!C1 || !C2)
- return SDValue();
- if (CondVT != MVT::i1 || LegalOperations) {
- // fold (select Cond, 0, 1) -> (xor Cond, 1)
- // We can't do this reliably if integer based booleans have different contents
- // to floating point based booleans. This is because we can't tell whether we
- // have an integer-based boolean or a floating-point-based boolean unless we
- // can find the SETCC that produced it and inspect its operands. This is
- // fairly easy if C is the SETCC node, but it can potentially be
- // undiscoverable (or not reasonably discoverable). For example, it could be
- // in another basic block or it could require searching a complicated
- // expression.
- if (CondVT.isInteger() &&
- TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- C1->isZero() && C2->isOne()) {
- SDValue NotCond =
- DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT));
- if (VT.bitsEq(CondVT))
- return NotCond;
- return DAG.getZExtOrTrunc(NotCond, DL, VT);
- }
- return SDValue();
- }
- // Only do this before legalization to avoid conflicting with target-specific
- // transforms in the other direction (create a select from a zext/sext). There
- // is also a target-independent combine here in DAGCombiner in the other
- // direction for (select Cond, -1, 0) when the condition is not i1.
- assert(CondVT == MVT::i1 && !LegalOperations);
- // select Cond, 1, 0 --> zext (Cond)
- if (C1->isOne() && C2->isZero())
- return DAG.getZExtOrTrunc(Cond, DL, VT);
- // select Cond, -1, 0 --> sext (Cond)
- if (C1->isAllOnes() && C2->isZero())
- return DAG.getSExtOrTrunc(Cond, DL, VT);
- // select Cond, 0, 1 --> zext (!Cond)
- if (C1->isZero() && C2->isOne()) {
- SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
- NotCond = DAG.getZExtOrTrunc(NotCond, DL, VT);
- return NotCond;
- }
- // select Cond, 0, -1 --> sext (!Cond)
- if (C1->isZero() && C2->isAllOnes()) {
- SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
- NotCond = DAG.getSExtOrTrunc(NotCond, DL, VT);
- return NotCond;
- }
- // Use a target hook because some targets may prefer to transform in the
- // other direction.
- if (!shouldConvertSelectOfConstantsToMath(Cond, VT, TLI))
- return SDValue();
- // For any constants that differ by 1, we can transform the select into
- // an extend and add.
- const APInt &C1Val = C1->getAPIntValue();
- const APInt &C2Val = C2->getAPIntValue();
- // select Cond, C1, C1-1 --> add (zext Cond), C1-1
- if (C1Val - 1 == C2Val) {
- Cond = DAG.getZExtOrTrunc(Cond, DL, VT);
- return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
- }
- // select Cond, C1, C1+1 --> add (sext Cond), C1+1
- if (C1Val + 1 == C2Val) {
- Cond = DAG.getSExtOrTrunc(Cond, DL, VT);
- return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
- }
- // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2)
- if (C1Val.isPowerOf2() && C2Val.isZero()) {
- Cond = DAG.getZExtOrTrunc(Cond, DL, VT);
- SDValue ShAmtC =
- DAG.getShiftAmountConstant(C1Val.exactLogBase2(), VT, DL);
- return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC);
- }
- // select Cond, -1, C --> or (sext Cond), C
- if (C1->isAllOnes()) {
- Cond = DAG.getSExtOrTrunc(Cond, DL, VT);
- return DAG.getNode(ISD::OR, DL, VT, Cond, N2);
- }
- // select Cond, C, -1 --> or (sext (not Cond)), C
- if (C2->isAllOnes()) {
- SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
- NotCond = DAG.getSExtOrTrunc(NotCond, DL, VT);
- return DAG.getNode(ISD::OR, DL, VT, NotCond, N1);
- }
- if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG))
- return V;
- return SDValue();
- }
- static SDValue foldBoolSelectToLogic(SDNode *N, SelectionDAG &DAG) {
- assert((N->getOpcode() == ISD::SELECT || N->getOpcode() == ISD::VSELECT) &&
- "Expected a (v)select");
- SDValue Cond = N->getOperand(0);
- SDValue T = N->getOperand(1), F = N->getOperand(2);
- EVT VT = N->getValueType(0);
- if (VT != Cond.getValueType() || VT.getScalarSizeInBits() != 1)
- return SDValue();
- // select Cond, Cond, F --> or Cond, F
- // select Cond, 1, F --> or Cond, F
- if (Cond == T || isOneOrOneSplat(T, /* AllowUndefs */ true))
- return DAG.getNode(ISD::OR, SDLoc(N), VT, Cond, F);
- // select Cond, T, Cond --> and Cond, T
- // select Cond, T, 0 --> and Cond, T
- if (Cond == F || isNullOrNullSplat(F, /* AllowUndefs */ true))
- return DAG.getNode(ISD::AND, SDLoc(N), VT, Cond, T);
- // select Cond, T, 1 --> or (not Cond), T
- if (isOneOrOneSplat(F, /* AllowUndefs */ true)) {
- SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT);
- return DAG.getNode(ISD::OR, SDLoc(N), VT, NotCond, T);
- }
- // select Cond, 0, F --> and (not Cond), F
- if (isNullOrNullSplat(T, /* AllowUndefs */ true)) {
- SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT);
- return DAG.getNode(ISD::AND, SDLoc(N), VT, NotCond, F);
- }
- return SDValue();
- }
- static SDValue foldVSelectToSignBitSplatMask(SDNode *N, SelectionDAG &DAG) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- EVT VT = N->getValueType(0);
- if (N0.getOpcode() != ISD::SETCC || !N0.hasOneUse())
- return SDValue();
- SDValue Cond0 = N0.getOperand(0);
- SDValue Cond1 = N0.getOperand(1);
- ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
- if (VT != Cond0.getValueType())
- return SDValue();
- // Match a signbit check of Cond0 as "Cond0 s<0". Swap select operands if the
- // compare is inverted from that pattern ("Cond0 s> -1").
- if (CC == ISD::SETLT && isNullOrNullSplat(Cond1))
- ; // This is the pattern we are looking for.
- else if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(Cond1))
- std::swap(N1, N2);
- else
- return SDValue();
- // (Cond0 s< 0) ? N1 : 0 --> (Cond0 s>> BW-1) & N1
- if (isNullOrNullSplat(N2)) {
- SDLoc DL(N);
- SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT);
- SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt);
- return DAG.getNode(ISD::AND, DL, VT, Sra, N1);
- }
- // (Cond0 s< 0) ? -1 : N2 --> (Cond0 s>> BW-1) | N2
- if (isAllOnesOrAllOnesSplat(N1)) {
- SDLoc DL(N);
- SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT);
- SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt);
- return DAG.getNode(ISD::OR, DL, VT, Sra, N2);
- }
- // If we have to invert the sign bit mask, only do that transform if the
- // target has a bitwise 'and not' instruction (the invert is free).
- // (Cond0 s< -0) ? 0 : N2 --> ~(Cond0 s>> BW-1) & N2
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (isNullOrNullSplat(N1) && TLI.hasAndNot(N1)) {
- SDLoc DL(N);
- SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT);
- SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt);
- SDValue Not = DAG.getNOT(DL, Sra, VT);
- return DAG.getNode(ISD::AND, DL, VT, Not, N2);
- }
- // TODO: There's another pattern in this family, but it may require
- // implementing hasOrNot() to check for profitability:
- // (Cond0 s> -1) ? -1 : N2 --> ~(Cond0 s>> BW-1) | N2
- return SDValue();
- }
- SDValue DAGCombiner::visitSELECT(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- EVT VT = N->getValueType(0);
- EVT VT0 = N0.getValueType();
- SDLoc DL(N);
- SDNodeFlags Flags = N->getFlags();
- if (SDValue V = DAG.simplifySelect(N0, N1, N2))
- return V;
- if (SDValue V = foldBoolSelectToLogic(N, DAG))
- return V;
- // select (not Cond), N1, N2 -> select Cond, N2, N1
- if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) {
- SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1);
- SelectOp->setFlags(Flags);
- return SelectOp;
- }
- if (SDValue V = foldSelectOfConstants(N))
- return V;
- // If we can fold this based on the true/false value, do so.
- if (SimplifySelectOps(N, N1, N2))
- return SDValue(N, 0); // Don't revisit N.
- if (VT0 == MVT::i1) {
- // The code in this block deals with the following 2 equivalences:
- // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
- // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
- // The target can specify its preferred form with the
- // shouldNormalizeToSelectSequence() callback. However we always transform
- // to the right anyway if we find the inner select exists in the DAG anyway
- // and we always transform to the left side if we know that we can further
- // optimize the combination of the conditions.
- bool normalizeToSequence =
- TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT);
- // select (and Cond0, Cond1), X, Y
- // -> select Cond0, (select Cond1, X, Y), Y
- if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
- SDValue Cond0 = N0->getOperand(0);
- SDValue Cond1 = N0->getOperand(1);
- SDValue InnerSelect =
- DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags);
- if (normalizeToSequence || !InnerSelect.use_empty())
- return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0,
- InnerSelect, N2, Flags);
- // Cleanup on failure.
- if (InnerSelect.use_empty())
- recursivelyDeleteUnusedNodes(InnerSelect.getNode());
- }
- // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
- if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
- SDValue Cond0 = N0->getOperand(0);
- SDValue Cond1 = N0->getOperand(1);
- SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(),
- Cond1, N1, N2, Flags);
- if (normalizeToSequence || !InnerSelect.use_empty())
- return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1,
- InnerSelect, Flags);
- // Cleanup on failure.
- if (InnerSelect.use_empty())
- recursivelyDeleteUnusedNodes(InnerSelect.getNode());
- }
- // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
- if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
- SDValue N1_0 = N1->getOperand(0);
- SDValue N1_1 = N1->getOperand(1);
- SDValue N1_2 = N1->getOperand(2);
- if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
- // Create the actual and node if we can generate good code for it.
- if (!normalizeToSequence) {
- SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0);
- return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1,
- N2, Flags);
- }
- // Otherwise see if we can optimize the "and" to a better pattern.
- if (SDValue Combined = visitANDLike(N0, N1_0, N)) {
- return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1,
- N2, Flags);
- }
- }
- }
- // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
- if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
- SDValue N2_0 = N2->getOperand(0);
- SDValue N2_1 = N2->getOperand(1);
- SDValue N2_2 = N2->getOperand(2);
- if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
- // Create the actual or node if we can generate good code for it.
- if (!normalizeToSequence) {
- SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0);
- return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1,
- N2_2, Flags);
- }
- // Otherwise see if we can optimize to a better pattern.
- if (SDValue Combined = visitORLike(N0, N2_0, N))
- return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1,
- N2_2, Flags);
- }
- }
- }
- // Fold selects based on a setcc into other things, such as min/max/abs.
- if (N0.getOpcode() == ISD::SETCC) {
- SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1);
- ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
- // select (fcmp lt x, y), x, y -> fminnum x, y
- // select (fcmp gt x, y), x, y -> fmaxnum x, y
- //
- // This is OK if we don't care what happens if either operand is a NaN.
- if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI))
- if (SDValue FMinMax =
- combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, CC))
- return FMinMax;
- // Use 'unsigned add with overflow' to optimize an unsigned saturating add.
- // This is conservatively limited to pre-legal-operations to give targets
- // a chance to reverse the transform if they want to do that. Also, it is
- // unlikely that the pattern would be formed late, so it's probably not
- // worth going through the other checks.
- if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) &&
- CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) &&
- N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) {
- auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1));
- auto *NotC = dyn_cast<ConstantSDNode>(Cond1);
- if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) {
- // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
- // uaddo Cond0, C; select uaddo.1, -1, uaddo.0
- //
- // The IR equivalent of this transform would have this form:
- // %a = add %x, C
- // %c = icmp ugt %x, ~C
- // %r = select %c, -1, %a
- // =>
- // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
- // %u0 = extractvalue %u, 0
- // %u1 = extractvalue %u, 1
- // %r = select %u1, -1, %u0
- SDVTList VTs = DAG.getVTList(VT, VT0);
- SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1));
- return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0));
- }
- }
- if (TLI.isOperationLegal(ISD::SELECT_CC, VT) ||
- (!LegalOperations &&
- TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) {
- // Any flags available in a select/setcc fold will be on the setcc as they
- // migrated from fcmp
- Flags = N0->getFlags();
- SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1,
- N2, N0.getOperand(2));
- SelectNode->setFlags(Flags);
- return SelectNode;
- }
- if (SDValue NewSel = SimplifySelect(DL, N0, N1, N2))
- return NewSel;
- }
- if (!VT.isVector())
- if (SDValue BinOp = foldSelectOfBinops(N))
- return BinOp;
- return SDValue();
- }
- // This function assumes all the vselect's arguments are CONCAT_VECTOR
- // nodes and that the condition is a BV of ConstantSDNodes (or undefs).
- static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
- SDLoc DL(N);
- SDValue Cond = N->getOperand(0);
- SDValue LHS = N->getOperand(1);
- SDValue RHS = N->getOperand(2);
- EVT VT = N->getValueType(0);
- int NumElems = VT.getVectorNumElements();
- assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
- RHS.getOpcode() == ISD::CONCAT_VECTORS &&
- Cond.getOpcode() == ISD::BUILD_VECTOR);
- // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
- // binary ones here.
- if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
- return SDValue();
- // We're sure we have an even number of elements due to the
- // concat_vectors we have as arguments to vselect.
- // Skip BV elements until we find one that's not an UNDEF
- // After we find an UNDEF element, keep looping until we get to half the
- // length of the BV and see if all the non-undef nodes are the same.
- ConstantSDNode *BottomHalf = nullptr;
- for (int i = 0; i < NumElems / 2; ++i) {
- if (Cond->getOperand(i)->isUndef())
- continue;
- if (BottomHalf == nullptr)
- BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
- else if (Cond->getOperand(i).getNode() != BottomHalf)
- return SDValue();
- }
- // Do the same for the second half of the BuildVector
- ConstantSDNode *TopHalf = nullptr;
- for (int i = NumElems / 2; i < NumElems; ++i) {
- if (Cond->getOperand(i)->isUndef())
- continue;
- if (TopHalf == nullptr)
- TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
- else if (Cond->getOperand(i).getNode() != TopHalf)
- return SDValue();
- }
- assert(TopHalf && BottomHalf &&
- "One half of the selector was all UNDEFs and the other was all the "
- "same value. This should have been addressed before this function.");
- return DAG.getNode(
- ISD::CONCAT_VECTORS, DL, VT,
- BottomHalf->isZero() ? RHS->getOperand(0) : LHS->getOperand(0),
- TopHalf->isZero() ? RHS->getOperand(1) : LHS->getOperand(1));
- }
- bool refineUniformBase(SDValue &BasePtr, SDValue &Index, bool IndexIsScaled,
- SelectionDAG &DAG, const SDLoc &DL) {
- if (Index.getOpcode() != ISD::ADD)
- return false;
- // Only perform the transformation when existing operands can be reused.
- if (IndexIsScaled)
- return false;
- if (!isNullConstant(BasePtr) && !Index.hasOneUse())
- return false;
- EVT VT = BasePtr.getValueType();
- if (SDValue SplatVal = DAG.getSplatValue(Index.getOperand(0));
- SplatVal && SplatVal.getValueType() == VT) {
- if (isNullConstant(BasePtr))
- BasePtr = SplatVal;
- else
- BasePtr = DAG.getNode(ISD::ADD, DL, VT, BasePtr, SplatVal);
- Index = Index.getOperand(1);
- return true;
- }
- if (SDValue SplatVal = DAG.getSplatValue(Index.getOperand(1));
- SplatVal && SplatVal.getValueType() == VT) {
- if (isNullConstant(BasePtr))
- BasePtr = SplatVal;
- else
- BasePtr = DAG.getNode(ISD::ADD, DL, VT, BasePtr, SplatVal);
- Index = Index.getOperand(0);
- return true;
- }
- return false;
- }
- // Fold sext/zext of index into index type.
- bool refineIndexType(SDValue &Index, ISD::MemIndexType &IndexType, EVT DataVT,
- SelectionDAG &DAG) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // It's always safe to look through zero extends.
- if (Index.getOpcode() == ISD::ZERO_EXTEND) {
- SDValue Op = Index.getOperand(0);
- if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType(), DataVT)) {
- IndexType = ISD::UNSIGNED_SCALED;
- Index = Op;
- return true;
- }
- if (ISD::isIndexTypeSigned(IndexType)) {
- IndexType = ISD::UNSIGNED_SCALED;
- return true;
- }
- }
- // It's only safe to look through sign extends when Index is signed.
- if (Index.getOpcode() == ISD::SIGN_EXTEND &&
- ISD::isIndexTypeSigned(IndexType)) {
- SDValue Op = Index.getOperand(0);
- if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType(), DataVT)) {
- Index = Op;
- return true;
- }
- }
- return false;
- }
- SDValue DAGCombiner::visitVPSCATTER(SDNode *N) {
- VPScatterSDNode *MSC = cast<VPScatterSDNode>(N);
- SDValue Mask = MSC->getMask();
- SDValue Chain = MSC->getChain();
- SDValue Index = MSC->getIndex();
- SDValue Scale = MSC->getScale();
- SDValue StoreVal = MSC->getValue();
- SDValue BasePtr = MSC->getBasePtr();
- SDValue VL = MSC->getVectorLength();
- ISD::MemIndexType IndexType = MSC->getIndexType();
- SDLoc DL(N);
- // Zap scatters with a zero mask.
- if (ISD::isConstantSplatVectorAllZeros(Mask.getNode()))
- return Chain;
- if (refineUniformBase(BasePtr, Index, MSC->isIndexScaled(), DAG, DL)) {
- SDValue Ops[] = {Chain, StoreVal, BasePtr, Index, Scale, Mask, VL};
- return DAG.getScatterVP(DAG.getVTList(MVT::Other), MSC->getMemoryVT(),
- DL, Ops, MSC->getMemOperand(), IndexType);
- }
- if (refineIndexType(Index, IndexType, StoreVal.getValueType(), DAG)) {
- SDValue Ops[] = {Chain, StoreVal, BasePtr, Index, Scale, Mask, VL};
- return DAG.getScatterVP(DAG.getVTList(MVT::Other), MSC->getMemoryVT(),
- DL, Ops, MSC->getMemOperand(), IndexType);
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
- MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
- SDValue Mask = MSC->getMask();
- SDValue Chain = MSC->getChain();
- SDValue Index = MSC->getIndex();
- SDValue Scale = MSC->getScale();
- SDValue StoreVal = MSC->getValue();
- SDValue BasePtr = MSC->getBasePtr();
- ISD::MemIndexType IndexType = MSC->getIndexType();
- SDLoc DL(N);
- // Zap scatters with a zero mask.
- if (ISD::isConstantSplatVectorAllZeros(Mask.getNode()))
- return Chain;
- if (refineUniformBase(BasePtr, Index, MSC->isIndexScaled(), DAG, DL)) {
- SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale};
- return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), MSC->getMemoryVT(),
- DL, Ops, MSC->getMemOperand(), IndexType,
- MSC->isTruncatingStore());
- }
- if (refineIndexType(Index, IndexType, StoreVal.getValueType(), DAG)) {
- SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale};
- return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), MSC->getMemoryVT(),
- DL, Ops, MSC->getMemOperand(), IndexType,
- MSC->isTruncatingStore());
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitMSTORE(SDNode *N) {
- MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
- SDValue Mask = MST->getMask();
- SDValue Chain = MST->getChain();
- SDValue Value = MST->getValue();
- SDValue Ptr = MST->getBasePtr();
- SDLoc DL(N);
- // Zap masked stores with a zero mask.
- if (ISD::isConstantSplatVectorAllZeros(Mask.getNode()))
- return Chain;
- // If this is a masked load with an all ones mask, we can use a unmasked load.
- // FIXME: Can we do this for indexed, compressing, or truncating stores?
- if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && MST->isUnindexed() &&
- !MST->isCompressingStore() && !MST->isTruncatingStore())
- return DAG.getStore(MST->getChain(), SDLoc(N), MST->getValue(),
- MST->getBasePtr(), MST->getPointerInfo(),
- MST->getOriginalAlign(), MachineMemOperand::MOStore,
- MST->getAAInfo());
- // Try transforming N to an indexed store.
- if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
- return SDValue(N, 0);
- if (MST->isTruncatingStore() && MST->isUnindexed() &&
- Value.getValueType().isInteger() &&
- (!isa<ConstantSDNode>(Value) ||
- !cast<ConstantSDNode>(Value)->isOpaque())) {
- APInt TruncDemandedBits =
- APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
- MST->getMemoryVT().getScalarSizeInBits());
- // See if we can simplify the operation with
- // SimplifyDemandedBits, which only works if the value has a single use.
- if (SimplifyDemandedBits(Value, TruncDemandedBits)) {
- // Re-visit the store if anything changed and the store hasn't been merged
- // with another node (N is deleted) SimplifyDemandedBits will add Value's
- // node back to the worklist if necessary, but we also need to re-visit
- // the Store node itself.
- if (N->getOpcode() != ISD::DELETED_NODE)
- AddToWorklist(N);
- return SDValue(N, 0);
- }
- }
- // If this is a TRUNC followed by a masked store, fold this into a masked
- // truncating store. We can do this even if this is already a masked
- // truncstore.
- // TODO: Try combine to masked compress store if possiable.
- if ((Value.getOpcode() == ISD::TRUNCATE) && Value->hasOneUse() &&
- MST->isUnindexed() && !MST->isCompressingStore() &&
- TLI.canCombineTruncStore(Value.getOperand(0).getValueType(),
- MST->getMemoryVT(), LegalOperations)) {
- auto Mask = TLI.promoteTargetBoolean(DAG, MST->getMask(),
- Value.getOperand(0).getValueType());
- return DAG.getMaskedStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
- MST->getOffset(), Mask, MST->getMemoryVT(),
- MST->getMemOperand(), MST->getAddressingMode(),
- /*IsTruncating=*/true);
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitVPGATHER(SDNode *N) {
- VPGatherSDNode *MGT = cast<VPGatherSDNode>(N);
- SDValue Mask = MGT->getMask();
- SDValue Chain = MGT->getChain();
- SDValue Index = MGT->getIndex();
- SDValue Scale = MGT->getScale();
- SDValue BasePtr = MGT->getBasePtr();
- SDValue VL = MGT->getVectorLength();
- ISD::MemIndexType IndexType = MGT->getIndexType();
- SDLoc DL(N);
- if (refineUniformBase(BasePtr, Index, MGT->isIndexScaled(), DAG, DL)) {
- SDValue Ops[] = {Chain, BasePtr, Index, Scale, Mask, VL};
- return DAG.getGatherVP(
- DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL,
- Ops, MGT->getMemOperand(), IndexType);
- }
- if (refineIndexType(Index, IndexType, N->getValueType(0), DAG)) {
- SDValue Ops[] = {Chain, BasePtr, Index, Scale, Mask, VL};
- return DAG.getGatherVP(
- DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL,
- Ops, MGT->getMemOperand(), IndexType);
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitMGATHER(SDNode *N) {
- MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N);
- SDValue Mask = MGT->getMask();
- SDValue Chain = MGT->getChain();
- SDValue Index = MGT->getIndex();
- SDValue Scale = MGT->getScale();
- SDValue PassThru = MGT->getPassThru();
- SDValue BasePtr = MGT->getBasePtr();
- ISD::MemIndexType IndexType = MGT->getIndexType();
- SDLoc DL(N);
- // Zap gathers with a zero mask.
- if (ISD::isConstantSplatVectorAllZeros(Mask.getNode()))
- return CombineTo(N, PassThru, MGT->getChain());
- if (refineUniformBase(BasePtr, Index, MGT->isIndexScaled(), DAG, DL)) {
- SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale};
- return DAG.getMaskedGather(
- DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL,
- Ops, MGT->getMemOperand(), IndexType, MGT->getExtensionType());
- }
- if (refineIndexType(Index, IndexType, N->getValueType(0), DAG)) {
- SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale};
- return DAG.getMaskedGather(
- DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL,
- Ops, MGT->getMemOperand(), IndexType, MGT->getExtensionType());
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitMLOAD(SDNode *N) {
- MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
- SDValue Mask = MLD->getMask();
- SDLoc DL(N);
- // Zap masked loads with a zero mask.
- if (ISD::isConstantSplatVectorAllZeros(Mask.getNode()))
- return CombineTo(N, MLD->getPassThru(), MLD->getChain());
- // If this is a masked load with an all ones mask, we can use a unmasked load.
- // FIXME: Can we do this for indexed, expanding, or extending loads?
- if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && MLD->isUnindexed() &&
- !MLD->isExpandingLoad() && MLD->getExtensionType() == ISD::NON_EXTLOAD) {
- SDValue NewLd = DAG.getLoad(
- N->getValueType(0), SDLoc(N), MLD->getChain(), MLD->getBasePtr(),
- MLD->getPointerInfo(), MLD->getOriginalAlign(),
- MachineMemOperand::MOLoad, MLD->getAAInfo(), MLD->getRanges());
- return CombineTo(N, NewLd, NewLd.getValue(1));
- }
- // Try transforming N to an indexed load.
- if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
- return SDValue(N, 0);
- return SDValue();
- }
- /// A vector select of 2 constant vectors can be simplified to math/logic to
- /// avoid a variable select instruction and possibly avoid constant loads.
- SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) {
- SDValue Cond = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- EVT VT = N->getValueType(0);
- if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 ||
- !shouldConvertSelectOfConstantsToMath(Cond, VT, TLI) ||
- !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) ||
- !ISD::isBuildVectorOfConstantSDNodes(N2.getNode()))
- return SDValue();
- // Check if we can use the condition value to increment/decrement a single
- // constant value. This simplifies a select to an add and removes a constant
- // load/materialization from the general case.
- bool AllAddOne = true;
- bool AllSubOne = true;
- unsigned Elts = VT.getVectorNumElements();
- for (unsigned i = 0; i != Elts; ++i) {
- SDValue N1Elt = N1.getOperand(i);
- SDValue N2Elt = N2.getOperand(i);
- if (N1Elt.isUndef() || N2Elt.isUndef())
- continue;
- if (N1Elt.getValueType() != N2Elt.getValueType())
- continue;
- const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue();
- const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue();
- if (C1 != C2 + 1)
- AllAddOne = false;
- if (C1 != C2 - 1)
- AllSubOne = false;
- }
- // Further simplifications for the extra-special cases where the constants are
- // all 0 or all -1 should be implemented as folds of these patterns.
- SDLoc DL(N);
- if (AllAddOne || AllSubOne) {
- // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
- // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
- auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
- SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond);
- return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2);
- }
- // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C)
- APInt Pow2C;
- if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() &&
- isNullOrNullSplat(N2)) {
- SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT);
- SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT);
- return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC);
- }
- if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG))
- return V;
- // The general case for select-of-constants:
- // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
- // ...but that only makes sense if a vselect is slower than 2 logic ops, so
- // leave that to a machine-specific pass.
- return SDValue();
- }
- SDValue DAGCombiner::visitVSELECT(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- if (SDValue V = DAG.simplifySelect(N0, N1, N2))
- return V;
- if (SDValue V = foldBoolSelectToLogic(N, DAG))
- return V;
- // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1
- if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false))
- return DAG.getSelect(DL, VT, F, N2, N1);
- // Canonicalize integer abs.
- // vselect (setg[te] X, 0), X, -X ->
- // vselect (setgt X, -1), X, -X ->
- // vselect (setl[te] X, 0), -X, X ->
- // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
- if (N0.getOpcode() == ISD::SETCC) {
- SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
- ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
- bool isAbs = false;
- bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
- if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
- (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
- N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
- isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
- else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
- N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
- isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
- if (isAbs) {
- if (TLI.isOperationLegalOrCustom(ISD::ABS, VT))
- return DAG.getNode(ISD::ABS, DL, VT, LHS);
- SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS,
- DAG.getConstant(VT.getScalarSizeInBits() - 1,
- DL, getShiftAmountTy(VT)));
- SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
- AddToWorklist(Shift.getNode());
- AddToWorklist(Add.getNode());
- return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
- }
- // vselect x, y (fcmp lt x, y) -> fminnum x, y
- // vselect x, y (fcmp gt x, y) -> fmaxnum x, y
- //
- // This is OK if we don't care about what happens if either operand is a
- // NaN.
- //
- if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) {
- if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC))
- return FMinMax;
- }
- if (SDValue S = PerformMinMaxFpToSatCombine(LHS, RHS, N1, N2, CC, DAG))
- return S;
- if (SDValue S = PerformUMinFpToSatCombine(LHS, RHS, N1, N2, CC, DAG))
- return S;
- // If this select has a condition (setcc) with narrower operands than the
- // select, try to widen the compare to match the select width.
- // TODO: This should be extended to handle any constant.
- // TODO: This could be extended to handle non-loading patterns, but that
- // requires thorough testing to avoid regressions.
- if (isNullOrNullSplat(RHS)) {
- EVT NarrowVT = LHS.getValueType();
- EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger();
- EVT SetCCVT = getSetCCResultType(LHS.getValueType());
- unsigned SetCCWidth = SetCCVT.getScalarSizeInBits();
- unsigned WideWidth = WideVT.getScalarSizeInBits();
- bool IsSigned = isSignedIntSetCC(CC);
- auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
- if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() &&
- SetCCWidth != 1 && SetCCWidth < WideWidth &&
- TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) &&
- TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) {
- // Both compare operands can be widened for free. The LHS can use an
- // extended load, and the RHS is a constant:
- // vselect (ext (setcc load(X), C)), N1, N2 -->
- // vselect (setcc extload(X), C'), N1, N2
- auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
- SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS);
- SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS);
- EVT WideSetCCVT = getSetCCResultType(WideVT);
- SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC);
- return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2);
- }
- }
- // Match VSELECTs into add with unsigned saturation.
- if (hasOperation(ISD::UADDSAT, VT)) {
- // Check if one of the arms of the VSELECT is vector with all bits set.
- // If it's on the left side invert the predicate to simplify logic below.
- SDValue Other;
- ISD::CondCode SatCC = CC;
- if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) {
- Other = N2;
- SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType());
- } else if (ISD::isConstantSplatVectorAllOnes(N2.getNode())) {
- Other = N1;
- }
- if (Other && Other.getOpcode() == ISD::ADD) {
- SDValue CondLHS = LHS, CondRHS = RHS;
- SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1);
- // Canonicalize condition operands.
- if (SatCC == ISD::SETUGE) {
- std::swap(CondLHS, CondRHS);
- SatCC = ISD::SETULE;
- }
- // We can test against either of the addition operands.
- // x <= x+y ? x+y : ~0 --> uaddsat x, y
- // x+y >= x ? x+y : ~0 --> uaddsat x, y
- if (SatCC == ISD::SETULE && Other == CondRHS &&
- (OpLHS == CondLHS || OpRHS == CondLHS))
- return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS);
- if (OpRHS.getOpcode() == CondRHS.getOpcode() &&
- (OpRHS.getOpcode() == ISD::BUILD_VECTOR ||
- OpRHS.getOpcode() == ISD::SPLAT_VECTOR) &&
- CondLHS == OpLHS) {
- // If the RHS is a constant we have to reverse the const
- // canonicalization.
- // x >= ~C ? x+C : ~0 --> uaddsat x, C
- auto MatchUADDSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) {
- return Cond->getAPIntValue() == ~Op->getAPIntValue();
- };
- if (SatCC == ISD::SETULE &&
- ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUADDSAT))
- return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS);
- }
- }
- }
- // Match VSELECTs into sub with unsigned saturation.
- if (hasOperation(ISD::USUBSAT, VT)) {
- // Check if one of the arms of the VSELECT is a zero vector. If it's on
- // the left side invert the predicate to simplify logic below.
- SDValue Other;
- ISD::CondCode SatCC = CC;
- if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) {
- Other = N2;
- SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType());
- } else if (ISD::isConstantSplatVectorAllZeros(N2.getNode())) {
- Other = N1;
- }
- // zext(x) >= y ? trunc(zext(x) - y) : 0
- // --> usubsat(trunc(zext(x)),trunc(umin(y,SatLimit)))
- // zext(x) > y ? trunc(zext(x) - y) : 0
- // --> usubsat(trunc(zext(x)),trunc(umin(y,SatLimit)))
- if (Other && Other.getOpcode() == ISD::TRUNCATE &&
- Other.getOperand(0).getOpcode() == ISD::SUB &&
- (SatCC == ISD::SETUGE || SatCC == ISD::SETUGT)) {
- SDValue OpLHS = Other.getOperand(0).getOperand(0);
- SDValue OpRHS = Other.getOperand(0).getOperand(1);
- if (LHS == OpLHS && RHS == OpRHS && LHS.getOpcode() == ISD::ZERO_EXTEND)
- if (SDValue R = getTruncatedUSUBSAT(VT, LHS.getValueType(), LHS, RHS,
- DAG, DL))
- return R;
- }
- if (Other && Other.getNumOperands() == 2) {
- SDValue CondRHS = RHS;
- SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1);
- if (OpLHS == LHS) {
- // Look for a general sub with unsigned saturation first.
- // x >= y ? x-y : 0 --> usubsat x, y
- // x > y ? x-y : 0 --> usubsat x, y
- if ((SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) &&
- Other.getOpcode() == ISD::SUB && OpRHS == CondRHS)
- return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
- if (OpRHS.getOpcode() == ISD::BUILD_VECTOR ||
- OpRHS.getOpcode() == ISD::SPLAT_VECTOR) {
- if (CondRHS.getOpcode() == ISD::BUILD_VECTOR ||
- CondRHS.getOpcode() == ISD::SPLAT_VECTOR) {
- // If the RHS is a constant we have to reverse the const
- // canonicalization.
- // x > C-1 ? x+-C : 0 --> usubsat x, C
- auto MatchUSUBSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) {
- return (!Op && !Cond) ||
- (Op && Cond &&
- Cond->getAPIntValue() == (-Op->getAPIntValue() - 1));
- };
- if (SatCC == ISD::SETUGT && Other.getOpcode() == ISD::ADD &&
- ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUSUBSAT,
- /*AllowUndefs*/ true)) {
- OpRHS = DAG.getNegative(OpRHS, DL, VT);
- return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
- }
- // Another special case: If C was a sign bit, the sub has been
- // canonicalized into a xor.
- // FIXME: Would it be better to use computeKnownBits to
- // determine whether it's safe to decanonicalize the xor?
- // x s< 0 ? x^C : 0 --> usubsat x, C
- APInt SplatValue;
- if (SatCC == ISD::SETLT && Other.getOpcode() == ISD::XOR &&
- ISD::isConstantSplatVector(OpRHS.getNode(), SplatValue) &&
- ISD::isConstantSplatVectorAllZeros(CondRHS.getNode()) &&
- SplatValue.isSignMask()) {
- // Note that we have to rebuild the RHS constant here to
- // ensure we don't rely on particular values of undef lanes.
- OpRHS = DAG.getConstant(SplatValue, DL, VT);
- return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
- }
- }
- }
- }
- }
- }
- }
- if (SimplifySelectOps(N, N1, N2))
- return SDValue(N, 0); // Don't revisit N.
- // Fold (vselect all_ones, N1, N2) -> N1
- if (ISD::isConstantSplatVectorAllOnes(N0.getNode()))
- return N1;
- // Fold (vselect all_zeros, N1, N2) -> N2
- if (ISD::isConstantSplatVectorAllZeros(N0.getNode()))
- return N2;
- // The ConvertSelectToConcatVector function is assuming both the above
- // checks for (vselect (build_vector all{ones,zeros) ...) have been made
- // and addressed.
- if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
- N2.getOpcode() == ISD::CONCAT_VECTORS &&
- ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
- if (SDValue CV = ConvertSelectToConcatVector(N, DAG))
- return CV;
- }
- if (SDValue V = foldVSelectOfConstants(N))
- return V;
- if (hasOperation(ISD::SRA, VT))
- if (SDValue V = foldVSelectToSignBitSplatMask(N, DAG))
- return V;
- if (SimplifyDemandedVectorElts(SDValue(N, 0)))
- return SDValue(N, 0);
- return SDValue();
- }
- SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- SDValue N3 = N->getOperand(3);
- SDValue N4 = N->getOperand(4);
- ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
- // fold select_cc lhs, rhs, x, x, cc -> x
- if (N2 == N3)
- return N2;
- // select_cc bool, 0, x, y, seteq -> select bool, y, x
- if (CC == ISD::SETEQ && !LegalTypes && N0.getValueType() == MVT::i1 &&
- isNullConstant(N1))
- return DAG.getSelect(SDLoc(N), N2.getValueType(), N0, N3, N2);
- // Determine if the condition we're dealing with is constant
- if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1,
- CC, SDLoc(N), false)) {
- AddToWorklist(SCC.getNode());
- // cond always true -> true val
- // cond always false -> false val
- if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode()))
- return SCCC->isZero() ? N3 : N2;
- // When the condition is UNDEF, just return the first operand. This is
- // coherent the DAG creation, no setcc node is created in this case
- if (SCC->isUndef())
- return N2;
- // Fold to a simpler select_cc
- if (SCC.getOpcode() == ISD::SETCC) {
- SDValue SelectOp = DAG.getNode(
- ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0),
- SCC.getOperand(1), N2, N3, SCC.getOperand(2));
- SelectOp->setFlags(SCC->getFlags());
- return SelectOp;
- }
- }
- // If we can fold this based on the true/false value, do so.
- if (SimplifySelectOps(N, N2, N3))
- return SDValue(N, 0); // Don't revisit N.
- // fold select_cc into other things, such as min/max/abs
- return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
- }
- SDValue DAGCombiner::visitSETCC(SDNode *N) {
- // setcc is very commonly used as an argument to brcond. This pattern
- // also lend itself to numerous combines and, as a result, it is desired
- // we keep the argument to a brcond as a setcc as much as possible.
- bool PreferSetCC =
- N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND;
- ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
- EVT VT = N->getValueType(0);
- // SETCC(FREEZE(X), CONST, Cond)
- // =>
- // FREEZE(SETCC(X, CONST, Cond))
- // This is correct if FREEZE(X) has one use and SETCC(FREEZE(X), CONST, Cond)
- // isn't equivalent to true or false.
- // For example, SETCC(FREEZE(X), -128, SETULT) cannot be folded to
- // FREEZE(SETCC(X, -128, SETULT)) because X can be poison.
- //
- // This transformation is beneficial because visitBRCOND can fold
- // BRCOND(FREEZE(X)) to BRCOND(X).
- // Conservatively optimize integer comparisons only.
- if (PreferSetCC) {
- // Do this only when SETCC is going to be used by BRCOND.
- SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
- ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- bool Updated = false;
- // Is 'X Cond C' always true or false?
- auto IsAlwaysTrueOrFalse = [](ISD::CondCode Cond, ConstantSDNode *C) {
- bool False = (Cond == ISD::SETULT && C->isZero()) ||
- (Cond == ISD::SETLT && C->isMinSignedValue()) ||
- (Cond == ISD::SETUGT && C->isAllOnes()) ||
- (Cond == ISD::SETGT && C->isMaxSignedValue());
- bool True = (Cond == ISD::SETULE && C->isAllOnes()) ||
- (Cond == ISD::SETLE && C->isMaxSignedValue()) ||
- (Cond == ISD::SETUGE && C->isZero()) ||
- (Cond == ISD::SETGE && C->isMinSignedValue());
- return True || False;
- };
- if (N0->getOpcode() == ISD::FREEZE && N0.hasOneUse() && N1C) {
- if (!IsAlwaysTrueOrFalse(Cond, N1C)) {
- N0 = N0->getOperand(0);
- Updated = true;
- }
- }
- if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse() && N0C) {
- if (!IsAlwaysTrueOrFalse(ISD::getSetCCSwappedOperands(Cond),
- N0C)) {
- N1 = N1->getOperand(0);
- Updated = true;
- }
- }
- if (Updated)
- return DAG.getFreeze(DAG.getSetCC(SDLoc(N), VT, N0, N1, Cond));
- }
- SDValue Combined = SimplifySetCC(VT, N->getOperand(0), N->getOperand(1), Cond,
- SDLoc(N), !PreferSetCC);
- if (!Combined)
- return SDValue();
- // If we prefer to have a setcc, and we don't, we'll try our best to
- // recreate one using rebuildSetCC.
- if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) {
- SDValue NewSetCC = rebuildSetCC(Combined);
- // We don't have anything interesting to combine to.
- if (NewSetCC.getNode() == N)
- return SDValue();
- if (NewSetCC)
- return NewSetCC;
- }
- return Combined;
- }
- SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) {
- SDValue LHS = N->getOperand(0);
- SDValue RHS = N->getOperand(1);
- SDValue Carry = N->getOperand(2);
- SDValue Cond = N->getOperand(3);
- // If Carry is false, fold to a regular SETCC.
- if (isNullConstant(Carry))
- return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond);
- return SDValue();
- }
- /// Check if N satisfies:
- /// N is used once.
- /// N is a Load.
- /// The load is compatible with ExtOpcode. It means
- /// If load has explicit zero/sign extension, ExpOpcode must have the same
- /// extension.
- /// Otherwise returns true.
- static bool isCompatibleLoad(SDValue N, unsigned ExtOpcode) {
- if (!N.hasOneUse())
- return false;
- if (!isa<LoadSDNode>(N))
- return false;
- LoadSDNode *Load = cast<LoadSDNode>(N);
- ISD::LoadExtType LoadExt = Load->getExtensionType();
- if (LoadExt == ISD::NON_EXTLOAD || LoadExt == ISD::EXTLOAD)
- return true;
- // Now LoadExt is either SEXTLOAD or ZEXTLOAD, ExtOpcode must have the same
- // extension.
- if ((LoadExt == ISD::SEXTLOAD && ExtOpcode != ISD::SIGN_EXTEND) ||
- (LoadExt == ISD::ZEXTLOAD && ExtOpcode != ISD::ZERO_EXTEND))
- return false;
- return true;
- }
- /// Fold
- /// (sext (select c, load x, load y)) -> (select c, sextload x, sextload y)
- /// (zext (select c, load x, load y)) -> (select c, zextload x, zextload y)
- /// (aext (select c, load x, load y)) -> (select c, extload x, extload y)
- /// This function is called by the DAGCombiner when visiting sext/zext/aext
- /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
- static SDValue tryToFoldExtendSelectLoad(SDNode *N, const TargetLowering &TLI,
- SelectionDAG &DAG) {
- unsigned Opcode = N->getOpcode();
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
- Opcode == ISD::ANY_EXTEND) &&
- "Expected EXTEND dag node in input!");
- if (!(N0->getOpcode() == ISD::SELECT || N0->getOpcode() == ISD::VSELECT) ||
- !N0.hasOneUse())
- return SDValue();
- SDValue Op1 = N0->getOperand(1);
- SDValue Op2 = N0->getOperand(2);
- if (!isCompatibleLoad(Op1, Opcode) || !isCompatibleLoad(Op2, Opcode))
- return SDValue();
- auto ExtLoadOpcode = ISD::EXTLOAD;
- if (Opcode == ISD::SIGN_EXTEND)
- ExtLoadOpcode = ISD::SEXTLOAD;
- else if (Opcode == ISD::ZERO_EXTEND)
- ExtLoadOpcode = ISD::ZEXTLOAD;
- LoadSDNode *Load1 = cast<LoadSDNode>(Op1);
- LoadSDNode *Load2 = cast<LoadSDNode>(Op2);
- if (!TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load1->getMemoryVT()) ||
- !TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load2->getMemoryVT()))
- return SDValue();
- SDValue Ext1 = DAG.getNode(Opcode, DL, VT, Op1);
- SDValue Ext2 = DAG.getNode(Opcode, DL, VT, Op2);
- return DAG.getSelect(DL, VT, N0->getOperand(0), Ext1, Ext2);
- }
- /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
- /// a build_vector of constants.
- /// This function is called by the DAGCombiner when visiting sext/zext/aext
- /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
- /// Vector extends are not folded if operations are legal; this is to
- /// avoid introducing illegal build_vector dag nodes.
- static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
- SelectionDAG &DAG, bool LegalTypes) {
- unsigned Opcode = N->getOpcode();
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
- Opcode == ISD::ANY_EXTEND ||
- Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
- Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
- Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
- "Expected EXTEND dag node in input!");
- // fold (sext c1) -> c1
- // fold (zext c1) -> c1
- // fold (aext c1) -> c1
- if (isa<ConstantSDNode>(N0))
- return DAG.getNode(Opcode, DL, VT, N0);
- // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
- // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2)
- // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
- if (N0->getOpcode() == ISD::SELECT) {
- SDValue Op1 = N0->getOperand(1);
- SDValue Op2 = N0->getOperand(2);
- if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) &&
- (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) {
- // For any_extend, choose sign extension of the constants to allow a
- // possible further transform to sign_extend_inreg.i.e.
- //
- // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0>
- // t2: i64 = any_extend t1
- // -->
- // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0>
- // -->
- // t4: i64 = sign_extend_inreg t3
- unsigned FoldOpc = Opcode;
- if (FoldOpc == ISD::ANY_EXTEND)
- FoldOpc = ISD::SIGN_EXTEND;
- return DAG.getSelect(DL, VT, N0->getOperand(0),
- DAG.getNode(FoldOpc, DL, VT, Op1),
- DAG.getNode(FoldOpc, DL, VT, Op2));
- }
- }
- // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
- // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
- // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
- EVT SVT = VT.getScalarType();
- if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) &&
- ISD::isBuildVectorOfConstantSDNodes(N0.getNode())))
- return SDValue();
- // We can fold this node into a build_vector.
- unsigned VTBits = SVT.getSizeInBits();
- unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits();
- SmallVector<SDValue, 8> Elts;
- unsigned NumElts = VT.getVectorNumElements();
- for (unsigned i = 0; i != NumElts; ++i) {
- SDValue Op = N0.getOperand(i);
- if (Op.isUndef()) {
- if (Opcode == ISD::ANY_EXTEND || Opcode == ISD::ANY_EXTEND_VECTOR_INREG)
- Elts.push_back(DAG.getUNDEF(SVT));
- else
- Elts.push_back(DAG.getConstant(0, DL, SVT));
- continue;
- }
- SDLoc DL(Op);
- // Get the constant value and if needed trunc it to the size of the type.
- // Nodes like build_vector might have constants wider than the scalar type.
- APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits);
- if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
- Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT));
- else
- Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT));
- }
- return DAG.getBuildVector(VT, DL, Elts);
- }
- // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
- // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
- // transformation. Returns true if extension are possible and the above
- // mentioned transformation is profitable.
- static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0,
- unsigned ExtOpc,
- SmallVectorImpl<SDNode *> &ExtendNodes,
- const TargetLowering &TLI) {
- bool HasCopyToRegUses = false;
- bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType());
- for (SDNode::use_iterator UI = N0->use_begin(), UE = N0->use_end(); UI != UE;
- ++UI) {
- SDNode *User = *UI;
- if (User == N)
- continue;
- if (UI.getUse().getResNo() != N0.getResNo())
- continue;
- // FIXME: Only extend SETCC N, N and SETCC N, c for now.
- if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
- ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
- if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
- // Sign bits will be lost after a zext.
- return false;
- bool Add = false;
- for (unsigned i = 0; i != 2; ++i) {
- SDValue UseOp = User->getOperand(i);
- if (UseOp == N0)
- continue;
- if (!isa<ConstantSDNode>(UseOp))
- return false;
- Add = true;
- }
- if (Add)
- ExtendNodes.push_back(User);
- continue;
- }
- // If truncates aren't free and there are users we can't
- // extend, it isn't worthwhile.
- if (!isTruncFree)
- return false;
- // Remember if this value is live-out.
- if (User->getOpcode() == ISD::CopyToReg)
- HasCopyToRegUses = true;
- }
- if (HasCopyToRegUses) {
- bool BothLiveOut = false;
- for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
- UI != UE; ++UI) {
- SDUse &Use = UI.getUse();
- if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
- BothLiveOut = true;
- break;
- }
- }
- if (BothLiveOut)
- // Both unextended and extended values are live out. There had better be
- // a good reason for the transformation.
- return ExtendNodes.size();
- }
- return true;
- }
- void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
- SDValue OrigLoad, SDValue ExtLoad,
- ISD::NodeType ExtType) {
- // Extend SetCC uses if necessary.
- SDLoc DL(ExtLoad);
- for (SDNode *SetCC : SetCCs) {
- SmallVector<SDValue, 4> Ops;
- for (unsigned j = 0; j != 2; ++j) {
- SDValue SOp = SetCC->getOperand(j);
- if (SOp == OrigLoad)
- Ops.push_back(ExtLoad);
- else
- Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
- }
- Ops.push_back(SetCC->getOperand(2));
- CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
- }
- }
- // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
- SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT DstVT = N->getValueType(0);
- EVT SrcVT = N0.getValueType();
- assert((N->getOpcode() == ISD::SIGN_EXTEND ||
- N->getOpcode() == ISD::ZERO_EXTEND) &&
- "Unexpected node type (not an extend)!");
- // fold (sext (load x)) to multiple smaller sextloads; same for zext.
- // For example, on a target with legal v4i32, but illegal v8i32, turn:
- // (v8i32 (sext (v8i16 (load x))))
- // into:
- // (v8i32 (concat_vectors (v4i32 (sextload x)),
- // (v4i32 (sextload (x + 16)))))
- // Where uses of the original load, i.e.:
- // (v8i16 (load x))
- // are replaced with:
- // (v8i16 (truncate
- // (v8i32 (concat_vectors (v4i32 (sextload x)),
- // (v4i32 (sextload (x + 16)))))))
- //
- // This combine is only applicable to illegal, but splittable, vectors.
- // All legal types, and illegal non-vector types, are handled elsewhere.
- // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
- //
- if (N0->getOpcode() != ISD::LOAD)
- return SDValue();
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
- !N0.hasOneUse() || !LN0->isSimple() ||
- !DstVT.isVector() || !DstVT.isPow2VectorType() ||
- !TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
- return SDValue();
- SmallVector<SDNode *, 4> SetCCs;
- if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI))
- return SDValue();
- ISD::LoadExtType ExtType =
- N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
- // Try to split the vector types to get down to legal types.
- EVT SplitSrcVT = SrcVT;
- EVT SplitDstVT = DstVT;
- while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
- SplitSrcVT.getVectorNumElements() > 1) {
- SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
- SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
- }
- if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
- return SDValue();
- assert(!DstVT.isScalableVector() && "Unexpected scalable vector type");
- SDLoc DL(N);
- const unsigned NumSplits =
- DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
- const unsigned Stride = SplitSrcVT.getStoreSize();
- SmallVector<SDValue, 4> Loads;
- SmallVector<SDValue, 4> Chains;
- SDValue BasePtr = LN0->getBasePtr();
- for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
- const unsigned Offset = Idx * Stride;
- const Align Align = commonAlignment(LN0->getAlign(), Offset);
- SDValue SplitLoad = DAG.getExtLoad(
- ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr,
- LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align,
- LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
- BasePtr = DAG.getMemBasePlusOffset(BasePtr, TypeSize::Fixed(Stride), DL);
- Loads.push_back(SplitLoad.getValue(0));
- Chains.push_back(SplitLoad.getValue(1));
- }
- SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
- SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);
- // Simplify TF.
- AddToWorklist(NewChain.getNode());
- CombineTo(N, NewValue);
- // Replace uses of the original load (before extension)
- // with a truncate of the concatenated sextloaded vectors.
- SDValue Trunc =
- DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
- ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode());
- CombineTo(N0.getNode(), Trunc, NewChain);
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
- // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
- SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) {
- assert(N->getOpcode() == ISD::ZERO_EXTEND);
- EVT VT = N->getValueType(0);
- EVT OrigVT = N->getOperand(0).getValueType();
- if (TLI.isZExtFree(OrigVT, VT))
- return SDValue();
- // and/or/xor
- SDValue N0 = N->getOperand(0);
- if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
- N0.getOpcode() == ISD::XOR) ||
- N0.getOperand(1).getOpcode() != ISD::Constant ||
- (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT)))
- return SDValue();
- // shl/shr
- SDValue N1 = N0->getOperand(0);
- if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) ||
- N1.getOperand(1).getOpcode() != ISD::Constant ||
- (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT)))
- return SDValue();
- // load
- if (!isa<LoadSDNode>(N1.getOperand(0)))
- return SDValue();
- LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0));
- EVT MemVT = Load->getMemoryVT();
- if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) ||
- Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed())
- return SDValue();
- // If the shift op is SHL, the logic op must be AND, otherwise the result
- // will be wrong.
- if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND)
- return SDValue();
- if (!N0.hasOneUse() || !N1.hasOneUse())
- return SDValue();
- SmallVector<SDNode*, 4> SetCCs;
- if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0),
- ISD::ZERO_EXTEND, SetCCs, TLI))
- return SDValue();
- // Actually do the transformation.
- SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT,
- Load->getChain(), Load->getBasePtr(),
- Load->getMemoryVT(), Load->getMemOperand());
- SDLoc DL1(N1);
- SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad,
- N1.getOperand(1));
- APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
- SDLoc DL0(N0);
- SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift,
- DAG.getConstant(Mask, DL0, VT));
- ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
- CombineTo(N, And);
- if (SDValue(Load, 0).hasOneUse()) {
- DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1));
- } else {
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load),
- Load->getValueType(0), ExtLoad);
- CombineTo(Load, Trunc, ExtLoad.getValue(1));
- }
- // N0 is dead at this point.
- recursivelyDeleteUnusedNodes(N0.getNode());
- return SDValue(N,0); // Return N so it doesn't get rechecked!
- }
- /// If we're narrowing or widening the result of a vector select and the final
- /// size is the same size as a setcc (compare) feeding the select, then try to
- /// apply the cast operation to the select's operands because matching vector
- /// sizes for a select condition and other operands should be more efficient.
- SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) {
- unsigned CastOpcode = Cast->getOpcode();
- assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND ||
- CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND ||
- CastOpcode == ISD::FP_ROUND) &&
- "Unexpected opcode for vector select narrowing/widening");
- // We only do this transform before legal ops because the pattern may be
- // obfuscated by target-specific operations after legalization. Do not create
- // an illegal select op, however, because that may be difficult to lower.
- EVT VT = Cast->getValueType(0);
- if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
- return SDValue();
- SDValue VSel = Cast->getOperand(0);
- if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() ||
- VSel.getOperand(0).getOpcode() != ISD::SETCC)
- return SDValue();
- // Does the setcc have the same vector size as the casted select?
- SDValue SetCC = VSel.getOperand(0);
- EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType());
- if (SetCCVT.getSizeInBits() != VT.getSizeInBits())
- return SDValue();
- // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
- SDValue A = VSel.getOperand(1);
- SDValue B = VSel.getOperand(2);
- SDValue CastA, CastB;
- SDLoc DL(Cast);
- if (CastOpcode == ISD::FP_ROUND) {
- // FP_ROUND (fptrunc) has an extra flag operand to pass along.
- CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1));
- CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1));
- } else {
- CastA = DAG.getNode(CastOpcode, DL, VT, A);
- CastB = DAG.getNode(CastOpcode, DL, VT, B);
- }
- return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB);
- }
- // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
- // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
- static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner,
- const TargetLowering &TLI, EVT VT,
- bool LegalOperations, SDNode *N,
- SDValue N0, ISD::LoadExtType ExtLoadType) {
- SDNode *N0Node = N0.getNode();
- bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node)
- : ISD::isZEXTLoad(N0Node);
- if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) ||
- !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse())
- return SDValue();
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- EVT MemVT = LN0->getMemoryVT();
- if ((LegalOperations || !LN0->isSimple() ||
- VT.isVector()) &&
- !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT))
- return SDValue();
- SDValue ExtLoad =
- DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
- LN0->getBasePtr(), MemVT, LN0->getMemOperand());
- Combiner.CombineTo(N, ExtLoad);
- DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
- if (LN0->use_empty())
- Combiner.recursivelyDeleteUnusedNodes(LN0);
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
- // Only generate vector extloads when 1) they're legal, and 2) they are
- // deemed desirable by the target.
- static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner,
- const TargetLowering &TLI, EVT VT,
- bool LegalOperations, SDNode *N, SDValue N0,
- ISD::LoadExtType ExtLoadType,
- ISD::NodeType ExtOpc) {
- // TODO: isFixedLengthVector() should be removed and any negative effects on
- // code generation being the result of that target's implementation of
- // isVectorLoadExtDesirable().
- if (!ISD::isNON_EXTLoad(N0.getNode()) ||
- !ISD::isUNINDEXEDLoad(N0.getNode()) ||
- ((LegalOperations || VT.isFixedLengthVector() ||
- !cast<LoadSDNode>(N0)->isSimple()) &&
- !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType())))
- return {};
- bool DoXform = true;
- SmallVector<SDNode *, 4> SetCCs;
- if (!N0.hasOneUse())
- DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI);
- if (VT.isVector())
- DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
- if (!DoXform)
- return {};
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
- LN0->getBasePtr(), N0.getValueType(),
- LN0->getMemOperand());
- Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc);
- // If the load value is used only by N, replace it via CombineTo N.
- bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse();
- Combiner.CombineTo(N, ExtLoad);
- if (NoReplaceTrunc) {
- DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
- Combiner.recursivelyDeleteUnusedNodes(LN0);
- } else {
- SDValue Trunc =
- DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
- Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1));
- }
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG,
- const TargetLowering &TLI, EVT VT,
- SDNode *N, SDValue N0,
- ISD::LoadExtType ExtLoadType,
- ISD::NodeType ExtOpc) {
- if (!N0.hasOneUse())
- return SDValue();
- MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0);
- if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD)
- return SDValue();
- if (!TLI.isLoadExtLegalOrCustom(ExtLoadType, VT, Ld->getValueType(0)))
- return SDValue();
- if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
- return SDValue();
- SDLoc dl(Ld);
- SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru());
- SDValue NewLoad = DAG.getMaskedLoad(
- VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(),
- PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(),
- ExtLoadType, Ld->isExpandingLoad());
- DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1));
- return NewLoad;
- }
- static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG,
- bool LegalOperations) {
- assert((N->getOpcode() == ISD::SIGN_EXTEND ||
- N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext");
- SDValue SetCC = N->getOperand(0);
- if (LegalOperations || SetCC.getOpcode() != ISD::SETCC ||
- !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1)
- return SDValue();
- SDValue X = SetCC.getOperand(0);
- SDValue Ones = SetCC.getOperand(1);
- ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
- EVT VT = N->getValueType(0);
- EVT XVT = X.getValueType();
- // setge X, C is canonicalized to setgt, so we do not need to match that
- // pattern. The setlt sibling is folded in SimplifySelectCC() because it does
- // not require the 'not' op.
- if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) {
- // Invert and smear/shift the sign bit:
- // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
- // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
- SDLoc DL(N);
- unsigned ShCt = VT.getSizeInBits() - 1;
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) {
- SDValue NotX = DAG.getNOT(DL, X, VT);
- SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT);
- auto ShiftOpcode =
- N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL;
- return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount);
- }
- }
- return SDValue();
- }
- SDValue DAGCombiner::foldSextSetcc(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- if (N0.getOpcode() != ISD::SETCC)
- return SDValue();
- SDValue N00 = N0.getOperand(0);
- SDValue N01 = N0.getOperand(1);
- ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
- EVT VT = N->getValueType(0);
- EVT N00VT = N00.getValueType();
- SDLoc DL(N);
- // Propagate fast-math-flags.
- SelectionDAG::FlagInserter FlagsInserter(DAG, N0->getFlags());
- // On some architectures (such as SSE/NEON/etc) the SETCC result type is
- // the same size as the compared operands. Try to optimize sext(setcc())
- // if this is the case.
- if (VT.isVector() && !LegalOperations &&
- TLI.getBooleanContents(N00VT) ==
- TargetLowering::ZeroOrNegativeOneBooleanContent) {
- EVT SVT = getSetCCResultType(N00VT);
- // If we already have the desired type, don't change it.
- if (SVT != N0.getValueType()) {
- // We know that the # elements of the results is the same as the
- // # elements of the compare (and the # elements of the compare result
- // for that matter). Check to see that they are the same size. If so,
- // we know that the element size of the sext'd result matches the
- // element size of the compare operands.
- if (VT.getSizeInBits() == SVT.getSizeInBits())
- return DAG.getSetCC(DL, VT, N00, N01, CC);
- // If the desired elements are smaller or larger than the source
- // elements, we can use a matching integer vector type and then
- // truncate/sign extend.
- EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger();
- if (SVT == MatchingVecType) {
- SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC);
- return DAG.getSExtOrTrunc(VsetCC, DL, VT);
- }
- }
- // Try to eliminate the sext of a setcc by zexting the compare operands.
- if (N0.hasOneUse() && TLI.isOperationLegalOrCustom(ISD::SETCC, VT) &&
- !TLI.isOperationLegalOrCustom(ISD::SETCC, SVT)) {
- bool IsSignedCmp = ISD::isSignedIntSetCC(CC);
- unsigned LoadOpcode = IsSignedCmp ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
- unsigned ExtOpcode = IsSignedCmp ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
- // We have an unsupported narrow vector compare op that would be legal
- // if extended to the destination type. See if the compare operands
- // can be freely extended to the destination type.
- auto IsFreeToExtend = [&](SDValue V) {
- if (isConstantOrConstantVector(V, /*NoOpaques*/ true))
- return true;
- // Match a simple, non-extended load that can be converted to a
- // legal {z/s}ext-load.
- // TODO: Allow widening of an existing {z/s}ext-load?
- if (!(ISD::isNON_EXTLoad(V.getNode()) &&
- ISD::isUNINDEXEDLoad(V.getNode()) &&
- cast<LoadSDNode>(V)->isSimple() &&
- TLI.isLoadExtLegal(LoadOpcode, VT, V.getValueType())))
- return false;
- // Non-chain users of this value must either be the setcc in this
- // sequence or extends that can be folded into the new {z/s}ext-load.
- for (SDNode::use_iterator UI = V->use_begin(), UE = V->use_end();
- UI != UE; ++UI) {
- // Skip uses of the chain and the setcc.
- SDNode *User = *UI;
- if (UI.getUse().getResNo() != 0 || User == N0.getNode())
- continue;
- // Extra users must have exactly the same cast we are about to create.
- // TODO: This restriction could be eased if ExtendUsesToFormExtLoad()
- // is enhanced similarly.
- if (User->getOpcode() != ExtOpcode || User->getValueType(0) != VT)
- return false;
- }
- return true;
- };
- if (IsFreeToExtend(N00) && IsFreeToExtend(N01)) {
- SDValue Ext0 = DAG.getNode(ExtOpcode, DL, VT, N00);
- SDValue Ext1 = DAG.getNode(ExtOpcode, DL, VT, N01);
- return DAG.getSetCC(DL, VT, Ext0, Ext1, CC);
- }
- }
- }
- // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
- // Here, T can be 1 or -1, depending on the type of the setcc and
- // getBooleanContents().
- unsigned SetCCWidth = N0.getScalarValueSizeInBits();
- // To determine the "true" side of the select, we need to know the high bit
- // of the value returned by the setcc if it evaluates to true.
- // If the type of the setcc is i1, then the true case of the select is just
- // sext(i1 1), that is, -1.
- // If the type of the setcc is larger (say, i8) then the value of the high
- // bit depends on getBooleanContents(), so ask TLI for a real "true" value
- // of the appropriate width.
- SDValue ExtTrueVal = (SetCCWidth == 1)
- ? DAG.getAllOnesConstant(DL, VT)
- : DAG.getBoolConstant(true, DL, VT, N00VT);
- SDValue Zero = DAG.getConstant(0, DL, VT);
- if (SDValue SCC = SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true))
- return SCC;
- if (!VT.isVector() && !shouldConvertSelectOfConstantsToMath(N0, VT, TLI)) {
- EVT SetCCVT = getSetCCResultType(N00VT);
- // Don't do this transform for i1 because there's a select transform
- // that would reverse it.
- // TODO: We should not do this transform at all without a target hook
- // because a sext is likely cheaper than a select?
- if (SetCCVT.getScalarSizeInBits() != 1 &&
- (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) {
- SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC);
- return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero);
- }
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVCastOp(N, DL))
- return FoldedVOp;
- // sext(undef) = 0 because the top bit will all be the same.
- if (N0.isUndef())
- return DAG.getConstant(0, DL, VT);
- if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
- return Res;
- // fold (sext (sext x)) -> (sext x)
- // fold (sext (aext x)) -> (sext x)
- if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
- return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0));
- // fold (sext (sext_inreg x)) -> (sext (trunc x))
- if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG) {
- SDValue N00 = N0.getOperand(0);
- EVT ExtVT = cast<VTSDNode>(N0->getOperand(1))->getVT();
- if (N00.getOpcode() == ISD::TRUNCATE &&
- (!LegalTypes || TLI.isTypeLegal(ExtVT))) {
- SDValue T = DAG.getNode(ISD::TRUNCATE, DL, ExtVT, N00.getOperand(0));
- return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, T);
- }
- }
- if (N0.getOpcode() == ISD::TRUNCATE) {
- // fold (sext (truncate (load x))) -> (sext (smaller load x))
- // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
- if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) {
- SDNode *oye = N0.getOperand(0).getNode();
- if (NarrowLoad.getNode() != N0.getNode()) {
- CombineTo(N0.getNode(), NarrowLoad);
- // CombineTo deleted the truncate, if needed, but not what's under it.
- AddToWorklist(oye);
- }
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- // See if the value being truncated is already sign extended. If so, just
- // eliminate the trunc/sext pair.
- SDValue Op = N0.getOperand(0);
- unsigned OpBits = Op.getScalarValueSizeInBits();
- unsigned MidBits = N0.getScalarValueSizeInBits();
- unsigned DestBits = VT.getScalarSizeInBits();
- unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
- if (OpBits == DestBits) {
- // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
- // bits, it is already ready.
- if (NumSignBits > DestBits-MidBits)
- return Op;
- } else if (OpBits < DestBits) {
- // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
- // bits, just sext from i32.
- if (NumSignBits > OpBits-MidBits)
- return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op);
- } else {
- // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
- // bits, just truncate to i32.
- if (NumSignBits > OpBits-MidBits)
- return DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
- }
- // fold (sext (truncate x)) -> (sextinreg x).
- if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
- N0.getValueType())) {
- if (OpBits < DestBits)
- Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
- else if (OpBits > DestBits)
- Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
- return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op,
- DAG.getValueType(N0.getValueType()));
- }
- }
- // Try to simplify (sext (load x)).
- if (SDValue foldedExt =
- tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
- ISD::SEXTLOAD, ISD::SIGN_EXTEND))
- return foldedExt;
- if (SDValue foldedExt =
- tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD,
- ISD::SIGN_EXTEND))
- return foldedExt;
- // fold (sext (load x)) to multiple smaller sextloads.
- // Only on illegal but splittable vectors.
- if (SDValue ExtLoad = CombineExtLoad(N))
- return ExtLoad;
- // Try to simplify (sext (sextload x)).
- if (SDValue foldedExt = tryToFoldExtOfExtload(
- DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD))
- return foldedExt;
- // fold (sext (and/or/xor (load x), cst)) ->
- // (and/or/xor (sextload x), (sext cst))
- if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
- N0.getOpcode() == ISD::XOR) &&
- isa<LoadSDNode>(N0.getOperand(0)) &&
- N0.getOperand(1).getOpcode() == ISD::Constant &&
- (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
- LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
- EVT MemVT = LN00->getMemoryVT();
- if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) &&
- LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) {
- SmallVector<SDNode*, 4> SetCCs;
- bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
- ISD::SIGN_EXTEND, SetCCs, TLI);
- if (DoXform) {
- SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT,
- LN00->getChain(), LN00->getBasePtr(),
- LN00->getMemoryVT(),
- LN00->getMemOperand());
- APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits());
- SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
- ExtLoad, DAG.getConstant(Mask, DL, VT));
- ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND);
- bool NoReplaceTruncAnd = !N0.hasOneUse();
- bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
- CombineTo(N, And);
- // If N0 has multiple uses, change other uses as well.
- if (NoReplaceTruncAnd) {
- SDValue TruncAnd =
- DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
- CombineTo(N0.getNode(), TruncAnd);
- }
- if (NoReplaceTrunc) {
- DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
- } else {
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
- LN00->getValueType(0), ExtLoad);
- CombineTo(LN00, Trunc, ExtLoad.getValue(1));
- }
- return SDValue(N,0); // Return N so it doesn't get rechecked!
- }
- }
- }
- if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
- return V;
- if (SDValue V = foldSextSetcc(N))
- return V;
- // fold (sext x) -> (zext x) if the sign bit is known zero.
- if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
- DAG.SignBitIsZero(N0))
- return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0);
- if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
- return NewVSel;
- // Eliminate this sign extend by doing a negation in the destination type:
- // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64)
- if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
- isNullOrNullSplat(N0.getOperand(0)) &&
- N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND &&
- TLI.isOperationLegalOrCustom(ISD::SUB, VT)) {
- SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT);
- return DAG.getNegative(Zext, DL, VT);
- }
- // Eliminate this sign extend by doing a decrement in the destination type:
- // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1)
- if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() &&
- isAllOnesOrAllOnesSplat(N0.getOperand(1)) &&
- N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
- TLI.isOperationLegalOrCustom(ISD::ADD, VT)) {
- SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT);
- return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT));
- }
- // fold sext (not i1 X) -> add (zext i1 X), -1
- // TODO: This could be extended to handle bool vectors.
- if (N0.getValueType() == MVT::i1 && isBitwiseNot(N0) && N0.hasOneUse() &&
- (!LegalOperations || (TLI.isOperationLegal(ISD::ZERO_EXTEND, VT) &&
- TLI.isOperationLegal(ISD::ADD, VT)))) {
- // If we can eliminate the 'not', the sext form should be better
- if (SDValue NewXor = visitXOR(N0.getNode())) {
- // Returning N0 is a form of in-visit replacement that may have
- // invalidated N0.
- if (NewXor.getNode() == N0.getNode()) {
- // Return SDValue here as the xor should have already been replaced in
- // this sext.
- return SDValue();
- }
- // Return a new sext with the new xor.
- return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NewXor);
- }
- SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
- return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT));
- }
- if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG))
- return Res;
- return SDValue();
- }
- // isTruncateOf - If N is a truncate of some other value, return true, record
- // the value being truncated in Op and which of Op's bits are zero/one in Known.
- // This function computes KnownBits to avoid a duplicated call to
- // computeKnownBits in the caller.
- static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
- KnownBits &Known) {
- if (N->getOpcode() == ISD::TRUNCATE) {
- Op = N->getOperand(0);
- Known = DAG.computeKnownBits(Op);
- return true;
- }
- if (N.getOpcode() != ISD::SETCC ||
- N.getValueType().getScalarType() != MVT::i1 ||
- cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE)
- return false;
- SDValue Op0 = N->getOperand(0);
- SDValue Op1 = N->getOperand(1);
- assert(Op0.getValueType() == Op1.getValueType());
- if (isNullOrNullSplat(Op0))
- Op = Op1;
- else if (isNullOrNullSplat(Op1))
- Op = Op0;
- else
- return false;
- Known = DAG.computeKnownBits(Op);
- return (Known.Zero | 1).isAllOnes();
- }
- /// Given an extending node with a pop-count operand, if the target does not
- /// support a pop-count in the narrow source type but does support it in the
- /// destination type, widen the pop-count to the destination type.
- static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG) {
- assert((Extend->getOpcode() == ISD::ZERO_EXTEND ||
- Extend->getOpcode() == ISD::ANY_EXTEND) && "Expected extend op");
- SDValue CtPop = Extend->getOperand(0);
- if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse())
- return SDValue();
- EVT VT = Extend->getValueType(0);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) ||
- !TLI.isOperationLegalOrCustom(ISD::CTPOP, VT))
- return SDValue();
- // zext (ctpop X) --> ctpop (zext X)
- SDLoc DL(Extend);
- SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT);
- return DAG.getNode(ISD::CTPOP, DL, VT, NewZext);
- }
- // If we have (zext (abs X)) where X is a type that will be promoted by type
- // legalization, convert to (abs (sext X)). But don't extend past a legal type.
- static SDValue widenAbs(SDNode *Extend, SelectionDAG &DAG) {
- assert(Extend->getOpcode() == ISD::ZERO_EXTEND && "Expected zero extend.");
- EVT VT = Extend->getValueType(0);
- if (VT.isVector())
- return SDValue();
- SDValue Abs = Extend->getOperand(0);
- if (Abs.getOpcode() != ISD::ABS || !Abs.hasOneUse())
- return SDValue();
- EVT AbsVT = Abs.getValueType();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (TLI.getTypeAction(*DAG.getContext(), AbsVT) !=
- TargetLowering::TypePromoteInteger)
- return SDValue();
- EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), AbsVT);
- SDValue SExt =
- DAG.getNode(ISD::SIGN_EXTEND, SDLoc(Abs), LegalVT, Abs.getOperand(0));
- SDValue NewAbs = DAG.getNode(ISD::ABS, SDLoc(Abs), LegalVT, SExt);
- return DAG.getZExtOrTrunc(NewAbs, SDLoc(Extend), VT);
- }
- SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVCastOp(N, SDLoc(N)))
- return FoldedVOp;
- // zext(undef) = 0
- if (N0.isUndef())
- return DAG.getConstant(0, SDLoc(N), VT);
- if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
- return Res;
- // fold (zext (zext x)) -> (zext x)
- // fold (zext (aext x)) -> (zext x)
- if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
- return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
- N0.getOperand(0));
- // fold (zext (truncate x)) -> (zext x) or
- // (zext (truncate x)) -> (truncate x)
- // This is valid when the truncated bits of x are already zero.
- SDValue Op;
- KnownBits Known;
- if (isTruncateOf(DAG, N0, Op, Known)) {
- APInt TruncatedBits =
- (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ?
- APInt(Op.getScalarValueSizeInBits(), 0) :
- APInt::getBitsSet(Op.getScalarValueSizeInBits(),
- N0.getScalarValueSizeInBits(),
- std::min(Op.getScalarValueSizeInBits(),
- VT.getScalarSizeInBits()));
- if (TruncatedBits.isSubsetOf(Known.Zero))
- return DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
- }
- // fold (zext (truncate x)) -> (and x, mask)
- if (N0.getOpcode() == ISD::TRUNCATE) {
- // fold (zext (truncate (load x))) -> (zext (smaller load x))
- // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
- if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) {
- SDNode *oye = N0.getOperand(0).getNode();
- if (NarrowLoad.getNode() != N0.getNode()) {
- CombineTo(N0.getNode(), NarrowLoad);
- // CombineTo deleted the truncate, if needed, but not what's under it.
- AddToWorklist(oye);
- }
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- EVT SrcVT = N0.getOperand(0).getValueType();
- EVT MinVT = N0.getValueType();
- // Try to mask before the extension to avoid having to generate a larger mask,
- // possibly over several sub-vectors.
- if (SrcVT.bitsLT(VT) && VT.isVector()) {
- if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) &&
- TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) {
- SDValue Op = N0.getOperand(0);
- Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT);
- AddToWorklist(Op.getNode());
- SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
- // Transfer the debug info; the new node is equivalent to N0.
- DAG.transferDbgValues(N0, ZExtOrTrunc);
- return ZExtOrTrunc;
- }
- }
- if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) {
- SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
- AddToWorklist(Op.getNode());
- SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT);
- // We may safely transfer the debug info describing the truncate node over
- // to the equivalent and operation.
- DAG.transferDbgValues(N0, And);
- return And;
- }
- }
- // Fold (zext (and (trunc x), cst)) -> (and x, cst),
- // if either of the casts is not free.
- if (N0.getOpcode() == ISD::AND &&
- N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
- N0.getOperand(1).getOpcode() == ISD::Constant &&
- (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
- N0.getValueType()) ||
- !TLI.isZExtFree(N0.getValueType(), VT))) {
- SDValue X = N0.getOperand(0).getOperand(0);
- X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT);
- APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
- SDLoc DL(N);
- return DAG.getNode(ISD::AND, DL, VT,
- X, DAG.getConstant(Mask, DL, VT));
- }
- // Try to simplify (zext (load x)).
- if (SDValue foldedExt =
- tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
- ISD::ZEXTLOAD, ISD::ZERO_EXTEND))
- return foldedExt;
- if (SDValue foldedExt =
- tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD,
- ISD::ZERO_EXTEND))
- return foldedExt;
- // fold (zext (load x)) to multiple smaller zextloads.
- // Only on illegal but splittable vectors.
- if (SDValue ExtLoad = CombineExtLoad(N))
- return ExtLoad;
- // fold (zext (and/or/xor (load x), cst)) ->
- // (and/or/xor (zextload x), (zext cst))
- // Unless (and (load x) cst) will match as a zextload already and has
- // additional users.
- if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
- N0.getOpcode() == ISD::XOR) &&
- isa<LoadSDNode>(N0.getOperand(0)) &&
- N0.getOperand(1).getOpcode() == ISD::Constant &&
- (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
- LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
- EVT MemVT = LN00->getMemoryVT();
- if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) &&
- LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) {
- bool DoXform = true;
- SmallVector<SDNode*, 4> SetCCs;
- if (!N0.hasOneUse()) {
- if (N0.getOpcode() == ISD::AND) {
- auto *AndC = cast<ConstantSDNode>(N0.getOperand(1));
- EVT LoadResultTy = AndC->getValueType(0);
- EVT ExtVT;
- if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT))
- DoXform = false;
- }
- }
- if (DoXform)
- DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
- ISD::ZERO_EXTEND, SetCCs, TLI);
- if (DoXform) {
- SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT,
- LN00->getChain(), LN00->getBasePtr(),
- LN00->getMemoryVT(),
- LN00->getMemOperand());
- APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
- SDLoc DL(N);
- SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
- ExtLoad, DAG.getConstant(Mask, DL, VT));
- ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
- bool NoReplaceTruncAnd = !N0.hasOneUse();
- bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
- CombineTo(N, And);
- // If N0 has multiple uses, change other uses as well.
- if (NoReplaceTruncAnd) {
- SDValue TruncAnd =
- DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
- CombineTo(N0.getNode(), TruncAnd);
- }
- if (NoReplaceTrunc) {
- DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
- } else {
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
- LN00->getValueType(0), ExtLoad);
- CombineTo(LN00, Trunc, ExtLoad.getValue(1));
- }
- return SDValue(N,0); // Return N so it doesn't get rechecked!
- }
- }
- }
- // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
- // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
- if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N))
- return ZExtLoad;
- // Try to simplify (zext (zextload x)).
- if (SDValue foldedExt = tryToFoldExtOfExtload(
- DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD))
- return foldedExt;
- if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
- return V;
- if (N0.getOpcode() == ISD::SETCC) {
- // Propagate fast-math-flags.
- SelectionDAG::FlagInserter FlagsInserter(DAG, N0->getFlags());
- // Only do this before legalize for now.
- if (!LegalOperations && VT.isVector() &&
- N0.getValueType().getVectorElementType() == MVT::i1) {
- EVT N00VT = N0.getOperand(0).getValueType();
- if (getSetCCResultType(N00VT) == N0.getValueType())
- return SDValue();
- // We know that the # elements of the results is the same as the #
- // elements of the compare (and the # elements of the compare result for
- // that matter). Check to see that they are the same size. If so, we know
- // that the element size of the sext'd result matches the element size of
- // the compare operands.
- SDLoc DL(N);
- if (VT.getSizeInBits() == N00VT.getSizeInBits()) {
- // zext(setcc) -> zext_in_reg(vsetcc) for vectors.
- SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0),
- N0.getOperand(1), N0.getOperand(2));
- return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType());
- }
- // If the desired elements are smaller or larger than the source
- // elements we can use a matching integer vector type and then
- // truncate/any extend followed by zext_in_reg.
- EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
- SDValue VsetCC =
- DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0),
- N0.getOperand(1), N0.getOperand(2));
- return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL,
- N0.getValueType());
- }
- // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc)
- SDLoc DL(N);
- EVT N0VT = N0.getValueType();
- EVT N00VT = N0.getOperand(0).getValueType();
- if (SDValue SCC = SimplifySelectCC(
- DL, N0.getOperand(0), N0.getOperand(1),
- DAG.getBoolConstant(true, DL, N0VT, N00VT),
- DAG.getBoolConstant(false, DL, N0VT, N00VT),
- cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
- return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, SCC);
- }
- // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
- if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
- isa<ConstantSDNode>(N0.getOperand(1)) &&
- N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
- N0.hasOneUse()) {
- SDValue ShAmt = N0.getOperand(1);
- if (N0.getOpcode() == ISD::SHL) {
- SDValue InnerZExt = N0.getOperand(0);
- // If the original shl may be shifting out bits, do not perform this
- // transformation.
- unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() -
- InnerZExt.getOperand(0).getValueSizeInBits();
- if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits))
- return SDValue();
- }
- SDLoc DL(N);
- // Ensure that the shift amount is wide enough for the shifted value.
- if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits())
- ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
- return DAG.getNode(N0.getOpcode(), DL, VT,
- DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
- ShAmt);
- }
- if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
- return NewVSel;
- if (SDValue NewCtPop = widenCtPop(N, DAG))
- return NewCtPop;
- if (SDValue V = widenAbs(N, DAG))
- return V;
- if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG))
- return Res;
- return SDValue();
- }
- SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- // aext(undef) = undef
- if (N0.isUndef())
- return DAG.getUNDEF(VT);
- if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
- return Res;
- // fold (aext (aext x)) -> (aext x)
- // fold (aext (zext x)) -> (zext x)
- // fold (aext (sext x)) -> (sext x)
- if (N0.getOpcode() == ISD::ANY_EXTEND ||
- N0.getOpcode() == ISD::ZERO_EXTEND ||
- N0.getOpcode() == ISD::SIGN_EXTEND)
- return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
- // fold (aext (truncate (load x))) -> (aext (smaller load x))
- // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
- if (N0.getOpcode() == ISD::TRUNCATE) {
- if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) {
- SDNode *oye = N0.getOperand(0).getNode();
- if (NarrowLoad.getNode() != N0.getNode()) {
- CombineTo(N0.getNode(), NarrowLoad);
- // CombineTo deleted the truncate, if needed, but not what's under it.
- AddToWorklist(oye);
- }
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- }
- // fold (aext (truncate x))
- if (N0.getOpcode() == ISD::TRUNCATE)
- return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
- // Fold (aext (and (trunc x), cst)) -> (and x, cst)
- // if the trunc is not free.
- if (N0.getOpcode() == ISD::AND &&
- N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
- N0.getOperand(1).getOpcode() == ISD::Constant &&
- !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
- N0.getValueType())) {
- SDLoc DL(N);
- SDValue X = DAG.getAnyExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT);
- SDValue Y = DAG.getNode(ISD::ANY_EXTEND, DL, VT, N0.getOperand(1));
- assert(isa<ConstantSDNode>(Y) && "Expected constant to be folded!");
- return DAG.getNode(ISD::AND, DL, VT, X, Y);
- }
- // fold (aext (load x)) -> (aext (truncate (extload x)))
- // None of the supported targets knows how to perform load and any_ext
- // on vectors in one instruction, so attempt to fold to zext instead.
- if (VT.isVector()) {
- // Try to simplify (zext (load x)).
- if (SDValue foldedExt =
- tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
- ISD::ZEXTLOAD, ISD::ZERO_EXTEND))
- return foldedExt;
- } else if (ISD::isNON_EXTLoad(N0.getNode()) &&
- ISD::isUNINDEXEDLoad(N0.getNode()) &&
- TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
- bool DoXform = true;
- SmallVector<SDNode *, 4> SetCCs;
- if (!N0.hasOneUse())
- DoXform =
- ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
- if (DoXform) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
- LN0->getChain(), LN0->getBasePtr(),
- N0.getValueType(), LN0->getMemOperand());
- ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND);
- // If the load value is used only by N, replace it via CombineTo N.
- bool NoReplaceTrunc = N0.hasOneUse();
- CombineTo(N, ExtLoad);
- if (NoReplaceTrunc) {
- DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
- recursivelyDeleteUnusedNodes(LN0);
- } else {
- SDValue Trunc =
- DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
- CombineTo(LN0, Trunc, ExtLoad.getValue(1));
- }
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- }
- // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
- // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
- // fold (aext ( extload x)) -> (aext (truncate (extload x)))
- if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) &&
- ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- ISD::LoadExtType ExtType = LN0->getExtensionType();
- EVT MemVT = LN0->getMemoryVT();
- if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
- SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
- VT, LN0->getChain(), LN0->getBasePtr(),
- MemVT, LN0->getMemOperand());
- CombineTo(N, ExtLoad);
- DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
- recursivelyDeleteUnusedNodes(LN0);
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- }
- if (N0.getOpcode() == ISD::SETCC) {
- // Propagate fast-math-flags.
- SelectionDAG::FlagInserter FlagsInserter(DAG, N0->getFlags());
- // For vectors:
- // aext(setcc) -> vsetcc
- // aext(setcc) -> truncate(vsetcc)
- // aext(setcc) -> aext(vsetcc)
- // Only do this before legalize for now.
- if (VT.isVector() && !LegalOperations) {
- EVT N00VT = N0.getOperand(0).getValueType();
- if (getSetCCResultType(N00VT) == N0.getValueType())
- return SDValue();
- // We know that the # elements of the results is the same as the
- // # elements of the compare (and the # elements of the compare result
- // for that matter). Check to see that they are the same size. If so,
- // we know that the element size of the sext'd result matches the
- // element size of the compare operands.
- if (VT.getSizeInBits() == N00VT.getSizeInBits())
- return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
- N0.getOperand(1),
- cast<CondCodeSDNode>(N0.getOperand(2))->get());
- // If the desired elements are smaller or larger than the source
- // elements we can use a matching integer vector type and then
- // truncate/any extend
- EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
- SDValue VsetCC =
- DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
- N0.getOperand(1),
- cast<CondCodeSDNode>(N0.getOperand(2))->get());
- return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT);
- }
- // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
- SDLoc DL(N);
- if (SDValue SCC = SimplifySelectCC(
- DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
- DAG.getConstant(0, DL, VT),
- cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
- return SCC;
- }
- if (SDValue NewCtPop = widenCtPop(N, DAG))
- return NewCtPop;
- if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG))
- return Res;
- return SDValue();
- }
- SDValue DAGCombiner::visitAssertExt(SDNode *N) {
- unsigned Opcode = N->getOpcode();
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT AssertVT = cast<VTSDNode>(N1)->getVT();
- // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
- if (N0.getOpcode() == Opcode &&
- AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT())
- return N0;
- if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
- N0.getOperand(0).getOpcode() == Opcode) {
- // We have an assert, truncate, assert sandwich. Make one stronger assert
- // by asserting on the smallest asserted type to the larger source type.
- // This eliminates the later assert:
- // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
- // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
- SDLoc DL(N);
- SDValue BigA = N0.getOperand(0);
- EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
- EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT;
- SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT);
- SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
- BigA.getOperand(0), MinAssertVTVal);
- return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
- }
- // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
- // than X. Just move the AssertZext in front of the truncate and drop the
- // AssertSExt.
- if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
- N0.getOperand(0).getOpcode() == ISD::AssertSext &&
- Opcode == ISD::AssertZext) {
- SDValue BigA = N0.getOperand(0);
- EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
- if (AssertVT.bitsLT(BigA_AssertVT)) {
- SDLoc DL(N);
- SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
- BigA.getOperand(0), N1);
- return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
- }
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitAssertAlign(SDNode *N) {
- SDLoc DL(N);
- Align AL = cast<AssertAlignSDNode>(N)->getAlign();
- SDValue N0 = N->getOperand(0);
- // Fold (assertalign (assertalign x, AL0), AL1) ->
- // (assertalign x, max(AL0, AL1))
- if (auto *AAN = dyn_cast<AssertAlignSDNode>(N0))
- return DAG.getAssertAlign(DL, N0.getOperand(0),
- std::max(AL, AAN->getAlign()));
- // In rare cases, there are trivial arithmetic ops in source operands. Sink
- // this assert down to source operands so that those arithmetic ops could be
- // exposed to the DAG combining.
- switch (N0.getOpcode()) {
- default:
- break;
- case ISD::ADD:
- case ISD::SUB: {
- unsigned AlignShift = Log2(AL);
- SDValue LHS = N0.getOperand(0);
- SDValue RHS = N0.getOperand(1);
- unsigned LHSAlignShift = DAG.computeKnownBits(LHS).countMinTrailingZeros();
- unsigned RHSAlignShift = DAG.computeKnownBits(RHS).countMinTrailingZeros();
- if (LHSAlignShift >= AlignShift || RHSAlignShift >= AlignShift) {
- if (LHSAlignShift < AlignShift)
- LHS = DAG.getAssertAlign(DL, LHS, AL);
- if (RHSAlignShift < AlignShift)
- RHS = DAG.getAssertAlign(DL, RHS, AL);
- return DAG.getNode(N0.getOpcode(), DL, N0.getValueType(), LHS, RHS);
- }
- break;
- }
- }
- return SDValue();
- }
- /// If the result of a load is shifted/masked/truncated to an effectively
- /// narrower type, try to transform the load to a narrower type and/or
- /// use an extending load.
- SDValue DAGCombiner::reduceLoadWidth(SDNode *N) {
- unsigned Opc = N->getOpcode();
- ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- EVT ExtVT = VT;
- // This transformation isn't valid for vector loads.
- if (VT.isVector())
- return SDValue();
- // The ShAmt variable is used to indicate that we've consumed a right
- // shift. I.e. we want to narrow the width of the load by skipping to load the
- // ShAmt least significant bits.
- unsigned ShAmt = 0;
- // A special case is when the least significant bits from the load are masked
- // away, but using an AND rather than a right shift. HasShiftedOffset is used
- // to indicate that the narrowed load should be left-shifted ShAmt bits to get
- // the result.
- bool HasShiftedOffset = false;
- // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
- // extended to VT.
- if (Opc == ISD::SIGN_EXTEND_INREG) {
- ExtType = ISD::SEXTLOAD;
- ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
- } else if (Opc == ISD::SRL || Opc == ISD::SRA) {
- // Another special-case: SRL/SRA is basically zero/sign-extending a narrower
- // value, or it may be shifting a higher subword, half or byte into the
- // lowest bits.
- // Only handle shift with constant shift amount, and the shiftee must be a
- // load.
- auto *LN = dyn_cast<LoadSDNode>(N0);
- auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
- if (!N1C || !LN)
- return SDValue();
- // If the shift amount is larger than the memory type then we're not
- // accessing any of the loaded bytes.
- ShAmt = N1C->getZExtValue();
- uint64_t MemoryWidth = LN->getMemoryVT().getScalarSizeInBits();
- if (MemoryWidth <= ShAmt)
- return SDValue();
- // Attempt to fold away the SRL by using ZEXTLOAD and SRA by using SEXTLOAD.
- ExtType = Opc == ISD::SRL ? ISD::ZEXTLOAD : ISD::SEXTLOAD;
- ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShAmt);
- // If original load is a SEXTLOAD then we can't simply replace it by a
- // ZEXTLOAD (we could potentially replace it by a more narrow SEXTLOAD
- // followed by a ZEXT, but that is not handled at the moment). Similarly if
- // the original load is a ZEXTLOAD and we want to use a SEXTLOAD.
- if ((LN->getExtensionType() == ISD::SEXTLOAD ||
- LN->getExtensionType() == ISD::ZEXTLOAD) &&
- LN->getExtensionType() != ExtType)
- return SDValue();
- } else if (Opc == ISD::AND) {
- // An AND with a constant mask is the same as a truncate + zero-extend.
- auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1));
- if (!AndC)
- return SDValue();
- const APInt &Mask = AndC->getAPIntValue();
- unsigned ActiveBits = 0;
- if (Mask.isMask()) {
- ActiveBits = Mask.countTrailingOnes();
- } else if (Mask.isShiftedMask(ShAmt, ActiveBits)) {
- HasShiftedOffset = true;
- } else {
- return SDValue();
- }
- ExtType = ISD::ZEXTLOAD;
- ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
- }
- // In case Opc==SRL we've already prepared ExtVT/ExtType/ShAmt based on doing
- // a right shift. Here we redo some of those checks, to possibly adjust the
- // ExtVT even further based on "a masking AND". We could also end up here for
- // other reasons (e.g. based on Opc==TRUNCATE) and that is why some checks
- // need to be done here as well.
- if (Opc == ISD::SRL || N0.getOpcode() == ISD::SRL) {
- SDValue SRL = Opc == ISD::SRL ? SDValue(N, 0) : N0;
- // Bail out when the SRL has more than one use. This is done for historical
- // (undocumented) reasons. Maybe intent was to guard the AND-masking below
- // check below? And maybe it could be non-profitable to do the transform in
- // case the SRL has multiple uses and we get here with Opc!=ISD::SRL?
- // FIXME: Can't we just skip this check for the Opc==ISD::SRL case.
- if (!SRL.hasOneUse())
- return SDValue();
- // Only handle shift with constant shift amount, and the shiftee must be a
- // load.
- auto *LN = dyn_cast<LoadSDNode>(SRL.getOperand(0));
- auto *SRL1C = dyn_cast<ConstantSDNode>(SRL.getOperand(1));
- if (!SRL1C || !LN)
- return SDValue();
- // If the shift amount is larger than the input type then we're not
- // accessing any of the loaded bytes. If the load was a zextload/extload
- // then the result of the shift+trunc is zero/undef (handled elsewhere).
- ShAmt = SRL1C->getZExtValue();
- uint64_t MemoryWidth = LN->getMemoryVT().getSizeInBits();
- if (ShAmt >= MemoryWidth)
- return SDValue();
- // Because a SRL must be assumed to *need* to zero-extend the high bits
- // (as opposed to anyext the high bits), we can't combine the zextload
- // lowering of SRL and an sextload.
- if (LN->getExtensionType() == ISD::SEXTLOAD)
- return SDValue();
- // Avoid reading outside the memory accessed by the original load (could
- // happened if we only adjust the load base pointer by ShAmt). Instead we
- // try to narrow the load even further. The typical scenario here is:
- // (i64 (truncate (i96 (srl (load x), 64)))) ->
- // (i64 (truncate (i96 (zextload (load i32 + offset) from i32))))
- if (ExtVT.getScalarSizeInBits() > MemoryWidth - ShAmt) {
- // Don't replace sextload by zextload.
- if (ExtType == ISD::SEXTLOAD)
- return SDValue();
- // Narrow the load.
- ExtType = ISD::ZEXTLOAD;
- ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShAmt);
- }
- // If the SRL is only used by a masking AND, we may be able to adjust
- // the ExtVT to make the AND redundant.
- SDNode *Mask = *(SRL->use_begin());
- if (SRL.hasOneUse() && Mask->getOpcode() == ISD::AND &&
- isa<ConstantSDNode>(Mask->getOperand(1))) {
- const APInt& ShiftMask = Mask->getConstantOperandAPInt(1);
- if (ShiftMask.isMask()) {
- EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(),
- ShiftMask.countTrailingOnes());
- // If the mask is smaller, recompute the type.
- if ((ExtVT.getScalarSizeInBits() > MaskedVT.getScalarSizeInBits()) &&
- TLI.isLoadExtLegal(ExtType, SRL.getValueType(), MaskedVT))
- ExtVT = MaskedVT;
- }
- }
- N0 = SRL.getOperand(0);
- }
- // If the load is shifted left (and the result isn't shifted back right), we
- // can fold a truncate through the shift. The typical scenario is that N
- // points at a TRUNCATE here so the attempted fold is:
- // (truncate (shl (load x), c))) -> (shl (narrow load x), c)
- // ShLeftAmt will indicate how much a narrowed load should be shifted left.
- unsigned ShLeftAmt = 0;
- if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
- ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
- if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- ShLeftAmt = N01->getZExtValue();
- N0 = N0.getOperand(0);
- }
- }
- // If we haven't found a load, we can't narrow it.
- if (!isa<LoadSDNode>(N0))
- return SDValue();
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- // Reducing the width of a volatile load is illegal. For atomics, we may be
- // able to reduce the width provided we never widen again. (see D66309)
- if (!LN0->isSimple() ||
- !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt))
- return SDValue();
- auto AdjustBigEndianShift = [&](unsigned ShAmt) {
- unsigned LVTStoreBits =
- LN0->getMemoryVT().getStoreSizeInBits().getFixedValue();
- unsigned EVTStoreBits = ExtVT.getStoreSizeInBits().getFixedValue();
- return LVTStoreBits - EVTStoreBits - ShAmt;
- };
- // We need to adjust the pointer to the load by ShAmt bits in order to load
- // the correct bytes.
- unsigned PtrAdjustmentInBits =
- DAG.getDataLayout().isBigEndian() ? AdjustBigEndianShift(ShAmt) : ShAmt;
- uint64_t PtrOff = PtrAdjustmentInBits / 8;
- Align NewAlign = commonAlignment(LN0->getAlign(), PtrOff);
- SDLoc DL(LN0);
- // The original load itself didn't wrap, so an offset within it doesn't.
- SDNodeFlags Flags;
- Flags.setNoUnsignedWrap(true);
- SDValue NewPtr = DAG.getMemBasePlusOffset(LN0->getBasePtr(),
- TypeSize::Fixed(PtrOff), DL, Flags);
- AddToWorklist(NewPtr.getNode());
- SDValue Load;
- if (ExtType == ISD::NON_EXTLOAD)
- Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr,
- LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign,
- LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
- else
- Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr,
- LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT,
- NewAlign, LN0->getMemOperand()->getFlags(),
- LN0->getAAInfo());
- // Replace the old load's chain with the new load's chain.
- WorklistRemover DeadNodes(*this);
- DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
- // Shift the result left, if we've swallowed a left shift.
- SDValue Result = Load;
- if (ShLeftAmt != 0) {
- EVT ShImmTy = getShiftAmountTy(Result.getValueType());
- if (!isUIntN(ShImmTy.getScalarSizeInBits(), ShLeftAmt))
- ShImmTy = VT;
- // If the shift amount is as large as the result size (but, presumably,
- // no larger than the source) then the useful bits of the result are
- // zero; we can't simply return the shortened shift, because the result
- // of that operation is undefined.
- if (ShLeftAmt >= VT.getScalarSizeInBits())
- Result = DAG.getConstant(0, DL, VT);
- else
- Result = DAG.getNode(ISD::SHL, DL, VT,
- Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy));
- }
- if (HasShiftedOffset) {
- // We're using a shifted mask, so the load now has an offset. This means
- // that data has been loaded into the lower bytes than it would have been
- // before, so we need to shl the loaded data into the correct position in the
- // register.
- SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT);
- Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC);
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
- }
- // Return the new loaded value.
- return Result;
- }
- SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- EVT ExtVT = cast<VTSDNode>(N1)->getVT();
- unsigned VTBits = VT.getScalarSizeInBits();
- unsigned ExtVTBits = ExtVT.getScalarSizeInBits();
- // sext_vector_inreg(undef) = 0 because the top bit will all be the same.
- if (N0.isUndef())
- return DAG.getConstant(0, SDLoc(N), VT);
- // fold (sext_in_reg c1) -> c1
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
- return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
- // If the input is already sign extended, just drop the extension.
- if (ExtVTBits >= DAG.ComputeMaxSignificantBits(N0))
- return N0;
- // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
- if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
- ExtVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
- return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0.getOperand(0),
- N1);
- // fold (sext_in_reg (sext x)) -> (sext x)
- // fold (sext_in_reg (aext x)) -> (sext x)
- // if x is small enough or if we know that x has more than 1 sign bit and the
- // sign_extend_inreg is extending from one of them.
- if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
- SDValue N00 = N0.getOperand(0);
- unsigned N00Bits = N00.getScalarValueSizeInBits();
- if ((N00Bits <= ExtVTBits ||
- DAG.ComputeMaxSignificantBits(N00) <= ExtVTBits) &&
- (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
- return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00);
- }
- // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
- // if x is small enough or if we know that x has more than 1 sign bit and the
- // sign_extend_inreg is extending from one of them.
- if (N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG ||
- N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ||
- N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
- SDValue N00 = N0.getOperand(0);
- unsigned N00Bits = N00.getScalarValueSizeInBits();
- unsigned DstElts = N0.getValueType().getVectorMinNumElements();
- unsigned SrcElts = N00.getValueType().getVectorMinNumElements();
- bool IsZext = N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
- APInt DemandedSrcElts = APInt::getLowBitsSet(SrcElts, DstElts);
- if ((N00Bits == ExtVTBits ||
- (!IsZext && (N00Bits < ExtVTBits ||
- DAG.ComputeMaxSignificantBits(N00) <= ExtVTBits))) &&
- (!LegalOperations ||
- TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT)))
- return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, N00);
- }
- // fold (sext_in_reg (zext x)) -> (sext x)
- // iff we are extending the source sign bit.
- if (N0.getOpcode() == ISD::ZERO_EXTEND) {
- SDValue N00 = N0.getOperand(0);
- if (N00.getScalarValueSizeInBits() == ExtVTBits &&
- (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
- return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
- }
- // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
- if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, ExtVTBits - 1)))
- return DAG.getZeroExtendInReg(N0, SDLoc(N), ExtVT);
- // fold operands of sext_in_reg based on knowledge that the top bits are not
- // demanded.
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
- // fold (sext_in_reg (load x)) -> (smaller sextload x)
- // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
- if (SDValue NarrowLoad = reduceLoadWidth(N))
- return NarrowLoad;
- // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
- // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
- // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
- if (N0.getOpcode() == ISD::SRL) {
- if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
- if (ShAmt->getAPIntValue().ule(VTBits - ExtVTBits)) {
- // We can turn this into an SRA iff the input to the SRL is already sign
- // extended enough.
- unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
- if (((VTBits - ExtVTBits) - ShAmt->getZExtValue()) < InSignBits)
- return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
- N0.getOperand(1));
- }
- }
- // fold (sext_inreg (extload x)) -> (sextload x)
- // If sextload is not supported by target, we can only do the combine when
- // load has one use. Doing otherwise can block folding the extload with other
- // extends that the target does support.
- if (ISD::isEXTLoad(N0.getNode()) &&
- ISD::isUNINDEXEDLoad(N0.getNode()) &&
- ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
- ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() &&
- N0.hasOneUse()) ||
- TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
- LN0->getChain(),
- LN0->getBasePtr(), ExtVT,
- LN0->getMemOperand());
- CombineTo(N, ExtLoad);
- CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
- AddToWorklist(ExtLoad.getNode());
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
- if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
- N0.hasOneUse() &&
- ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
- ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) &&
- TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
- LN0->getChain(),
- LN0->getBasePtr(), ExtVT,
- LN0->getMemOperand());
- CombineTo(N, ExtLoad);
- CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- // fold (sext_inreg (masked_load x)) -> (sext_masked_load x)
- // ignore it if the masked load is already sign extended
- if (MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0)) {
- if (ExtVT == Ld->getMemoryVT() && N0.hasOneUse() &&
- Ld->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD &&
- TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT)) {
- SDValue ExtMaskedLoad = DAG.getMaskedLoad(
- VT, SDLoc(N), Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(),
- Ld->getMask(), Ld->getPassThru(), ExtVT, Ld->getMemOperand(),
- Ld->getAddressingMode(), ISD::SEXTLOAD, Ld->isExpandingLoad());
- CombineTo(N, ExtMaskedLoad);
- CombineTo(N0.getNode(), ExtMaskedLoad, ExtMaskedLoad.getValue(1));
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- }
- // fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x)
- if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) {
- if (SDValue(GN0, 0).hasOneUse() &&
- ExtVT == GN0->getMemoryVT() &&
- TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) {
- SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(),
- GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()};
- SDValue ExtLoad = DAG.getMaskedGather(
- DAG.getVTList(VT, MVT::Other), ExtVT, SDLoc(N), Ops,
- GN0->getMemOperand(), GN0->getIndexType(), ISD::SEXTLOAD);
- CombineTo(N, ExtLoad);
- CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
- AddToWorklist(ExtLoad.getNode());
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- }
- // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
- if (ExtVTBits <= 16 && N0.getOpcode() == ISD::OR) {
- if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
- N0.getOperand(1), false))
- return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, BSwap, N1);
- }
- // Fold (iM_signext_inreg
- // (extract_subvector (zext|anyext|sext iN_v to _) _)
- // from iN)
- // -> (extract_subvector (signext iN_v to iM))
- if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR && N0.hasOneUse() &&
- ISD::isExtOpcode(N0.getOperand(0).getOpcode())) {
- SDValue InnerExt = N0.getOperand(0);
- EVT InnerExtVT = InnerExt->getValueType(0);
- SDValue Extendee = InnerExt->getOperand(0);
- if (ExtVTBits == Extendee.getValueType().getScalarSizeInBits() &&
- (!LegalOperations ||
- TLI.isOperationLegal(ISD::SIGN_EXTEND, InnerExtVT))) {
- SDValue SignExtExtendee =
- DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), InnerExtVT, Extendee);
- return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), VT, SignExtExtendee,
- N0.getOperand(1));
- }
- }
- return SDValue();
- }
- static SDValue
- foldExtendVectorInregToExtendOfSubvector(SDNode *N, const TargetLowering &TLI,
- SelectionDAG &DAG,
- bool LegalOperations) {
- unsigned InregOpcode = N->getOpcode();
- unsigned Opcode = DAG.getOpcode_EXTEND(InregOpcode);
- SDValue Src = N->getOperand(0);
- EVT VT = N->getValueType(0);
- EVT SrcVT = EVT::getVectorVT(*DAG.getContext(),
- Src.getValueType().getVectorElementType(),
- VT.getVectorElementCount());
- assert((InregOpcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
- InregOpcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
- InregOpcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
- "Expected EXTEND_VECTOR_INREG dag node in input!");
- // Profitability check: our operand must be an one-use CONCAT_VECTORS.
- // FIXME: one-use check may be overly restrictive
- if (!Src.hasOneUse() || Src.getOpcode() != ISD::CONCAT_VECTORS)
- return SDValue();
- // Profitability check: we must be extending exactly one of it's operands.
- // FIXME: this is probably overly restrictive.
- Src = Src.getOperand(0);
- if (Src.getValueType() != SrcVT)
- return SDValue();
- if (LegalOperations && !TLI.isOperationLegal(Opcode, VT))
- return SDValue();
- return DAG.getNode(Opcode, SDLoc(N), VT, Src);
- }
- SDValue DAGCombiner::visitEXTEND_VECTOR_INREG(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- if (N0.isUndef()) {
- // aext_vector_inreg(undef) = undef because the top bits are undefined.
- // {s/z}ext_vector_inreg(undef) = 0 because the top bits must be the same.
- return N->getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG
- ? DAG.getUNDEF(VT)
- : DAG.getConstant(0, SDLoc(N), VT);
- }
- if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
- return Res;
- if (SimplifyDemandedVectorElts(SDValue(N, 0)))
- return SDValue(N, 0);
- if (SDValue R = foldExtendVectorInregToExtendOfSubvector(N, TLI, DAG,
- LegalOperations))
- return R;
- return SDValue();
- }
- SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- EVT SrcVT = N0.getValueType();
- bool isLE = DAG.getDataLayout().isLittleEndian();
- // noop truncate
- if (SrcVT == VT)
- return N0;
- // fold (truncate (truncate x)) -> (truncate x)
- if (N0.getOpcode() == ISD::TRUNCATE)
- return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
- // fold (truncate c1) -> c1
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
- SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
- if (C.getNode() != N)
- return C;
- }
- // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
- if (N0.getOpcode() == ISD::ZERO_EXTEND ||
- N0.getOpcode() == ISD::SIGN_EXTEND ||
- N0.getOpcode() == ISD::ANY_EXTEND) {
- // if the source is smaller than the dest, we still need an extend.
- if (N0.getOperand(0).getValueType().bitsLT(VT))
- return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
- // if the source is larger than the dest, than we just need the truncate.
- if (N0.getOperand(0).getValueType().bitsGT(VT))
- return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
- // if the source and dest are the same type, we can drop both the extend
- // and the truncate.
- return N0.getOperand(0);
- }
- // Try to narrow a truncate-of-sext_in_reg to the destination type:
- // trunc (sign_ext_inreg X, iM) to iN --> sign_ext_inreg (trunc X to iN), iM
- if (!LegalTypes && N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
- N0.hasOneUse()) {
- SDValue X = N0.getOperand(0);
- SDValue ExtVal = N0.getOperand(1);
- EVT ExtVT = cast<VTSDNode>(ExtVal)->getVT();
- if (ExtVT.bitsLT(VT)) {
- SDValue TrX = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X);
- return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, TrX, ExtVal);
- }
- }
- // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
- if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND))
- return SDValue();
- // Fold extract-and-trunc into a narrow extract. For example:
- // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
- // i32 y = TRUNCATE(i64 x)
- // -- becomes --
- // v16i8 b = BITCAST (v2i64 val)
- // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
- //
- // Note: We only run this optimization after type legalization (which often
- // creates this pattern) and before operation legalization after which
- // we need to be more careful about the vector instructions that we generate.
- if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
- LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) {
- EVT VecTy = N0.getOperand(0).getValueType();
- EVT ExTy = N0.getValueType();
- EVT TrTy = N->getValueType(0);
- auto EltCnt = VecTy.getVectorElementCount();
- unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
- auto NewEltCnt = EltCnt * SizeRatio;
- EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, NewEltCnt);
- assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
- SDValue EltNo = N0->getOperand(1);
- if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
- int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
- int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
- SDLoc DL(N);
- return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy,
- DAG.getBitcast(NVT, N0.getOperand(0)),
- DAG.getVectorIdxConstant(Index, DL));
- }
- }
- // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
- if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) {
- if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) &&
- TLI.isTruncateFree(SrcVT, VT)) {
- SDLoc SL(N0);
- SDValue Cond = N0.getOperand(0);
- SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
- SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
- return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1);
- }
- }
- // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
- if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
- (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) &&
- TLI.isTypeDesirableForOp(ISD::SHL, VT)) {
- SDValue Amt = N0.getOperand(1);
- KnownBits Known = DAG.computeKnownBits(Amt);
- unsigned Size = VT.getScalarSizeInBits();
- if (Known.countMaxActiveBits() <= Log2_32(Size)) {
- SDLoc SL(N);
- EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
- if (AmtVT != Amt.getValueType()) {
- Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT);
- AddToWorklist(Amt.getNode());
- }
- return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt);
- }
- }
- if (SDValue V = foldSubToUSubSat(VT, N0.getNode()))
- return V;
- // Attempt to pre-truncate BUILD_VECTOR sources.
- if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations &&
- TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) &&
- // Avoid creating illegal types if running after type legalizer.
- (!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) {
- SDLoc DL(N);
- EVT SVT = VT.getScalarType();
- SmallVector<SDValue, 8> TruncOps;
- for (const SDValue &Op : N0->op_values()) {
- SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op);
- TruncOps.push_back(TruncOp);
- }
- return DAG.getBuildVector(VT, DL, TruncOps);
- }
- // Fold a series of buildvector, bitcast, and truncate if possible.
- // For example fold
- // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
- // (2xi32 (buildvector x, y)).
- if (Level == AfterLegalizeVectorOps && VT.isVector() &&
- N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
- N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
- N0.getOperand(0).hasOneUse()) {
- SDValue BuildVect = N0.getOperand(0);
- EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
- EVT TruncVecEltTy = VT.getVectorElementType();
- // Check that the element types match.
- if (BuildVectEltTy == TruncVecEltTy) {
- // Now we only need to compute the offset of the truncated elements.
- unsigned BuildVecNumElts = BuildVect.getNumOperands();
- unsigned TruncVecNumElts = VT.getVectorNumElements();
- unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
- assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
- "Invalid number of elements");
- SmallVector<SDValue, 8> Opnds;
- for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
- Opnds.push_back(BuildVect.getOperand(i));
- return DAG.getBuildVector(VT, SDLoc(N), Opnds);
- }
- }
- // fold (truncate (load x)) -> (smaller load x)
- // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
- if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
- if (SDValue Reduced = reduceLoadWidth(N))
- return Reduced;
- // Handle the case where the load remains an extending load even
- // after truncation.
- if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- if (LN0->isSimple() && LN0->getMemoryVT().bitsLT(VT)) {
- SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0),
- VT, LN0->getChain(), LN0->getBasePtr(),
- LN0->getMemoryVT(),
- LN0->getMemOperand());
- DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
- return NewLoad;
- }
- }
- }
- // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
- // where ... are all 'undef'.
- if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
- SmallVector<EVT, 8> VTs;
- SDValue V;
- unsigned Idx = 0;
- unsigned NumDefs = 0;
- for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
- SDValue X = N0.getOperand(i);
- if (!X.isUndef()) {
- V = X;
- Idx = i;
- NumDefs++;
- }
- // Stop if more than one members are non-undef.
- if (NumDefs > 1)
- break;
- VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
- VT.getVectorElementType(),
- X.getValueType().getVectorElementCount()));
- }
- if (NumDefs == 0)
- return DAG.getUNDEF(VT);
- if (NumDefs == 1) {
- assert(V.getNode() && "The single defined operand is empty!");
- SmallVector<SDValue, 8> Opnds;
- for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
- if (i != Idx) {
- Opnds.push_back(DAG.getUNDEF(VTs[i]));
- continue;
- }
- SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
- AddToWorklist(NV.getNode());
- Opnds.push_back(NV);
- }
- return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds);
- }
- }
- // Fold truncate of a bitcast of a vector to an extract of the low vector
- // element.
- //
- // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
- if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) {
- SDValue VecSrc = N0.getOperand(0);
- EVT VecSrcVT = VecSrc.getValueType();
- if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT &&
- (!LegalOperations ||
- TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) {
- SDLoc SL(N);
- unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1;
- return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, VecSrc,
- DAG.getVectorIdxConstant(Idx, SL));
- }
- }
- // Simplify the operands using demanded-bits information.
- if (SimplifyDemandedBits(SDValue(N, 0)))
- return SDValue(N, 0);
- // fold (truncate (extract_subvector(ext x))) ->
- // (extract_subvector x)
- // TODO: This can be generalized to cover cases where the truncate and extract
- // do not fully cancel each other out.
- if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
- SDValue N00 = N0.getOperand(0);
- if (N00.getOpcode() == ISD::SIGN_EXTEND ||
- N00.getOpcode() == ISD::ZERO_EXTEND ||
- N00.getOpcode() == ISD::ANY_EXTEND) {
- if (N00.getOperand(0)->getValueType(0).getVectorElementType() ==
- VT.getVectorElementType())
- return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT,
- N00.getOperand(0), N0.getOperand(1));
- }
- }
- if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
- return NewVSel;
- // Narrow a suitable binary operation with a non-opaque constant operand by
- // moving it ahead of the truncate. This is limited to pre-legalization
- // because targets may prefer a wider type during later combines and invert
- // this transform.
- switch (N0.getOpcode()) {
- case ISD::ADD:
- case ISD::SUB:
- case ISD::MUL:
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR:
- if (!LegalOperations && N0.hasOneUse() &&
- (isConstantOrConstantVector(N0.getOperand(0), true) ||
- isConstantOrConstantVector(N0.getOperand(1), true))) {
- // TODO: We already restricted this to pre-legalization, but for vectors
- // we are extra cautious to not create an unsupported operation.
- // Target-specific changes are likely needed to avoid regressions here.
- if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) {
- SDLoc DL(N);
- SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
- SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1));
- return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR);
- }
- }
- break;
- case ISD::ADDE:
- case ISD::ADDCARRY:
- // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
- // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
- // When the adde's carry is not used.
- // We only do for addcarry before legalize operation
- if (((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) ||
- TLI.isOperationLegal(N0.getOpcode(), VT)) &&
- N0.hasOneUse() && !N0->hasAnyUseOfValue(1)) {
- SDLoc DL(N);
- SDValue X = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
- SDValue Y = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1));
- SDVTList VTs = DAG.getVTList(VT, N0->getValueType(1));
- return DAG.getNode(N0.getOpcode(), DL, VTs, X, Y, N0.getOperand(2));
- }
- break;
- case ISD::USUBSAT:
- // Truncate the USUBSAT only if LHS is a known zero-extension, its not
- // enough to know that the upper bits are zero we must ensure that we don't
- // introduce an extra truncate.
- if (!LegalOperations && N0.hasOneUse() &&
- N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
- N0.getOperand(0).getOperand(0).getScalarValueSizeInBits() <=
- VT.getScalarSizeInBits() &&
- hasOperation(N0.getOpcode(), VT)) {
- return getTruncatedUSUBSAT(VT, SrcVT, N0.getOperand(0), N0.getOperand(1),
- DAG, SDLoc(N));
- }
- break;
- }
- return SDValue();
- }
- static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
- SDValue Elt = N->getOperand(i);
- if (Elt.getOpcode() != ISD::MERGE_VALUES)
- return Elt.getNode();
- return Elt.getOperand(Elt.getResNo()).getNode();
- }
- /// build_pair (load, load) -> load
- /// if load locations are consecutive.
- SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
- assert(N->getOpcode() == ISD::BUILD_PAIR);
- auto *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
- auto *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
- // A BUILD_PAIR is always having the least significant part in elt 0 and the
- // most significant part in elt 1. So when combining into one large load, we
- // need to consider the endianness.
- if (DAG.getDataLayout().isBigEndian())
- std::swap(LD1, LD2);
- if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !ISD::isNON_EXTLoad(LD2) ||
- !LD1->hasOneUse() || !LD2->hasOneUse() ||
- LD1->getAddressSpace() != LD2->getAddressSpace())
- return SDValue();
- unsigned LD1Fast = 0;
- EVT LD1VT = LD1->getValueType(0);
- unsigned LD1Bytes = LD1VT.getStoreSize();
- if ((!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) &&
- DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1) &&
- TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
- *LD1->getMemOperand(), &LD1Fast) && LD1Fast)
- return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(),
- LD1->getPointerInfo(), LD1->getAlign());
- return SDValue();
- }
- static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) {
- // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
- // and Lo parts; on big-endian machines it doesn't.
- return DAG.getDataLayout().isBigEndian() ? 1 : 0;
- }
- static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- // If this is not a bitcast to an FP type or if the target doesn't have
- // IEEE754-compliant FP logic, we're done.
- EVT VT = N->getValueType(0);
- if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT))
- return SDValue();
- // TODO: Handle cases where the integer constant is a different scalar
- // bitwidth to the FP.
- SDValue N0 = N->getOperand(0);
- EVT SourceVT = N0.getValueType();
- if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits())
- return SDValue();
- unsigned FPOpcode;
- APInt SignMask;
- switch (N0.getOpcode()) {
- case ISD::AND:
- FPOpcode = ISD::FABS;
- SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits());
- break;
- case ISD::XOR:
- FPOpcode = ISD::FNEG;
- SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
- break;
- case ISD::OR:
- FPOpcode = ISD::FABS;
- SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
- break;
- default:
- return SDValue();
- }
- // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
- // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
- // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
- // fneg (fabs X)
- SDValue LogicOp0 = N0.getOperand(0);
- ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true);
- if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask &&
- LogicOp0.getOpcode() == ISD::BITCAST &&
- LogicOp0.getOperand(0).getValueType() == VT) {
- SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0));
- NumFPLogicOpsConv++;
- if (N0.getOpcode() == ISD::OR)
- return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp);
- return FPOp;
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitBITCAST(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- if (N0.isUndef())
- return DAG.getUNDEF(VT);
- // If the input is a BUILD_VECTOR with all constant elements, fold this now.
- // Only do this before legalize types, unless both types are integer and the
- // scalar type is legal. Only do this before legalize ops, since the target
- // maybe depending on the bitcast.
- // First check to see if this is all constant.
- // TODO: Support FP bitcasts after legalize types.
- if (VT.isVector() &&
- (!LegalTypes ||
- (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() &&
- TLI.isTypeLegal(VT.getVectorElementType()))) &&
- N0.getOpcode() == ISD::BUILD_VECTOR && N0->hasOneUse() &&
- cast<BuildVectorSDNode>(N0)->isConstant())
- return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(),
- VT.getVectorElementType());
- // If the input is a constant, let getNode fold it.
- if (isIntOrFPConstant(N0)) {
- // If we can't allow illegal operations, we need to check that this is just
- // a fp -> int or int -> conversion and that the resulting operation will
- // be legal.
- if (!LegalOperations ||
- (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
- TLI.isOperationLegal(ISD::ConstantFP, VT)) ||
- (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
- TLI.isOperationLegal(ISD::Constant, VT))) {
- SDValue C = DAG.getBitcast(VT, N0);
- if (C.getNode() != N)
- return C;
- }
- }
- // (conv (conv x, t1), t2) -> (conv x, t2)
- if (N0.getOpcode() == ISD::BITCAST)
- return DAG.getBitcast(VT, N0.getOperand(0));
- // fold (conv (load x)) -> (load (conv*)x)
- // If the resultant load doesn't need a higher alignment than the original!
- if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
- // Do not remove the cast if the types differ in endian layout.
- TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) ==
- TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
- // If the load is volatile, we only want to change the load type if the
- // resulting load is legal. Otherwise we might increase the number of
- // memory accesses. We don't care if the original type was legal or not
- // as we assume software couldn't rely on the number of accesses of an
- // illegal type.
- ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) ||
- TLI.isOperationLegal(ISD::LOAD, VT))) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG,
- *LN0->getMemOperand())) {
- SDValue Load =
- DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
- LN0->getPointerInfo(), LN0->getAlign(),
- LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
- DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
- return Load;
- }
- }
- if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI))
- return V;
- // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
- // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
- //
- // For ppc_fp128:
- // fold (bitcast (fneg x)) ->
- // flipbit = signbit
- // (xor (bitcast x) (build_pair flipbit, flipbit))
- //
- // fold (bitcast (fabs x)) ->
- // flipbit = (and (extract_element (bitcast x), 0), signbit)
- // (xor (bitcast x) (build_pair flipbit, flipbit))
- // This often reduces constant pool loads.
- if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
- (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
- N0->hasOneUse() && VT.isInteger() && !VT.isVector() &&
- !N0.getValueType().isVector()) {
- SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0));
- AddToWorklist(NewConv.getNode());
- SDLoc DL(N);
- if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
- assert(VT.getSizeInBits() == 128);
- SDValue SignBit = DAG.getConstant(
- APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64);
- SDValue FlipBit;
- if (N0.getOpcode() == ISD::FNEG) {
- FlipBit = SignBit;
- AddToWorklist(FlipBit.getNode());
- } else {
- assert(N0.getOpcode() == ISD::FABS);
- SDValue Hi =
- DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv,
- DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
- SDLoc(NewConv)));
- AddToWorklist(Hi.getNode());
- FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit);
- AddToWorklist(FlipBit.getNode());
- }
- SDValue FlipBits =
- DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
- AddToWorklist(FlipBits.getNode());
- return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits);
- }
- APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
- if (N0.getOpcode() == ISD::FNEG)
- return DAG.getNode(ISD::XOR, DL, VT,
- NewConv, DAG.getConstant(SignBit, DL, VT));
- assert(N0.getOpcode() == ISD::FABS);
- return DAG.getNode(ISD::AND, DL, VT,
- NewConv, DAG.getConstant(~SignBit, DL, VT));
- }
- // fold (bitconvert (fcopysign cst, x)) ->
- // (or (and (bitconvert x), sign), (and cst, (not sign)))
- // Note that we don't handle (copysign x, cst) because this can always be
- // folded to an fneg or fabs.
- //
- // For ppc_fp128:
- // fold (bitcast (fcopysign cst, x)) ->
- // flipbit = (and (extract_element
- // (xor (bitcast cst), (bitcast x)), 0),
- // signbit)
- // (xor (bitcast cst) (build_pair flipbit, flipbit))
- if (N0.getOpcode() == ISD::FCOPYSIGN && N0->hasOneUse() &&
- isa<ConstantFPSDNode>(N0.getOperand(0)) && VT.isInteger() &&
- !VT.isVector()) {
- unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits();
- EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
- if (isTypeLegal(IntXVT)) {
- SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1));
- AddToWorklist(X.getNode());
- // If X has a different width than the result/lhs, sext it or truncate it.
- unsigned VTWidth = VT.getSizeInBits();
- if (OrigXWidth < VTWidth) {
- X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
- AddToWorklist(X.getNode());
- } else if (OrigXWidth > VTWidth) {
- // To get the sign bit in the right place, we have to shift it right
- // before truncating.
- SDLoc DL(X);
- X = DAG.getNode(ISD::SRL, DL,
- X.getValueType(), X,
- DAG.getConstant(OrigXWidth-VTWidth, DL,
- X.getValueType()));
- AddToWorklist(X.getNode());
- X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
- AddToWorklist(X.getNode());
- }
- if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
- APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2);
- SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
- AddToWorklist(Cst.getNode());
- SDValue X = DAG.getBitcast(VT, N0.getOperand(1));
- AddToWorklist(X.getNode());
- SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X);
- AddToWorklist(XorResult.getNode());
- SDValue XorResult64 = DAG.getNode(
- ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult,
- DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
- SDLoc(XorResult)));
- AddToWorklist(XorResult64.getNode());
- SDValue FlipBit =
- DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64,
- DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64));
- AddToWorklist(FlipBit.getNode());
- SDValue FlipBits =
- DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
- AddToWorklist(FlipBits.getNode());
- return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits);
- }
- APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
- X = DAG.getNode(ISD::AND, SDLoc(X), VT,
- X, DAG.getConstant(SignBit, SDLoc(X), VT));
- AddToWorklist(X.getNode());
- SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
- Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
- Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
- AddToWorklist(Cst.getNode());
- return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
- }
- }
- // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
- if (N0.getOpcode() == ISD::BUILD_PAIR)
- if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT))
- return CombineLD;
- // Remove double bitcasts from shuffles - this is often a legacy of
- // XformToShuffleWithZero being used to combine bitmaskings (of
- // float vectors bitcast to integer vectors) into shuffles.
- // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
- if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
- N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() &&
- VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() &&
- !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) {
- ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);
- // If operands are a bitcast, peek through if it casts the original VT.
- // If operands are a constant, just bitcast back to original VT.
- auto PeekThroughBitcast = [&](SDValue Op) {
- if (Op.getOpcode() == ISD::BITCAST &&
- Op.getOperand(0).getValueType() == VT)
- return SDValue(Op.getOperand(0));
- if (Op.isUndef() || isAnyConstantBuildVector(Op))
- return DAG.getBitcast(VT, Op);
- return SDValue();
- };
- // FIXME: If either input vector is bitcast, try to convert the shuffle to
- // the result type of this bitcast. This would eliminate at least one
- // bitcast. See the transform in InstCombine.
- SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
- SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
- if (!(SV0 && SV1))
- return SDValue();
- int MaskScale =
- VT.getVectorNumElements() / N0.getValueType().getVectorNumElements();
- SmallVector<int, 8> NewMask;
- for (int M : SVN->getMask())
- for (int i = 0; i != MaskScale; ++i)
- NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);
- SDValue LegalShuffle =
- TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG);
- if (LegalShuffle)
- return LegalShuffle;
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
- EVT VT = N->getValueType(0);
- return CombineConsecutiveLoads(N, VT);
- }
- SDValue DAGCombiner::visitFREEZE(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, /*PoisonOnly*/ false))
- return N0;
- // Fold freeze(op(x, ...)) -> op(freeze(x), ...).
- // Try to push freeze through instructions that propagate but don't produce
- // poison as far as possible. If an operand of freeze follows three
- // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
- // guaranteed-non-poison operands (or is a BUILD_VECTOR or similar) then push
- // the freeze through to the operands that are not guaranteed non-poison.
- // NOTE: we will strip poison-generating flags, so ignore them here.
- if (DAG.canCreateUndefOrPoison(N0, /*PoisonOnly*/ false,
- /*ConsiderFlags*/ false) ||
- N0->getNumValues() != 1 || !N0->hasOneUse())
- return SDValue();
- bool AllowMultipleMaybePoisonOperands = N0.getOpcode() == ISD::BUILD_VECTOR;
- SmallSetVector<SDValue, 8> MaybePoisonOperands;
- for (SDValue Op : N0->ops()) {
- if (DAG.isGuaranteedNotToBeUndefOrPoison(Op, /*PoisonOnly*/ false,
- /*Depth*/ 1))
- continue;
- bool HadMaybePoisonOperands = !MaybePoisonOperands.empty();
- bool IsNewMaybePoisonOperand = MaybePoisonOperands.insert(Op);
- if (!HadMaybePoisonOperands)
- continue;
- if (IsNewMaybePoisonOperand && !AllowMultipleMaybePoisonOperands) {
- // Multiple maybe-poison ops when not allowed - bail out.
- return SDValue();
- }
- }
- // NOTE: the whole op may be not guaranteed to not be undef or poison because
- // it could create undef or poison due to it's poison-generating flags.
- // So not finding any maybe-poison operands is fine.
- for (SDValue MaybePoisonOperand : MaybePoisonOperands) {
- // Don't replace every single UNDEF everywhere with frozen UNDEF, though.
- if (MaybePoisonOperand.getOpcode() == ISD::UNDEF)
- continue;
- // First, freeze each offending operand.
- SDValue FrozenMaybePoisonOperand = DAG.getFreeze(MaybePoisonOperand);
- // Then, change all other uses of unfrozen operand to use frozen operand.
- DAG.ReplaceAllUsesOfValueWith(MaybePoisonOperand, FrozenMaybePoisonOperand);
- if (FrozenMaybePoisonOperand.getOpcode() == ISD::FREEZE &&
- FrozenMaybePoisonOperand.getOperand(0) == FrozenMaybePoisonOperand) {
- // But, that also updated the use in the freeze we just created, thus
- // creating a cycle in a DAG. Let's undo that by mutating the freeze.
- DAG.UpdateNodeOperands(FrozenMaybePoisonOperand.getNode(),
- MaybePoisonOperand);
- }
- }
- // The whole node may have been updated, so the value we were holding
- // may no longer be valid. Re-fetch the operand we're `freeze`ing.
- N0 = N->getOperand(0);
- // Finally, recreate the node, it's operands were updated to use
- // frozen operands, so we just need to use it's "original" operands.
- SmallVector<SDValue> Ops(N0->op_begin(), N0->op_end());
- // Special-handle ISD::UNDEF, each single one of them can be it's own thing.
- for (SDValue &Op : Ops) {
- if (Op.getOpcode() == ISD::UNDEF)
- Op = DAG.getFreeze(Op);
- }
- // NOTE: this strips poison generating flags.
- SDValue R = DAG.getNode(N0.getOpcode(), SDLoc(N0), N0->getVTList(), Ops);
- assert(DAG.isGuaranteedNotToBeUndefOrPoison(R, /*PoisonOnly*/ false) &&
- "Can't create node that may be undef/poison!");
- return R;
- }
- /// We know that BV is a build_vector node with Constant, ConstantFP or Undef
- /// operands. DstEltVT indicates the destination element value type.
- SDValue DAGCombiner::
- ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
- EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
- // If this is already the right type, we're done.
- if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
- unsigned SrcBitSize = SrcEltVT.getSizeInBits();
- unsigned DstBitSize = DstEltVT.getSizeInBits();
- // If this is a conversion of N elements of one type to N elements of another
- // type, convert each element. This handles FP<->INT cases.
- if (SrcBitSize == DstBitSize) {
- SmallVector<SDValue, 8> Ops;
- for (SDValue Op : BV->op_values()) {
- // If the vector element type is not legal, the BUILD_VECTOR operands
- // are promoted and implicitly truncated. Make that explicit here.
- if (Op.getValueType() != SrcEltVT)
- Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
- Ops.push_back(DAG.getBitcast(DstEltVT, Op));
- AddToWorklist(Ops.back().getNode());
- }
- EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
- BV->getValueType(0).getVectorNumElements());
- return DAG.getBuildVector(VT, SDLoc(BV), Ops);
- }
- // Otherwise, we're growing or shrinking the elements. To avoid having to
- // handle annoying details of growing/shrinking FP values, we convert them to
- // int first.
- if (SrcEltVT.isFloatingPoint()) {
- // Convert the input float vector to a int vector where the elements are the
- // same sizes.
- EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
- BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
- SrcEltVT = IntVT;
- }
- // Now we know the input is an integer vector. If the output is a FP type,
- // convert to integer first, then to FP of the right size.
- if (DstEltVT.isFloatingPoint()) {
- EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
- SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
- // Next, convert to FP elements of the same size.
- return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
- }
- // Okay, we know the src/dst types are both integers of differing types.
- assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
- // TODO: Should ConstantFoldBITCASTofBUILD_VECTOR always take a
- // BuildVectorSDNode?
- auto *BVN = cast<BuildVectorSDNode>(BV);
- // Extract the constant raw bit data.
- BitVector UndefElements;
- SmallVector<APInt> RawBits;
- bool IsLE = DAG.getDataLayout().isLittleEndian();
- if (!BVN->getConstantRawBits(IsLE, DstBitSize, RawBits, UndefElements))
- return SDValue();
- SDLoc DL(BV);
- SmallVector<SDValue, 8> Ops;
- for (unsigned I = 0, E = RawBits.size(); I != E; ++I) {
- if (UndefElements[I])
- Ops.push_back(DAG.getUNDEF(DstEltVT));
- else
- Ops.push_back(DAG.getConstant(RawBits[I], DL, DstEltVT));
- }
- EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
- return DAG.getBuildVector(VT, DL, Ops);
- }
- // Returns true if floating point contraction is allowed on the FMUL-SDValue
- // `N`
- static bool isContractableFMUL(const TargetOptions &Options, SDValue N) {
- assert(N.getOpcode() == ISD::FMUL);
- return Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
- N->getFlags().hasAllowContract();
- }
- // Returns true if `N` can assume no infinities involved in its computation.
- static bool hasNoInfs(const TargetOptions &Options, SDValue N) {
- return Options.NoInfsFPMath || N->getFlags().hasNoInfs();
- }
- /// Try to perform FMA combining on a given FADD node.
- SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- SDLoc SL(N);
- const TargetOptions &Options = DAG.getTarget().Options;
- // Floating-point multiply-add with intermediate rounding.
- bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N));
- // Floating-point multiply-add without intermediate rounding.
- bool HasFMA =
- TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) &&
- (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
- // No valid opcode, do not combine.
- if (!HasFMAD && !HasFMA)
- return SDValue();
- bool CanReassociate =
- Options.UnsafeFPMath || N->getFlags().hasAllowReassociation();
- bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
- Options.UnsafeFPMath || HasFMAD);
- // If the addition is not contractable, do not combine.
- if (!AllowFusionGlobally && !N->getFlags().hasAllowContract())
- return SDValue();
- if (TLI.generateFMAsInMachineCombiner(VT, OptLevel))
- return SDValue();
- // Always prefer FMAD to FMA for precision.
- unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
- bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
- auto isFusedOp = [&](SDValue N) {
- unsigned Opcode = N.getOpcode();
- return Opcode == ISD::FMA || Opcode == ISD::FMAD;
- };
- // Is the node an FMUL and contractable either due to global flags or
- // SDNodeFlags.
- auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
- if (N.getOpcode() != ISD::FMUL)
- return false;
- return AllowFusionGlobally || N->getFlags().hasAllowContract();
- };
- // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
- // prefer to fold the multiply with fewer uses.
- if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) {
- if (N0->use_size() > N1->use_size())
- std::swap(N0, N1);
- }
- // fold (fadd (fmul x, y), z) -> (fma x, y, z)
- if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0),
- N0.getOperand(1), N1);
- }
- // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
- // Note: Commutes FADD operands.
- if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0),
- N1.getOperand(1), N0);
- }
- // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E)
- // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E)
- // This also works with nested fma instructions:
- // fadd (fma A, B, (fma (C, D, (fmul (E, F))))), G -->
- // fma A, B, (fma C, D, fma (E, F, G))
- // fadd (G, (fma A, B, (fma (C, D, (fmul (E, F)))))) -->
- // fma A, B, (fma C, D, fma (E, F, G)).
- // This requires reassociation because it changes the order of operations.
- if (CanReassociate) {
- SDValue FMA, E;
- if (isFusedOp(N0) && N0.hasOneUse()) {
- FMA = N0;
- E = N1;
- } else if (isFusedOp(N1) && N1.hasOneUse()) {
- FMA = N1;
- E = N0;
- }
- SDValue TmpFMA = FMA;
- while (E && isFusedOp(TmpFMA) && TmpFMA.hasOneUse()) {
- SDValue FMul = TmpFMA->getOperand(2);
- if (FMul.getOpcode() == ISD::FMUL && FMul.hasOneUse()) {
- SDValue C = FMul.getOperand(0);
- SDValue D = FMul.getOperand(1);
- SDValue CDE = DAG.getNode(PreferredFusedOpcode, SL, VT, C, D, E);
- DAG.ReplaceAllUsesOfValueWith(FMul, CDE);
- // Replacing the inner FMul could cause the outer FMA to be simplified
- // away.
- return FMA.getOpcode() == ISD::DELETED_NODE ? SDValue() : FMA;
- }
- TmpFMA = TmpFMA->getOperand(2);
- }
- }
- // Look through FP_EXTEND nodes to do more combining.
- // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
- if (N0.getOpcode() == ISD::FP_EXTEND) {
- SDValue N00 = N0.getOperand(0);
- if (isContractableFMUL(N00) &&
- TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
- N00.getValueType())) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
- N1);
- }
- }
- // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
- // Note: Commutes FADD operands.
- if (N1.getOpcode() == ISD::FP_EXTEND) {
- SDValue N10 = N1.getOperand(0);
- if (isContractableFMUL(N10) &&
- TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
- N10.getValueType())) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)),
- N0);
- }
- }
- // More folding opportunities when target permits.
- if (Aggressive) {
- // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
- // -> (fma x, y, (fma (fpext u), (fpext v), z))
- auto FoldFAddFMAFPExtFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V,
- SDValue Z) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y,
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
- Z));
- };
- if (isFusedOp(N0)) {
- SDValue N02 = N0.getOperand(2);
- if (N02.getOpcode() == ISD::FP_EXTEND) {
- SDValue N020 = N02.getOperand(0);
- if (isContractableFMUL(N020) &&
- TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
- N020.getValueType())) {
- return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
- N020.getOperand(0), N020.getOperand(1),
- N1);
- }
- }
- }
- // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
- // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
- // FIXME: This turns two single-precision and one double-precision
- // operation into two double-precision operations, which might not be
- // interesting for all targets, especially GPUs.
- auto FoldFAddFPExtFMAFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V,
- SDValue Z) {
- return DAG.getNode(
- PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, X),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, Y),
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, V), Z));
- };
- if (N0.getOpcode() == ISD::FP_EXTEND) {
- SDValue N00 = N0.getOperand(0);
- if (isFusedOp(N00)) {
- SDValue N002 = N00.getOperand(2);
- if (isContractableFMUL(N002) &&
- TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
- N00.getValueType())) {
- return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
- N002.getOperand(0), N002.getOperand(1),
- N1);
- }
- }
- }
- // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
- // -> (fma y, z, (fma (fpext u), (fpext v), x))
- if (isFusedOp(N1)) {
- SDValue N12 = N1.getOperand(2);
- if (N12.getOpcode() == ISD::FP_EXTEND) {
- SDValue N120 = N12.getOperand(0);
- if (isContractableFMUL(N120) &&
- TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
- N120.getValueType())) {
- return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
- N120.getOperand(0), N120.getOperand(1),
- N0);
- }
- }
- }
- // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
- // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
- // FIXME: This turns two single-precision and one double-precision
- // operation into two double-precision operations, which might not be
- // interesting for all targets, especially GPUs.
- if (N1.getOpcode() == ISD::FP_EXTEND) {
- SDValue N10 = N1.getOperand(0);
- if (isFusedOp(N10)) {
- SDValue N102 = N10.getOperand(2);
- if (isContractableFMUL(N102) &&
- TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
- N10.getValueType())) {
- return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
- N102.getOperand(0), N102.getOperand(1),
- N0);
- }
- }
- }
- }
- return SDValue();
- }
- /// Try to perform FMA combining on a given FSUB node.
- SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- SDLoc SL(N);
- const TargetOptions &Options = DAG.getTarget().Options;
- // Floating-point multiply-add with intermediate rounding.
- bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N));
- // Floating-point multiply-add without intermediate rounding.
- bool HasFMA =
- TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) &&
- (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
- // No valid opcode, do not combine.
- if (!HasFMAD && !HasFMA)
- return SDValue();
- const SDNodeFlags Flags = N->getFlags();
- bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
- Options.UnsafeFPMath || HasFMAD);
- // If the subtraction is not contractable, do not combine.
- if (!AllowFusionGlobally && !N->getFlags().hasAllowContract())
- return SDValue();
- if (TLI.generateFMAsInMachineCombiner(VT, OptLevel))
- return SDValue();
- // Always prefer FMAD to FMA for precision.
- unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
- bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
- bool NoSignedZero = Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros();
- // Is the node an FMUL and contractable either due to global flags or
- // SDNodeFlags.
- auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
- if (N.getOpcode() != ISD::FMUL)
- return false;
- return AllowFusionGlobally || N->getFlags().hasAllowContract();
- };
- // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
- auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) {
- if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0),
- XY.getOperand(1), DAG.getNode(ISD::FNEG, SL, VT, Z));
- }
- return SDValue();
- };
- // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
- // Note: Commutes FSUB operands.
- auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) {
- if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)),
- YZ.getOperand(1), X);
- }
- return SDValue();
- };
- // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)),
- // prefer to fold the multiply with fewer uses.
- if (isContractableFMUL(N0) && isContractableFMUL(N1) &&
- (N0->use_size() > N1->use_size())) {
- // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b))
- if (SDValue V = tryToFoldXSubYZ(N0, N1))
- return V;
- // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d)))
- if (SDValue V = tryToFoldXYSubZ(N0, N1))
- return V;
- } else {
- // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
- if (SDValue V = tryToFoldXYSubZ(N0, N1))
- return V;
- // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
- if (SDValue V = tryToFoldXSubYZ(N0, N1))
- return V;
- }
- // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
- if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) &&
- (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
- SDValue N00 = N0.getOperand(0).getOperand(0);
- SDValue N01 = N0.getOperand(0).getOperand(1);
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT, N00), N01,
- DAG.getNode(ISD::FNEG, SL, VT, N1));
- }
- // Look through FP_EXTEND nodes to do more combining.
- // fold (fsub (fpext (fmul x, y)), z)
- // -> (fma (fpext x), (fpext y), (fneg z))
- if (N0.getOpcode() == ISD::FP_EXTEND) {
- SDValue N00 = N0.getOperand(0);
- if (isContractableFMUL(N00) &&
- TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
- N00.getValueType())) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
- DAG.getNode(ISD::FNEG, SL, VT, N1));
- }
- }
- // fold (fsub x, (fpext (fmul y, z)))
- // -> (fma (fneg (fpext y)), (fpext z), x)
- // Note: Commutes FSUB operands.
- if (N1.getOpcode() == ISD::FP_EXTEND) {
- SDValue N10 = N1.getOperand(0);
- if (isContractableFMUL(N10) &&
- TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
- N10.getValueType())) {
- return DAG.getNode(
- PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0))),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0);
- }
- }
- // fold (fsub (fpext (fneg (fmul, x, y))), z)
- // -> (fneg (fma (fpext x), (fpext y), z))
- // Note: This could be removed with appropriate canonicalization of the
- // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
- // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
- // from implementing the canonicalization in visitFSUB.
- if (N0.getOpcode() == ISD::FP_EXTEND) {
- SDValue N00 = N0.getOperand(0);
- if (N00.getOpcode() == ISD::FNEG) {
- SDValue N000 = N00.getOperand(0);
- if (isContractableFMUL(N000) &&
- TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
- N00.getValueType())) {
- return DAG.getNode(
- ISD::FNEG, SL, VT,
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)),
- N1));
- }
- }
- }
- // fold (fsub (fneg (fpext (fmul, x, y))), z)
- // -> (fneg (fma (fpext x)), (fpext y), z)
- // Note: This could be removed with appropriate canonicalization of the
- // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
- // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
- // from implementing the canonicalization in visitFSUB.
- if (N0.getOpcode() == ISD::FNEG) {
- SDValue N00 = N0.getOperand(0);
- if (N00.getOpcode() == ISD::FP_EXTEND) {
- SDValue N000 = N00.getOperand(0);
- if (isContractableFMUL(N000) &&
- TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
- N000.getValueType())) {
- return DAG.getNode(
- ISD::FNEG, SL, VT,
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)),
- N1));
- }
- }
- }
- auto isReassociable = [Options](SDNode *N) {
- return Options.UnsafeFPMath || N->getFlags().hasAllowReassociation();
- };
- auto isContractableAndReassociableFMUL = [&isContractableFMUL,
- &isReassociable](SDValue N) {
- return isContractableFMUL(N) && isReassociable(N.getNode());
- };
- auto isFusedOp = [&](SDValue N) {
- unsigned Opcode = N.getOpcode();
- return Opcode == ISD::FMA || Opcode == ISD::FMAD;
- };
- // More folding opportunities when target permits.
- if (Aggressive && isReassociable(N)) {
- bool CanFuse = Options.UnsafeFPMath || N->getFlags().hasAllowContract();
- // fold (fsub (fma x, y, (fmul u, v)), z)
- // -> (fma x, y (fma u, v, (fneg z)))
- if (CanFuse && isFusedOp(N0) &&
- isContractableAndReassociableFMUL(N0.getOperand(2)) &&
- N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) {
- return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0),
- N0.getOperand(1),
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- N0.getOperand(2).getOperand(0),
- N0.getOperand(2).getOperand(1),
- DAG.getNode(ISD::FNEG, SL, VT, N1)));
- }
- // fold (fsub x, (fma y, z, (fmul u, v)))
- // -> (fma (fneg y), z, (fma (fneg u), v, x))
- if (CanFuse && isFusedOp(N1) &&
- isContractableAndReassociableFMUL(N1.getOperand(2)) &&
- N1->hasOneUse() && NoSignedZero) {
- SDValue N20 = N1.getOperand(2).getOperand(0);
- SDValue N21 = N1.getOperand(2).getOperand(1);
- return DAG.getNode(
- PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1),
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT, N20), N21, N0));
- }
- // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
- // -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
- if (isFusedOp(N0) && N0->hasOneUse()) {
- SDValue N02 = N0.getOperand(2);
- if (N02.getOpcode() == ISD::FP_EXTEND) {
- SDValue N020 = N02.getOperand(0);
- if (isContractableAndReassociableFMUL(N020) &&
- TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
- N020.getValueType())) {
- return DAG.getNode(
- PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1),
- DAG.getNode(
- PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(0)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(1)),
- DAG.getNode(ISD::FNEG, SL, VT, N1)));
- }
- }
- }
- // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
- // -> (fma (fpext x), (fpext y),
- // (fma (fpext u), (fpext v), (fneg z)))
- // FIXME: This turns two single-precision and one double-precision
- // operation into two double-precision operations, which might not be
- // interesting for all targets, especially GPUs.
- if (N0.getOpcode() == ISD::FP_EXTEND) {
- SDValue N00 = N0.getOperand(0);
- if (isFusedOp(N00)) {
- SDValue N002 = N00.getOperand(2);
- if (isContractableAndReassociableFMUL(N002) &&
- TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
- N00.getValueType())) {
- return DAG.getNode(
- PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
- DAG.getNode(
- PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(0)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(1)),
- DAG.getNode(ISD::FNEG, SL, VT, N1)));
- }
- }
- }
- // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
- // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
- if (isFusedOp(N1) && N1.getOperand(2).getOpcode() == ISD::FP_EXTEND &&
- N1->hasOneUse()) {
- SDValue N120 = N1.getOperand(2).getOperand(0);
- if (isContractableAndReassociableFMUL(N120) &&
- TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
- N120.getValueType())) {
- SDValue N1200 = N120.getOperand(0);
- SDValue N1201 = N120.getOperand(1);
- return DAG.getNode(
- PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1),
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N1200)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N1201), N0));
- }
- }
- // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
- // -> (fma (fneg (fpext y)), (fpext z),
- // (fma (fneg (fpext u)), (fpext v), x))
- // FIXME: This turns two single-precision and one double-precision
- // operation into two double-precision operations, which might not be
- // interesting for all targets, especially GPUs.
- if (N1.getOpcode() == ISD::FP_EXTEND && isFusedOp(N1.getOperand(0))) {
- SDValue CvtSrc = N1.getOperand(0);
- SDValue N100 = CvtSrc.getOperand(0);
- SDValue N101 = CvtSrc.getOperand(1);
- SDValue N102 = CvtSrc.getOperand(2);
- if (isContractableAndReassociableFMUL(N102) &&
- TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
- CvtSrc.getValueType())) {
- SDValue N1020 = N102.getOperand(0);
- SDValue N1021 = N102.getOperand(1);
- return DAG.getNode(
- PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N100)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N101),
- DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT,
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N1020)),
- DAG.getNode(ISD::FP_EXTEND, SL, VT, N1021), N0));
- }
- }
- }
- return SDValue();
- }
- /// Try to perform FMA combining on a given FMUL node based on the distributive
- /// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
- /// subtraction instead of addition).
- SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- SDLoc SL(N);
- assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation");
- const TargetOptions &Options = DAG.getTarget().Options;
- // The transforms below are incorrect when x == 0 and y == inf, because the
- // intermediate multiplication produces a nan.
- SDValue FAdd = N0.getOpcode() == ISD::FADD ? N0 : N1;
- if (!hasNoInfs(Options, FAdd))
- return SDValue();
- // Floating-point multiply-add without intermediate rounding.
- bool HasFMA =
- isContractableFMUL(Options, SDValue(N, 0)) &&
- TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) &&
- (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
- // Floating-point multiply-add with intermediate rounding. This can result
- // in a less precise result due to the changed rounding order.
- bool HasFMAD = Options.UnsafeFPMath &&
- (LegalOperations && TLI.isFMADLegal(DAG, N));
- // No valid opcode, do not combine.
- if (!HasFMAD && !HasFMA)
- return SDValue();
- // Always prefer FMAD to FMA for precision.
- unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
- bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
- // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
- // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
- auto FuseFADD = [&](SDValue X, SDValue Y) {
- if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) {
- if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) {
- if (C->isExactlyValue(+1.0))
- return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
- Y);
- if (C->isExactlyValue(-1.0))
- return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
- DAG.getNode(ISD::FNEG, SL, VT, Y));
- }
- }
- return SDValue();
- };
- if (SDValue FMA = FuseFADD(N0, N1))
- return FMA;
- if (SDValue FMA = FuseFADD(N1, N0))
- return FMA;
- // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
- // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
- // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
- // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
- auto FuseFSUB = [&](SDValue X, SDValue Y) {
- if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) {
- if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) {
- if (C0->isExactlyValue(+1.0))
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
- Y);
- if (C0->isExactlyValue(-1.0))
- return DAG.getNode(PreferredFusedOpcode, SL, VT,
- DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
- DAG.getNode(ISD::FNEG, SL, VT, Y));
- }
- if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) {
- if (C1->isExactlyValue(+1.0))
- return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
- DAG.getNode(ISD::FNEG, SL, VT, Y));
- if (C1->isExactlyValue(-1.0))
- return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
- Y);
- }
- }
- return SDValue();
- };
- if (SDValue FMA = FuseFSUB(N0, N1))
- return FMA;
- if (SDValue FMA = FuseFSUB(N1, N0))
- return FMA;
- return SDValue();
- }
- SDValue DAGCombiner::visitFADD(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDNode *N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0);
- SDNode *N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- const TargetOptions &Options = DAG.getTarget().Options;
- SDNodeFlags Flags = N->getFlags();
- SelectionDAG::FlagInserter FlagsInserter(DAG, N);
- if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
- return R;
- // fold (fadd c1, c2) -> c1 + c2
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::FADD, DL, VT, {N0, N1}))
- return C;
- // canonicalize constant to RHS
- if (N0CFP && !N1CFP)
- return DAG.getNode(ISD::FADD, DL, VT, N1, N0);
- // fold vector ops
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
- return FoldedVOp;
- // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
- ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true);
- if (N1C && N1C->isZero())
- if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())
- return N0;
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
- // fold (fadd A, (fneg B)) -> (fsub A, B)
- if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
- if (SDValue NegN1 = TLI.getCheaperNegatedExpression(
- N1, DAG, LegalOperations, ForCodeSize))
- return DAG.getNode(ISD::FSUB, DL, VT, N0, NegN1);
- // fold (fadd (fneg A), B) -> (fsub B, A)
- if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
- if (SDValue NegN0 = TLI.getCheaperNegatedExpression(
- N0, DAG, LegalOperations, ForCodeSize))
- return DAG.getNode(ISD::FSUB, DL, VT, N1, NegN0);
- auto isFMulNegTwo = [](SDValue FMul) {
- if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL)
- return false;
- auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true);
- return C && C->isExactlyValue(-2.0);
- };
- // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
- if (isFMulNegTwo(N0)) {
- SDValue B = N0.getOperand(0);
- SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B);
- return DAG.getNode(ISD::FSUB, DL, VT, N1, Add);
- }
- // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
- if (isFMulNegTwo(N1)) {
- SDValue B = N1.getOperand(0);
- SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B);
- return DAG.getNode(ISD::FSUB, DL, VT, N0, Add);
- }
- // No FP constant should be created after legalization as Instruction
- // Selection pass has a hard time dealing with FP constants.
- bool AllowNewConst = (Level < AfterLegalizeDAG);
- // If nnan is enabled, fold lots of things.
- if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) {
- // If allowed, fold (fadd (fneg x), x) -> 0.0
- if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
- return DAG.getConstantFP(0.0, DL, VT);
- // If allowed, fold (fadd x, (fneg x)) -> 0.0
- if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
- return DAG.getConstantFP(0.0, DL, VT);
- }
- // If 'unsafe math' or reassoc and nsz, fold lots of things.
- // TODO: break out portions of the transformations below for which Unsafe is
- // considered and which do not require both nsz and reassoc
- if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) ||
- (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
- AllowNewConst) {
- // fadd (fadd x, c1), c2 -> fadd x, c1 + c2
- if (N1CFP && N0.getOpcode() == ISD::FADD &&
- DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
- SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1);
- return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC);
- }
- // We can fold chains of FADD's of the same value into multiplications.
- // This transform is not safe in general because we are reducing the number
- // of rounding steps.
- if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
- if (N0.getOpcode() == ISD::FMUL) {
- SDNode *CFP00 =
- DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
- SDNode *CFP01 =
- DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1));
- // (fadd (fmul x, c), x) -> (fmul x, c+1)
- if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
- SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
- DAG.getConstantFP(1.0, DL, VT));
- return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP);
- }
- // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
- if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
- N1.getOperand(0) == N1.getOperand(1) &&
- N0.getOperand(0) == N1.getOperand(0)) {
- SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
- DAG.getConstantFP(2.0, DL, VT));
- return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP);
- }
- }
- if (N1.getOpcode() == ISD::FMUL) {
- SDNode *CFP10 =
- DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
- SDNode *CFP11 =
- DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(1));
- // (fadd x, (fmul x, c)) -> (fmul x, c+1)
- if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
- SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
- DAG.getConstantFP(1.0, DL, VT));
- return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP);
- }
- // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
- if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
- N0.getOperand(0) == N0.getOperand(1) &&
- N1.getOperand(0) == N0.getOperand(0)) {
- SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
- DAG.getConstantFP(2.0, DL, VT));
- return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP);
- }
- }
- if (N0.getOpcode() == ISD::FADD) {
- SDNode *CFP00 =
- DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
- // (fadd (fadd x, x), x) -> (fmul x, 3.0)
- if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) &&
- (N0.getOperand(0) == N1)) {
- return DAG.getNode(ISD::FMUL, DL, VT, N1,
- DAG.getConstantFP(3.0, DL, VT));
- }
- }
- if (N1.getOpcode() == ISD::FADD) {
- SDNode *CFP10 =
- DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
- // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
- if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
- N1.getOperand(0) == N0) {
- return DAG.getNode(ISD::FMUL, DL, VT, N0,
- DAG.getConstantFP(3.0, DL, VT));
- }
- }
- // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
- if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
- N0.getOperand(0) == N0.getOperand(1) &&
- N1.getOperand(0) == N1.getOperand(1) &&
- N0.getOperand(0) == N1.getOperand(0)) {
- return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0),
- DAG.getConstantFP(4.0, DL, VT));
- }
- }
- } // enable-unsafe-fp-math
- // FADD -> FMA combines:
- if (SDValue Fused = visitFADDForFMACombine(N)) {
- AddToWorklist(Fused.getNode());
- return Fused;
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitSTRICT_FADD(SDNode *N) {
- SDValue Chain = N->getOperand(0);
- SDValue N0 = N->getOperand(1);
- SDValue N1 = N->getOperand(2);
- EVT VT = N->getValueType(0);
- EVT ChainVT = N->getValueType(1);
- SDLoc DL(N);
- SelectionDAG::FlagInserter FlagsInserter(DAG, N);
- // fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B)
- if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT))
- if (SDValue NegN1 = TLI.getCheaperNegatedExpression(
- N1, DAG, LegalOperations, ForCodeSize)) {
- return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT),
- {Chain, N0, NegN1});
- }
- // fold (strict_fadd (fneg A), B) -> (strict_fsub B, A)
- if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT))
- if (SDValue NegN0 = TLI.getCheaperNegatedExpression(
- N0, DAG, LegalOperations, ForCodeSize)) {
- return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT),
- {Chain, N1, NegN0});
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitFSUB(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
- ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- const TargetOptions &Options = DAG.getTarget().Options;
- const SDNodeFlags Flags = N->getFlags();
- SelectionDAG::FlagInserter FlagsInserter(DAG, N);
- if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
- return R;
- // fold (fsub c1, c2) -> c1-c2
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::FSUB, DL, VT, {N0, N1}))
- return C;
- // fold vector ops
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
- return FoldedVOp;
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
- // (fsub A, 0) -> A
- if (N1CFP && N1CFP->isZero()) {
- if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath ||
- Flags.hasNoSignedZeros()) {
- return N0;
- }
- }
- if (N0 == N1) {
- // (fsub x, x) -> 0.0
- if (Options.NoNaNsFPMath || Flags.hasNoNaNs())
- return DAG.getConstantFP(0.0f, DL, VT);
- }
- // (fsub -0.0, N1) -> -N1
- if (N0CFP && N0CFP->isZero()) {
- if (N0CFP->isNegative() ||
- (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) {
- // We cannot replace an FSUB(+-0.0,X) with FNEG(X) when denormals are
- // flushed to zero, unless all users treat denorms as zero (DAZ).
- // FIXME: This transform will change the sign of a NaN and the behavior
- // of a signaling NaN. It is only valid when a NoNaN flag is present.
- DenormalMode DenormMode = DAG.getDenormalMode(VT);
- if (DenormMode == DenormalMode::getIEEE()) {
- if (SDValue NegN1 =
- TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize))
- return NegN1;
- if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
- return DAG.getNode(ISD::FNEG, DL, VT, N1);
- }
- }
- }
- if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) ||
- (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
- N1.getOpcode() == ISD::FADD) {
- // X - (X + Y) -> -Y
- if (N0 == N1->getOperand(0))
- return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1));
- // X - (Y + X) -> -Y
- if (N0 == N1->getOperand(1))
- return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0));
- }
- // fold (fsub A, (fneg B)) -> (fadd A, B)
- if (SDValue NegN1 =
- TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize))
- return DAG.getNode(ISD::FADD, DL, VT, N0, NegN1);
- // FSUB -> FMA combines:
- if (SDValue Fused = visitFSUBForFMACombine(N)) {
- AddToWorklist(Fused.getNode());
- return Fused;
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitFMUL(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- const TargetOptions &Options = DAG.getTarget().Options;
- const SDNodeFlags Flags = N->getFlags();
- SelectionDAG::FlagInserter FlagsInserter(DAG, N);
- if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
- return R;
- // fold (fmul c1, c2) -> c1*c2
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::FMUL, DL, VT, {N0, N1}))
- return C;
- // canonicalize constant to RHS
- if (DAG.isConstantFPBuildVectorOrConstantFP(N0) &&
- !DAG.isConstantFPBuildVectorOrConstantFP(N1))
- return DAG.getNode(ISD::FMUL, DL, VT, N1, N0);
- // fold vector ops
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
- return FoldedVOp;
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
- if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) {
- // fmul (fmul X, C1), C2 -> fmul X, C1 * C2
- if (DAG.isConstantFPBuildVectorOrConstantFP(N1) &&
- N0.getOpcode() == ISD::FMUL) {
- SDValue N00 = N0.getOperand(0);
- SDValue N01 = N0.getOperand(1);
- // Avoid an infinite loop by making sure that N00 is not a constant
- // (the inner multiply has not been constant folded yet).
- if (DAG.isConstantFPBuildVectorOrConstantFP(N01) &&
- !DAG.isConstantFPBuildVectorOrConstantFP(N00)) {
- SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1);
- return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts);
- }
- }
- // Match a special-case: we convert X * 2.0 into fadd.
- // fmul (fadd X, X), C -> fmul X, 2.0 * C
- if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() &&
- N0.getOperand(0) == N0.getOperand(1)) {
- const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
- SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1);
- return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts);
- }
- }
- // fold (fmul X, 2.0) -> (fadd X, X)
- if (N1CFP && N1CFP->isExactlyValue(+2.0))
- return DAG.getNode(ISD::FADD, DL, VT, N0, N0);
- // fold (fmul X, -1.0) -> (fsub -0.0, X)
- if (N1CFP && N1CFP->isExactlyValue(-1.0)) {
- if (!LegalOperations || TLI.isOperationLegal(ISD::FSUB, VT)) {
- return DAG.getNode(ISD::FSUB, DL, VT,
- DAG.getConstantFP(-0.0, DL, VT), N0, Flags);
- }
- }
- // -N0 * -N1 --> N0 * N1
- TargetLowering::NegatibleCost CostN0 =
- TargetLowering::NegatibleCost::Expensive;
- TargetLowering::NegatibleCost CostN1 =
- TargetLowering::NegatibleCost::Expensive;
- SDValue NegN0 =
- TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
- if (NegN0) {
- HandleSDNode NegN0Handle(NegN0);
- SDValue NegN1 =
- TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
- if (NegN1 && (CostN0 == TargetLowering::NegatibleCost::Cheaper ||
- CostN1 == TargetLowering::NegatibleCost::Cheaper))
- return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1);
- }
- // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
- // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
- if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() &&
- (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) &&
- TLI.isOperationLegal(ISD::FABS, VT)) {
- SDValue Select = N0, X = N1;
- if (Select.getOpcode() != ISD::SELECT)
- std::swap(Select, X);
- SDValue Cond = Select.getOperand(0);
- auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1));
- auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2));
- if (TrueOpnd && FalseOpnd &&
- Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X &&
- isa<ConstantFPSDNode>(Cond.getOperand(1)) &&
- cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) {
- ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
- switch (CC) {
- default: break;
- case ISD::SETOLT:
- case ISD::SETULT:
- case ISD::SETOLE:
- case ISD::SETULE:
- case ISD::SETLT:
- case ISD::SETLE:
- std::swap(TrueOpnd, FalseOpnd);
- [[fallthrough]];
- case ISD::SETOGT:
- case ISD::SETUGT:
- case ISD::SETOGE:
- case ISD::SETUGE:
- case ISD::SETGT:
- case ISD::SETGE:
- if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) &&
- TLI.isOperationLegal(ISD::FNEG, VT))
- return DAG.getNode(ISD::FNEG, DL, VT,
- DAG.getNode(ISD::FABS, DL, VT, X));
- if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0))
- return DAG.getNode(ISD::FABS, DL, VT, X);
- break;
- }
- }
- }
- // FMUL -> FMA combines:
- if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) {
- AddToWorklist(Fused.getNode());
- return Fused;
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitFMA(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
- ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- const TargetOptions &Options = DAG.getTarget().Options;
- // FMA nodes have flags that propagate to the created nodes.
- SelectionDAG::FlagInserter FlagsInserter(DAG, N);
- bool CanReassociate =
- Options.UnsafeFPMath || N->getFlags().hasAllowReassociation();
- // Constant fold FMA.
- if (isa<ConstantFPSDNode>(N0) &&
- isa<ConstantFPSDNode>(N1) &&
- isa<ConstantFPSDNode>(N2)) {
- return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2);
- }
- // (-N0 * -N1) + N2 --> (N0 * N1) + N2
- TargetLowering::NegatibleCost CostN0 =
- TargetLowering::NegatibleCost::Expensive;
- TargetLowering::NegatibleCost CostN1 =
- TargetLowering::NegatibleCost::Expensive;
- SDValue NegN0 =
- TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
- if (NegN0) {
- HandleSDNode NegN0Handle(NegN0);
- SDValue NegN1 =
- TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
- if (NegN1 && (CostN0 == TargetLowering::NegatibleCost::Cheaper ||
- CostN1 == TargetLowering::NegatibleCost::Cheaper))
- return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2);
- }
- // FIXME: use fast math flags instead of Options.UnsafeFPMath
- if (Options.UnsafeFPMath) {
- if (N0CFP && N0CFP->isZero())
- return N2;
- if (N1CFP && N1CFP->isZero())
- return N2;
- }
- if (N0CFP && N0CFP->isExactlyValue(1.0))
- return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
- if (N1CFP && N1CFP->isExactlyValue(1.0))
- return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
- // Canonicalize (fma c, x, y) -> (fma x, c, y)
- if (DAG.isConstantFPBuildVectorOrConstantFP(N0) &&
- !DAG.isConstantFPBuildVectorOrConstantFP(N1))
- return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
- if (CanReassociate) {
- // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
- if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) &&
- DAG.isConstantFPBuildVectorOrConstantFP(N1) &&
- DAG.isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) {
- return DAG.getNode(ISD::FMUL, DL, VT, N0,
- DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1)));
- }
- // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
- if (N0.getOpcode() == ISD::FMUL &&
- DAG.isConstantFPBuildVectorOrConstantFP(N1) &&
- DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
- return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
- DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1)),
- N2);
- }
- }
- // (fma x, -1, y) -> (fadd (fneg x), y)
- if (N1CFP) {
- if (N1CFP->isExactlyValue(1.0))
- return DAG.getNode(ISD::FADD, DL, VT, N0, N2);
- if (N1CFP->isExactlyValue(-1.0) &&
- (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
- SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0);
- AddToWorklist(RHSNeg.getNode());
- return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg);
- }
- // fma (fneg x), K, y -> fma x -K, y
- if (N0.getOpcode() == ISD::FNEG &&
- (TLI.isOperationLegal(ISD::ConstantFP, VT) ||
- (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT,
- ForCodeSize)))) {
- return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
- DAG.getNode(ISD::FNEG, DL, VT, N1), N2);
- }
- }
- if (CanReassociate) {
- // (fma x, c, x) -> (fmul x, (c+1))
- if (N1CFP && N0 == N2) {
- return DAG.getNode(
- ISD::FMUL, DL, VT, N0,
- DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(1.0, DL, VT)));
- }
- // (fma x, c, (fneg x)) -> (fmul x, (c-1))
- if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
- return DAG.getNode(
- ISD::FMUL, DL, VT, N0,
- DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(-1.0, DL, VT)));
- }
- }
- // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z))
- // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z))
- if (!TLI.isFNegFree(VT))
- if (SDValue Neg = TLI.getCheaperNegatedExpression(
- SDValue(N, 0), DAG, LegalOperations, ForCodeSize))
- return DAG.getNode(ISD::FNEG, DL, VT, Neg);
- return SDValue();
- }
- // Combine multiple FDIVs with the same divisor into multiple FMULs by the
- // reciprocal.
- // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
- // Notice that this is not always beneficial. One reason is different targets
- // may have different costs for FDIV and FMUL, so sometimes the cost of two
- // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
- // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
- SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) {
- // TODO: Limit this transform based on optsize/minsize - it always creates at
- // least 1 extra instruction. But the perf win may be substantial enough
- // that only minsize should restrict this.
- bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath;
- const SDNodeFlags Flags = N->getFlags();
- if (LegalDAG || (!UnsafeMath && !Flags.hasAllowReciprocal()))
- return SDValue();
- // Skip if current node is a reciprocal/fneg-reciprocal.
- SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
- ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true);
- if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0)))
- return SDValue();
- // Exit early if the target does not want this transform or if there can't
- // possibly be enough uses of the divisor to make the transform worthwhile.
- unsigned MinUses = TLI.combineRepeatedFPDivisors();
- // For splat vectors, scale the number of uses by the splat factor. If we can
- // convert the division into a scalar op, that will likely be much faster.
- unsigned NumElts = 1;
- EVT VT = N->getValueType(0);
- if (VT.isVector() && DAG.isSplatValue(N1))
- NumElts = VT.getVectorMinNumElements();
- if (!MinUses || (N1->use_size() * NumElts) < MinUses)
- return SDValue();
- // Find all FDIV users of the same divisor.
- // Use a set because duplicates may be present in the user list.
- SetVector<SDNode *> Users;
- for (auto *U : N1->uses()) {
- if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) {
- // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet.
- if (U->getOperand(1).getOpcode() == ISD::FSQRT &&
- U->getOperand(0) == U->getOperand(1).getOperand(0) &&
- U->getFlags().hasAllowReassociation() &&
- U->getFlags().hasNoSignedZeros())
- continue;
- // This division is eligible for optimization only if global unsafe math
- // is enabled or if this division allows reciprocal formation.
- if (UnsafeMath || U->getFlags().hasAllowReciprocal())
- Users.insert(U);
- }
- }
- // Now that we have the actual number of divisor uses, make sure it meets
- // the minimum threshold specified by the target.
- if ((Users.size() * NumElts) < MinUses)
- return SDValue();
- SDLoc DL(N);
- SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
- SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags);
- // Dividend / Divisor -> Dividend * Reciprocal
- for (auto *U : Users) {
- SDValue Dividend = U->getOperand(0);
- if (Dividend != FPOne) {
- SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
- Reciprocal, Flags);
- CombineTo(U, NewNode);
- } else if (U != Reciprocal.getNode()) {
- // In the absence of fast-math-flags, this user node is always the
- // same node as Reciprocal, but with FMF they may be different nodes.
- CombineTo(U, Reciprocal);
- }
- }
- return SDValue(N, 0); // N was replaced.
- }
- SDValue DAGCombiner::visitFDIV(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- const TargetOptions &Options = DAG.getTarget().Options;
- SDNodeFlags Flags = N->getFlags();
- SelectionDAG::FlagInserter FlagsInserter(DAG, N);
- if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
- return R;
- // fold (fdiv c1, c2) -> c1/c2
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::FDIV, DL, VT, {N0, N1}))
- return C;
- // fold vector ops
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
- return FoldedVOp;
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
- if (SDValue V = combineRepeatedFPDivisors(N))
- return V;
- if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) {
- // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
- if (auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1)) {
- // Compute the reciprocal 1.0 / c2.
- const APFloat &N1APF = N1CFP->getValueAPF();
- APFloat Recip(N1APF.getSemantics(), 1); // 1.0
- APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
- // Only do the transform if the reciprocal is a legal fp immediate that
- // isn't too nasty (eg NaN, denormal, ...).
- if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
- (!LegalOperations ||
- // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
- // backend)... we should handle this gracefully after Legalize.
- // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
- TLI.isOperationLegal(ISD::ConstantFP, VT) ||
- TLI.isFPImmLegal(Recip, VT, ForCodeSize)))
- return DAG.getNode(ISD::FMUL, DL, VT, N0,
- DAG.getConstantFP(Recip, DL, VT));
- }
- // If this FDIV is part of a reciprocal square root, it may be folded
- // into a target-specific square root estimate instruction.
- if (N1.getOpcode() == ISD::FSQRT) {
- if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags))
- return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
- } else if (N1.getOpcode() == ISD::FP_EXTEND &&
- N1.getOperand(0).getOpcode() == ISD::FSQRT) {
- if (SDValue RV =
- buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) {
- RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
- AddToWorklist(RV.getNode());
- return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
- }
- } else if (N1.getOpcode() == ISD::FP_ROUND &&
- N1.getOperand(0).getOpcode() == ISD::FSQRT) {
- if (SDValue RV =
- buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) {
- RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
- AddToWorklist(RV.getNode());
- return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
- }
- } else if (N1.getOpcode() == ISD::FMUL) {
- // Look through an FMUL. Even though this won't remove the FDIV directly,
- // it's still worthwhile to get rid of the FSQRT if possible.
- SDValue Sqrt, Y;
- if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
- Sqrt = N1.getOperand(0);
- Y = N1.getOperand(1);
- } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
- Sqrt = N1.getOperand(1);
- Y = N1.getOperand(0);
- }
- if (Sqrt.getNode()) {
- // If the other multiply operand is known positive, pull it into the
- // sqrt. That will eliminate the division if we convert to an estimate.
- if (Flags.hasAllowReassociation() && N1.hasOneUse() &&
- N1->getFlags().hasAllowReassociation() && Sqrt.hasOneUse()) {
- SDValue A;
- if (Y.getOpcode() == ISD::FABS && Y.hasOneUse())
- A = Y.getOperand(0);
- else if (Y == Sqrt.getOperand(0))
- A = Y;
- if (A) {
- // X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z)
- // X / (A * sqrt(A)) --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A)
- SDValue AA = DAG.getNode(ISD::FMUL, DL, VT, A, A);
- SDValue AAZ =
- DAG.getNode(ISD::FMUL, DL, VT, AA, Sqrt.getOperand(0));
- if (SDValue Rsqrt = buildRsqrtEstimate(AAZ, Flags))
- return DAG.getNode(ISD::FMUL, DL, VT, N0, Rsqrt);
- // Estimate creation failed. Clean up speculatively created nodes.
- recursivelyDeleteUnusedNodes(AAZ.getNode());
- }
- }
- // We found a FSQRT, so try to make this fold:
- // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y)
- if (SDValue Rsqrt = buildRsqrtEstimate(Sqrt.getOperand(0), Flags)) {
- SDValue Div = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, Rsqrt, Y);
- AddToWorklist(Div.getNode());
- return DAG.getNode(ISD::FMUL, DL, VT, N0, Div);
- }
- }
- }
- // Fold into a reciprocal estimate and multiply instead of a real divide.
- if (Options.NoInfsFPMath || Flags.hasNoInfs())
- if (SDValue RV = BuildDivEstimate(N0, N1, Flags))
- return RV;
- }
- // Fold X/Sqrt(X) -> Sqrt(X)
- if ((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) &&
- (Options.UnsafeFPMath || Flags.hasAllowReassociation()))
- if (N1.getOpcode() == ISD::FSQRT && N0 == N1.getOperand(0))
- return N1;
- // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
- TargetLowering::NegatibleCost CostN0 =
- TargetLowering::NegatibleCost::Expensive;
- TargetLowering::NegatibleCost CostN1 =
- TargetLowering::NegatibleCost::Expensive;
- SDValue NegN0 =
- TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
- if (NegN0) {
- HandleSDNode NegN0Handle(NegN0);
- SDValue NegN1 =
- TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
- if (NegN1 && (CostN0 == TargetLowering::NegatibleCost::Cheaper ||
- CostN1 == TargetLowering::NegatibleCost::Cheaper))
- return DAG.getNode(ISD::FDIV, SDLoc(N), VT, NegN0, NegN1);
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitFREM(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- SDNodeFlags Flags = N->getFlags();
- SelectionDAG::FlagInserter FlagsInserter(DAG, N);
- if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
- return R;
- // fold (frem c1, c2) -> fmod(c1,c2)
- if (SDValue C = DAG.FoldConstantArithmetic(ISD::FREM, SDLoc(N), VT, {N0, N1}))
- return C;
- if (SDValue NewSel = foldBinOpIntoSelect(N))
- return NewSel;
- return SDValue();
- }
- SDValue DAGCombiner::visitFSQRT(SDNode *N) {
- SDNodeFlags Flags = N->getFlags();
- const TargetOptions &Options = DAG.getTarget().Options;
- // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as:
- // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN
- if (!Flags.hasApproximateFuncs() ||
- (!Options.NoInfsFPMath && !Flags.hasNoInfs()))
- return SDValue();
- SDValue N0 = N->getOperand(0);
- if (TLI.isFsqrtCheap(N0, DAG))
- return SDValue();
- // FSQRT nodes have flags that propagate to the created nodes.
- // TODO: If this is N0/sqrt(N0), and we reach this node before trying to
- // transform the fdiv, we may produce a sub-optimal estimate sequence
- // because the reciprocal calculation may not have to filter out a
- // 0.0 input.
- return buildSqrtEstimate(N0, Flags);
- }
- /// copysign(x, fp_extend(y)) -> copysign(x, y)
- /// copysign(x, fp_round(y)) -> copysign(x, y)
- static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) {
- SDValue N1 = N->getOperand(1);
- if ((N1.getOpcode() == ISD::FP_EXTEND ||
- N1.getOpcode() == ISD::FP_ROUND)) {
- EVT N1VT = N1->getValueType(0);
- EVT N1Op0VT = N1->getOperand(0).getValueType();
- // Always fold no-op FP casts.
- if (N1VT == N1Op0VT)
- return true;
- // Do not optimize out type conversion of f128 type yet.
- // For some targets like x86_64, configuration is changed to keep one f128
- // value in one SSE register, but instruction selection cannot handle
- // FCOPYSIGN on SSE registers yet.
- if (N1Op0VT == MVT::f128)
- return false;
- return !N1Op0VT.isVector() || EnableVectorFCopySignExtendRound;
- }
- return false;
- }
- SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- // fold (fcopysign c1, c2) -> fcopysign(c1,c2)
- if (SDValue C =
- DAG.FoldConstantArithmetic(ISD::FCOPYSIGN, SDLoc(N), VT, {N0, N1}))
- return C;
- if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) {
- const APFloat &V = N1C->getValueAPF();
- // copysign(x, c1) -> fabs(x) iff ispos(c1)
- // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
- if (!V.isNegative()) {
- if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
- return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
- } else {
- if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
- return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
- DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
- }
- }
- // copysign(fabs(x), y) -> copysign(x, y)
- // copysign(fneg(x), y) -> copysign(x, y)
- // copysign(copysign(x,z), y) -> copysign(x, y)
- if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
- N0.getOpcode() == ISD::FCOPYSIGN)
- return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1);
- // copysign(x, abs(y)) -> abs(x)
- if (N1.getOpcode() == ISD::FABS)
- return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
- // copysign(x, copysign(y,z)) -> copysign(x, z)
- if (N1.getOpcode() == ISD::FCOPYSIGN)
- return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1));
- // copysign(x, fp_extend(y)) -> copysign(x, y)
- // copysign(x, fp_round(y)) -> copysign(x, y)
- if (CanCombineFCOPYSIGN_EXTEND_ROUND(N))
- return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0));
- return SDValue();
- }
- SDValue DAGCombiner::visitFPOW(SDNode *N) {
- ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1));
- if (!ExponentC)
- return SDValue();
- SelectionDAG::FlagInserter FlagsInserter(DAG, N);
- // Try to convert x ** (1/3) into cube root.
- // TODO: Handle the various flavors of long double.
- // TODO: Since we're approximating, we don't need an exact 1/3 exponent.
- // Some range near 1/3 should be fine.
- EVT VT = N->getValueType(0);
- if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) ||
- (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) {
- // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
- // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
- // pow(-val, 1/3) = nan; cbrt(-val) = -num.
- // For regular numbers, rounding may cause the results to differ.
- // Therefore, we require { nsz ninf nnan afn } for this transform.
- // TODO: We could select out the special cases if we don't have nsz/ninf.
- SDNodeFlags Flags = N->getFlags();
- if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() ||
- !Flags.hasApproximateFuncs())
- return SDValue();
- // Do not create a cbrt() libcall if the target does not have it, and do not
- // turn a pow that has lowering support into a cbrt() libcall.
- if (!DAG.getLibInfo().has(LibFunc_cbrt) ||
- (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) &&
- DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT)))
- return SDValue();
- return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0));
- }
- // Try to convert x ** (1/4) and x ** (3/4) into square roots.
- // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
- // TODO: This could be extended (using a target hook) to handle smaller
- // power-of-2 fractional exponents.
- bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25);
- bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75);
- if (ExponentIs025 || ExponentIs075) {
- // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
- // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN.
- // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0.
- // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN.
- // For regular numbers, rounding may cause the results to differ.
- // Therefore, we require { nsz ninf afn } for this transform.
- // TODO: We could select out the special cases if we don't have nsz/ninf.
- SDNodeFlags Flags = N->getFlags();
- // We only need no signed zeros for the 0.25 case.
- if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() ||
- !Flags.hasApproximateFuncs())
- return SDValue();
- // Don't double the number of libcalls. We are trying to inline fast code.
- if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT))
- return SDValue();
- // Assume that libcalls are the smallest code.
- // TODO: This restriction should probably be lifted for vectors.
- if (ForCodeSize)
- return SDValue();
- // pow(X, 0.25) --> sqrt(sqrt(X))
- SDLoc DL(N);
- SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0));
- SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt);
- if (ExponentIs025)
- return SqrtSqrt;
- // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X))
- return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt);
- }
- return SDValue();
- }
- static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- // We only do this if the target has legal ftrunc. Otherwise, we'd likely be
- // replacing casts with a libcall. We also must be allowed to ignore -0.0
- // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
- // conversions would return +0.0.
- // FIXME: We should be able to use node-level FMF here.
- // TODO: If strict math, should we use FABS (+ range check for signed cast)?
- EVT VT = N->getValueType(0);
- if (!TLI.isOperationLegal(ISD::FTRUNC, VT) ||
- !DAG.getTarget().Options.NoSignedZerosFPMath)
- return SDValue();
- // fptosi/fptoui round towards zero, so converting from FP to integer and
- // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
- SDValue N0 = N->getOperand(0);
- if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT &&
- N0.getOperand(0).getValueType() == VT)
- return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
- if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT &&
- N0.getOperand(0).getValueType() == VT)
- return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
- return SDValue();
- }
- SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- EVT OpVT = N0.getValueType();
- // [us]itofp(undef) = 0, because the result value is bounded.
- if (N0.isUndef())
- return DAG.getConstantFP(0.0, SDLoc(N), VT);
- // fold (sint_to_fp c1) -> c1fp
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- // ...but only if the target supports immediate floating-point values
- (!LegalOperations ||
- TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
- return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
- // If the input is a legal type, and SINT_TO_FP is not legal on this target,
- // but UINT_TO_FP is legal on this target, try to convert.
- if (!hasOperation(ISD::SINT_TO_FP, OpVT) &&
- hasOperation(ISD::UINT_TO_FP, OpVT)) {
- // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
- if (DAG.SignBitIsZero(N0))
- return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
- }
- // The next optimizations are desirable only if SELECT_CC can be lowered.
- // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0)
- if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
- !VT.isVector() &&
- (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
- SDLoc DL(N);
- return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT),
- DAG.getConstantFP(0.0, DL, VT));
- }
- // fold (sint_to_fp (zext (setcc x, y, cc))) ->
- // (select (setcc x, y, cc), 1.0, 0.0)
- if (N0.getOpcode() == ISD::ZERO_EXTEND &&
- N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() &&
- (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
- SDLoc DL(N);
- return DAG.getSelect(DL, VT, N0.getOperand(0),
- DAG.getConstantFP(1.0, DL, VT),
- DAG.getConstantFP(0.0, DL, VT));
- }
- if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
- return FTrunc;
- return SDValue();
- }
- SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- EVT OpVT = N0.getValueType();
- // [us]itofp(undef) = 0, because the result value is bounded.
- if (N0.isUndef())
- return DAG.getConstantFP(0.0, SDLoc(N), VT);
- // fold (uint_to_fp c1) -> c1fp
- if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
- // ...but only if the target supports immediate floating-point values
- (!LegalOperations ||
- TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
- return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
- // If the input is a legal type, and UINT_TO_FP is not legal on this target,
- // but SINT_TO_FP is legal on this target, try to convert.
- if (!hasOperation(ISD::UINT_TO_FP, OpVT) &&
- hasOperation(ISD::SINT_TO_FP, OpVT)) {
- // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
- if (DAG.SignBitIsZero(N0))
- return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
- }
- // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0)
- if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
- (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
- SDLoc DL(N);
- return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT),
- DAG.getConstantFP(0.0, DL, VT));
- }
- if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
- return FTrunc;
- return SDValue();
- }
- // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
- static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
- return SDValue();
- SDValue Src = N0.getOperand(0);
- EVT SrcVT = Src.getValueType();
- bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
- bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;
- // We can safely assume the conversion won't overflow the output range,
- // because (for example) (uint8_t)18293.f is undefined behavior.
- // Since we can assume the conversion won't overflow, our decision as to
- // whether the input will fit in the float should depend on the minimum
- // of the input range and output range.
- // This means this is also safe for a signed input and unsigned output, since
- // a negative input would lead to undefined behavior.
- unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
- unsigned OutputSize = (int)VT.getScalarSizeInBits();
- unsigned ActualSize = std::min(InputSize, OutputSize);
- const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType());
- // We can only fold away the float conversion if the input range can be
- // represented exactly in the float range.
- if (APFloat::semanticsPrecision(sem) >= ActualSize) {
- if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
- unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND
- : ISD::ZERO_EXTEND;
- return DAG.getNode(ExtOp, SDLoc(N), VT, Src);
- }
- if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
- return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src);
- return DAG.getBitcast(VT, Src);
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- // fold (fp_to_sint undef) -> undef
- if (N0.isUndef())
- return DAG.getUNDEF(VT);
- // fold (fp_to_sint c1fp) -> c1
- if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
- return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
- return FoldIntToFPToInt(N, DAG);
- }
- SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- // fold (fp_to_uint undef) -> undef
- if (N0.isUndef())
- return DAG.getUNDEF(VT);
- // fold (fp_to_uint c1fp) -> c1
- if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
- return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
- return FoldIntToFPToInt(N, DAG);
- }
- SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- // fold (fp_round c1fp) -> c1fp
- if (SDValue C =
- DAG.FoldConstantArithmetic(ISD::FP_ROUND, SDLoc(N), VT, {N0, N1}))
- return C;
- // fold (fp_round (fp_extend x)) -> x
- if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
- return N0.getOperand(0);
- // fold (fp_round (fp_round x)) -> (fp_round x)
- if (N0.getOpcode() == ISD::FP_ROUND) {
- const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
- const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1;
- // Skip this folding if it results in an fp_round from f80 to f16.
- //
- // f80 to f16 always generates an expensive (and as yet, unimplemented)
- // libcall to __truncxfhf2 instead of selecting native f16 conversion
- // instructions from f32 or f64. Moreover, the first (value-preserving)
- // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
- // x86.
- if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16)
- return SDValue();
- // If the first fp_round isn't a value preserving truncation, it might
- // introduce a tie in the second fp_round, that wouldn't occur in the
- // single-step fp_round we want to fold to.
- // In other words, double rounding isn't the same as rounding.
- // Also, this is a value preserving truncation iff both fp_round's are.
- if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) {
- SDLoc DL(N);
- return DAG.getNode(
- ISD::FP_ROUND, DL, VT, N0.getOperand(0),
- DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL, /*isTarget=*/true));
- }
- }
- // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
- if (N0.getOpcode() == ISD::FCOPYSIGN && N0->hasOneUse()) {
- SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
- N0.getOperand(0), N1);
- AddToWorklist(Tmp.getNode());
- return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
- Tmp, N0.getOperand(1));
- }
- if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
- return NewVSel;
- return SDValue();
- }
- SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- if (VT.isVector())
- if (SDValue FoldedVOp = SimplifyVCastOp(N, SDLoc(N)))
- return FoldedVOp;
- // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
- if (N->hasOneUse() &&
- N->use_begin()->getOpcode() == ISD::FP_ROUND)
- return SDValue();
- // fold (fp_extend c1fp) -> c1fp
- if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
- return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
- // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
- if (N0.getOpcode() == ISD::FP16_TO_FP &&
- TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
- return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0));
- // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
- // value of X.
- if (N0.getOpcode() == ISD::FP_ROUND
- && N0.getConstantOperandVal(1) == 1) {
- SDValue In = N0.getOperand(0);
- if (In.getValueType() == VT) return In;
- if (VT.bitsLT(In.getValueType()))
- return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
- In, N0.getOperand(1));
- return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
- }
- // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
- if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
- TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, VT, N0.getValueType())) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
- LN0->getChain(),
- LN0->getBasePtr(), N0.getValueType(),
- LN0->getMemOperand());
- CombineTo(N, ExtLoad);
- CombineTo(
- N0.getNode(),
- DAG.getNode(ISD::FP_ROUND, SDLoc(N0), N0.getValueType(), ExtLoad,
- DAG.getIntPtrConstant(1, SDLoc(N0), /*isTarget=*/true)),
- ExtLoad.getValue(1));
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
- return NewVSel;
- return SDValue();
- }
- SDValue DAGCombiner::visitFCEIL(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- // fold (fceil c1) -> fceil(c1)
- if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
- return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
- return SDValue();
- }
- SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- // fold (ftrunc c1) -> ftrunc(c1)
- if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
- return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
- // fold ftrunc (known rounded int x) -> x
- // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
- // likely to be generated to extract integer from a rounded floating value.
- switch (N0.getOpcode()) {
- default: break;
- case ISD::FRINT:
- case ISD::FTRUNC:
- case ISD::FNEARBYINT:
- case ISD::FFLOOR:
- case ISD::FCEIL:
- return N0;
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- // fold (ffloor c1) -> ffloor(c1)
- if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
- return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
- return SDValue();
- }
- SDValue DAGCombiner::visitFNEG(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- SelectionDAG::FlagInserter FlagsInserter(DAG, N);
- // Constant fold FNEG.
- if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
- return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
- if (SDValue NegN0 =
- TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize))
- return NegN0;
- // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
- // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't
- // know it was called from a context with a nsz flag if the input fsub does
- // not.
- if (N0.getOpcode() == ISD::FSUB &&
- (DAG.getTarget().Options.NoSignedZerosFPMath ||
- N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) {
- return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1),
- N0.getOperand(0));
- }
- if (SDValue Cast = foldSignChangeInBitcast(N))
- return Cast;
- return SDValue();
- }
- SDValue DAGCombiner::visitFMinMax(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- const SDNodeFlags Flags = N->getFlags();
- unsigned Opc = N->getOpcode();
- bool PropagatesNaN = Opc == ISD::FMINIMUM || Opc == ISD::FMAXIMUM;
- bool IsMin = Opc == ISD::FMINNUM || Opc == ISD::FMINIMUM;
- SelectionDAG::FlagInserter FlagsInserter(DAG, N);
- // Constant fold.
- if (SDValue C = DAG.FoldConstantArithmetic(Opc, SDLoc(N), VT, {N0, N1}))
- return C;
- // Canonicalize to constant on RHS.
- if (DAG.isConstantFPBuildVectorOrConstantFP(N0) &&
- !DAG.isConstantFPBuildVectorOrConstantFP(N1))
- return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
- if (const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1)) {
- const APFloat &AF = N1CFP->getValueAPF();
- // minnum(X, nan) -> X
- // maxnum(X, nan) -> X
- // minimum(X, nan) -> nan
- // maximum(X, nan) -> nan
- if (AF.isNaN())
- return PropagatesNaN ? N->getOperand(1) : N->getOperand(0);
- // In the following folds, inf can be replaced with the largest finite
- // float, if the ninf flag is set.
- if (AF.isInfinity() || (Flags.hasNoInfs() && AF.isLargest())) {
- // minnum(X, -inf) -> -inf
- // maxnum(X, +inf) -> +inf
- // minimum(X, -inf) -> -inf if nnan
- // maximum(X, +inf) -> +inf if nnan
- if (IsMin == AF.isNegative() && (!PropagatesNaN || Flags.hasNoNaNs()))
- return N->getOperand(1);
- // minnum(X, +inf) -> X if nnan
- // maxnum(X, -inf) -> X if nnan
- // minimum(X, +inf) -> X
- // maximum(X, -inf) -> X
- if (IsMin != AF.isNegative() && (PropagatesNaN || Flags.hasNoNaNs()))
- return N->getOperand(0);
- }
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitFABS(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- // fold (fabs c1) -> fabs(c1)
- if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
- return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
- // fold (fabs (fabs x)) -> (fabs x)
- if (N0.getOpcode() == ISD::FABS)
- return N->getOperand(0);
- // fold (fabs (fneg x)) -> (fabs x)
- // fold (fabs (fcopysign x, y)) -> (fabs x)
- if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
- return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
- if (SDValue Cast = foldSignChangeInBitcast(N))
- return Cast;
- return SDValue();
- }
- SDValue DAGCombiner::visitBRCOND(SDNode *N) {
- SDValue Chain = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- // BRCOND(FREEZE(cond)) is equivalent to BRCOND(cond) (both are
- // nondeterministic jumps).
- if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse()) {
- return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain,
- N1->getOperand(0), N2);
- }
- // If N is a constant we could fold this into a fallthrough or unconditional
- // branch. However that doesn't happen very often in normal code, because
- // Instcombine/SimplifyCFG should have handled the available opportunities.
- // If we did this folding here, it would be necessary to update the
- // MachineBasicBlock CFG, which is awkward.
- // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
- // on the target.
- if (N1.getOpcode() == ISD::SETCC &&
- TLI.isOperationLegalOrCustom(ISD::BR_CC,
- N1.getOperand(0).getValueType())) {
- return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
- Chain, N1.getOperand(2),
- N1.getOperand(0), N1.getOperand(1), N2);
- }
- if (N1.hasOneUse()) {
- // rebuildSetCC calls visitXor which may change the Chain when there is a
- // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes.
- HandleSDNode ChainHandle(Chain);
- if (SDValue NewN1 = rebuildSetCC(N1))
- return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other,
- ChainHandle.getValue(), NewN1, N2);
- }
- return SDValue();
- }
- SDValue DAGCombiner::rebuildSetCC(SDValue N) {
- if (N.getOpcode() == ISD::SRL ||
- (N.getOpcode() == ISD::TRUNCATE &&
- (N.getOperand(0).hasOneUse() &&
- N.getOperand(0).getOpcode() == ISD::SRL))) {
- // Look pass the truncate.
- if (N.getOpcode() == ISD::TRUNCATE)
- N = N.getOperand(0);
- // Match this pattern so that we can generate simpler code:
- //
- // %a = ...
- // %b = and i32 %a, 2
- // %c = srl i32 %b, 1
- // brcond i32 %c ...
- //
- // into
- //
- // %a = ...
- // %b = and i32 %a, 2
- // %c = setcc eq %b, 0
- // brcond %c ...
- //
- // This applies only when the AND constant value has one bit set and the
- // SRL constant is equal to the log2 of the AND constant. The back-end is
- // smart enough to convert the result into a TEST/JMP sequence.
- SDValue Op0 = N.getOperand(0);
- SDValue Op1 = N.getOperand(1);
- if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) {
- SDValue AndOp1 = Op0.getOperand(1);
- if (AndOp1.getOpcode() == ISD::Constant) {
- const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
- if (AndConst.isPowerOf2() &&
- cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) {
- SDLoc DL(N);
- return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()),
- Op0, DAG.getConstant(0, DL, Op0.getValueType()),
- ISD::SETNE);
- }
- }
- }
- }
- // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne))
- // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq))
- if (N.getOpcode() == ISD::XOR) {
- // Because we may call this on a speculatively constructed
- // SimplifiedSetCC Node, we need to simplify this node first.
- // Ideally this should be folded into SimplifySetCC and not
- // here. For now, grab a handle to N so we don't lose it from
- // replacements interal to the visit.
- HandleSDNode XORHandle(N);
- while (N.getOpcode() == ISD::XOR) {
- SDValue Tmp = visitXOR(N.getNode());
- // No simplification done.
- if (!Tmp.getNode())
- break;
- // Returning N is form in-visit replacement that may invalidated
- // N. Grab value from Handle.
- if (Tmp.getNode() == N.getNode())
- N = XORHandle.getValue();
- else // Node simplified. Try simplifying again.
- N = Tmp;
- }
- if (N.getOpcode() != ISD::XOR)
- return N;
- SDValue Op0 = N->getOperand(0);
- SDValue Op1 = N->getOperand(1);
- if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
- bool Equal = false;
- // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq))
- if (isBitwiseNot(N) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR &&
- Op0.getValueType() == MVT::i1) {
- N = Op0;
- Op0 = N->getOperand(0);
- Op1 = N->getOperand(1);
- Equal = true;
- }
- EVT SetCCVT = N.getValueType();
- if (LegalTypes)
- SetCCVT = getSetCCResultType(SetCCVT);
- // Replace the uses of XOR with SETCC
- return DAG.getSetCC(SDLoc(N), SetCCVT, Op0, Op1,
- Equal ? ISD::SETEQ : ISD::SETNE);
- }
- }
- return SDValue();
- }
- // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
- //
- SDValue DAGCombiner::visitBR_CC(SDNode *N) {
- CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
- SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
- // If N is a constant we could fold this into a fallthrough or unconditional
- // branch. However that doesn't happen very often in normal code, because
- // Instcombine/SimplifyCFG should have handled the available opportunities.
- // If we did this folding here, it would be necessary to update the
- // MachineBasicBlock CFG, which is awkward.
- // Use SimplifySetCC to simplify SETCC's.
- SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
- CondLHS, CondRHS, CC->get(), SDLoc(N),
- false);
- if (Simp.getNode()) AddToWorklist(Simp.getNode());
- // fold to a simpler setcc
- if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
- return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
- N->getOperand(0), Simp.getOperand(2),
- Simp.getOperand(0), Simp.getOperand(1),
- N->getOperand(4));
- return SDValue();
- }
- static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec,
- bool &IsLoad, bool &IsMasked, SDValue &Ptr,
- const TargetLowering &TLI) {
- if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
- if (LD->isIndexed())
- return false;
- EVT VT = LD->getMemoryVT();
- if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT))
- return false;
- Ptr = LD->getBasePtr();
- } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
- if (ST->isIndexed())
- return false;
- EVT VT = ST->getMemoryVT();
- if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT))
- return false;
- Ptr = ST->getBasePtr();
- IsLoad = false;
- } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
- if (LD->isIndexed())
- return false;
- EVT VT = LD->getMemoryVT();
- if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) &&
- !TLI.isIndexedMaskedLoadLegal(Dec, VT))
- return false;
- Ptr = LD->getBasePtr();
- IsMasked = true;
- } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
- if (ST->isIndexed())
- return false;
- EVT VT = ST->getMemoryVT();
- if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) &&
- !TLI.isIndexedMaskedStoreLegal(Dec, VT))
- return false;
- Ptr = ST->getBasePtr();
- IsLoad = false;
- IsMasked = true;
- } else {
- return false;
- }
- return true;
- }
- /// Try turning a load/store into a pre-indexed load/store when the base
- /// pointer is an add or subtract and it has other uses besides the load/store.
- /// After the transformation, the new indexed load/store has effectively folded
- /// the add/subtract in and all of its other uses are redirected to the
- /// new load/store.
- bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
- if (Level < AfterLegalizeDAG)
- return false;
- bool IsLoad = true;
- bool IsMasked = false;
- SDValue Ptr;
- if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked,
- Ptr, TLI))
- return false;
- // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
- // out. There is no reason to make this a preinc/predec.
- if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
- Ptr->hasOneUse())
- return false;
- // Ask the target to do addressing mode selection.
- SDValue BasePtr;
- SDValue Offset;
- ISD::MemIndexedMode AM = ISD::UNINDEXED;
- if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
- return false;
- // Backends without true r+i pre-indexed forms may need to pass a
- // constant base with a variable offset so that constant coercion
- // will work with the patterns in canonical form.
- bool Swapped = false;
- if (isa<ConstantSDNode>(BasePtr)) {
- std::swap(BasePtr, Offset);
- Swapped = true;
- }
- // Don't create a indexed load / store with zero offset.
- if (isNullConstant(Offset))
- return false;
- // Try turning it into a pre-indexed load / store except when:
- // 1) The new base ptr is a frame index.
- // 2) If N is a store and the new base ptr is either the same as or is a
- // predecessor of the value being stored.
- // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
- // that would create a cycle.
- // 4) All uses are load / store ops that use it as old base ptr.
- // Check #1. Preinc'ing a frame index would require copying the stack pointer
- // (plus the implicit offset) to a register to preinc anyway.
- if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
- return false;
- // Check #2.
- if (!IsLoad) {
- SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue()
- : cast<StoreSDNode>(N)->getValue();
- // Would require a copy.
- if (Val == BasePtr)
- return false;
- // Would create a cycle.
- if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode()))
- return false;
- }
- // Caches for hasPredecessorHelper.
- SmallPtrSet<const SDNode *, 32> Visited;
- SmallVector<const SDNode *, 16> Worklist;
- Worklist.push_back(N);
- // If the offset is a constant, there may be other adds of constants that
- // can be folded with this one. We should do this to avoid having to keep
- // a copy of the original base pointer.
- SmallVector<SDNode *, 16> OtherUses;
- if (isa<ConstantSDNode>(Offset))
- for (SDNode::use_iterator UI = BasePtr->use_begin(),
- UE = BasePtr->use_end();
- UI != UE; ++UI) {
- SDUse &Use = UI.getUse();
- // Skip the use that is Ptr and uses of other results from BasePtr's
- // node (important for nodes that return multiple results).
- if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
- continue;
- if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist))
- continue;
- if (Use.getUser()->getOpcode() != ISD::ADD &&
- Use.getUser()->getOpcode() != ISD::SUB) {
- OtherUses.clear();
- break;
- }
- SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1);
- if (!isa<ConstantSDNode>(Op1)) {
- OtherUses.clear();
- break;
- }
- // FIXME: In some cases, we can be smarter about this.
- if (Op1.getValueType() != Offset.getValueType()) {
- OtherUses.clear();
- break;
- }
- OtherUses.push_back(Use.getUser());
- }
- if (Swapped)
- std::swap(BasePtr, Offset);
- // Now check for #3 and #4.
- bool RealUse = false;
- for (SDNode *Use : Ptr->uses()) {
- if (Use == N)
- continue;
- if (SDNode::hasPredecessorHelper(Use, Visited, Worklist))
- return false;
- // If Ptr may be folded in addressing mode of other use, then it's
- // not profitable to do this transformation.
- if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
- RealUse = true;
- }
- if (!RealUse)
- return false;
- SDValue Result;
- if (!IsMasked) {
- if (IsLoad)
- Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM);
- else
- Result =
- DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM);
- } else {
- if (IsLoad)
- Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr,
- Offset, AM);
- else
- Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr,
- Offset, AM);
- }
- ++PreIndexedNodes;
- ++NodesCombined;
- LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: ";
- Result.dump(&DAG); dbgs() << '\n');
- WorklistRemover DeadNodes(*this);
- if (IsLoad) {
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
- } else {
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
- }
- // Finally, since the node is now dead, remove it from the graph.
- deleteAndRecombine(N);
- if (Swapped)
- std::swap(BasePtr, Offset);
- // Replace other uses of BasePtr that can be updated to use Ptr
- for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
- unsigned OffsetIdx = 1;
- if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
- OffsetIdx = 0;
- assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
- BasePtr.getNode() && "Expected BasePtr operand");
- // We need to replace ptr0 in the following expression:
- // x0 * offset0 + y0 * ptr0 = t0
- // knowing that
- // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
- //
- // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
- // indexed load/store and the expression that needs to be re-written.
- //
- // Therefore, we have:
- // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
- auto *CN = cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
- const APInt &Offset0 = CN->getAPIntValue();
- const APInt &Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
- int X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
- int Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
- int X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
- int Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
- unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
- APInt CNV = Offset0;
- if (X0 < 0) CNV = -CNV;
- if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
- else CNV = CNV - Offset1;
- SDLoc DL(OtherUses[i]);
- // We can now generate the new expression.
- SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
- SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0);
- SDValue NewUse = DAG.getNode(Opcode,
- DL,
- OtherUses[i]->getValueType(0), NewOp1, NewOp2);
- DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
- deleteAndRecombine(OtherUses[i]);
- }
- // Replace the uses of Ptr with uses of the updated base value.
- DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0));
- deleteAndRecombine(Ptr.getNode());
- AddToWorklist(Result.getNode());
- return true;
- }
- static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse,
- SDValue &BasePtr, SDValue &Offset,
- ISD::MemIndexedMode &AM,
- SelectionDAG &DAG,
- const TargetLowering &TLI) {
- if (PtrUse == N ||
- (PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB))
- return false;
- if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG))
- return false;
- // Don't create a indexed load / store with zero offset.
- if (isNullConstant(Offset))
- return false;
- if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
- return false;
- SmallPtrSet<const SDNode *, 32> Visited;
- for (SDNode *Use : BasePtr->uses()) {
- if (Use == Ptr.getNode())
- continue;
- // No if there's a later user which could perform the index instead.
- if (isa<MemSDNode>(Use)) {
- bool IsLoad = true;
- bool IsMasked = false;
- SDValue OtherPtr;
- if (getCombineLoadStoreParts(Use, ISD::POST_INC, ISD::POST_DEC, IsLoad,
- IsMasked, OtherPtr, TLI)) {
- SmallVector<const SDNode *, 2> Worklist;
- Worklist.push_back(Use);
- if (SDNode::hasPredecessorHelper(N, Visited, Worklist))
- return false;
- }
- }
- // If all the uses are load / store addresses, then don't do the
- // transformation.
- if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB) {
- for (SDNode *UseUse : Use->uses())
- if (canFoldInAddressingMode(Use, UseUse, DAG, TLI))
- return false;
- }
- }
- return true;
- }
- static SDNode *getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad,
- bool &IsMasked, SDValue &Ptr,
- SDValue &BasePtr, SDValue &Offset,
- ISD::MemIndexedMode &AM,
- SelectionDAG &DAG,
- const TargetLowering &TLI) {
- if (!getCombineLoadStoreParts(N, ISD::POST_INC, ISD::POST_DEC, IsLoad,
- IsMasked, Ptr, TLI) ||
- Ptr->hasOneUse())
- return nullptr;
- // Try turning it into a post-indexed load / store except when
- // 1) All uses are load / store ops that use it as base ptr (and
- // it may be folded as addressing mmode).
- // 2) Op must be independent of N, i.e. Op is neither a predecessor
- // nor a successor of N. Otherwise, if Op is folded that would
- // create a cycle.
- for (SDNode *Op : Ptr->uses()) {
- // Check for #1.
- if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI))
- continue;
- // Check for #2.
- SmallPtrSet<const SDNode *, 32> Visited;
- SmallVector<const SDNode *, 8> Worklist;
- // Ptr is predecessor to both N and Op.
- Visited.insert(Ptr.getNode());
- Worklist.push_back(N);
- Worklist.push_back(Op);
- if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) &&
- !SDNode::hasPredecessorHelper(Op, Visited, Worklist))
- return Op;
- }
- return nullptr;
- }
- /// Try to combine a load/store with a add/sub of the base pointer node into a
- /// post-indexed load/store. The transformation folded the add/subtract into the
- /// new indexed load/store effectively and all of its uses are redirected to the
- /// new load/store.
- bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
- if (Level < AfterLegalizeDAG)
- return false;
- bool IsLoad = true;
- bool IsMasked = false;
- SDValue Ptr;
- SDValue BasePtr;
- SDValue Offset;
- ISD::MemIndexedMode AM = ISD::UNINDEXED;
- SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr,
- Offset, AM, DAG, TLI);
- if (!Op)
- return false;
- SDValue Result;
- if (!IsMasked)
- Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr,
- Offset, AM)
- : DAG.getIndexedStore(SDValue(N, 0), SDLoc(N),
- BasePtr, Offset, AM);
- else
- Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N),
- BasePtr, Offset, AM)
- : DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N),
- BasePtr, Offset, AM);
- ++PostIndexedNodes;
- ++NodesCombined;
- LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); dbgs() << "\nWith: ";
- Result.dump(&DAG); dbgs() << '\n');
- WorklistRemover DeadNodes(*this);
- if (IsLoad) {
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
- } else {
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
- }
- // Finally, since the node is now dead, remove it from the graph.
- deleteAndRecombine(N);
- // Replace the uses of Use with uses of the updated base value.
- DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
- Result.getValue(IsLoad ? 1 : 0));
- deleteAndRecombine(Op);
- return true;
- }
- /// Return the base-pointer arithmetic from an indexed \p LD.
- SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
- ISD::MemIndexedMode AM = LD->getAddressingMode();
- assert(AM != ISD::UNINDEXED);
- SDValue BP = LD->getOperand(1);
- SDValue Inc = LD->getOperand(2);
- // Some backends use TargetConstants for load offsets, but don't expect
- // TargetConstants in general ADD nodes. We can convert these constants into
- // regular Constants (if the constant is not opaque).
- assert((Inc.getOpcode() != ISD::TargetConstant ||
- !cast<ConstantSDNode>(Inc)->isOpaque()) &&
- "Cannot split out indexing using opaque target constants");
- if (Inc.getOpcode() == ISD::TargetConstant) {
- ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
- Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
- ConstInc->getValueType(0));
- }
- unsigned Opc =
- (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
- return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
- }
- static inline ElementCount numVectorEltsOrZero(EVT T) {
- return T.isVector() ? T.getVectorElementCount() : ElementCount::getFixed(0);
- }
- bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) {
- EVT STType = Val.getValueType();
- EVT STMemType = ST->getMemoryVT();
- if (STType == STMemType)
- return true;
- if (isTypeLegal(STMemType))
- return false; // fail.
- if (STType.isFloatingPoint() && STMemType.isFloatingPoint() &&
- TLI.isOperationLegal(ISD::FTRUNC, STMemType)) {
- Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val);
- return true;
- }
- if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) &&
- STType.isInteger() && STMemType.isInteger()) {
- Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val);
- return true;
- }
- if (STType.getSizeInBits() == STMemType.getSizeInBits()) {
- Val = DAG.getBitcast(STMemType, Val);
- return true;
- }
- return false; // fail.
- }
- bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) {
- EVT LDMemType = LD->getMemoryVT();
- EVT LDType = LD->getValueType(0);
- assert(Val.getValueType() == LDMemType &&
- "Attempting to extend value of non-matching type");
- if (LDType == LDMemType)
- return true;
- if (LDMemType.isInteger() && LDType.isInteger()) {
- switch (LD->getExtensionType()) {
- case ISD::NON_EXTLOAD:
- Val = DAG.getBitcast(LDType, Val);
- return true;
- case ISD::EXTLOAD:
- Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val);
- return true;
- case ISD::SEXTLOAD:
- Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val);
- return true;
- case ISD::ZEXTLOAD:
- Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val);
- return true;
- }
- }
- return false;
- }
- SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) {
- if (OptLevel == CodeGenOpt::None || !LD->isSimple())
- return SDValue();
- SDValue Chain = LD->getOperand(0);
- StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode());
- // TODO: Relax this restriction for unordered atomics (see D66309)
- if (!ST || !ST->isSimple() || ST->getAddressSpace() != LD->getAddressSpace())
- return SDValue();
- EVT LDType = LD->getValueType(0);
- EVT LDMemType = LD->getMemoryVT();
- EVT STMemType = ST->getMemoryVT();
- EVT STType = ST->getValue().getValueType();
- // There are two cases to consider here:
- // 1. The store is fixed width and the load is scalable. In this case we
- // don't know at compile time if the store completely envelops the load
- // so we abandon the optimisation.
- // 2. The store is scalable and the load is fixed width. We could
- // potentially support a limited number of cases here, but there has been
- // no cost-benefit analysis to prove it's worth it.
- bool LdStScalable = LDMemType.isScalableVector();
- if (LdStScalable != STMemType.isScalableVector())
- return SDValue();
- // If we are dealing with scalable vectors on a big endian platform the
- // calculation of offsets below becomes trickier, since we do not know at
- // compile time the absolute size of the vector. Until we've done more
- // analysis on big-endian platforms it seems better to bail out for now.
- if (LdStScalable && DAG.getDataLayout().isBigEndian())
- return SDValue();
- BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG);
- BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG);
- int64_t Offset;
- if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset))
- return SDValue();
- // Normalize for Endianness. After this Offset=0 will denote that the least
- // significant bit in the loaded value maps to the least significant bit in
- // the stored value). With Offset=n (for n > 0) the loaded value starts at the
- // n:th least significant byte of the stored value.
- int64_t OrigOffset = Offset;
- if (DAG.getDataLayout().isBigEndian())
- Offset = ((int64_t)STMemType.getStoreSizeInBits().getFixedValue() -
- (int64_t)LDMemType.getStoreSizeInBits().getFixedValue()) /
- 8 -
- Offset;
- // Check that the stored value cover all bits that are loaded.
- bool STCoversLD;
- TypeSize LdMemSize = LDMemType.getSizeInBits();
- TypeSize StMemSize = STMemType.getSizeInBits();
- if (LdStScalable)
- STCoversLD = (Offset == 0) && LdMemSize == StMemSize;
- else
- STCoversLD = (Offset >= 0) && (Offset * 8 + LdMemSize.getFixedValue() <=
- StMemSize.getFixedValue());
- auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue {
- if (LD->isIndexed()) {
- // Cannot handle opaque target constants and we must respect the user's
- // request not to split indexes from loads.
- if (!canSplitIdx(LD))
- return SDValue();
- SDValue Idx = SplitIndexingFromLoad(LD);
- SDValue Ops[] = {Val, Idx, Chain};
- return CombineTo(LD, Ops, 3);
- }
- return CombineTo(LD, Val, Chain);
- };
- if (!STCoversLD)
- return SDValue();
- // Memory as copy space (potentially masked).
- if (Offset == 0 && LDType == STType && STMemType == LDMemType) {
- // Simple case: Direct non-truncating forwarding
- if (LDType.getSizeInBits() == LdMemSize)
- return ReplaceLd(LD, ST->getValue(), Chain);
- // Can we model the truncate and extension with an and mask?
- if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() &&
- !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) {
- // Mask to size of LDMemType
- auto Mask =
- DAG.getConstant(APInt::getLowBitsSet(STType.getFixedSizeInBits(),
- StMemSize.getFixedValue()),
- SDLoc(ST), STType);
- auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask);
- return ReplaceLd(LD, Val, Chain);
- }
- }
- // Handle some cases for big-endian that would be Offset 0 and handled for
- // little-endian.
- SDValue Val = ST->getValue();
- if (DAG.getDataLayout().isBigEndian() && Offset > 0 && OrigOffset == 0) {
- if (STType.isInteger() && !STType.isVector() && LDType.isInteger() &&
- !LDType.isVector() && isTypeLegal(STType) &&
- TLI.isOperationLegal(ISD::SRL, STType)) {
- Val = DAG.getNode(ISD::SRL, SDLoc(LD), STType, Val,
- DAG.getConstant(Offset * 8, SDLoc(LD), STType));
- Offset = 0;
- }
- }
- // TODO: Deal with nonzero offset.
- if (LD->getBasePtr().isUndef() || Offset != 0)
- return SDValue();
- // Model necessary truncations / extenstions.
- // Truncate Value To Stored Memory Size.
- do {
- if (!getTruncatedStoreValue(ST, Val))
- continue;
- if (!isTypeLegal(LDMemType))
- continue;
- if (STMemType != LDMemType) {
- // TODO: Support vectors? This requires extract_subvector/bitcast.
- if (!STMemType.isVector() && !LDMemType.isVector() &&
- STMemType.isInteger() && LDMemType.isInteger())
- Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val);
- else
- continue;
- }
- if (!extendLoadedValueToExtension(LD, Val))
- continue;
- return ReplaceLd(LD, Val, Chain);
- } while (false);
- // On failure, cleanup dead nodes we may have created.
- if (Val->use_empty())
- deleteAndRecombine(Val.getNode());
- return SDValue();
- }
- SDValue DAGCombiner::visitLOAD(SDNode *N) {
- LoadSDNode *LD = cast<LoadSDNode>(N);
- SDValue Chain = LD->getChain();
- SDValue Ptr = LD->getBasePtr();
- // If load is not volatile and there are no uses of the loaded value (and
- // the updated indexed value in case of indexed loads), change uses of the
- // chain value into uses of the chain input (i.e. delete the dead load).
- // TODO: Allow this for unordered atomics (see D66309)
- if (LD->isSimple()) {
- if (N->getValueType(1) == MVT::Other) {
- // Unindexed loads.
- if (!N->hasAnyUseOfValue(0)) {
- // It's not safe to use the two value CombineTo variant here. e.g.
- // v1, chain2 = load chain1, loc
- // v2, chain3 = load chain2, loc
- // v3 = add v2, c
- // Now we replace use of chain2 with chain1. This makes the second load
- // isomorphic to the one we are deleting, and thus makes this load live.
- LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG);
- dbgs() << "\nWith chain: "; Chain.dump(&DAG);
- dbgs() << "\n");
- WorklistRemover DeadNodes(*this);
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
- AddUsersToWorklist(Chain.getNode());
- if (N->use_empty())
- deleteAndRecombine(N);
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- } else {
- // Indexed loads.
- assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
- // If this load has an opaque TargetConstant offset, then we cannot split
- // the indexing into an add/sub directly (that TargetConstant may not be
- // valid for a different type of node, and we cannot convert an opaque
- // target constant into a regular constant).
- bool CanSplitIdx = canSplitIdx(LD);
- if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) {
- SDValue Undef = DAG.getUNDEF(N->getValueType(0));
- SDValue Index;
- if (N->hasAnyUseOfValue(1) && CanSplitIdx) {
- Index = SplitIndexingFromLoad(LD);
- // Try to fold the base pointer arithmetic into subsequent loads and
- // stores.
- AddUsersToWorklist(N);
- } else
- Index = DAG.getUNDEF(N->getValueType(1));
- LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG);
- dbgs() << "\nWith: "; Undef.dump(&DAG);
- dbgs() << " and 2 other values\n");
- WorklistRemover DeadNodes(*this);
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
- deleteAndRecombine(N);
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
- }
- }
- }
- // If this load is directly stored, replace the load value with the stored
- // value.
- if (auto V = ForwardStoreValueToDirectLoad(LD))
- return V;
- // Try to infer better alignment information than the load already has.
- if (OptLevel != CodeGenOpt::None && LD->isUnindexed() && !LD->isAtomic()) {
- if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) {
- if (*Alignment > LD->getAlign() &&
- isAligned(*Alignment, LD->getSrcValueOffset())) {
- SDValue NewLoad = DAG.getExtLoad(
- LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr,
- LD->getPointerInfo(), LD->getMemoryVT(), *Alignment,
- LD->getMemOperand()->getFlags(), LD->getAAInfo());
- // NewLoad will always be N as we are only refining the alignment
- assert(NewLoad.getNode() == N);
- (void)NewLoad;
- }
- }
- }
- if (LD->isUnindexed()) {
- // Walk up chain skipping non-aliasing memory nodes.
- SDValue BetterChain = FindBetterChain(LD, Chain);
- // If there is a better chain.
- if (Chain != BetterChain) {
- SDValue ReplLoad;
- // Replace the chain to void dependency.
- if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
- ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
- BetterChain, Ptr, LD->getMemOperand());
- } else {
- ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
- LD->getValueType(0),
- BetterChain, Ptr, LD->getMemoryVT(),
- LD->getMemOperand());
- }
- // Create token factor to keep old chain connected.
- SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
- MVT::Other, Chain, ReplLoad.getValue(1));
- // Replace uses with load result and token factor
- return CombineTo(N, ReplLoad.getValue(0), Token);
- }
- }
- // Try transforming N to an indexed load.
- if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
- return SDValue(N, 0);
- // Try to slice up N to more direct loads if the slices are mapped to
- // different register banks or pairing can take place.
- if (SliceUpLoad(N))
- return SDValue(N, 0);
- return SDValue();
- }
- namespace {
- /// Helper structure used to slice a load in smaller loads.
- /// Basically a slice is obtained from the following sequence:
- /// Origin = load Ty1, Base
- /// Shift = srl Ty1 Origin, CstTy Amount
- /// Inst = trunc Shift to Ty2
- ///
- /// Then, it will be rewritten into:
- /// Slice = load SliceTy, Base + SliceOffset
- /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
- ///
- /// SliceTy is deduced from the number of bits that are actually used to
- /// build Inst.
- struct LoadedSlice {
- /// Helper structure used to compute the cost of a slice.
- struct Cost {
- /// Are we optimizing for code size.
- bool ForCodeSize = false;
- /// Various cost.
- unsigned Loads = 0;
- unsigned Truncates = 0;
- unsigned CrossRegisterBanksCopies = 0;
- unsigned ZExts = 0;
- unsigned Shift = 0;
- explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {}
- /// Get the cost of one isolated slice.
- Cost(const LoadedSlice &LS, bool ForCodeSize)
- : ForCodeSize(ForCodeSize), Loads(1) {
- EVT TruncType = LS.Inst->getValueType(0);
- EVT LoadedType = LS.getLoadedType();
- if (TruncType != LoadedType &&
- !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
- ZExts = 1;
- }
- /// Account for slicing gain in the current cost.
- /// Slicing provide a few gains like removing a shift or a
- /// truncate. This method allows to grow the cost of the original
- /// load with the gain from this slice.
- void addSliceGain(const LoadedSlice &LS) {
- // Each slice saves a truncate.
- const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
- if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(),
- LS.Inst->getValueType(0)))
- ++Truncates;
- // If there is a shift amount, this slice gets rid of it.
- if (LS.Shift)
- ++Shift;
- // If this slice can merge a cross register bank copy, account for it.
- if (LS.canMergeExpensiveCrossRegisterBankCopy())
- ++CrossRegisterBanksCopies;
- }
- Cost &operator+=(const Cost &RHS) {
- Loads += RHS.Loads;
- Truncates += RHS.Truncates;
- CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
- ZExts += RHS.ZExts;
- Shift += RHS.Shift;
- return *this;
- }
- bool operator==(const Cost &RHS) const {
- return Loads == RHS.Loads && Truncates == RHS.Truncates &&
- CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
- ZExts == RHS.ZExts && Shift == RHS.Shift;
- }
- bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
- bool operator<(const Cost &RHS) const {
- // Assume cross register banks copies are as expensive as loads.
- // FIXME: Do we want some more target hooks?
- unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
- unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
- // Unless we are optimizing for code size, consider the
- // expensive operation first.
- if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
- return ExpensiveOpsLHS < ExpensiveOpsRHS;
- return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
- (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
- }
- bool operator>(const Cost &RHS) const { return RHS < *this; }
- bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
- bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
- };
- // The last instruction that represent the slice. This should be a
- // truncate instruction.
- SDNode *Inst;
- // The original load instruction.
- LoadSDNode *Origin;
- // The right shift amount in bits from the original load.
- unsigned Shift;
- // The DAG from which Origin came from.
- // This is used to get some contextual information about legal types, etc.
- SelectionDAG *DAG;
- LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
- unsigned Shift = 0, SelectionDAG *DAG = nullptr)
- : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
- /// Get the bits used in a chunk of bits \p BitWidth large.
- /// \return Result is \p BitWidth and has used bits set to 1 and
- /// not used bits set to 0.
- APInt getUsedBits() const {
- // Reproduce the trunc(lshr) sequence:
- // - Start from the truncated value.
- // - Zero extend to the desired bit width.
- // - Shift left.
- assert(Origin && "No original load to compare against.");
- unsigned BitWidth = Origin->getValueSizeInBits(0);
- assert(Inst && "This slice is not bound to an instruction");
- assert(Inst->getValueSizeInBits(0) <= BitWidth &&
- "Extracted slice is bigger than the whole type!");
- APInt UsedBits(Inst->getValueSizeInBits(0), 0);
- UsedBits.setAllBits();
- UsedBits = UsedBits.zext(BitWidth);
- UsedBits <<= Shift;
- return UsedBits;
- }
- /// Get the size of the slice to be loaded in bytes.
- unsigned getLoadedSize() const {
- unsigned SliceSize = getUsedBits().countPopulation();
- assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
- return SliceSize / 8;
- }
- /// Get the type that will be loaded for this slice.
- /// Note: This may not be the final type for the slice.
- EVT getLoadedType() const {
- assert(DAG && "Missing context");
- LLVMContext &Ctxt = *DAG->getContext();
- return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
- }
- /// Get the alignment of the load used for this slice.
- Align getAlign() const {
- Align Alignment = Origin->getAlign();
- uint64_t Offset = getOffsetFromBase();
- if (Offset != 0)
- Alignment = commonAlignment(Alignment, Alignment.value() + Offset);
- return Alignment;
- }
- /// Check if this slice can be rewritten with legal operations.
- bool isLegal() const {
- // An invalid slice is not legal.
- if (!Origin || !Inst || !DAG)
- return false;
- // Offsets are for indexed load only, we do not handle that.
- if (!Origin->getOffset().isUndef())
- return false;
- const TargetLowering &TLI = DAG->getTargetLoweringInfo();
- // Check that the type is legal.
- EVT SliceType = getLoadedType();
- if (!TLI.isTypeLegal(SliceType))
- return false;
- // Check that the load is legal for this type.
- if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
- return false;
- // Check that the offset can be computed.
- // 1. Check its type.
- EVT PtrType = Origin->getBasePtr().getValueType();
- if (PtrType == MVT::Untyped || PtrType.isExtended())
- return false;
- // 2. Check that it fits in the immediate.
- if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
- return false;
- // 3. Check that the computation is legal.
- if (!TLI.isOperationLegal(ISD::ADD, PtrType))
- return false;
- // Check that the zext is legal if it needs one.
- EVT TruncateType = Inst->getValueType(0);
- if (TruncateType != SliceType &&
- !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
- return false;
- return true;
- }
- /// Get the offset in bytes of this slice in the original chunk of
- /// bits.
- /// \pre DAG != nullptr.
- uint64_t getOffsetFromBase() const {
- assert(DAG && "Missing context.");
- bool IsBigEndian = DAG->getDataLayout().isBigEndian();
- assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
- uint64_t Offset = Shift / 8;
- unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
- assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
- "The size of the original loaded type is not a multiple of a"
- " byte.");
- // If Offset is bigger than TySizeInBytes, it means we are loading all
- // zeros. This should have been optimized before in the process.
- assert(TySizeInBytes > Offset &&
- "Invalid shift amount for given loaded size");
- if (IsBigEndian)
- Offset = TySizeInBytes - Offset - getLoadedSize();
- return Offset;
- }
- /// Generate the sequence of instructions to load the slice
- /// represented by this object and redirect the uses of this slice to
- /// this new sequence of instructions.
- /// \pre this->Inst && this->Origin are valid Instructions and this
- /// object passed the legal check: LoadedSlice::isLegal returned true.
- /// \return The last instruction of the sequence used to load the slice.
- SDValue loadSlice() const {
- assert(Inst && Origin && "Unable to replace a non-existing slice.");
- const SDValue &OldBaseAddr = Origin->getBasePtr();
- SDValue BaseAddr = OldBaseAddr;
- // Get the offset in that chunk of bytes w.r.t. the endianness.
- int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
- assert(Offset >= 0 && "Offset too big to fit in int64_t!");
- if (Offset) {
- // BaseAddr = BaseAddr + Offset.
- EVT ArithType = BaseAddr.getValueType();
- SDLoc DL(Origin);
- BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
- DAG->getConstant(Offset, DL, ArithType));
- }
- // Create the type of the loaded slice according to its size.
- EVT SliceType = getLoadedType();
- // Create the load for the slice.
- SDValue LastInst =
- DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
- Origin->getPointerInfo().getWithOffset(Offset), getAlign(),
- Origin->getMemOperand()->getFlags());
- // If the final type is not the same as the loaded type, this means that
- // we have to pad with zero. Create a zero extend for that.
- EVT FinalType = Inst->getValueType(0);
- if (SliceType != FinalType)
- LastInst =
- DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
- return LastInst;
- }
- /// Check if this slice can be merged with an expensive cross register
- /// bank copy. E.g.,
- /// i = load i32
- /// f = bitcast i32 i to float
- bool canMergeExpensiveCrossRegisterBankCopy() const {
- if (!Inst || !Inst->hasOneUse())
- return false;
- SDNode *Use = *Inst->use_begin();
- if (Use->getOpcode() != ISD::BITCAST)
- return false;
- assert(DAG && "Missing context");
- const TargetLowering &TLI = DAG->getTargetLoweringInfo();
- EVT ResVT = Use->getValueType(0);
- const TargetRegisterClass *ResRC =
- TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent());
- const TargetRegisterClass *ArgRC =
- TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(),
- Use->getOperand(0)->isDivergent());
- if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
- return false;
- // At this point, we know that we perform a cross-register-bank copy.
- // Check if it is expensive.
- const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
- // Assume bitcasts are cheap, unless both register classes do not
- // explicitly share a common sub class.
- if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
- return false;
- // Check if it will be merged with the load.
- // 1. Check the alignment / fast memory access constraint.
- unsigned IsFast = 0;
- if (!TLI.allowsMemoryAccess(*DAG->getContext(), DAG->getDataLayout(), ResVT,
- Origin->getAddressSpace(), getAlign(),
- Origin->getMemOperand()->getFlags(), &IsFast) ||
- !IsFast)
- return false;
- // 2. Check that the load is a legal operation for that type.
- if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
- return false;
- // 3. Check that we do not have a zext in the way.
- if (Inst->getValueType(0) != getLoadedType())
- return false;
- return true;
- }
- };
- } // end anonymous namespace
- /// Check that all bits set in \p UsedBits form a dense region, i.e.,
- /// \p UsedBits looks like 0..0 1..1 0..0.
- static bool areUsedBitsDense(const APInt &UsedBits) {
- // If all the bits are one, this is dense!
- if (UsedBits.isAllOnes())
- return true;
- // Get rid of the unused bits on the right.
- APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
- // Get rid of the unused bits on the left.
- if (NarrowedUsedBits.countLeadingZeros())
- NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
- // Check that the chunk of bits is completely used.
- return NarrowedUsedBits.isAllOnes();
- }
- /// Check whether or not \p First and \p Second are next to each other
- /// in memory. This means that there is no hole between the bits loaded
- /// by \p First and the bits loaded by \p Second.
- static bool areSlicesNextToEachOther(const LoadedSlice &First,
- const LoadedSlice &Second) {
- assert(First.Origin == Second.Origin && First.Origin &&
- "Unable to match different memory origins.");
- APInt UsedBits = First.getUsedBits();
- assert((UsedBits & Second.getUsedBits()) == 0 &&
- "Slices are not supposed to overlap.");
- UsedBits |= Second.getUsedBits();
- return areUsedBitsDense(UsedBits);
- }
- /// Adjust the \p GlobalLSCost according to the target
- /// paring capabilities and the layout of the slices.
- /// \pre \p GlobalLSCost should account for at least as many loads as
- /// there is in the slices in \p LoadedSlices.
- static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
- LoadedSlice::Cost &GlobalLSCost) {
- unsigned NumberOfSlices = LoadedSlices.size();
- // If there is less than 2 elements, no pairing is possible.
- if (NumberOfSlices < 2)
- return;
- // Sort the slices so that elements that are likely to be next to each
- // other in memory are next to each other in the list.
- llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
- assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
- return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
- });
- const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
- // First (resp. Second) is the first (resp. Second) potentially candidate
- // to be placed in a paired load.
- const LoadedSlice *First = nullptr;
- const LoadedSlice *Second = nullptr;
- for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
- // Set the beginning of the pair.
- First = Second) {
- Second = &LoadedSlices[CurrSlice];
- // If First is NULL, it means we start a new pair.
- // Get to the next slice.
- if (!First)
- continue;
- EVT LoadedType = First->getLoadedType();
- // If the types of the slices are different, we cannot pair them.
- if (LoadedType != Second->getLoadedType())
- continue;
- // Check if the target supplies paired loads for this type.
- Align RequiredAlignment;
- if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
- // move to the next pair, this type is hopeless.
- Second = nullptr;
- continue;
- }
- // Check if we meet the alignment requirement.
- if (First->getAlign() < RequiredAlignment)
- continue;
- // Check that both loads are next to each other in memory.
- if (!areSlicesNextToEachOther(*First, *Second))
- continue;
- assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
- --GlobalLSCost.Loads;
- // Move to the next pair.
- Second = nullptr;
- }
- }
- /// Check the profitability of all involved LoadedSlice.
- /// Currently, it is considered profitable if there is exactly two
- /// involved slices (1) which are (2) next to each other in memory, and
- /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
- ///
- /// Note: The order of the elements in \p LoadedSlices may be modified, but not
- /// the elements themselves.
- ///
- /// FIXME: When the cost model will be mature enough, we can relax
- /// constraints (1) and (2).
- static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
- const APInt &UsedBits, bool ForCodeSize) {
- unsigned NumberOfSlices = LoadedSlices.size();
- if (StressLoadSlicing)
- return NumberOfSlices > 1;
- // Check (1).
- if (NumberOfSlices != 2)
- return false;
- // Check (2).
- if (!areUsedBitsDense(UsedBits))
- return false;
- // Check (3).
- LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
- // The original code has one big load.
- OrigCost.Loads = 1;
- for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
- const LoadedSlice &LS = LoadedSlices[CurrSlice];
- // Accumulate the cost of all the slices.
- LoadedSlice::Cost SliceCost(LS, ForCodeSize);
- GlobalSlicingCost += SliceCost;
- // Account as cost in the original configuration the gain obtained
- // with the current slices.
- OrigCost.addSliceGain(LS);
- }
- // If the target supports paired load, adjust the cost accordingly.
- adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
- return OrigCost > GlobalSlicingCost;
- }
- /// If the given load, \p LI, is used only by trunc or trunc(lshr)
- /// operations, split it in the various pieces being extracted.
- ///
- /// This sort of thing is introduced by SROA.
- /// This slicing takes care not to insert overlapping loads.
- /// \pre LI is a simple load (i.e., not an atomic or volatile load).
- bool DAGCombiner::SliceUpLoad(SDNode *N) {
- if (Level < AfterLegalizeDAG)
- return false;
- LoadSDNode *LD = cast<LoadSDNode>(N);
- if (!LD->isSimple() || !ISD::isNormalLoad(LD) ||
- !LD->getValueType(0).isInteger())
- return false;
- // The algorithm to split up a load of a scalable vector into individual
- // elements currently requires knowing the length of the loaded type,
- // so will need adjusting to work on scalable vectors.
- if (LD->getValueType(0).isScalableVector())
- return false;
- // Keep track of already used bits to detect overlapping values.
- // In that case, we will just abort the transformation.
- APInt UsedBits(LD->getValueSizeInBits(0), 0);
- SmallVector<LoadedSlice, 4> LoadedSlices;
- // Check if this load is used as several smaller chunks of bits.
- // Basically, look for uses in trunc or trunc(lshr) and record a new chain
- // of computation for each trunc.
- for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
- UI != UIEnd; ++UI) {
- // Skip the uses of the chain.
- if (UI.getUse().getResNo() != 0)
- continue;
- SDNode *User = *UI;
- unsigned Shift = 0;
- // Check if this is a trunc(lshr).
- if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
- isa<ConstantSDNode>(User->getOperand(1))) {
- Shift = User->getConstantOperandVal(1);
- User = *User->use_begin();
- }
- // At this point, User is a Truncate, iff we encountered, trunc or
- // trunc(lshr).
- if (User->getOpcode() != ISD::TRUNCATE)
- return false;
- // The width of the type must be a power of 2 and greater than 8-bits.
- // Otherwise the load cannot be represented in LLVM IR.
- // Moreover, if we shifted with a non-8-bits multiple, the slice
- // will be across several bytes. We do not support that.
- unsigned Width = User->getValueSizeInBits(0);
- if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
- return false;
- // Build the slice for this chain of computations.
- LoadedSlice LS(User, LD, Shift, &DAG);
- APInt CurrentUsedBits = LS.getUsedBits();
- // Check if this slice overlaps with another.
- if ((CurrentUsedBits & UsedBits) != 0)
- return false;
- // Update the bits used globally.
- UsedBits |= CurrentUsedBits;
- // Check if the new slice would be legal.
- if (!LS.isLegal())
- return false;
- // Record the slice.
- LoadedSlices.push_back(LS);
- }
- // Abort slicing if it does not seem to be profitable.
- if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
- return false;
- ++SlicedLoads;
- // Rewrite each chain to use an independent load.
- // By construction, each chain can be represented by a unique load.
- // Prepare the argument for the new token factor for all the slices.
- SmallVector<SDValue, 8> ArgChains;
- for (const LoadedSlice &LS : LoadedSlices) {
- SDValue SliceInst = LS.loadSlice();
- CombineTo(LS.Inst, SliceInst, true);
- if (SliceInst.getOpcode() != ISD::LOAD)
- SliceInst = SliceInst.getOperand(0);
- assert(SliceInst->getOpcode() == ISD::LOAD &&
- "It takes more than a zext to get to the loaded slice!!");
- ArgChains.push_back(SliceInst.getValue(1));
- }
- SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
- ArgChains);
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
- AddToWorklist(Chain.getNode());
- return true;
- }
- /// Check to see if V is (and load (ptr), imm), where the load is having
- /// specific bytes cleared out. If so, return the byte size being masked out
- /// and the shift amount.
- static std::pair<unsigned, unsigned>
- CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
- std::pair<unsigned, unsigned> Result(0, 0);
- // Check for the structure we're looking for.
- if (V->getOpcode() != ISD::AND ||
- !isa<ConstantSDNode>(V->getOperand(1)) ||
- !ISD::isNormalLoad(V->getOperand(0).getNode()))
- return Result;
- // Check the chain and pointer.
- LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
- if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer.
- // This only handles simple types.
- if (V.getValueType() != MVT::i16 &&
- V.getValueType() != MVT::i32 &&
- V.getValueType() != MVT::i64)
- return Result;
- // Check the constant mask. Invert it so that the bits being masked out are
- // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
- // follow the sign bit for uniformity.
- uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
- unsigned NotMaskLZ = countLeadingZeros(NotMask);
- if (NotMaskLZ & 7) return Result; // Must be multiple of a byte.
- unsigned NotMaskTZ = countTrailingZeros(NotMask);
- if (NotMaskTZ & 7) return Result; // Must be multiple of a byte.
- if (NotMaskLZ == 64) return Result; // All zero mask.
- // See if we have a continuous run of bits. If so, we have 0*1+0*
- if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
- return Result;
- // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
- if (V.getValueType() != MVT::i64 && NotMaskLZ)
- NotMaskLZ -= 64-V.getValueSizeInBits();
- unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
- switch (MaskedBytes) {
- case 1:
- case 2:
- case 4: break;
- default: return Result; // All one mask, or 5-byte mask.
- }
- // Verify that the first bit starts at a multiple of mask so that the access
- // is aligned the same as the access width.
- if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
- // For narrowing to be valid, it must be the case that the load the
- // immediately preceding memory operation before the store.
- if (LD == Chain.getNode())
- ; // ok.
- else if (Chain->getOpcode() == ISD::TokenFactor &&
- SDValue(LD, 1).hasOneUse()) {
- // LD has only 1 chain use so they are no indirect dependencies.
- if (!LD->isOperandOf(Chain.getNode()))
- return Result;
- } else
- return Result; // Fail.
- Result.first = MaskedBytes;
- Result.second = NotMaskTZ/8;
- return Result;
- }
- /// Check to see if IVal is something that provides a value as specified by
- /// MaskInfo. If so, replace the specified store with a narrower store of
- /// truncated IVal.
- static SDValue
- ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
- SDValue IVal, StoreSDNode *St,
- DAGCombiner *DC) {
- unsigned NumBytes = MaskInfo.first;
- unsigned ByteShift = MaskInfo.second;
- SelectionDAG &DAG = DC->getDAG();
- // Check to see if IVal is all zeros in the part being masked in by the 'or'
- // that uses this. If not, this is not a replacement.
- APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
- ByteShift*8, (ByteShift+NumBytes)*8);
- if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue();
- // Check that it is legal on the target to do this. It is legal if the new
- // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
- // legalization. If the source type is legal, but the store type isn't, see
- // if we can use a truncating store.
- MVT VT = MVT::getIntegerVT(NumBytes * 8);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- bool UseTruncStore;
- if (DC->isTypeLegal(VT))
- UseTruncStore = false;
- else if (TLI.isTypeLegal(IVal.getValueType()) &&
- TLI.isTruncStoreLegal(IVal.getValueType(), VT))
- UseTruncStore = true;
- else
- return SDValue();
- // Check that the target doesn't think this is a bad idea.
- if (St->getMemOperand() &&
- !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
- *St->getMemOperand()))
- return SDValue();
- // Okay, we can do this! Replace the 'St' store with a store of IVal that is
- // shifted by ByteShift and truncated down to NumBytes.
- if (ByteShift) {
- SDLoc DL(IVal);
- IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal,
- DAG.getConstant(ByteShift*8, DL,
- DC->getShiftAmountTy(IVal.getValueType())));
- }
- // Figure out the offset for the store and the alignment of the access.
- unsigned StOffset;
- if (DAG.getDataLayout().isLittleEndian())
- StOffset = ByteShift;
- else
- StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
- SDValue Ptr = St->getBasePtr();
- if (StOffset) {
- SDLoc DL(IVal);
- Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(StOffset), DL);
- }
- ++OpsNarrowed;
- if (UseTruncStore)
- return DAG.getTruncStore(St->getChain(), SDLoc(St), IVal, Ptr,
- St->getPointerInfo().getWithOffset(StOffset),
- VT, St->getOriginalAlign());
- // Truncate down to the new size.
- IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
- return DAG
- .getStore(St->getChain(), SDLoc(St), IVal, Ptr,
- St->getPointerInfo().getWithOffset(StOffset),
- St->getOriginalAlign());
- }
- /// Look for sequence of load / op / store where op is one of 'or', 'xor', and
- /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
- /// narrowing the load and store if it would end up being a win for performance
- /// or code size.
- SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
- StoreSDNode *ST = cast<StoreSDNode>(N);
- if (!ST->isSimple())
- return SDValue();
- SDValue Chain = ST->getChain();
- SDValue Value = ST->getValue();
- SDValue Ptr = ST->getBasePtr();
- EVT VT = Value.getValueType();
- if (ST->isTruncatingStore() || VT.isVector())
- return SDValue();
- unsigned Opc = Value.getOpcode();
- if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
- !Value.hasOneUse())
- return SDValue();
- // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
- // is a byte mask indicating a consecutive number of bytes, check to see if
- // Y is known to provide just those bytes. If so, we try to replace the
- // load + replace + store sequence with a single (narrower) store, which makes
- // the load dead.
- if (Opc == ISD::OR && EnableShrinkLoadReplaceStoreWithStore) {
- std::pair<unsigned, unsigned> MaskedLoad;
- MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
- if (MaskedLoad.first)
- if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
- Value.getOperand(1), ST,this))
- return NewST;
- // Or is commutative, so try swapping X and Y.
- MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
- if (MaskedLoad.first)
- if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
- Value.getOperand(0), ST,this))
- return NewST;
- }
- if (!EnableReduceLoadOpStoreWidth)
- return SDValue();
- if (Value.getOperand(1).getOpcode() != ISD::Constant)
- return SDValue();
- SDValue N0 = Value.getOperand(0);
- if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
- Chain == SDValue(N0.getNode(), 1)) {
- LoadSDNode *LD = cast<LoadSDNode>(N0);
- if (LD->getBasePtr() != Ptr ||
- LD->getPointerInfo().getAddrSpace() !=
- ST->getPointerInfo().getAddrSpace())
- return SDValue();
- // Find the type to narrow it the load / op / store to.
- SDValue N1 = Value.getOperand(1);
- unsigned BitWidth = N1.getValueSizeInBits();
- APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
- if (Opc == ISD::AND)
- Imm ^= APInt::getAllOnes(BitWidth);
- if (Imm == 0 || Imm.isAllOnes())
- return SDValue();
- unsigned ShAmt = Imm.countTrailingZeros();
- unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
- unsigned NewBW = NextPowerOf2(MSB - ShAmt);
- EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
- // The narrowing should be profitable, the load/store operation should be
- // legal (or custom) and the store size should be equal to the NewVT width.
- while (NewBW < BitWidth &&
- (NewVT.getStoreSizeInBits() != NewBW ||
- !TLI.isOperationLegalOrCustom(Opc, NewVT) ||
- !TLI.isNarrowingProfitable(VT, NewVT))) {
- NewBW = NextPowerOf2(NewBW);
- NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
- }
- if (NewBW >= BitWidth)
- return SDValue();
- // If the lsb changed does not start at the type bitwidth boundary,
- // start at the previous one.
- if (ShAmt % NewBW)
- ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
- APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
- std::min(BitWidth, ShAmt + NewBW));
- if ((Imm & Mask) == Imm) {
- APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
- if (Opc == ISD::AND)
- NewImm ^= APInt::getAllOnes(NewBW);
- uint64_t PtrOff = ShAmt / 8;
- // For big endian targets, we need to adjust the offset to the pointer to
- // load the correct bytes.
- if (DAG.getDataLayout().isBigEndian())
- PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
- unsigned IsFast = 0;
- Align NewAlign = commonAlignment(LD->getAlign(), PtrOff);
- if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), NewVT,
- LD->getAddressSpace(), NewAlign,
- LD->getMemOperand()->getFlags(), &IsFast) ||
- !IsFast)
- return SDValue();
- SDValue NewPtr =
- DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(PtrOff), SDLoc(LD));
- SDValue NewLD =
- DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr,
- LD->getPointerInfo().getWithOffset(PtrOff), NewAlign,
- LD->getMemOperand()->getFlags(), LD->getAAInfo());
- SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
- DAG.getConstant(NewImm, SDLoc(Value),
- NewVT));
- SDValue NewST =
- DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr,
- ST->getPointerInfo().getWithOffset(PtrOff), NewAlign);
- AddToWorklist(NewPtr.getNode());
- AddToWorklist(NewLD.getNode());
- AddToWorklist(NewVal.getNode());
- WorklistRemover DeadNodes(*this);
- DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
- ++OpsNarrowed;
- return NewST;
- }
- }
- return SDValue();
- }
- /// For a given floating point load / store pair, if the load value isn't used
- /// by any other operations, then consider transforming the pair to integer
- /// load / store operations if the target deems the transformation profitable.
- SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
- StoreSDNode *ST = cast<StoreSDNode>(N);
- SDValue Value = ST->getValue();
- if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
- Value.hasOneUse()) {
- LoadSDNode *LD = cast<LoadSDNode>(Value);
- EVT VT = LD->getMemoryVT();
- if (!VT.isFloatingPoint() ||
- VT != ST->getMemoryVT() ||
- LD->isNonTemporal() ||
- ST->isNonTemporal() ||
- LD->getPointerInfo().getAddrSpace() != 0 ||
- ST->getPointerInfo().getAddrSpace() != 0)
- return SDValue();
- TypeSize VTSize = VT.getSizeInBits();
- // We don't know the size of scalable types at compile time so we cannot
- // create an integer of the equivalent size.
- if (VTSize.isScalable())
- return SDValue();
- unsigned FastLD = 0, FastST = 0;
- EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VTSize.getFixedValue());
- if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
- !TLI.isOperationLegal(ISD::STORE, IntVT) ||
- !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
- !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT) ||
- !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT,
- *LD->getMemOperand(), &FastLD) ||
- !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT,
- *ST->getMemOperand(), &FastST) ||
- !FastLD || !FastST)
- return SDValue();
- SDValue NewLD =
- DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(),
- LD->getPointerInfo(), LD->getAlign());
- SDValue NewST =
- DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(),
- ST->getPointerInfo(), ST->getAlign());
- AddToWorklist(NewLD.getNode());
- AddToWorklist(NewST.getNode());
- WorklistRemover DeadNodes(*this);
- DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
- ++LdStFP2Int;
- return NewST;
- }
- return SDValue();
- }
- // This is a helper function for visitMUL to check the profitability
- // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
- // MulNode is the original multiply, AddNode is (add x, c1),
- // and ConstNode is c2.
- //
- // If the (add x, c1) has multiple uses, we could increase
- // the number of adds if we make this transformation.
- // It would only be worth doing this if we can remove a
- // multiply in the process. Check for that here.
- // To illustrate:
- // (A + c1) * c3
- // (A + c2) * c3
- // We're checking for cases where we have common "c3 * A" expressions.
- bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, SDValue AddNode,
- SDValue ConstNode) {
- APInt Val;
- // If the add only has one use, and the target thinks the folding is
- // profitable or does not lead to worse code, this would be OK to do.
- if (AddNode->hasOneUse() &&
- TLI.isMulAddWithConstProfitable(AddNode, ConstNode))
- return true;
- // Walk all the users of the constant with which we're multiplying.
- for (SDNode *Use : ConstNode->uses()) {
- if (Use == MulNode) // This use is the one we're on right now. Skip it.
- continue;
- if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
- SDNode *OtherOp;
- SDNode *MulVar = AddNode.getOperand(0).getNode();
- // OtherOp is what we're multiplying against the constant.
- if (Use->getOperand(0) == ConstNode)
- OtherOp = Use->getOperand(1).getNode();
- else
- OtherOp = Use->getOperand(0).getNode();
- // Check to see if multiply is with the same operand of our "add".
- //
- // ConstNode = CONST
- // Use = ConstNode * A <-- visiting Use. OtherOp is A.
- // ...
- // AddNode = (A + c1) <-- MulVar is A.
- // = AddNode * ConstNode <-- current visiting instruction.
- //
- // If we make this transformation, we will have a common
- // multiply (ConstNode * A) that we can save.
- if (OtherOp == MulVar)
- return true;
- // Now check to see if a future expansion will give us a common
- // multiply.
- //
- // ConstNode = CONST
- // AddNode = (A + c1)
- // ... = AddNode * ConstNode <-- current visiting instruction.
- // ...
- // OtherOp = (A + c2)
- // Use = OtherOp * ConstNode <-- visiting Use.
- //
- // If we make this transformation, we will have a common
- // multiply (CONST * A) after we also do the same transformation
- // to the "t2" instruction.
- if (OtherOp->getOpcode() == ISD::ADD &&
- DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
- OtherOp->getOperand(0).getNode() == MulVar)
- return true;
- }
- }
- // Didn't find a case where this would be profitable.
- return false;
- }
- SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
- unsigned NumStores) {
- SmallVector<SDValue, 8> Chains;
- SmallPtrSet<const SDNode *, 8> Visited;
- SDLoc StoreDL(StoreNodes[0].MemNode);
- for (unsigned i = 0; i < NumStores; ++i) {
- Visited.insert(StoreNodes[i].MemNode);
- }
- // don't include nodes that are children or repeated nodes.
- for (unsigned i = 0; i < NumStores; ++i) {
- if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second)
- Chains.push_back(StoreNodes[i].MemNode->getChain());
- }
- assert(Chains.size() > 0 && "Chain should have generated a chain");
- return DAG.getTokenFactor(StoreDL, Chains);
- }
- bool DAGCombiner::mergeStoresOfConstantsOrVecElts(
- SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores,
- bool IsConstantSrc, bool UseVector, bool UseTrunc) {
- // Make sure we have something to merge.
- if (NumStores < 2)
- return false;
- assert((!UseTrunc || !UseVector) &&
- "This optimization cannot emit a vector truncating store");
- // The latest Node in the DAG.
- SDLoc DL(StoreNodes[0].MemNode);
- TypeSize ElementSizeBits = MemVT.getStoreSizeInBits();
- unsigned SizeInBits = NumStores * ElementSizeBits;
- unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
- std::optional<MachineMemOperand::Flags> Flags;
- AAMDNodes AAInfo;
- for (unsigned I = 0; I != NumStores; ++I) {
- StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode);
- if (!Flags) {
- Flags = St->getMemOperand()->getFlags();
- AAInfo = St->getAAInfo();
- continue;
- }
- // Skip merging if there's an inconsistent flag.
- if (Flags != St->getMemOperand()->getFlags())
- return false;
- // Concatenate AA metadata.
- AAInfo = AAInfo.concat(St->getAAInfo());
- }
- EVT StoreTy;
- if (UseVector) {
- unsigned Elts = NumStores * NumMemElts;
- // Get the type for the merged vector store.
- StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
- } else
- StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
- SDValue StoredVal;
- if (UseVector) {
- if (IsConstantSrc) {
- SmallVector<SDValue, 8> BuildVector;
- for (unsigned I = 0; I != NumStores; ++I) {
- StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode);
- SDValue Val = St->getValue();
- // If constant is of the wrong type, convert it now.
- if (MemVT != Val.getValueType()) {
- Val = peekThroughBitcasts(Val);
- // Deal with constants of wrong size.
- if (ElementSizeBits != Val.getValueSizeInBits()) {
- EVT IntMemVT =
- EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
- if (isa<ConstantFPSDNode>(Val)) {
- // Not clear how to truncate FP values.
- return false;
- }
- if (auto *C = dyn_cast<ConstantSDNode>(Val))
- Val = DAG.getConstant(C->getAPIntValue()
- .zextOrTrunc(Val.getValueSizeInBits())
- .zextOrTrunc(ElementSizeBits),
- SDLoc(C), IntMemVT);
- }
- // Make sure correctly size type is the correct type.
- Val = DAG.getBitcast(MemVT, Val);
- }
- BuildVector.push_back(Val);
- }
- StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
- : ISD::BUILD_VECTOR,
- DL, StoreTy, BuildVector);
- } else {
- SmallVector<SDValue, 8> Ops;
- for (unsigned i = 0; i < NumStores; ++i) {
- StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
- SDValue Val = peekThroughBitcasts(St->getValue());
- // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
- // type MemVT. If the underlying value is not the correct
- // type, but it is an extraction of an appropriate vector we
- // can recast Val to be of the correct type. This may require
- // converting between EXTRACT_VECTOR_ELT and
- // EXTRACT_SUBVECTOR.
- if ((MemVT != Val.getValueType()) &&
- (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
- Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) {
- EVT MemVTScalarTy = MemVT.getScalarType();
- // We may need to add a bitcast here to get types to line up.
- if (MemVTScalarTy != Val.getValueType().getScalarType()) {
- Val = DAG.getBitcast(MemVT, Val);
- } else if (MemVT.isVector() &&
- Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
- Val = DAG.getNode(ISD::BUILD_VECTOR, DL, MemVT, Val);
- } else {
- unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR
- : ISD::EXTRACT_VECTOR_ELT;
- SDValue Vec = Val.getOperand(0);
- SDValue Idx = Val.getOperand(1);
- Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx);
- }
- }
- Ops.push_back(Val);
- }
- // Build the extracted vector elements back into a vector.
- StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
- : ISD::BUILD_VECTOR,
- DL, StoreTy, Ops);
- }
- } else {
- // We should always use a vector store when merging extracted vector
- // elements, so this path implies a store of constants.
- assert(IsConstantSrc && "Merged vector elements should use vector store");
- APInt StoreInt(SizeInBits, 0);
- // Construct a single integer constant which is made of the smaller
- // constant inputs.
- bool IsLE = DAG.getDataLayout().isLittleEndian();
- for (unsigned i = 0; i < NumStores; ++i) {
- unsigned Idx = IsLE ? (NumStores - 1 - i) : i;
- StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
- SDValue Val = St->getValue();
- Val = peekThroughBitcasts(Val);
- StoreInt <<= ElementSizeBits;
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
- StoreInt |= C->getAPIntValue()
- .zextOrTrunc(ElementSizeBits)
- .zextOrTrunc(SizeInBits);
- } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
- StoreInt |= C->getValueAPF()
- .bitcastToAPInt()
- .zextOrTrunc(ElementSizeBits)
- .zextOrTrunc(SizeInBits);
- // If fp truncation is necessary give up for now.
- if (MemVT.getSizeInBits() != ElementSizeBits)
- return false;
- } else {
- llvm_unreachable("Invalid constant element type");
- }
- }
- // Create the new Load and Store operations.
- StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
- }
- LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
- SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores);
- // make sure we use trunc store if it's necessary to be legal.
- SDValue NewStore;
- if (!UseTrunc) {
- NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(),
- FirstInChain->getPointerInfo(),
- FirstInChain->getAlign(), *Flags, AAInfo);
- } else { // Must be realized as a trunc store
- EVT LegalizedStoredValTy =
- TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
- unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits();
- ConstantSDNode *C = cast<ConstantSDNode>(StoredVal);
- SDValue ExtendedStoreVal =
- DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL,
- LegalizedStoredValTy);
- NewStore = DAG.getTruncStore(
- NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(),
- FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/,
- FirstInChain->getAlign(), *Flags, AAInfo);
- }
- // Replace all merged stores with the new store.
- for (unsigned i = 0; i < NumStores; ++i)
- CombineTo(StoreNodes[i].MemNode, NewStore);
- AddToWorklist(NewChain.getNode());
- return true;
- }
- void DAGCombiner::getStoreMergeCandidates(
- StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes,
- SDNode *&RootNode) {
- // This holds the base pointer, index, and the offset in bytes from the base
- // pointer. We must have a base and an offset. Do not handle stores to undef
- // base pointers.
- BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
- if (!BasePtr.getBase().getNode() || BasePtr.getBase().isUndef())
- return;
- SDValue Val = peekThroughBitcasts(St->getValue());
- StoreSource StoreSrc = getStoreSource(Val);
- assert(StoreSrc != StoreSource::Unknown && "Expected known source for store");
- // Match on loadbaseptr if relevant.
- EVT MemVT = St->getMemoryVT();
- BaseIndexOffset LBasePtr;
- EVT LoadVT;
- if (StoreSrc == StoreSource::Load) {
- auto *Ld = cast<LoadSDNode>(Val);
- LBasePtr = BaseIndexOffset::match(Ld, DAG);
- LoadVT = Ld->getMemoryVT();
- // Load and store should be the same type.
- if (MemVT != LoadVT)
- return;
- // Loads must only have one use.
- if (!Ld->hasNUsesOfValue(1, 0))
- return;
- // The memory operands must not be volatile/indexed/atomic.
- // TODO: May be able to relax for unordered atomics (see D66309)
- if (!Ld->isSimple() || Ld->isIndexed())
- return;
- }
- auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr,
- int64_t &Offset) -> bool {
- // The memory operands must not be volatile/indexed/atomic.
- // TODO: May be able to relax for unordered atomics (see D66309)
- if (!Other->isSimple() || Other->isIndexed())
- return false;
- // Don't mix temporal stores with non-temporal stores.
- if (St->isNonTemporal() != Other->isNonTemporal())
- return false;
- SDValue OtherBC = peekThroughBitcasts(Other->getValue());
- // Allow merging constants of different types as integers.
- bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT())
- : Other->getMemoryVT() != MemVT;
- switch (StoreSrc) {
- case StoreSource::Load: {
- if (NoTypeMatch)
- return false;
- // The Load's Base Ptr must also match.
- auto *OtherLd = dyn_cast<LoadSDNode>(OtherBC);
- if (!OtherLd)
- return false;
- BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG);
- if (LoadVT != OtherLd->getMemoryVT())
- return false;
- // Loads must only have one use.
- if (!OtherLd->hasNUsesOfValue(1, 0))
- return false;
- // The memory operands must not be volatile/indexed/atomic.
- // TODO: May be able to relax for unordered atomics (see D66309)
- if (!OtherLd->isSimple() || OtherLd->isIndexed())
- return false;
- // Don't mix temporal loads with non-temporal loads.
- if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal())
- return false;
- if (!(LBasePtr.equalBaseIndex(LPtr, DAG)))
- return false;
- break;
- }
- case StoreSource::Constant:
- if (NoTypeMatch)
- return false;
- if (!isIntOrFPConstant(OtherBC))
- return false;
- break;
- case StoreSource::Extract:
- // Do not merge truncated stores here.
- if (Other->isTruncatingStore())
- return false;
- if (!MemVT.bitsEq(OtherBC.getValueType()))
- return false;
- if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT &&
- OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR)
- return false;
- break;
- default:
- llvm_unreachable("Unhandled store source for merging");
- }
- Ptr = BaseIndexOffset::match(Other, DAG);
- return (BasePtr.equalBaseIndex(Ptr, DAG, Offset));
- };
- // Check if the pair of StoreNode and the RootNode already bail out many
- // times which is over the limit in dependence check.
- auto OverLimitInDependenceCheck = [&](SDNode *StoreNode,
- SDNode *RootNode) -> bool {
- auto RootCount = StoreRootCountMap.find(StoreNode);
- return RootCount != StoreRootCountMap.end() &&
- RootCount->second.first == RootNode &&
- RootCount->second.second > StoreMergeDependenceLimit;
- };
- auto TryToAddCandidate = [&](SDNode::use_iterator UseIter) {
- // This must be a chain use.
- if (UseIter.getOperandNo() != 0)
- return;
- if (auto *OtherStore = dyn_cast<StoreSDNode>(*UseIter)) {
- BaseIndexOffset Ptr;
- int64_t PtrDiff;
- if (CandidateMatch(OtherStore, Ptr, PtrDiff) &&
- !OverLimitInDependenceCheck(OtherStore, RootNode))
- StoreNodes.push_back(MemOpLink(OtherStore, PtrDiff));
- }
- };
- // We looking for a root node which is an ancestor to all mergable
- // stores. We search up through a load, to our root and then down
- // through all children. For instance we will find Store{1,2,3} if
- // St is Store1, Store2. or Store3 where the root is not a load
- // which always true for nonvolatile ops. TODO: Expand
- // the search to find all valid candidates through multiple layers of loads.
- //
- // Root
- // |-------|-------|
- // Load Load Store3
- // | |
- // Store1 Store2
- //
- // FIXME: We should be able to climb and
- // descend TokenFactors to find candidates as well.
- RootNode = St->getChain().getNode();
- unsigned NumNodesExplored = 0;
- const unsigned MaxSearchNodes = 1024;
- if (auto *Ldn = dyn_cast<LoadSDNode>(RootNode)) {
- RootNode = Ldn->getChain().getNode();
- for (auto I = RootNode->use_begin(), E = RootNode->use_end();
- I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) {
- if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) { // walk down chain
- for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2)
- TryToAddCandidate(I2);
- }
- // Check stores that depend on the root (e.g. Store 3 in the chart above).
- if (I.getOperandNo() == 0 && isa<StoreSDNode>(*I)) {
- TryToAddCandidate(I);
- }
- }
- } else {
- for (auto I = RootNode->use_begin(), E = RootNode->use_end();
- I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored)
- TryToAddCandidate(I);
- }
- }
- // We need to check that merging these stores does not cause a loop in the
- // DAG. Any store candidate may depend on another candidate indirectly through
- // its operands. Check in parallel by searching up from operands of candidates.
- bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
- SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
- SDNode *RootNode) {
- // FIXME: We should be able to truncate a full search of
- // predecessors by doing a BFS and keeping tabs the originating
- // stores from which worklist nodes come from in a similar way to
- // TokenFactor simplfication.
- SmallPtrSet<const SDNode *, 32> Visited;
- SmallVector<const SDNode *, 8> Worklist;
- // RootNode is a predecessor to all candidates so we need not search
- // past it. Add RootNode (peeking through TokenFactors). Do not count
- // these towards size check.
- Worklist.push_back(RootNode);
- while (!Worklist.empty()) {
- auto N = Worklist.pop_back_val();
- if (!Visited.insert(N).second)
- continue; // Already present in Visited.
- if (N->getOpcode() == ISD::TokenFactor) {
- for (SDValue Op : N->ops())
- Worklist.push_back(Op.getNode());
- }
- }
- // Don't count pruning nodes towards max.
- unsigned int Max = 1024 + Visited.size();
- // Search Ops of store candidates.
- for (unsigned i = 0; i < NumStores; ++i) {
- SDNode *N = StoreNodes[i].MemNode;
- // Of the 4 Store Operands:
- // * Chain (Op 0) -> We have already considered these
- // in candidate selection, but only by following the
- // chain dependencies. We could still have a chain
- // dependency to a load, that has a non-chain dep to
- // another load, that depends on a store, etc. So it is
- // possible to have dependencies that consist of a mix
- // of chain and non-chain deps, and we need to include
- // chain operands in the analysis here..
- // * Value (Op 1) -> Cycles may happen (e.g. through load chains)
- // * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
- // but aren't necessarily fromt the same base node, so
- // cycles possible (e.g. via indexed store).
- // * (Op 3) -> Represents the pre or post-indexing offset (or undef for
- // non-indexed stores). Not constant on all targets (e.g. ARM)
- // and so can participate in a cycle.
- for (unsigned j = 0; j < N->getNumOperands(); ++j)
- Worklist.push_back(N->getOperand(j).getNode());
- }
- // Search through DAG. We can stop early if we find a store node.
- for (unsigned i = 0; i < NumStores; ++i)
- if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist,
- Max)) {
- // If the searching bail out, record the StoreNode and RootNode in the
- // StoreRootCountMap. If we have seen the pair many times over a limit,
- // we won't add the StoreNode into StoreNodes set again.
- if (Visited.size() >= Max) {
- auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode];
- if (RootCount.first == RootNode)
- RootCount.second++;
- else
- RootCount = {RootNode, 1};
- }
- return false;
- }
- return true;
- }
- unsigned
- DAGCombiner::getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes,
- int64_t ElementSizeBytes) const {
- while (true) {
- // Find a store past the width of the first store.
- size_t StartIdx = 0;
- while ((StartIdx + 1 < StoreNodes.size()) &&
- StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes !=
- StoreNodes[StartIdx + 1].OffsetFromBase)
- ++StartIdx;
- // Bail if we don't have enough candidates to merge.
- if (StartIdx + 1 >= StoreNodes.size())
- return 0;
- // Trim stores that overlapped with the first store.
- if (StartIdx)
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx);
- // Scan the memory operations on the chain and find the first
- // non-consecutive store memory address.
- unsigned NumConsecutiveStores = 1;
- int64_t StartAddress = StoreNodes[0].OffsetFromBase;
- // Check that the addresses are consecutive starting from the second
- // element in the list of stores.
- for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) {
- int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
- if (CurrAddress - StartAddress != (ElementSizeBytes * i))
- break;
- NumConsecutiveStores = i + 1;
- }
- if (NumConsecutiveStores > 1)
- return NumConsecutiveStores;
- // There are no consecutive stores at the start of the list.
- // Remove the first store and try again.
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 1);
- }
- }
- bool DAGCombiner::tryStoreMergeOfConstants(
- SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores,
- EVT MemVT, SDNode *RootNode, bool AllowVectors) {
- LLVMContext &Context = *DAG.getContext();
- const DataLayout &DL = DAG.getDataLayout();
- int64_t ElementSizeBytes = MemVT.getStoreSize();
- unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
- bool MadeChange = false;
- // Store the constants into memory as one consecutive store.
- while (NumConsecutiveStores >= 2) {
- LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
- unsigned FirstStoreAS = FirstInChain->getAddressSpace();
- Align FirstStoreAlign = FirstInChain->getAlign();
- unsigned LastLegalType = 1;
- unsigned LastLegalVectorType = 1;
- bool LastIntegerTrunc = false;
- bool NonZero = false;
- unsigned FirstZeroAfterNonZero = NumConsecutiveStores;
- for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
- StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode);
- SDValue StoredVal = ST->getValue();
- bool IsElementZero = false;
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal))
- IsElementZero = C->isZero();
- else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal))
- IsElementZero = C->getConstantFPValue()->isNullValue();
- if (IsElementZero) {
- if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores)
- FirstZeroAfterNonZero = i;
- }
- NonZero |= !IsElementZero;
- // Find a legal type for the constant store.
- unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
- EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits);
- unsigned IsFast = 0;
- // Break early when size is too large to be legal.
- if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
- break;
- if (TLI.isTypeLegal(StoreTy) &&
- TLI.canMergeStoresTo(FirstStoreAS, StoreTy,
- DAG.getMachineFunction()) &&
- TLI.allowsMemoryAccess(Context, DL, StoreTy,
- *FirstInChain->getMemOperand(), &IsFast) &&
- IsFast) {
- LastIntegerTrunc = false;
- LastLegalType = i + 1;
- // Or check whether a truncstore is legal.
- } else if (TLI.getTypeAction(Context, StoreTy) ==
- TargetLowering::TypePromoteInteger) {
- EVT LegalizedStoredValTy =
- TLI.getTypeToTransformTo(Context, StoredVal.getValueType());
- if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
- TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy,
- DAG.getMachineFunction()) &&
- TLI.allowsMemoryAccess(Context, DL, StoreTy,
- *FirstInChain->getMemOperand(), &IsFast) &&
- IsFast) {
- LastIntegerTrunc = true;
- LastLegalType = i + 1;
- }
- }
- // We only use vectors if the constant is known to be zero or the
- // target allows it and the function is not marked with the
- // noimplicitfloat attribute.
- if ((!NonZero ||
- TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) &&
- AllowVectors) {
- // Find a legal type for the vector store.
- unsigned Elts = (i + 1) * NumMemElts;
- EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
- if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) &&
- TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) &&
- TLI.allowsMemoryAccess(Context, DL, Ty,
- *FirstInChain->getMemOperand(), &IsFast) &&
- IsFast)
- LastLegalVectorType = i + 1;
- }
- }
- bool UseVector = (LastLegalVectorType > LastLegalType) && AllowVectors;
- unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType;
- bool UseTrunc = LastIntegerTrunc && !UseVector;
- // Check if we found a legal integer type that creates a meaningful
- // merge.
- if (NumElem < 2) {
- // We know that candidate stores are in order and of correct
- // shape. While there is no mergeable sequence from the
- // beginning one may start later in the sequence. The only
- // reason a merge of size N could have failed where another of
- // the same size would not have, is if the alignment has
- // improved or we've dropped a non-zero value. Drop as many
- // candidates as we can here.
- unsigned NumSkip = 1;
- while ((NumSkip < NumConsecutiveStores) &&
- (NumSkip < FirstZeroAfterNonZero) &&
- (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign))
- NumSkip++;
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
- NumConsecutiveStores -= NumSkip;
- continue;
- }
- // Check that we can merge these candidates without causing a cycle.
- if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
- RootNode)) {
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
- NumConsecutiveStores -= NumElem;
- continue;
- }
- MadeChange |= mergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem,
- /*IsConstantSrc*/ true,
- UseVector, UseTrunc);
- // Remove merged stores for next iteration.
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
- NumConsecutiveStores -= NumElem;
- }
- return MadeChange;
- }
- bool DAGCombiner::tryStoreMergeOfExtracts(
- SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores,
- EVT MemVT, SDNode *RootNode) {
- LLVMContext &Context = *DAG.getContext();
- const DataLayout &DL = DAG.getDataLayout();
- unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
- bool MadeChange = false;
- // Loop on Consecutive Stores on success.
- while (NumConsecutiveStores >= 2) {
- LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
- unsigned FirstStoreAS = FirstInChain->getAddressSpace();
- Align FirstStoreAlign = FirstInChain->getAlign();
- unsigned NumStoresToMerge = 1;
- for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
- // Find a legal type for the vector store.
- unsigned Elts = (i + 1) * NumMemElts;
- EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
- unsigned IsFast = 0;
- // Break early when size is too large to be legal.
- if (Ty.getSizeInBits() > MaximumLegalStoreInBits)
- break;
- if (TLI.isTypeLegal(Ty) &&
- TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) &&
- TLI.allowsMemoryAccess(Context, DL, Ty,
- *FirstInChain->getMemOperand(), &IsFast) &&
- IsFast)
- NumStoresToMerge = i + 1;
- }
- // Check if we found a legal integer type creating a meaningful
- // merge.
- if (NumStoresToMerge < 2) {
- // We know that candidate stores are in order and of correct
- // shape. While there is no mergeable sequence from the
- // beginning one may start later in the sequence. The only
- // reason a merge of size N could have failed where another of
- // the same size would not have, is if the alignment has
- // improved. Drop as many candidates as we can here.
- unsigned NumSkip = 1;
- while ((NumSkip < NumConsecutiveStores) &&
- (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign))
- NumSkip++;
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
- NumConsecutiveStores -= NumSkip;
- continue;
- }
- // Check that we can merge these candidates without causing a cycle.
- if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumStoresToMerge,
- RootNode)) {
- StoreNodes.erase(StoreNodes.begin(),
- StoreNodes.begin() + NumStoresToMerge);
- NumConsecutiveStores -= NumStoresToMerge;
- continue;
- }
- MadeChange |= mergeStoresOfConstantsOrVecElts(
- StoreNodes, MemVT, NumStoresToMerge, /*IsConstantSrc*/ false,
- /*UseVector*/ true, /*UseTrunc*/ false);
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumStoresToMerge);
- NumConsecutiveStores -= NumStoresToMerge;
- }
- return MadeChange;
- }
- bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes,
- unsigned NumConsecutiveStores, EVT MemVT,
- SDNode *RootNode, bool AllowVectors,
- bool IsNonTemporalStore,
- bool IsNonTemporalLoad) {
- LLVMContext &Context = *DAG.getContext();
- const DataLayout &DL = DAG.getDataLayout();
- int64_t ElementSizeBytes = MemVT.getStoreSize();
- unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
- bool MadeChange = false;
- // Look for load nodes which are used by the stored values.
- SmallVector<MemOpLink, 8> LoadNodes;
- // Find acceptable loads. Loads need to have the same chain (token factor),
- // must not be zext, volatile, indexed, and they must be consecutive.
- BaseIndexOffset LdBasePtr;
- for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
- StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
- SDValue Val = peekThroughBitcasts(St->getValue());
- LoadSDNode *Ld = cast<LoadSDNode>(Val);
- BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG);
- // If this is not the first ptr that we check.
- int64_t LdOffset = 0;
- if (LdBasePtr.getBase().getNode()) {
- // The base ptr must be the same.
- if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset))
- break;
- } else {
- // Check that all other base pointers are the same as this one.
- LdBasePtr = LdPtr;
- }
- // We found a potential memory operand to merge.
- LoadNodes.push_back(MemOpLink(Ld, LdOffset));
- }
- while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) {
- Align RequiredAlignment;
- bool NeedRotate = false;
- if (LoadNodes.size() == 2) {
- // If we have load/store pair instructions and we only have two values,
- // don't bother merging.
- if (TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
- StoreNodes[0].MemNode->getAlign() >= RequiredAlignment) {
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2);
- LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2);
- break;
- }
- // If the loads are reversed, see if we can rotate the halves into place.
- int64_t Offset0 = LoadNodes[0].OffsetFromBase;
- int64_t Offset1 = LoadNodes[1].OffsetFromBase;
- EVT PairVT = EVT::getIntegerVT(Context, ElementSizeBytes * 8 * 2);
- if (Offset0 - Offset1 == ElementSizeBytes &&
- (hasOperation(ISD::ROTL, PairVT) ||
- hasOperation(ISD::ROTR, PairVT))) {
- std::swap(LoadNodes[0], LoadNodes[1]);
- NeedRotate = true;
- }
- }
- LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
- unsigned FirstStoreAS = FirstInChain->getAddressSpace();
- Align FirstStoreAlign = FirstInChain->getAlign();
- LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
- // Scan the memory operations on the chain and find the first
- // non-consecutive load memory address. These variables hold the index in
- // the store node array.
- unsigned LastConsecutiveLoad = 1;
- // This variable refers to the size and not index in the array.
- unsigned LastLegalVectorType = 1;
- unsigned LastLegalIntegerType = 1;
- bool isDereferenceable = true;
- bool DoIntegerTruncate = false;
- int64_t StartAddress = LoadNodes[0].OffsetFromBase;
- SDValue LoadChain = FirstLoad->getChain();
- for (unsigned i = 1; i < LoadNodes.size(); ++i) {
- // All loads must share the same chain.
- if (LoadNodes[i].MemNode->getChain() != LoadChain)
- break;
- int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
- if (CurrAddress - StartAddress != (ElementSizeBytes * i))
- break;
- LastConsecutiveLoad = i;
- if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable())
- isDereferenceable = false;
- // Find a legal type for the vector store.
- unsigned Elts = (i + 1) * NumMemElts;
- EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
- // Break early when size is too large to be legal.
- if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
- break;
- unsigned IsFastSt = 0;
- unsigned IsFastLd = 0;
- // Don't try vector types if we need a rotate. We may still fail the
- // legality checks for the integer type, but we can't handle the rotate
- // case with vectors.
- // FIXME: We could use a shuffle in place of the rotate.
- if (!NeedRotate && TLI.isTypeLegal(StoreTy) &&
- TLI.canMergeStoresTo(FirstStoreAS, StoreTy,
- DAG.getMachineFunction()) &&
- TLI.allowsMemoryAccess(Context, DL, StoreTy,
- *FirstInChain->getMemOperand(), &IsFastSt) &&
- IsFastSt &&
- TLI.allowsMemoryAccess(Context, DL, StoreTy,
- *FirstLoad->getMemOperand(), &IsFastLd) &&
- IsFastLd) {
- LastLegalVectorType = i + 1;
- }
- // Find a legal type for the integer store.
- unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
- StoreTy = EVT::getIntegerVT(Context, SizeInBits);
- if (TLI.isTypeLegal(StoreTy) &&
- TLI.canMergeStoresTo(FirstStoreAS, StoreTy,
- DAG.getMachineFunction()) &&
- TLI.allowsMemoryAccess(Context, DL, StoreTy,
- *FirstInChain->getMemOperand(), &IsFastSt) &&
- IsFastSt &&
- TLI.allowsMemoryAccess(Context, DL, StoreTy,
- *FirstLoad->getMemOperand(), &IsFastLd) &&
- IsFastLd) {
- LastLegalIntegerType = i + 1;
- DoIntegerTruncate = false;
- // Or check whether a truncstore and extload is legal.
- } else if (TLI.getTypeAction(Context, StoreTy) ==
- TargetLowering::TypePromoteInteger) {
- EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy);
- if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
- TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy,
- DAG.getMachineFunction()) &&
- TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, StoreTy) &&
- TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, StoreTy) &&
- TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) &&
- TLI.allowsMemoryAccess(Context, DL, StoreTy,
- *FirstInChain->getMemOperand(), &IsFastSt) &&
- IsFastSt &&
- TLI.allowsMemoryAccess(Context, DL, StoreTy,
- *FirstLoad->getMemOperand(), &IsFastLd) &&
- IsFastLd) {
- LastLegalIntegerType = i + 1;
- DoIntegerTruncate = true;
- }
- }
- }
- // Only use vector types if the vector type is larger than the integer
- // type. If they are the same, use integers.
- bool UseVectorTy =
- LastLegalVectorType > LastLegalIntegerType && AllowVectors;
- unsigned LastLegalType =
- std::max(LastLegalVectorType, LastLegalIntegerType);
- // We add +1 here because the LastXXX variables refer to location while
- // the NumElem refers to array/index size.
- unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1);
- NumElem = std::min(LastLegalType, NumElem);
- Align FirstLoadAlign = FirstLoad->getAlign();
- if (NumElem < 2) {
- // We know that candidate stores are in order and of correct
- // shape. While there is no mergeable sequence from the
- // beginning one may start later in the sequence. The only
- // reason a merge of size N could have failed where another of
- // the same size would not have is if the alignment or either
- // the load or store has improved. Drop as many candidates as we
- // can here.
- unsigned NumSkip = 1;
- while ((NumSkip < LoadNodes.size()) &&
- (LoadNodes[NumSkip].MemNode->getAlign() <= FirstLoadAlign) &&
- (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign))
- NumSkip++;
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
- LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip);
- NumConsecutiveStores -= NumSkip;
- continue;
- }
- // Check that we can merge these candidates without causing a cycle.
- if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
- RootNode)) {
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
- LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
- NumConsecutiveStores -= NumElem;
- continue;
- }
- // Find if it is better to use vectors or integers to load and store
- // to memory.
- EVT JointMemOpVT;
- if (UseVectorTy) {
- // Find a legal type for the vector store.
- unsigned Elts = NumElem * NumMemElts;
- JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
- } else {
- unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
- JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits);
- }
- SDLoc LoadDL(LoadNodes[0].MemNode);
- SDLoc StoreDL(StoreNodes[0].MemNode);
- // The merged loads are required to have the same incoming chain, so
- // using the first's chain is acceptable.
- SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem);
- AddToWorklist(NewStoreChain.getNode());
- MachineMemOperand::Flags LdMMOFlags =
- isDereferenceable ? MachineMemOperand::MODereferenceable
- : MachineMemOperand::MONone;
- if (IsNonTemporalLoad)
- LdMMOFlags |= MachineMemOperand::MONonTemporal;
- MachineMemOperand::Flags StMMOFlags = IsNonTemporalStore
- ? MachineMemOperand::MONonTemporal
- : MachineMemOperand::MONone;
- SDValue NewLoad, NewStore;
- if (UseVectorTy || !DoIntegerTruncate) {
- NewLoad = DAG.getLoad(
- JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(),
- FirstLoad->getPointerInfo(), FirstLoadAlign, LdMMOFlags);
- SDValue StoreOp = NewLoad;
- if (NeedRotate) {
- unsigned LoadWidth = ElementSizeBytes * 8 * 2;
- assert(JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) &&
- "Unexpected type for rotate-able load pair");
- SDValue RotAmt =
- DAG.getShiftAmountConstant(LoadWidth / 2, JointMemOpVT, LoadDL);
- // Target can convert to the identical ROTR if it does not have ROTL.
- StoreOp = DAG.getNode(ISD::ROTL, LoadDL, JointMemOpVT, NewLoad, RotAmt);
- }
- NewStore = DAG.getStore(
- NewStoreChain, StoreDL, StoreOp, FirstInChain->getBasePtr(),
- FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags);
- } else { // This must be the truncstore/extload case
- EVT ExtendedTy =
- TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT);
- NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy,
- FirstLoad->getChain(), FirstLoad->getBasePtr(),
- FirstLoad->getPointerInfo(), JointMemOpVT,
- FirstLoadAlign, LdMMOFlags);
- NewStore = DAG.getTruncStore(
- NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(),
- FirstInChain->getPointerInfo(), JointMemOpVT,
- FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags());
- }
- // Transfer chain users from old loads to the new load.
- for (unsigned i = 0; i < NumElem; ++i) {
- LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
- DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
- SDValue(NewLoad.getNode(), 1));
- }
- // Replace all stores with the new store. Recursively remove corresponding
- // values if they are no longer used.
- for (unsigned i = 0; i < NumElem; ++i) {
- SDValue Val = StoreNodes[i].MemNode->getOperand(1);
- CombineTo(StoreNodes[i].MemNode, NewStore);
- if (Val->use_empty())
- recursivelyDeleteUnusedNodes(Val.getNode());
- }
- MadeChange = true;
- StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
- LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
- NumConsecutiveStores -= NumElem;
- }
- return MadeChange;
- }
- bool DAGCombiner::mergeConsecutiveStores(StoreSDNode *St) {
- if (OptLevel == CodeGenOpt::None || !EnableStoreMerging)
- return false;
- // TODO: Extend this function to merge stores of scalable vectors.
- // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8>
- // store since we know <vscale x 16 x i8> is exactly twice as large as
- // <vscale x 8 x i8>). Until then, bail out for scalable vectors.
- EVT MemVT = St->getMemoryVT();
- if (MemVT.isScalableVector())
- return false;
- if (!MemVT.isSimple() || MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits)
- return false;
- // This function cannot currently deal with non-byte-sized memory sizes.
- int64_t ElementSizeBytes = MemVT.getStoreSize();
- if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits())
- return false;
- // Do not bother looking at stored values that are not constants, loads, or
- // extracted vector elements.
- SDValue StoredVal = peekThroughBitcasts(St->getValue());
- const StoreSource StoreSrc = getStoreSource(StoredVal);
- if (StoreSrc == StoreSource::Unknown)
- return false;
- SmallVector<MemOpLink, 8> StoreNodes;
- SDNode *RootNode;
- // Find potential store merge candidates by searching through chain sub-DAG
- getStoreMergeCandidates(St, StoreNodes, RootNode);
- // Check if there is anything to merge.
- if (StoreNodes.size() < 2)
- return false;
- // Sort the memory operands according to their distance from the
- // base pointer.
- llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) {
- return LHS.OffsetFromBase < RHS.OffsetFromBase;
- });
- bool AllowVectors = !DAG.getMachineFunction().getFunction().hasFnAttribute(
- Attribute::NoImplicitFloat);
- bool IsNonTemporalStore = St->isNonTemporal();
- bool IsNonTemporalLoad = StoreSrc == StoreSource::Load &&
- cast<LoadSDNode>(StoredVal)->isNonTemporal();
- // Store Merge attempts to merge the lowest stores. This generally
- // works out as if successful, as the remaining stores are checked
- // after the first collection of stores is merged. However, in the
- // case that a non-mergeable store is found first, e.g., {p[-2],
- // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
- // mergeable cases. To prevent this, we prune such stores from the
- // front of StoreNodes here.
- bool MadeChange = false;
- while (StoreNodes.size() > 1) {
- unsigned NumConsecutiveStores =
- getConsecutiveStores(StoreNodes, ElementSizeBytes);
- // There are no more stores in the list to examine.
- if (NumConsecutiveStores == 0)
- return MadeChange;
- // We have at least 2 consecutive stores. Try to merge them.
- assert(NumConsecutiveStores >= 2 && "Expected at least 2 stores");
- switch (StoreSrc) {
- case StoreSource::Constant:
- MadeChange |= tryStoreMergeOfConstants(StoreNodes, NumConsecutiveStores,
- MemVT, RootNode, AllowVectors);
- break;
- case StoreSource::Extract:
- MadeChange |= tryStoreMergeOfExtracts(StoreNodes, NumConsecutiveStores,
- MemVT, RootNode);
- break;
- case StoreSource::Load:
- MadeChange |= tryStoreMergeOfLoads(StoreNodes, NumConsecutiveStores,
- MemVT, RootNode, AllowVectors,
- IsNonTemporalStore, IsNonTemporalLoad);
- break;
- default:
- llvm_unreachable("Unhandled store source type");
- }
- }
- return MadeChange;
- }
- SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) {
- SDLoc SL(ST);
- SDValue ReplStore;
- // Replace the chain to avoid dependency.
- if (ST->isTruncatingStore()) {
- ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(),
- ST->getBasePtr(), ST->getMemoryVT(),
- ST->getMemOperand());
- } else {
- ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(),
- ST->getMemOperand());
- }
- // Create token to keep both nodes around.
- SDValue Token = DAG.getNode(ISD::TokenFactor, SL,
- MVT::Other, ST->getChain(), ReplStore);
- // Make sure the new and old chains are cleaned up.
- AddToWorklist(Token.getNode());
- // Don't add users to work list.
- return CombineTo(ST, Token, false);
- }
- SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) {
- SDValue Value = ST->getValue();
- if (Value.getOpcode() == ISD::TargetConstantFP)
- return SDValue();
- if (!ISD::isNormalStore(ST))
- return SDValue();
- SDLoc DL(ST);
- SDValue Chain = ST->getChain();
- SDValue Ptr = ST->getBasePtr();
- const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value);
- // NOTE: If the original store is volatile, this transform must not increase
- // the number of stores. For example, on x86-32 an f64 can be stored in one
- // processor operation but an i64 (which is not legal) requires two. So the
- // transform should not be done in this case.
- SDValue Tmp;
- switch (CFP->getSimpleValueType(0).SimpleTy) {
- default:
- llvm_unreachable("Unknown FP type");
- case MVT::f16: // We don't do this for these yet.
- case MVT::bf16:
- case MVT::f80:
- case MVT::f128:
- case MVT::ppcf128:
- return SDValue();
- case MVT::f32:
- if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) ||
- TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
- Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
- bitcastToAPInt().getZExtValue(), SDLoc(CFP),
- MVT::i32);
- return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand());
- }
- return SDValue();
- case MVT::f64:
- if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
- ST->isSimple()) ||
- TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
- Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
- getZExtValue(), SDLoc(CFP), MVT::i64);
- return DAG.getStore(Chain, DL, Tmp,
- Ptr, ST->getMemOperand());
- }
- if (ST->isSimple() &&
- TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
- // Many FP stores are not made apparent until after legalize, e.g. for
- // argument passing. Since this is so common, custom legalize the
- // 64-bit integer store into two 32-bit stores.
- uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
- SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
- SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
- if (DAG.getDataLayout().isBigEndian())
- std::swap(Lo, Hi);
- MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
- AAMDNodes AAInfo = ST->getAAInfo();
- SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
- ST->getOriginalAlign(), MMOFlags, AAInfo);
- Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), DL);
- SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr,
- ST->getPointerInfo().getWithOffset(4),
- ST->getOriginalAlign(), MMOFlags, AAInfo);
- return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
- St0, St1);
- }
- return SDValue();
- }
- }
- SDValue DAGCombiner::visitSTORE(SDNode *N) {
- StoreSDNode *ST = cast<StoreSDNode>(N);
- SDValue Chain = ST->getChain();
- SDValue Value = ST->getValue();
- SDValue Ptr = ST->getBasePtr();
- // If this is a store of a bit convert, store the input value if the
- // resultant store does not need a higher alignment than the original.
- if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
- ST->isUnindexed()) {
- EVT SVT = Value.getOperand(0).getValueType();
- // If the store is volatile, we only want to change the store type if the
- // resulting store is legal. Otherwise we might increase the number of
- // memory accesses. We don't care if the original type was legal or not
- // as we assume software couldn't rely on the number of accesses of an
- // illegal type.
- // TODO: May be able to relax for unordered atomics (see D66309)
- if (((!LegalOperations && ST->isSimple()) ||
- TLI.isOperationLegal(ISD::STORE, SVT)) &&
- TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT,
- DAG, *ST->getMemOperand())) {
- return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
- ST->getMemOperand());
- }
- }
- // Turn 'store undef, Ptr' -> nothing.
- if (Value.isUndef() && ST->isUnindexed())
- return Chain;
- // Try to infer better alignment information than the store already has.
- if (OptLevel != CodeGenOpt::None && ST->isUnindexed() && !ST->isAtomic()) {
- if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) {
- if (*Alignment > ST->getAlign() &&
- isAligned(*Alignment, ST->getSrcValueOffset())) {
- SDValue NewStore =
- DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(),
- ST->getMemoryVT(), *Alignment,
- ST->getMemOperand()->getFlags(), ST->getAAInfo());
- // NewStore will always be N as we are only refining the alignment
- assert(NewStore.getNode() == N);
- (void)NewStore;
- }
- }
- }
- // Try transforming a pair floating point load / store ops to integer
- // load / store ops.
- if (SDValue NewST = TransformFPLoadStorePair(N))
- return NewST;
- // Try transforming several stores into STORE (BSWAP).
- if (SDValue Store = mergeTruncStores(ST))
- return Store;
- if (ST->isUnindexed()) {
- // Walk up chain skipping non-aliasing memory nodes, on this store and any
- // adjacent stores.
- if (findBetterNeighborChains(ST)) {
- // replaceStoreChain uses CombineTo, which handled all of the worklist
- // manipulation. Return the original node to not do anything else.
- return SDValue(ST, 0);
- }
- Chain = ST->getChain();
- }
- // FIXME: is there such a thing as a truncating indexed store?
- if (ST->isTruncatingStore() && ST->isUnindexed() &&
- Value.getValueType().isInteger() &&
- (!isa<ConstantSDNode>(Value) ||
- !cast<ConstantSDNode>(Value)->isOpaque())) {
- // Convert a truncating store of a extension into a standard store.
- if ((Value.getOpcode() == ISD::ZERO_EXTEND ||
- Value.getOpcode() == ISD::SIGN_EXTEND ||
- Value.getOpcode() == ISD::ANY_EXTEND) &&
- Value.getOperand(0).getValueType() == ST->getMemoryVT() &&
- TLI.isOperationLegalOrCustom(ISD::STORE, ST->getMemoryVT()))
- return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
- ST->getMemOperand());
- APInt TruncDemandedBits =
- APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
- ST->getMemoryVT().getScalarSizeInBits());
- // See if we can simplify the operation with SimplifyDemandedBits, which
- // only works if the value has a single use.
- AddToWorklist(Value.getNode());
- if (SimplifyDemandedBits(Value, TruncDemandedBits)) {
- // Re-visit the store if anything changed and the store hasn't been merged
- // with another node (N is deleted) SimplifyDemandedBits will add Value's
- // node back to the worklist if necessary, but we also need to re-visit
- // the Store node itself.
- if (N->getOpcode() != ISD::DELETED_NODE)
- AddToWorklist(N);
- return SDValue(N, 0);
- }
- // Otherwise, see if we can simplify the input to this truncstore with
- // knowledge that only the low bits are being used. For example:
- // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
- if (SDValue Shorter =
- TLI.SimplifyMultipleUseDemandedBits(Value, TruncDemandedBits, DAG))
- return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(),
- ST->getMemOperand());
- // If we're storing a truncated constant, see if we can simplify it.
- // TODO: Move this to targetShrinkDemandedConstant?
- if (auto *Cst = dyn_cast<ConstantSDNode>(Value))
- if (!Cst->isOpaque()) {
- const APInt &CValue = Cst->getAPIntValue();
- APInt NewVal = CValue & TruncDemandedBits;
- if (NewVal != CValue) {
- SDValue Shorter =
- DAG.getConstant(NewVal, SDLoc(N), Value.getValueType());
- return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr,
- ST->getMemoryVT(), ST->getMemOperand());
- }
- }
- }
- // If this is a load followed by a store to the same location, then the store
- // is dead/noop.
- // TODO: Can relax for unordered atomics (see D66309)
- if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
- if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
- ST->isUnindexed() && ST->isSimple() &&
- Ld->getAddressSpace() == ST->getAddressSpace() &&
- // There can't be any side effects between the load and store, such as
- // a call or store.
- Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
- // The store is dead, remove it.
- return Chain;
- }
- }
- // TODO: Can relax for unordered atomics (see D66309)
- if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
- if (ST->isUnindexed() && ST->isSimple() &&
- ST1->isUnindexed() && ST1->isSimple()) {
- if (OptLevel != CodeGenOpt::None && ST1->getBasePtr() == Ptr &&
- ST1->getValue() == Value && ST->getMemoryVT() == ST1->getMemoryVT() &&
- ST->getAddressSpace() == ST1->getAddressSpace()) {
- // If this is a store followed by a store with the same value to the
- // same location, then the store is dead/noop.
- return Chain;
- }
- if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() &&
- !ST1->getBasePtr().isUndef() &&
- // BaseIndexOffset and the code below requires knowing the size
- // of a vector, so bail out if MemoryVT is scalable.
- !ST->getMemoryVT().isScalableVector() &&
- !ST1->getMemoryVT().isScalableVector() &&
- ST->getAddressSpace() == ST1->getAddressSpace()) {
- const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG);
- const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG);
- unsigned STBitSize = ST->getMemoryVT().getFixedSizeInBits();
- unsigned ChainBitSize = ST1->getMemoryVT().getFixedSizeInBits();
- // If this is a store who's preceding store to a subset of the current
- // location and no one other node is chained to that store we can
- // effectively drop the store. Do not remove stores to undef as they may
- // be used as data sinks.
- if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) {
- CombineTo(ST1, ST1->getChain());
- return SDValue();
- }
- }
- }
- }
- // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
- // truncating store. We can do this even if this is already a truncstore.
- if ((Value.getOpcode() == ISD::FP_ROUND ||
- Value.getOpcode() == ISD::TRUNCATE) &&
- Value->hasOneUse() && ST->isUnindexed() &&
- TLI.canCombineTruncStore(Value.getOperand(0).getValueType(),
- ST->getMemoryVT(), LegalOperations)) {
- return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
- Ptr, ST->getMemoryVT(), ST->getMemOperand());
- }
- // Always perform this optimization before types are legal. If the target
- // prefers, also try this after legalization to catch stores that were created
- // by intrinsics or other nodes.
- if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) {
- while (true) {
- // There can be multiple store sequences on the same chain.
- // Keep trying to merge store sequences until we are unable to do so
- // or until we merge the last store on the chain.
- bool Changed = mergeConsecutiveStores(ST);
- if (!Changed) break;
- // Return N as merge only uses CombineTo and no worklist clean
- // up is necessary.
- if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N))
- return SDValue(N, 0);
- }
- }
- // Try transforming N to an indexed store.
- if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
- return SDValue(N, 0);
- // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
- //
- // Make sure to do this only after attempting to merge stores in order to
- // avoid changing the types of some subset of stores due to visit order,
- // preventing their merging.
- if (isa<ConstantFPSDNode>(ST->getValue())) {
- if (SDValue NewSt = replaceStoreOfFPConstant(ST))
- return NewSt;
- }
- if (SDValue NewSt = splitMergedValStore(ST))
- return NewSt;
- return ReduceLoadOpStoreWidth(N);
- }
- SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) {
- const auto *LifetimeEnd = cast<LifetimeSDNode>(N);
- if (!LifetimeEnd->hasOffset())
- return SDValue();
- const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(),
- LifetimeEnd->getOffset(), false);
- // We walk up the chains to find stores.
- SmallVector<SDValue, 8> Chains = {N->getOperand(0)};
- while (!Chains.empty()) {
- SDValue Chain = Chains.pop_back_val();
- if (!Chain.hasOneUse())
- continue;
- switch (Chain.getOpcode()) {
- case ISD::TokenFactor:
- for (unsigned Nops = Chain.getNumOperands(); Nops;)
- Chains.push_back(Chain.getOperand(--Nops));
- break;
- case ISD::LIFETIME_START:
- case ISD::LIFETIME_END:
- // We can forward past any lifetime start/end that can be proven not to
- // alias the node.
- if (!mayAlias(Chain.getNode(), N))
- Chains.push_back(Chain.getOperand(0));
- break;
- case ISD::STORE: {
- StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain);
- // TODO: Can relax for unordered atomics (see D66309)
- if (!ST->isSimple() || ST->isIndexed())
- continue;
- const TypeSize StoreSize = ST->getMemoryVT().getStoreSize();
- // The bounds of a scalable store are not known until runtime, so this
- // store cannot be elided.
- if (StoreSize.isScalable())
- continue;
- const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG);
- // If we store purely within object bounds just before its lifetime ends,
- // we can remove the store.
- if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase,
- StoreSize.getFixedValue() * 8)) {
- LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump();
- dbgs() << "\nwithin LIFETIME_END of : ";
- LifetimeEndBase.dump(); dbgs() << "\n");
- CombineTo(ST, ST->getChain());
- return SDValue(N, 0);
- }
- }
- }
- }
- return SDValue();
- }
- /// For the instruction sequence of store below, F and I values
- /// are bundled together as an i64 value before being stored into memory.
- /// Sometimes it is more efficent to generate separate stores for F and I,
- /// which can remove the bitwise instructions or sink them to colder places.
- ///
- /// (store (or (zext (bitcast F to i32) to i64),
- /// (shl (zext I to i64), 32)), addr) -->
- /// (store F, addr) and (store I, addr+4)
- ///
- /// Similarly, splitting for other merged store can also be beneficial, like:
- /// For pair of {i32, i32}, i64 store --> two i32 stores.
- /// For pair of {i32, i16}, i64 store --> two i32 stores.
- /// For pair of {i16, i16}, i32 store --> two i16 stores.
- /// For pair of {i16, i8}, i32 store --> two i16 stores.
- /// For pair of {i8, i8}, i16 store --> two i8 stores.
- ///
- /// We allow each target to determine specifically which kind of splitting is
- /// supported.
- ///
- /// The store patterns are commonly seen from the simple code snippet below
- /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
- /// void goo(const std::pair<int, float> &);
- /// hoo() {
- /// ...
- /// goo(std::make_pair(tmp, ftmp));
- /// ...
- /// }
- ///
- SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) {
- if (OptLevel == CodeGenOpt::None)
- return SDValue();
- // Can't change the number of memory accesses for a volatile store or break
- // atomicity for an atomic one.
- if (!ST->isSimple())
- return SDValue();
- SDValue Val = ST->getValue();
- SDLoc DL(ST);
- // Match OR operand.
- if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR)
- return SDValue();
- // Match SHL operand and get Lower and Higher parts of Val.
- SDValue Op1 = Val.getOperand(0);
- SDValue Op2 = Val.getOperand(1);
- SDValue Lo, Hi;
- if (Op1.getOpcode() != ISD::SHL) {
- std::swap(Op1, Op2);
- if (Op1.getOpcode() != ISD::SHL)
- return SDValue();
- }
- Lo = Op2;
- Hi = Op1.getOperand(0);
- if (!Op1.hasOneUse())
- return SDValue();
- // Match shift amount to HalfValBitSize.
- unsigned HalfValBitSize = Val.getValueSizeInBits() / 2;
- ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1));
- if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize)
- return SDValue();
- // Lo and Hi are zero-extended from int with size less equal than 32
- // to i64.
- if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() ||
- !Lo.getOperand(0).getValueType().isScalarInteger() ||
- Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize ||
- Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() ||
- !Hi.getOperand(0).getValueType().isScalarInteger() ||
- Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize)
- return SDValue();
- // Use the EVT of low and high parts before bitcast as the input
- // of target query.
- EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST)
- ? Lo.getOperand(0).getValueType()
- : Lo.getValueType();
- EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST)
- ? Hi.getOperand(0).getValueType()
- : Hi.getValueType();
- if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
- return SDValue();
- // Start to split store.
- MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
- AAMDNodes AAInfo = ST->getAAInfo();
- // Change the sizes of Lo and Hi's value types to HalfValBitSize.
- EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize);
- Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0));
- Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0));
- SDValue Chain = ST->getChain();
- SDValue Ptr = ST->getBasePtr();
- // Lower value store.
- SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
- ST->getOriginalAlign(), MMOFlags, AAInfo);
- Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(HalfValBitSize / 8), DL);
- // Higher value store.
- SDValue St1 = DAG.getStore(
- St0, DL, Hi, Ptr, ST->getPointerInfo().getWithOffset(HalfValBitSize / 8),
- ST->getOriginalAlign(), MMOFlags, AAInfo);
- return St1;
- }
- // Merge an insertion into an existing shuffle:
- // (insert_vector_elt (vector_shuffle X, Y, Mask),
- // .(extract_vector_elt X, N), InsIndex)
- // --> (vector_shuffle X, Y, NewMask)
- // and variations where shuffle operands may be CONCAT_VECTORS.
- static bool mergeEltWithShuffle(SDValue &X, SDValue &Y, ArrayRef<int> Mask,
- SmallVectorImpl<int> &NewMask, SDValue Elt,
- unsigned InsIndex) {
- if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
- !isa<ConstantSDNode>(Elt.getOperand(1)))
- return false;
- // Vec's operand 0 is using indices from 0 to N-1 and
- // operand 1 from N to 2N - 1, where N is the number of
- // elements in the vectors.
- SDValue InsertVal0 = Elt.getOperand(0);
- int ElementOffset = -1;
- // We explore the inputs of the shuffle in order to see if we find the
- // source of the extract_vector_elt. If so, we can use it to modify the
- // shuffle rather than perform an insert_vector_elt.
- SmallVector<std::pair<int, SDValue>, 8> ArgWorkList;
- ArgWorkList.emplace_back(Mask.size(), Y);
- ArgWorkList.emplace_back(0, X);
- while (!ArgWorkList.empty()) {
- int ArgOffset;
- SDValue ArgVal;
- std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val();
- if (ArgVal == InsertVal0) {
- ElementOffset = ArgOffset;
- break;
- }
- // Peek through concat_vector.
- if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) {
- int CurrentArgOffset =
- ArgOffset + ArgVal.getValueType().getVectorNumElements();
- int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements();
- for (SDValue Op : reverse(ArgVal->ops())) {
- CurrentArgOffset -= Step;
- ArgWorkList.emplace_back(CurrentArgOffset, Op);
- }
- // Make sure we went through all the elements and did not screw up index
- // computation.
- assert(CurrentArgOffset == ArgOffset);
- }
- }
- // If we failed to find a match, see if we can replace an UNDEF shuffle
- // operand.
- if (ElementOffset == -1) {
- if (!Y.isUndef() || InsertVal0.getValueType() != Y.getValueType())
- return false;
- ElementOffset = Mask.size();
- Y = InsertVal0;
- }
- NewMask.assign(Mask.begin(), Mask.end());
- NewMask[InsIndex] = ElementOffset + Elt.getConstantOperandVal(1);
- assert(NewMask[InsIndex] < (int)(2 * Mask.size()) && NewMask[InsIndex] >= 0 &&
- "NewMask[InsIndex] is out of bound");
- return true;
- }
- // Merge an insertion into an existing shuffle:
- // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N),
- // InsIndex)
- // --> (vector_shuffle X, Y) and variations where shuffle operands may be
- // CONCAT_VECTORS.
- SDValue DAGCombiner::mergeInsertEltWithShuffle(SDNode *N, unsigned InsIndex) {
- assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT &&
- "Expected extract_vector_elt");
- SDValue InsertVal = N->getOperand(1);
- SDValue Vec = N->getOperand(0);
- auto *SVN = dyn_cast<ShuffleVectorSDNode>(Vec);
- if (!SVN || !Vec.hasOneUse())
- return SDValue();
- ArrayRef<int> Mask = SVN->getMask();
- SDValue X = Vec.getOperand(0);
- SDValue Y = Vec.getOperand(1);
- SmallVector<int, 16> NewMask(Mask);
- if (mergeEltWithShuffle(X, Y, Mask, NewMask, InsertVal, InsIndex)) {
- SDValue LegalShuffle = TLI.buildLegalVectorShuffle(
- Vec.getValueType(), SDLoc(N), X, Y, NewMask, DAG);
- if (LegalShuffle)
- return LegalShuffle;
- }
- return SDValue();
- }
- // Convert a disguised subvector insertion into a shuffle:
- // insert_vector_elt V, (bitcast X from vector type), IdxC -->
- // bitcast(shuffle (bitcast V), (extended X), Mask)
- // Note: We do not use an insert_subvector node because that requires a
- // legal subvector type.
- SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) {
- assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT &&
- "Expected extract_vector_elt");
- SDValue InsertVal = N->getOperand(1);
- if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() ||
- !InsertVal.getOperand(0).getValueType().isVector())
- return SDValue();
- SDValue SubVec = InsertVal.getOperand(0);
- SDValue DestVec = N->getOperand(0);
- EVT SubVecVT = SubVec.getValueType();
- EVT VT = DestVec.getValueType();
- unsigned NumSrcElts = SubVecVT.getVectorNumElements();
- // If the source only has a single vector element, the cost of creating adding
- // it to a vector is likely to exceed the cost of a insert_vector_elt.
- if (NumSrcElts == 1)
- return SDValue();
- unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits();
- unsigned NumMaskVals = ExtendRatio * NumSrcElts;
- // Step 1: Create a shuffle mask that implements this insert operation. The
- // vector that we are inserting into will be operand 0 of the shuffle, so
- // those elements are just 'i'. The inserted subvector is in the first
- // positions of operand 1 of the shuffle. Example:
- // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
- SmallVector<int, 16> Mask(NumMaskVals);
- for (unsigned i = 0; i != NumMaskVals; ++i) {
- if (i / NumSrcElts == InsIndex)
- Mask[i] = (i % NumSrcElts) + NumMaskVals;
- else
- Mask[i] = i;
- }
- // Bail out if the target can not handle the shuffle we want to create.
- EVT SubVecEltVT = SubVecVT.getVectorElementType();
- EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals);
- if (!TLI.isShuffleMaskLegal(Mask, ShufVT))
- return SDValue();
- // Step 2: Create a wide vector from the inserted source vector by appending
- // undefined elements. This is the same size as our destination vector.
- SDLoc DL(N);
- SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT));
- ConcatOps[0] = SubVec;
- SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps);
- // Step 3: Shuffle in the padded subvector.
- SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec);
- SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask);
- AddToWorklist(PaddedSubV.getNode());
- AddToWorklist(DestVecBC.getNode());
- AddToWorklist(Shuf.getNode());
- return DAG.getBitcast(VT, Shuf);
- }
- SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
- SDValue InVec = N->getOperand(0);
- SDValue InVal = N->getOperand(1);
- SDValue EltNo = N->getOperand(2);
- SDLoc DL(N);
- EVT VT = InVec.getValueType();
- auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
- // Insert into out-of-bounds element is undefined.
- if (IndexC && VT.isFixedLengthVector() &&
- IndexC->getZExtValue() >= VT.getVectorNumElements())
- return DAG.getUNDEF(VT);
- // Remove redundant insertions:
- // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
- if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
- InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1))
- return InVec;
- if (!IndexC) {
- // If this is variable insert to undef vector, it might be better to splat:
- // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
- if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT))
- return DAG.getSplat(VT, DL, InVal);
- return SDValue();
- }
- if (VT.isScalableVector())
- return SDValue();
- unsigned NumElts = VT.getVectorNumElements();
- // We must know which element is being inserted for folds below here.
- unsigned Elt = IndexC->getZExtValue();
- // Handle <1 x ???> vector insertion special cases.
- if (NumElts == 1) {
- // insert_vector_elt(x, extract_vector_elt(y, 0), 0) -> y
- if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
- InVal.getOperand(0).getValueType() == VT &&
- isNullConstant(InVal.getOperand(1)))
- return InVal.getOperand(0);
- }
- // Canonicalize insert_vector_elt dag nodes.
- // Example:
- // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
- // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
- //
- // Do this only if the child insert_vector node has one use; also
- // do this only if indices are both constants and Idx1 < Idx0.
- if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
- && isa<ConstantSDNode>(InVec.getOperand(2))) {
- unsigned OtherElt = InVec.getConstantOperandVal(2);
- if (Elt < OtherElt) {
- // Swap nodes.
- SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
- InVec.getOperand(0), InVal, EltNo);
- AddToWorklist(NewOp.getNode());
- return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
- VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
- }
- }
- if (SDValue Shuf = mergeInsertEltWithShuffle(N, Elt))
- return Shuf;
- if (SDValue Shuf = combineInsertEltToShuffle(N, Elt))
- return Shuf;
- // Attempt to convert an insert_vector_elt chain into a legal build_vector.
- if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
- // vXi1 vector - we don't need to recurse.
- if (NumElts == 1)
- return DAG.getBuildVector(VT, DL, {InVal});
- // If we haven't already collected the element, insert into the op list.
- EVT MaxEltVT = InVal.getValueType();
- auto AddBuildVectorOp = [&](SmallVectorImpl<SDValue> &Ops, SDValue Elt,
- unsigned Idx) {
- if (!Ops[Idx]) {
- Ops[Idx] = Elt;
- if (VT.isInteger()) {
- EVT EltVT = Elt.getValueType();
- MaxEltVT = MaxEltVT.bitsGE(EltVT) ? MaxEltVT : EltVT;
- }
- }
- };
- // Ensure all the operands are the same value type, fill any missing
- // operands with UNDEF and create the BUILD_VECTOR.
- auto CanonicalizeBuildVector = [&](SmallVectorImpl<SDValue> &Ops) {
- assert(Ops.size() == NumElts && "Unexpected vector size");
- for (SDValue &Op : Ops) {
- if (Op)
- Op = VT.isInteger() ? DAG.getAnyExtOrTrunc(Op, DL, MaxEltVT) : Op;
- else
- Op = DAG.getUNDEF(MaxEltVT);
- }
- return DAG.getBuildVector(VT, DL, Ops);
- };
- SmallVector<SDValue, 8> Ops(NumElts, SDValue());
- Ops[Elt] = InVal;
- // Recurse up a INSERT_VECTOR_ELT chain to build a BUILD_VECTOR.
- for (SDValue CurVec = InVec; CurVec;) {
- // UNDEF - build new BUILD_VECTOR from already inserted operands.
- if (CurVec.isUndef())
- return CanonicalizeBuildVector(Ops);
- // BUILD_VECTOR - insert unused operands and build new BUILD_VECTOR.
- if (CurVec.getOpcode() == ISD::BUILD_VECTOR && CurVec.hasOneUse()) {
- for (unsigned I = 0; I != NumElts; ++I)
- AddBuildVectorOp(Ops, CurVec.getOperand(I), I);
- return CanonicalizeBuildVector(Ops);
- }
- // SCALAR_TO_VECTOR - insert unused scalar and build new BUILD_VECTOR.
- if (CurVec.getOpcode() == ISD::SCALAR_TO_VECTOR && CurVec.hasOneUse()) {
- AddBuildVectorOp(Ops, CurVec.getOperand(0), 0);
- return CanonicalizeBuildVector(Ops);
- }
- // INSERT_VECTOR_ELT - insert operand and continue up the chain.
- if (CurVec.getOpcode() == ISD::INSERT_VECTOR_ELT && CurVec.hasOneUse())
- if (auto *CurIdx = dyn_cast<ConstantSDNode>(CurVec.getOperand(2)))
- if (CurIdx->getAPIntValue().ult(NumElts)) {
- unsigned Idx = CurIdx->getZExtValue();
- AddBuildVectorOp(Ops, CurVec.getOperand(1), Idx);
- // Found entire BUILD_VECTOR.
- if (all_of(Ops, [](SDValue Op) { return !!Op; }))
- return CanonicalizeBuildVector(Ops);
- CurVec = CurVec->getOperand(0);
- continue;
- }
- // VECTOR_SHUFFLE - if all the operands match the shuffle's sources,
- // update the shuffle mask (and second operand if we started with unary
- // shuffle) and create a new legal shuffle.
- if (CurVec.getOpcode() == ISD::VECTOR_SHUFFLE && CurVec.hasOneUse()) {
- auto *SVN = cast<ShuffleVectorSDNode>(CurVec);
- SDValue LHS = SVN->getOperand(0);
- SDValue RHS = SVN->getOperand(1);
- SmallVector<int, 16> Mask(SVN->getMask());
- bool Merged = true;
- for (auto I : enumerate(Ops)) {
- SDValue &Op = I.value();
- if (Op) {
- SmallVector<int, 16> NewMask;
- if (!mergeEltWithShuffle(LHS, RHS, Mask, NewMask, Op, I.index())) {
- Merged = false;
- break;
- }
- Mask = std::move(NewMask);
- }
- }
- if (Merged)
- if (SDValue NewShuffle =
- TLI.buildLegalVectorShuffle(VT, DL, LHS, RHS, Mask, DAG))
- return NewShuffle;
- }
- // Failed to find a match in the chain - bail.
- break;
- }
- // See if we can fill in the missing constant elements as zeros.
- // TODO: Should we do this for any constant?
- APInt DemandedZeroElts = APInt::getZero(NumElts);
- for (unsigned I = 0; I != NumElts; ++I)
- if (!Ops[I])
- DemandedZeroElts.setBit(I);
- if (DAG.MaskedVectorIsZero(InVec, DemandedZeroElts)) {
- SDValue Zero = VT.isInteger() ? DAG.getConstant(0, DL, MaxEltVT)
- : DAG.getConstantFP(0, DL, MaxEltVT);
- for (unsigned I = 0; I != NumElts; ++I)
- if (!Ops[I])
- Ops[I] = Zero;
- return CanonicalizeBuildVector(Ops);
- }
- }
- return SDValue();
- }
- SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
- SDValue EltNo,
- LoadSDNode *OriginalLoad) {
- assert(OriginalLoad->isSimple());
- EVT ResultVT = EVE->getValueType(0);
- EVT VecEltVT = InVecVT.getVectorElementType();
- // If the vector element type is not a multiple of a byte then we are unable
- // to correctly compute an address to load only the extracted element as a
- // scalar.
- if (!VecEltVT.isByteSized())
- return SDValue();
- ISD::LoadExtType ExtTy =
- ResultVT.bitsGT(VecEltVT) ? ISD::NON_EXTLOAD : ISD::EXTLOAD;
- if (!TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT) ||
- !TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT))
- return SDValue();
- Align Alignment = OriginalLoad->getAlign();
- MachinePointerInfo MPI;
- SDLoc DL(EVE);
- if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
- int Elt = ConstEltNo->getZExtValue();
- unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
- MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
- Alignment = commonAlignment(Alignment, PtrOff);
- } else {
- // Discard the pointer info except the address space because the memory
- // operand can't represent this new access since the offset is variable.
- MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace());
- Alignment = commonAlignment(Alignment, VecEltVT.getSizeInBits() / 8);
- }
- unsigned IsFast = 0;
- if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VecEltVT,
- OriginalLoad->getAddressSpace(), Alignment,
- OriginalLoad->getMemOperand()->getFlags(),
- &IsFast) ||
- !IsFast)
- return SDValue();
- SDValue NewPtr = TLI.getVectorElementPointer(DAG, OriginalLoad->getBasePtr(),
- InVecVT, EltNo);
- // We are replacing a vector load with a scalar load. The new load must have
- // identical memory op ordering to the original.
- SDValue Load;
- if (ResultVT.bitsGT(VecEltVT)) {
- // If the result type of vextract is wider than the load, then issue an
- // extending load instead.
- ISD::LoadExtType ExtType =
- TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, VecEltVT) ? ISD::ZEXTLOAD
- : ISD::EXTLOAD;
- Load = DAG.getExtLoad(ExtType, DL, ResultVT, OriginalLoad->getChain(),
- NewPtr, MPI, VecEltVT, Alignment,
- OriginalLoad->getMemOperand()->getFlags(),
- OriginalLoad->getAAInfo());
- DAG.makeEquivalentMemoryOrdering(OriginalLoad, Load);
- } else {
- // The result type is narrower or the same width as the vector element
- Load = DAG.getLoad(VecEltVT, DL, OriginalLoad->getChain(), NewPtr, MPI,
- Alignment, OriginalLoad->getMemOperand()->getFlags(),
- OriginalLoad->getAAInfo());
- DAG.makeEquivalentMemoryOrdering(OriginalLoad, Load);
- if (ResultVT.bitsLT(VecEltVT))
- Load = DAG.getNode(ISD::TRUNCATE, DL, ResultVT, Load);
- else
- Load = DAG.getBitcast(ResultVT, Load);
- }
- ++OpsNarrowed;
- return Load;
- }
- /// Transform a vector binary operation into a scalar binary operation by moving
- /// the math/logic after an extract element of a vector.
- static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG,
- bool LegalOperations) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue Vec = ExtElt->getOperand(0);
- SDValue Index = ExtElt->getOperand(1);
- auto *IndexC = dyn_cast<ConstantSDNode>(Index);
- if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() ||
- Vec->getNumValues() != 1)
- return SDValue();
- // Targets may want to avoid this to prevent an expensive register transfer.
- if (!TLI.shouldScalarizeBinop(Vec))
- return SDValue();
- // Extracting an element of a vector constant is constant-folded, so this
- // transform is just replacing a vector op with a scalar op while moving the
- // extract.
- SDValue Op0 = Vec.getOperand(0);
- SDValue Op1 = Vec.getOperand(1);
- APInt SplatVal;
- if (isAnyConstantBuildVector(Op0, true) ||
- ISD::isConstantSplatVector(Op0.getNode(), SplatVal) ||
- isAnyConstantBuildVector(Op1, true) ||
- ISD::isConstantSplatVector(Op1.getNode(), SplatVal)) {
- // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C'
- // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC)
- SDLoc DL(ExtElt);
- EVT VT = ExtElt->getValueType(0);
- SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index);
- SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index);
- return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1);
- }
- return SDValue();
- }
- // Given a ISD::EXTRACT_VECTOR_ELT, which is a glorified bit sequence extract,
- // recursively analyse all of it's users. and try to model themselves as
- // bit sequence extractions. If all of them agree on the new, narrower element
- // type, and all of them can be modelled as ISD::EXTRACT_VECTOR_ELT's of that
- // new element type, do so now.
- // This is mainly useful to recover from legalization that scalarized
- // the vector as wide elements, but tries to rebuild it with narrower elements.
- //
- // Some more nodes could be modelled if that helps cover interesting patterns.
- bool DAGCombiner::refineExtractVectorEltIntoMultipleNarrowExtractVectorElts(
- SDNode *N) {
- // We perform this optimization post type-legalization because
- // the type-legalizer often scalarizes integer-promoted vectors.
- // Performing this optimization before may cause legalizaton cycles.
- if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
- return false;
- // TODO: Add support for big-endian.
- if (DAG.getDataLayout().isBigEndian())
- return false;
- SDValue VecOp = N->getOperand(0);
- EVT VecVT = VecOp.getValueType();
- assert(!VecVT.isScalableVector() && "Only for fixed vectors.");
- // We must start with a constant extraction index.
- auto *IndexC = dyn_cast<ConstantSDNode>(N->getOperand(1));
- if (!IndexC)
- return false;
- assert(IndexC->getZExtValue() < VecVT.getVectorNumElements() &&
- "Original ISD::EXTRACT_VECTOR_ELT is undefinend?");
- // TODO: deal with the case of implicit anyext of the extraction.
- unsigned VecEltBitWidth = VecVT.getScalarSizeInBits();
- EVT ScalarVT = N->getValueType(0);
- if (VecVT.getScalarType() != ScalarVT)
- return false;
- // TODO: deal with the cases other than everything being integer-typed.
- if (!ScalarVT.isScalarInteger())
- return false;
- struct Entry {
- SDNode *Producer;
- // Which bits of VecOp does it contain?
- unsigned BitPos;
- int NumBits;
- // NOTE: the actual width of \p Producer may be wider than NumBits!
- Entry(Entry &&) = default;
- Entry(SDNode *Producer_, unsigned BitPos_, int NumBits_)
- : Producer(Producer_), BitPos(BitPos_), NumBits(NumBits_) {}
- Entry() = delete;
- Entry(const Entry &) = delete;
- Entry &operator=(const Entry &) = delete;
- Entry &operator=(Entry &&) = delete;
- };
- SmallVector<Entry, 32> Worklist;
- SmallVector<Entry, 32> Leafs;
- // We start at the "root" ISD::EXTRACT_VECTOR_ELT.
- Worklist.emplace_back(N, /*BitPos=*/VecEltBitWidth * IndexC->getZExtValue(),
- /*NumBits=*/VecEltBitWidth);
- while (!Worklist.empty()) {
- Entry E = Worklist.pop_back_val();
- // Does the node not even use any of the VecOp bits?
- if (!(E.NumBits > 0 && E.BitPos < VecVT.getSizeInBits() &&
- E.BitPos + E.NumBits <= VecVT.getSizeInBits()))
- return false; // Let's allow the other combines clean this up first.
- // Did we fail to model any of the users of the Producer?
- bool ProducerIsLeaf = false;
- // Look at each user of this Producer.
- for (SDNode *User : E.Producer->uses()) {
- switch (User->getOpcode()) {
- // TODO: support ISD::BITCAST
- // TODO: support ISD::ANY_EXTEND
- // TODO: support ISD::ZERO_EXTEND
- // TODO: support ISD::SIGN_EXTEND
- case ISD::TRUNCATE:
- // Truncation simply means we keep position, but extract less bits.
- Worklist.emplace_back(User, E.BitPos,
- /*NumBits=*/User->getValueSizeInBits(0));
- break;
- // TODO: support ISD::SRA
- // TODO: support ISD::SHL
- case ISD::SRL:
- // We should be shifting the Producer by a constant amount.
- if (auto *ShAmtC = dyn_cast<ConstantSDNode>(User->getOperand(1));
- User->getOperand(0).getNode() == E.Producer && ShAmtC) {
- // Logical right-shift means that we start extraction later,
- // but stop it at the same position we did previously.
- unsigned ShAmt = ShAmtC->getZExtValue();
- Worklist.emplace_back(User, E.BitPos + ShAmt, E.NumBits - ShAmt);
- break;
- }
- [[fallthrough]];
- default:
- // We can not model this user of the Producer.
- // Which means the current Producer will be a ISD::EXTRACT_VECTOR_ELT.
- ProducerIsLeaf = true;
- // Profitability check: all users that we can not model
- // must be ISD::BUILD_VECTOR's.
- if (User->getOpcode() != ISD::BUILD_VECTOR)
- return false;
- break;
- }
- }
- if (ProducerIsLeaf)
- Leafs.emplace_back(std::move(E));
- }
- unsigned NewVecEltBitWidth = Leafs.front().NumBits;
- // If we are still at the same element granularity, give up,
- if (NewVecEltBitWidth == VecEltBitWidth)
- return false;
- // The vector width must be a multiple of the new element width.
- if (VecVT.getSizeInBits() % NewVecEltBitWidth != 0)
- return false;
- // All leafs must agree on the new element width.
- // All leafs must not expect any "padding" bits ontop of that width.
- // All leafs must start extraction from multiple of that width.
- if (!all_of(Leafs, [NewVecEltBitWidth](const Entry &E) {
- return (unsigned)E.NumBits == NewVecEltBitWidth &&
- E.Producer->getValueSizeInBits(0) == NewVecEltBitWidth &&
- E.BitPos % NewVecEltBitWidth == 0;
- }))
- return false;
- EVT NewScalarVT = EVT::getIntegerVT(*DAG.getContext(), NewVecEltBitWidth);
- EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewScalarVT,
- VecVT.getSizeInBits() / NewVecEltBitWidth);
- if (LegalTypes &&
- !(TLI.isTypeLegal(NewScalarVT) && TLI.isTypeLegal(NewVecVT)))
- return false;
- if (LegalOperations &&
- !(TLI.isOperationLegalOrCustom(ISD::BITCAST, NewVecVT) &&
- TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, NewVecVT)))
- return false;
- SDValue NewVecOp = DAG.getBitcast(NewVecVT, VecOp);
- for (const Entry &E : Leafs) {
- SDLoc DL(E.Producer);
- unsigned NewIndex = E.BitPos / NewVecEltBitWidth;
- assert(NewIndex < NewVecVT.getVectorNumElements() &&
- "Creating out-of-bounds ISD::EXTRACT_VECTOR_ELT?");
- SDValue V = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, NewScalarVT, NewVecOp,
- DAG.getVectorIdxConstant(NewIndex, DL));
- CombineTo(E.Producer, V);
- }
- return true;
- }
- SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
- SDValue VecOp = N->getOperand(0);
- SDValue Index = N->getOperand(1);
- EVT ScalarVT = N->getValueType(0);
- EVT VecVT = VecOp.getValueType();
- if (VecOp.isUndef())
- return DAG.getUNDEF(ScalarVT);
- // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
- //
- // This only really matters if the index is non-constant since other combines
- // on the constant elements already work.
- SDLoc DL(N);
- if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT &&
- Index == VecOp.getOperand(2)) {
- SDValue Elt = VecOp.getOperand(1);
- return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt;
- }
- // (vextract (scalar_to_vector val, 0) -> val
- if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) {
- // Only 0'th element of SCALAR_TO_VECTOR is defined.
- if (DAG.isKnownNeverZero(Index))
- return DAG.getUNDEF(ScalarVT);
- // Check if the result type doesn't match the inserted element type. A
- // SCALAR_TO_VECTOR may truncate the inserted element and the
- // EXTRACT_VECTOR_ELT may widen the extracted vector.
- SDValue InOp = VecOp.getOperand(0);
- if (InOp.getValueType() != ScalarVT) {
- assert(InOp.getValueType().isInteger() && ScalarVT.isInteger() &&
- InOp.getValueType().bitsGT(ScalarVT));
- return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, InOp);
- }
- return InOp;
- }
- // extract_vector_elt of out-of-bounds element -> UNDEF
- auto *IndexC = dyn_cast<ConstantSDNode>(Index);
- if (IndexC && VecVT.isFixedLengthVector() &&
- IndexC->getAPIntValue().uge(VecVT.getVectorNumElements()))
- return DAG.getUNDEF(ScalarVT);
- // extract_vector_elt(freeze(x)), idx -> freeze(extract_vector_elt(x)), idx
- if (VecOp.hasOneUse() && VecOp.getOpcode() == ISD::FREEZE) {
- return DAG.getFreeze(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT,
- VecOp.getOperand(0), Index));
- }
- // extract_vector_elt (build_vector x, y), 1 -> y
- if (((IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR) ||
- VecOp.getOpcode() == ISD::SPLAT_VECTOR) &&
- TLI.isTypeLegal(VecVT) &&
- (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) {
- assert((VecOp.getOpcode() != ISD::BUILD_VECTOR ||
- VecVT.isFixedLengthVector()) &&
- "BUILD_VECTOR used for scalable vectors");
- unsigned IndexVal =
- VecOp.getOpcode() == ISD::BUILD_VECTOR ? IndexC->getZExtValue() : 0;
- SDValue Elt = VecOp.getOperand(IndexVal);
- EVT InEltVT = Elt.getValueType();
- // Sometimes build_vector's scalar input types do not match result type.
- if (ScalarVT == InEltVT)
- return Elt;
- // TODO: It may be useful to truncate if free if the build_vector implicitly
- // converts.
- }
- if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations))
- return BO;
- if (VecVT.isScalableVector())
- return SDValue();
- // All the code from this point onwards assumes fixed width vectors, but it's
- // possible that some of the combinations could be made to work for scalable
- // vectors too.
- unsigned NumElts = VecVT.getVectorNumElements();
- unsigned VecEltBitWidth = VecVT.getScalarSizeInBits();
- // TODO: These transforms should not require the 'hasOneUse' restriction, but
- // there are regressions on multiple targets without it. We can end up with a
- // mess of scalar and vector code if we reduce only part of the DAG to scalar.
- if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() &&
- VecOp.hasOneUse()) {
- // The vector index of the LSBs of the source depend on the endian-ness.
- bool IsLE = DAG.getDataLayout().isLittleEndian();
- unsigned ExtractIndex = IndexC->getZExtValue();
- // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
- unsigned BCTruncElt = IsLE ? 0 : NumElts - 1;
- SDValue BCSrc = VecOp.getOperand(0);
- if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger())
- return DAG.getAnyExtOrTrunc(BCSrc, DL, ScalarVT);
- if (LegalTypes && BCSrc.getValueType().isInteger() &&
- BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) {
- // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
- // trunc i64 X to i32
- SDValue X = BCSrc.getOperand(0);
- assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() &&
- "Extract element and scalar to vector can't change element type "
- "from FP to integer.");
- unsigned XBitWidth = X.getValueSizeInBits();
- BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1;
- // An extract element return value type can be wider than its vector
- // operand element type. In that case, the high bits are undefined, so
- // it's possible that we may need to extend rather than truncate.
- if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) {
- assert(XBitWidth % VecEltBitWidth == 0 &&
- "Scalar bitwidth must be a multiple of vector element bitwidth");
- return DAG.getAnyExtOrTrunc(X, DL, ScalarVT);
- }
- }
- }
- // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
- // We only perform this optimization before the op legalization phase because
- // we may introduce new vector instructions which are not backed by TD
- // patterns. For example on AVX, extracting elements from a wide vector
- // without using extract_subvector. However, if we can find an underlying
- // scalar value, then we can always use that.
- if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) {
- auto *Shuf = cast<ShuffleVectorSDNode>(VecOp);
- // Find the new index to extract from.
- int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue());
- // Extracting an undef index is undef.
- if (OrigElt == -1)
- return DAG.getUNDEF(ScalarVT);
- // Select the right vector half to extract from.
- SDValue SVInVec;
- if (OrigElt < (int)NumElts) {
- SVInVec = VecOp.getOperand(0);
- } else {
- SVInVec = VecOp.getOperand(1);
- OrigElt -= NumElts;
- }
- if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
- SDValue InOp = SVInVec.getOperand(OrigElt);
- if (InOp.getValueType() != ScalarVT) {
- assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
- InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
- }
- return InOp;
- }
- // FIXME: We should handle recursing on other vector shuffles and
- // scalar_to_vector here as well.
- if (!LegalOperations ||
- // FIXME: Should really be just isOperationLegalOrCustom.
- TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) ||
- TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) {
- return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec,
- DAG.getVectorIdxConstant(OrigElt, DL));
- }
- }
- // If only EXTRACT_VECTOR_ELT nodes use the source vector we can
- // simplify it based on the (valid) extraction indices.
- if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) {
- return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
- Use->getOperand(0) == VecOp &&
- isa<ConstantSDNode>(Use->getOperand(1));
- })) {
- APInt DemandedElts = APInt::getZero(NumElts);
- for (SDNode *Use : VecOp->uses()) {
- auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1));
- if (CstElt->getAPIntValue().ult(NumElts))
- DemandedElts.setBit(CstElt->getZExtValue());
- }
- if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) {
- // We simplified the vector operand of this extract element. If this
- // extract is not dead, visit it again so it is folded properly.
- if (N->getOpcode() != ISD::DELETED_NODE)
- AddToWorklist(N);
- return SDValue(N, 0);
- }
- APInt DemandedBits = APInt::getAllOnes(VecEltBitWidth);
- if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) {
- // We simplified the vector operand of this extract element. If this
- // extract is not dead, visit it again so it is folded properly.
- if (N->getOpcode() != ISD::DELETED_NODE)
- AddToWorklist(N);
- return SDValue(N, 0);
- }
- }
- if (refineExtractVectorEltIntoMultipleNarrowExtractVectorElts(N))
- return SDValue(N, 0);
- // Everything under here is trying to match an extract of a loaded value.
- // If the result of load has to be truncated, then it's not necessarily
- // profitable.
- bool BCNumEltsChanged = false;
- EVT ExtVT = VecVT.getVectorElementType();
- EVT LVT = ExtVT;
- if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT))
- return SDValue();
- if (VecOp.getOpcode() == ISD::BITCAST) {
- // Don't duplicate a load with other uses.
- if (!VecOp.hasOneUse())
- return SDValue();
- EVT BCVT = VecOp.getOperand(0).getValueType();
- if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
- return SDValue();
- if (NumElts != BCVT.getVectorNumElements())
- BCNumEltsChanged = true;
- VecOp = VecOp.getOperand(0);
- ExtVT = BCVT.getVectorElementType();
- }
- // extract (vector load $addr), i --> load $addr + i * size
- if (!LegalOperations && !IndexC && VecOp.hasOneUse() &&
- ISD::isNormalLoad(VecOp.getNode()) &&
- !Index->hasPredecessor(VecOp.getNode())) {
- auto *VecLoad = dyn_cast<LoadSDNode>(VecOp);
- if (VecLoad && VecLoad->isSimple())
- return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad);
- }
- // Perform only after legalization to ensure build_vector / vector_shuffle
- // optimizations have already been done.
- if (!LegalOperations || !IndexC)
- return SDValue();
- // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
- // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
- // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
- int Elt = IndexC->getZExtValue();
- LoadSDNode *LN0 = nullptr;
- if (ISD::isNormalLoad(VecOp.getNode())) {
- LN0 = cast<LoadSDNode>(VecOp);
- } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
- VecOp.getOperand(0).getValueType() == ExtVT &&
- ISD::isNormalLoad(VecOp.getOperand(0).getNode())) {
- // Don't duplicate a load with other uses.
- if (!VecOp.hasOneUse())
- return SDValue();
- LN0 = cast<LoadSDNode>(VecOp.getOperand(0));
- }
- if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) {
- // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
- // =>
- // (load $addr+1*size)
- // Don't duplicate a load with other uses.
- if (!VecOp.hasOneUse())
- return SDValue();
- // If the bit convert changed the number of elements, it is unsafe
- // to examine the mask.
- if (BCNumEltsChanged)
- return SDValue();
- // Select the input vector, guarding against out of range extract vector.
- int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt);
- VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1);
- if (VecOp.getOpcode() == ISD::BITCAST) {
- // Don't duplicate a load with other uses.
- if (!VecOp.hasOneUse())
- return SDValue();
- VecOp = VecOp.getOperand(0);
- }
- if (ISD::isNormalLoad(VecOp.getNode())) {
- LN0 = cast<LoadSDNode>(VecOp);
- Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts;
- Index = DAG.getConstant(Elt, DL, Index.getValueType());
- }
- } else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && !BCNumEltsChanged &&
- VecVT.getVectorElementType() == ScalarVT &&
- (!LegalTypes ||
- TLI.isTypeLegal(
- VecOp.getOperand(0).getValueType().getVectorElementType()))) {
- // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0
- // -> extract_vector_elt a, 0
- // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1
- // -> extract_vector_elt a, 1
- // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2
- // -> extract_vector_elt b, 0
- // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3
- // -> extract_vector_elt b, 1
- SDLoc SL(N);
- EVT ConcatVT = VecOp.getOperand(0).getValueType();
- unsigned ConcatNumElts = ConcatVT.getVectorNumElements();
- SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, SL,
- Index.getValueType());
- SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts);
- SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL,
- ConcatVT.getVectorElementType(),
- ConcatOp, NewIdx);
- return DAG.getNode(ISD::BITCAST, SL, ScalarVT, Elt);
- }
- // Make sure we found a non-volatile load and the extractelement is
- // the only use.
- if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple())
- return SDValue();
- // If Idx was -1 above, Elt is going to be -1, so just return undef.
- if (Elt == -1)
- return DAG.getUNDEF(LVT);
- return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0);
- }
- // Simplify (build_vec (ext )) to (bitcast (build_vec ))
- SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
- // We perform this optimization post type-legalization because
- // the type-legalizer often scalarizes integer-promoted vectors.
- // Performing this optimization before may create bit-casts which
- // will be type-legalized to complex code sequences.
- // We perform this optimization only before the operation legalizer because we
- // may introduce illegal operations.
- if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
- return SDValue();
- unsigned NumInScalars = N->getNumOperands();
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
- // Check to see if this is a BUILD_VECTOR of a bunch of values
- // which come from any_extend or zero_extend nodes. If so, we can create
- // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
- // optimizations. We do not handle sign-extend because we can't fill the sign
- // using shuffles.
- EVT SourceType = MVT::Other;
- bool AllAnyExt = true;
- for (unsigned i = 0; i != NumInScalars; ++i) {
- SDValue In = N->getOperand(i);
- // Ignore undef inputs.
- if (In.isUndef()) continue;
- bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND;
- bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
- // Abort if the element is not an extension.
- if (!ZeroExt && !AnyExt) {
- SourceType = MVT::Other;
- break;
- }
- // The input is a ZeroExt or AnyExt. Check the original type.
- EVT InTy = In.getOperand(0).getValueType();
- // Check that all of the widened source types are the same.
- if (SourceType == MVT::Other)
- // First time.
- SourceType = InTy;
- else if (InTy != SourceType) {
- // Multiple income types. Abort.
- SourceType = MVT::Other;
- break;
- }
- // Check if all of the extends are ANY_EXTENDs.
- AllAnyExt &= AnyExt;
- }
- // In order to have valid types, all of the inputs must be extended from the
- // same source type and all of the inputs must be any or zero extend.
- // Scalar sizes must be a power of two.
- EVT OutScalarTy = VT.getScalarType();
- bool ValidTypes = SourceType != MVT::Other &&
- isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
- isPowerOf2_32(SourceType.getSizeInBits());
- // Create a new simpler BUILD_VECTOR sequence which other optimizations can
- // turn into a single shuffle instruction.
- if (!ValidTypes)
- return SDValue();
- // If we already have a splat buildvector, then don't fold it if it means
- // introducing zeros.
- if (!AllAnyExt && DAG.isSplatValue(SDValue(N, 0), /*AllowUndefs*/ true))
- return SDValue();
- bool isLE = DAG.getDataLayout().isLittleEndian();
- unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
- assert(ElemRatio > 1 && "Invalid element size ratio");
- SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
- DAG.getConstant(0, DL, SourceType);
- unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
- SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
- // Populate the new build_vector
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
- SDValue Cast = N->getOperand(i);
- assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
- Cast.getOpcode() == ISD::ZERO_EXTEND ||
- Cast.isUndef()) && "Invalid cast opcode");
- SDValue In;
- if (Cast.isUndef())
- In = DAG.getUNDEF(SourceType);
- else
- In = Cast->getOperand(0);
- unsigned Index = isLE ? (i * ElemRatio) :
- (i * ElemRatio + (ElemRatio - 1));
- assert(Index < Ops.size() && "Invalid index");
- Ops[Index] = In;
- }
- // The type of the new BUILD_VECTOR node.
- EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
- assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
- "Invalid vector size");
- // Check if the new vector type is legal.
- if (!isTypeLegal(VecVT) ||
- (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) &&
- TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)))
- return SDValue();
- // Make the new BUILD_VECTOR.
- SDValue BV = DAG.getBuildVector(VecVT, DL, Ops);
- // The new BUILD_VECTOR node has the potential to be further optimized.
- AddToWorklist(BV.getNode());
- // Bitcast to the desired type.
- return DAG.getBitcast(VT, BV);
- }
- // Simplify (build_vec (trunc $1)
- // (trunc (srl $1 half-width))
- // (trunc (srl $1 (2 * half-width))))
- // to (bitcast $1)
- SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) {
- assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector");
- // Only for little endian
- if (!DAG.getDataLayout().isLittleEndian())
- return SDValue();
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
- EVT OutScalarTy = VT.getScalarType();
- uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits();
- // Only for power of two types to be sure that bitcast works well
- if (!isPowerOf2_64(ScalarTypeBitsize))
- return SDValue();
- unsigned NumInScalars = N->getNumOperands();
- // Look through bitcasts
- auto PeekThroughBitcast = [](SDValue Op) {
- if (Op.getOpcode() == ISD::BITCAST)
- return Op.getOperand(0);
- return Op;
- };
- // The source value where all the parts are extracted.
- SDValue Src;
- for (unsigned i = 0; i != NumInScalars; ++i) {
- SDValue In = PeekThroughBitcast(N->getOperand(i));
- // Ignore undef inputs.
- if (In.isUndef()) continue;
- if (In.getOpcode() != ISD::TRUNCATE)
- return SDValue();
- In = PeekThroughBitcast(In.getOperand(0));
- if (In.getOpcode() != ISD::SRL) {
- // For now only build_vec without shuffling, handle shifts here in the
- // future.
- if (i != 0)
- return SDValue();
- Src = In;
- } else {
- // In is SRL
- SDValue part = PeekThroughBitcast(In.getOperand(0));
- if (!Src) {
- Src = part;
- } else if (Src != part) {
- // Vector parts do not stem from the same variable
- return SDValue();
- }
- SDValue ShiftAmtVal = In.getOperand(1);
- if (!isa<ConstantSDNode>(ShiftAmtVal))
- return SDValue();
- uint64_t ShiftAmt = In.getConstantOperandVal(1);
- // The extracted value is not extracted at the right position
- if (ShiftAmt != i * ScalarTypeBitsize)
- return SDValue();
- }
- }
- // Only cast if the size is the same
- if (Src.getValueType().getSizeInBits() != VT.getSizeInBits())
- return SDValue();
- return DAG.getBitcast(VT, Src);
- }
- SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N,
- ArrayRef<int> VectorMask,
- SDValue VecIn1, SDValue VecIn2,
- unsigned LeftIdx, bool DidSplitVec) {
- SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL);
- EVT VT = N->getValueType(0);
- EVT InVT1 = VecIn1.getValueType();
- EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1;
- unsigned NumElems = VT.getVectorNumElements();
- unsigned ShuffleNumElems = NumElems;
- // If we artificially split a vector in two already, then the offsets in the
- // operands will all be based off of VecIn1, even those in VecIn2.
- unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements();
- uint64_t VTSize = VT.getFixedSizeInBits();
- uint64_t InVT1Size = InVT1.getFixedSizeInBits();
- uint64_t InVT2Size = InVT2.getFixedSizeInBits();
- assert(InVT2Size <= InVT1Size &&
- "Inputs must be sorted to be in non-increasing vector size order.");
- // We can't generate a shuffle node with mismatched input and output types.
- // Try to make the types match the type of the output.
- if (InVT1 != VT || InVT2 != VT) {
- if ((VTSize % InVT1Size == 0) && InVT1 == InVT2) {
- // If the output vector length is a multiple of both input lengths,
- // we can concatenate them and pad the rest with undefs.
- unsigned NumConcats = VTSize / InVT1Size;
- assert(NumConcats >= 2 && "Concat needs at least two inputs!");
- SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1));
- ConcatOps[0] = VecIn1;
- ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1);
- VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
- VecIn2 = SDValue();
- } else if (InVT1Size == VTSize * 2) {
- if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems))
- return SDValue();
- if (!VecIn2.getNode()) {
- // If we only have one input vector, and it's twice the size of the
- // output, split it in two.
- VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1,
- DAG.getVectorIdxConstant(NumElems, DL));
- VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx);
- // Since we now have shorter input vectors, adjust the offset of the
- // second vector's start.
- Vec2Offset = NumElems;
- } else {
- assert(InVT2Size <= InVT1Size &&
- "Second input is not going to be larger than the first one.");
- // VecIn1 is wider than the output, and we have another, possibly
- // smaller input. Pad the smaller input with undefs, shuffle at the
- // input vector width, and extract the output.
- // The shuffle type is different than VT, so check legality again.
- if (LegalOperations &&
- !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1))
- return SDValue();
- // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
- // lower it back into a BUILD_VECTOR. So if the inserted type is
- // illegal, don't even try.
- if (InVT1 != InVT2) {
- if (!TLI.isTypeLegal(InVT2))
- return SDValue();
- VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1,
- DAG.getUNDEF(InVT1), VecIn2, ZeroIdx);
- }
- ShuffleNumElems = NumElems * 2;
- }
- } else if (InVT2Size * 2 == VTSize && InVT1Size == VTSize) {
- SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2));
- ConcatOps[0] = VecIn2;
- VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
- } else if (InVT1Size / VTSize > 1 && InVT1Size % VTSize == 0) {
- if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems) ||
- !TLI.isTypeLegal(InVT1) || !TLI.isTypeLegal(InVT2))
- return SDValue();
- // If dest vector has less than two elements, then use shuffle and extract
- // from larger regs will cost even more.
- if (VT.getVectorNumElements() <= 2 || !VecIn2.getNode())
- return SDValue();
- assert(InVT2Size <= InVT1Size &&
- "Second input is not going to be larger than the first one.");
- // VecIn1 is wider than the output, and we have another, possibly
- // smaller input. Pad the smaller input with undefs, shuffle at the
- // input vector width, and extract the output.
- // The shuffle type is different than VT, so check legality again.
- if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1))
- return SDValue();
- if (InVT1 != InVT2) {
- VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1,
- DAG.getUNDEF(InVT1), VecIn2, ZeroIdx);
- }
- ShuffleNumElems = InVT1Size / VTSize * NumElems;
- } else {
- // TODO: Support cases where the length mismatch isn't exactly by a
- // factor of 2.
- // TODO: Move this check upwards, so that if we have bad type
- // mismatches, we don't create any DAG nodes.
- return SDValue();
- }
- }
- // Initialize mask to undef.
- SmallVector<int, 8> Mask(ShuffleNumElems, -1);
- // Only need to run up to the number of elements actually used, not the
- // total number of elements in the shuffle - if we are shuffling a wider
- // vector, the high lanes should be set to undef.
- for (unsigned i = 0; i != NumElems; ++i) {
- if (VectorMask[i] <= 0)
- continue;
- unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1);
- if (VectorMask[i] == (int)LeftIdx) {
- Mask[i] = ExtIndex;
- } else if (VectorMask[i] == (int)LeftIdx + 1) {
- Mask[i] = Vec2Offset + ExtIndex;
- }
- }
- // The type the input vectors may have changed above.
- InVT1 = VecIn1.getValueType();
- // If we already have a VecIn2, it should have the same type as VecIn1.
- // If we don't, get an undef/zero vector of the appropriate type.
- VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1);
- assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type.");
- SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask);
- if (ShuffleNumElems > NumElems)
- Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx);
- return Shuffle;
- }
- static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) {
- assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector");
- // First, determine where the build vector is not undef.
- // TODO: We could extend this to handle zero elements as well as undefs.
- int NumBVOps = BV->getNumOperands();
- int ZextElt = -1;
- for (int i = 0; i != NumBVOps; ++i) {
- SDValue Op = BV->getOperand(i);
- if (Op.isUndef())
- continue;
- if (ZextElt == -1)
- ZextElt = i;
- else
- return SDValue();
- }
- // Bail out if there's no non-undef element.
- if (ZextElt == -1)
- return SDValue();
- // The build vector contains some number of undef elements and exactly
- // one other element. That other element must be a zero-extended scalar
- // extracted from a vector at a constant index to turn this into a shuffle.
- // Also, require that the build vector does not implicitly truncate/extend
- // its elements.
- // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
- EVT VT = BV->getValueType(0);
- SDValue Zext = BV->getOperand(ZextElt);
- if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() ||
- Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
- !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) ||
- Zext.getValueSizeInBits() != VT.getScalarSizeInBits())
- return SDValue();
- // The zero-extend must be a multiple of the source size, and we must be
- // building a vector of the same size as the source of the extract element.
- SDValue Extract = Zext.getOperand(0);
- unsigned DestSize = Zext.getValueSizeInBits();
- unsigned SrcSize = Extract.getValueSizeInBits();
- if (DestSize % SrcSize != 0 ||
- Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits())
- return SDValue();
- // Create a shuffle mask that will combine the extracted element with zeros
- // and undefs.
- int ZextRatio = DestSize / SrcSize;
- int NumMaskElts = NumBVOps * ZextRatio;
- SmallVector<int, 32> ShufMask(NumMaskElts, -1);
- for (int i = 0; i != NumMaskElts; ++i) {
- if (i / ZextRatio == ZextElt) {
- // The low bits of the (potentially translated) extracted element map to
- // the source vector. The high bits map to zero. We will use a zero vector
- // as the 2nd source operand of the shuffle, so use the 1st element of
- // that vector (mask value is number-of-elements) for the high bits.
- if (i % ZextRatio == 0)
- ShufMask[i] = Extract.getConstantOperandVal(1);
- else
- ShufMask[i] = NumMaskElts;
- }
- // Undef elements of the build vector remain undef because we initialize
- // the shuffle mask with -1.
- }
- // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
- // bitcast (shuffle V, ZeroVec, VectorMask)
- SDLoc DL(BV);
- EVT VecVT = Extract.getOperand(0).getValueType();
- SDValue ZeroVec = DAG.getConstant(0, DL, VecVT);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0),
- ZeroVec, ShufMask, DAG);
- if (!Shuf)
- return SDValue();
- return DAG.getBitcast(VT, Shuf);
- }
- // FIXME: promote to STLExtras.
- template <typename R, typename T>
- static auto getFirstIndexOf(R &&Range, const T &Val) {
- auto I = find(Range, Val);
- if (I == Range.end())
- return static_cast<decltype(std::distance(Range.begin(), I))>(-1);
- return std::distance(Range.begin(), I);
- }
- // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
- // operations. If the types of the vectors we're extracting from allow it,
- // turn this into a vector_shuffle node.
- SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) {
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
- // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
- if (!isTypeLegal(VT))
- return SDValue();
- if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG))
- return V;
- // May only combine to shuffle after legalize if shuffle is legal.
- if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
- return SDValue();
- bool UsesZeroVector = false;
- unsigned NumElems = N->getNumOperands();
- // Record, for each element of the newly built vector, which input vector
- // that element comes from. -1 stands for undef, 0 for the zero vector,
- // and positive values for the input vectors.
- // VectorMask maps each element to its vector number, and VecIn maps vector
- // numbers to their initial SDValues.
- SmallVector<int, 8> VectorMask(NumElems, -1);
- SmallVector<SDValue, 8> VecIn;
- VecIn.push_back(SDValue());
- for (unsigned i = 0; i != NumElems; ++i) {
- SDValue Op = N->getOperand(i);
- if (Op.isUndef())
- continue;
- // See if we can use a blend with a zero vector.
- // TODO: Should we generalize this to a blend with an arbitrary constant
- // vector?
- if (isNullConstant(Op) || isNullFPConstant(Op)) {
- UsesZeroVector = true;
- VectorMask[i] = 0;
- continue;
- }
- // Not an undef or zero. If the input is something other than an
- // EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
- if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
- !isa<ConstantSDNode>(Op.getOperand(1)))
- return SDValue();
- SDValue ExtractedFromVec = Op.getOperand(0);
- if (ExtractedFromVec.getValueType().isScalableVector())
- return SDValue();
- const APInt &ExtractIdx = Op.getConstantOperandAPInt(1);
- if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements()))
- return SDValue();
- // All inputs must have the same element type as the output.
- if (VT.getVectorElementType() !=
- ExtractedFromVec.getValueType().getVectorElementType())
- return SDValue();
- // Have we seen this input vector before?
- // The vectors are expected to be tiny (usually 1 or 2 elements), so using
- // a map back from SDValues to numbers isn't worth it.
- int Idx = getFirstIndexOf(VecIn, ExtractedFromVec);
- if (Idx == -1) { // A new source vector?
- Idx = VecIn.size();
- VecIn.push_back(ExtractedFromVec);
- }
- VectorMask[i] = Idx;
- }
- // If we didn't find at least one input vector, bail out.
- if (VecIn.size() < 2)
- return SDValue();
- // If all the Operands of BUILD_VECTOR extract from same
- // vector, then split the vector efficiently based on the maximum
- // vector access index and adjust the VectorMask and
- // VecIn accordingly.
- bool DidSplitVec = false;
- if (VecIn.size() == 2) {
- unsigned MaxIndex = 0;
- unsigned NearestPow2 = 0;
- SDValue Vec = VecIn.back();
- EVT InVT = Vec.getValueType();
- SmallVector<unsigned, 8> IndexVec(NumElems, 0);
- for (unsigned i = 0; i < NumElems; i++) {
- if (VectorMask[i] <= 0)
- continue;
- unsigned Index = N->getOperand(i).getConstantOperandVal(1);
- IndexVec[i] = Index;
- MaxIndex = std::max(MaxIndex, Index);
- }
- NearestPow2 = PowerOf2Ceil(MaxIndex);
- if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 &&
- NumElems * 2 < NearestPow2) {
- unsigned SplitSize = NearestPow2 / 2;
- EVT SplitVT = EVT::getVectorVT(*DAG.getContext(),
- InVT.getVectorElementType(), SplitSize);
- if (TLI.isTypeLegal(SplitVT) &&
- SplitSize + SplitVT.getVectorNumElements() <=
- InVT.getVectorNumElements()) {
- SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
- DAG.getVectorIdxConstant(SplitSize, DL));
- SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
- DAG.getVectorIdxConstant(0, DL));
- VecIn.pop_back();
- VecIn.push_back(VecIn1);
- VecIn.push_back(VecIn2);
- DidSplitVec = true;
- for (unsigned i = 0; i < NumElems; i++) {
- if (VectorMask[i] <= 0)
- continue;
- VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2;
- }
- }
- }
- }
- // Sort input vectors by decreasing vector element count,
- // while preserving the relative order of equally-sized vectors.
- // Note that we keep the first "implicit zero vector as-is.
- SmallVector<SDValue, 8> SortedVecIn(VecIn);
- llvm::stable_sort(MutableArrayRef<SDValue>(SortedVecIn).drop_front(),
- [](const SDValue &a, const SDValue &b) {
- return a.getValueType().getVectorNumElements() >
- b.getValueType().getVectorNumElements();
- });
- // We now also need to rebuild the VectorMask, because it referenced element
- // order in VecIn, and we just sorted them.
- for (int &SourceVectorIndex : VectorMask) {
- if (SourceVectorIndex <= 0)
- continue;
- unsigned Idx = getFirstIndexOf(SortedVecIn, VecIn[SourceVectorIndex]);
- assert(Idx > 0 && Idx < SortedVecIn.size() &&
- VecIn[SourceVectorIndex] == SortedVecIn[Idx] && "Remapping failure");
- SourceVectorIndex = Idx;
- }
- VecIn = std::move(SortedVecIn);
- // TODO: Should this fire if some of the input vectors has illegal type (like
- // it does now), or should we let legalization run its course first?
- // Shuffle phase:
- // Take pairs of vectors, and shuffle them so that the result has elements
- // from these vectors in the correct places.
- // For example, given:
- // t10: i32 = extract_vector_elt t1, Constant:i64<0>
- // t11: i32 = extract_vector_elt t2, Constant:i64<0>
- // t12: i32 = extract_vector_elt t3, Constant:i64<0>
- // t13: i32 = extract_vector_elt t1, Constant:i64<1>
- // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
- // We will generate:
- // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
- // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
- SmallVector<SDValue, 4> Shuffles;
- for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) {
- unsigned LeftIdx = 2 * In + 1;
- SDValue VecLeft = VecIn[LeftIdx];
- SDValue VecRight =
- (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue();
- if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft,
- VecRight, LeftIdx, DidSplitVec))
- Shuffles.push_back(Shuffle);
- else
- return SDValue();
- }
- // If we need the zero vector as an "ingredient" in the blend tree, add it
- // to the list of shuffles.
- if (UsesZeroVector)
- Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT)
- : DAG.getConstantFP(0.0, DL, VT));
- // If we only have one shuffle, we're done.
- if (Shuffles.size() == 1)
- return Shuffles[0];
- // Update the vector mask to point to the post-shuffle vectors.
- for (int &Vec : VectorMask)
- if (Vec == 0)
- Vec = Shuffles.size() - 1;
- else
- Vec = (Vec - 1) / 2;
- // More than one shuffle. Generate a binary tree of blends, e.g. if from
- // the previous step we got the set of shuffles t10, t11, t12, t13, we will
- // generate:
- // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
- // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
- // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
- // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
- // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
- // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
- // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
- // Make sure the initial size of the shuffle list is even.
- if (Shuffles.size() % 2)
- Shuffles.push_back(DAG.getUNDEF(VT));
- for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) {
- if (CurSize % 2) {
- Shuffles[CurSize] = DAG.getUNDEF(VT);
- CurSize++;
- }
- for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) {
- int Left = 2 * In;
- int Right = 2 * In + 1;
- SmallVector<int, 8> Mask(NumElems, -1);
- SDValue L = Shuffles[Left];
- ArrayRef<int> LMask;
- bool IsLeftShuffle = L.getOpcode() == ISD::VECTOR_SHUFFLE &&
- L.use_empty() && L.getOperand(1).isUndef() &&
- L.getOperand(0).getValueType() == L.getValueType();
- if (IsLeftShuffle) {
- LMask = cast<ShuffleVectorSDNode>(L.getNode())->getMask();
- L = L.getOperand(0);
- }
- SDValue R = Shuffles[Right];
- ArrayRef<int> RMask;
- bool IsRightShuffle = R.getOpcode() == ISD::VECTOR_SHUFFLE &&
- R.use_empty() && R.getOperand(1).isUndef() &&
- R.getOperand(0).getValueType() == R.getValueType();
- if (IsRightShuffle) {
- RMask = cast<ShuffleVectorSDNode>(R.getNode())->getMask();
- R = R.getOperand(0);
- }
- for (unsigned I = 0; I != NumElems; ++I) {
- if (VectorMask[I] == Left) {
- Mask[I] = I;
- if (IsLeftShuffle)
- Mask[I] = LMask[I];
- VectorMask[I] = In;
- } else if (VectorMask[I] == Right) {
- Mask[I] = I + NumElems;
- if (IsRightShuffle)
- Mask[I] = RMask[I] + NumElems;
- VectorMask[I] = In;
- }
- }
- Shuffles[In] = DAG.getVectorShuffle(VT, DL, L, R, Mask);
- }
- }
- return Shuffles[0];
- }
- // Try to turn a build vector of zero extends of extract vector elts into a
- // a vector zero extend and possibly an extract subvector.
- // TODO: Support sign extend?
- // TODO: Allow undef elements?
- SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) {
- if (LegalOperations)
- return SDValue();
- EVT VT = N->getValueType(0);
- bool FoundZeroExtend = false;
- SDValue Op0 = N->getOperand(0);
- auto checkElem = [&](SDValue Op) -> int64_t {
- unsigned Opc = Op.getOpcode();
- FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND);
- if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) &&
- Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
- Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0))
- if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1)))
- return C->getZExtValue();
- return -1;
- };
- // Make sure the first element matches
- // (zext (extract_vector_elt X, C))
- // Offset must be a constant multiple of the
- // known-minimum vector length of the result type.
- int64_t Offset = checkElem(Op0);
- if (Offset < 0 || (Offset % VT.getVectorNumElements()) != 0)
- return SDValue();
- unsigned NumElems = N->getNumOperands();
- SDValue In = Op0.getOperand(0).getOperand(0);
- EVT InSVT = In.getValueType().getScalarType();
- EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems);
- // Don't create an illegal input type after type legalization.
- if (LegalTypes && !TLI.isTypeLegal(InVT))
- return SDValue();
- // Ensure all the elements come from the same vector and are adjacent.
- for (unsigned i = 1; i != NumElems; ++i) {
- if ((Offset + i) != checkElem(N->getOperand(i)))
- return SDValue();
- }
- SDLoc DL(N);
- In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In,
- Op0.getOperand(0).getOperand(1));
- return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL,
- VT, In);
- }
- // If this is a very simple BUILD_VECTOR with first element being a ZERO_EXTEND,
- // and all other elements being constant zero's, granularize the BUILD_VECTOR's
- // element width, absorbing the ZERO_EXTEND, turning it into a constant zero op.
- // This patten can appear during legalization.
- //
- // NOTE: This can be generalized to allow more than a single
- // non-constant-zero op, UNDEF's, and to be KnownBits-based,
- SDValue DAGCombiner::convertBuildVecZextToBuildVecWithZeros(SDNode *N) {
- // Don't run this after legalization. Targets may have other preferences.
- if (Level >= AfterLegalizeDAG)
- return SDValue();
- // FIXME: support big-endian.
- if (DAG.getDataLayout().isBigEndian())
- return SDValue();
- EVT VT = N->getValueType(0);
- EVT OpVT = N->getOperand(0).getValueType();
- assert(!VT.isScalableVector() && "Encountered scalable BUILD_VECTOR?");
- EVT OpIntVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
- if (!TLI.isTypeLegal(OpIntVT) ||
- (LegalOperations && !TLI.isOperationLegalOrCustom(ISD::BITCAST, OpIntVT)))
- return SDValue();
- unsigned EltBitwidth = VT.getScalarSizeInBits();
- // NOTE: the actual width of operands may be wider than that!
- // Analyze all operands of this BUILD_VECTOR. What is the largest number of
- // active bits they all have? We'll want to truncate them all to that width.
- unsigned ActiveBits = 0;
- APInt KnownZeroOps(VT.getVectorNumElements(), 0);
- for (auto I : enumerate(N->ops())) {
- SDValue Op = I.value();
- // FIXME: support UNDEF elements?
- if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) {
- unsigned OpActiveBits =
- Cst->getAPIntValue().trunc(EltBitwidth).getActiveBits();
- if (OpActiveBits == 0) {
- KnownZeroOps.setBit(I.index());
- continue;
- }
- // Profitability check: don't allow non-zero constant operands.
- return SDValue();
- }
- // Profitability check: there must only be a single non-zero operand,
- // and it must be the first operand of the BUILD_VECTOR.
- if (I.index() != 0)
- return SDValue();
- // The operand must be a zero-extension itself.
- // FIXME: this could be generalized to known leading zeros check.
- if (Op.getOpcode() != ISD::ZERO_EXTEND)
- return SDValue();
- unsigned CurrActiveBits =
- Op.getOperand(0).getValueSizeInBits().getFixedValue();
- assert(!ActiveBits && "Already encountered non-constant-zero operand?");
- ActiveBits = CurrActiveBits;
- // We want to at least halve the element size.
- if (2 * ActiveBits > EltBitwidth)
- return SDValue();
- }
- // This BUILD_VECTOR must have at least one non-constant-zero operand.
- if (ActiveBits == 0)
- return SDValue();
- // We have EltBitwidth bits, the *minimal* chunk size is ActiveBits,
- // into how many chunks can we split our element width?
- EVT NewScalarIntVT, NewIntVT;
- std::optional<unsigned> Factor;
- // We can split the element into at least two chunks, but not into more
- // than |_ EltBitwidth / ActiveBits _| chunks. Find a largest split factor
- // for which the element width is a multiple of it,
- // and the resulting types/operations on that chunk width are legal.
- assert(2 * ActiveBits <= EltBitwidth &&
- "We know that half or less bits of the element are active.");
- for (unsigned Scale = EltBitwidth / ActiveBits; Scale >= 2; --Scale) {
- if (EltBitwidth % Scale != 0)
- continue;
- unsigned ChunkBitwidth = EltBitwidth / Scale;
- assert(ChunkBitwidth >= ActiveBits && "As per starting point.");
- NewScalarIntVT = EVT::getIntegerVT(*DAG.getContext(), ChunkBitwidth);
- NewIntVT = EVT::getVectorVT(*DAG.getContext(), NewScalarIntVT,
- Scale * N->getNumOperands());
- if (!TLI.isTypeLegal(NewScalarIntVT) || !TLI.isTypeLegal(NewIntVT) ||
- (LegalOperations &&
- !(TLI.isOperationLegalOrCustom(ISD::TRUNCATE, NewScalarIntVT) &&
- TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, NewIntVT))))
- continue;
- Factor = Scale;
- break;
- }
- if (!Factor)
- return SDValue();
- SDLoc DL(N);
- SDValue ZeroOp = DAG.getConstant(0, DL, NewScalarIntVT);
- // Recreate the BUILD_VECTOR, with elements now being Factor times smaller.
- SmallVector<SDValue, 16> NewOps;
- NewOps.reserve(NewIntVT.getVectorNumElements());
- for (auto I : enumerate(N->ops())) {
- SDValue Op = I.value();
- assert(!Op.isUndef() && "FIXME: after allowing UNDEF's, handle them here.");
- unsigned SrcOpIdx = I.index();
- if (KnownZeroOps[SrcOpIdx]) {
- NewOps.append(*Factor, ZeroOp);
- continue;
- }
- Op = DAG.getBitcast(OpIntVT, Op);
- Op = DAG.getNode(ISD::TRUNCATE, DL, NewScalarIntVT, Op);
- NewOps.emplace_back(Op);
- NewOps.append(*Factor - 1, ZeroOp);
- }
- assert(NewOps.size() == NewIntVT.getVectorNumElements());
- SDValue NewBV = DAG.getBuildVector(NewIntVT, DL, NewOps);
- NewBV = DAG.getBitcast(VT, NewBV);
- return NewBV;
- }
- SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
- EVT VT = N->getValueType(0);
- // A vector built entirely of undefs is undef.
- if (ISD::allOperandsUndef(N))
- return DAG.getUNDEF(VT);
- // If this is a splat of a bitcast from another vector, change to a
- // concat_vector.
- // For example:
- // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
- // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
- //
- // If X is a build_vector itself, the concat can become a larger build_vector.
- // TODO: Maybe this is useful for non-splat too?
- if (!LegalOperations) {
- if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) {
- Splat = peekThroughBitcasts(Splat);
- EVT SrcVT = Splat.getValueType();
- if (SrcVT.isVector()) {
- unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements();
- EVT NewVT = EVT::getVectorVT(*DAG.getContext(),
- SrcVT.getVectorElementType(), NumElts);
- if (!LegalTypes || TLI.isTypeLegal(NewVT)) {
- SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat);
- SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N),
- NewVT, Ops);
- return DAG.getBitcast(VT, Concat);
- }
- }
- }
- }
- // Check if we can express BUILD VECTOR via subvector extract.
- if (!LegalTypes && (N->getNumOperands() > 1)) {
- SDValue Op0 = N->getOperand(0);
- auto checkElem = [&](SDValue Op) -> uint64_t {
- if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) &&
- (Op0.getOperand(0) == Op.getOperand(0)))
- if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
- return CNode->getZExtValue();
- return -1;
- };
- int Offset = checkElem(Op0);
- for (unsigned i = 0; i < N->getNumOperands(); ++i) {
- if (Offset + i != checkElem(N->getOperand(i))) {
- Offset = -1;
- break;
- }
- }
- if ((Offset == 0) &&
- (Op0.getOperand(0).getValueType() == N->getValueType(0)))
- return Op0.getOperand(0);
- if ((Offset != -1) &&
- ((Offset % N->getValueType(0).getVectorNumElements()) ==
- 0)) // IDX must be multiple of output size.
- return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0),
- Op0.getOperand(0), Op0.getOperand(1));
- }
- if (SDValue V = convertBuildVecZextToZext(N))
- return V;
- if (SDValue V = convertBuildVecZextToBuildVecWithZeros(N))
- return V;
- if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
- return V;
- if (SDValue V = reduceBuildVecTruncToBitCast(N))
- return V;
- if (SDValue V = reduceBuildVecToShuffle(N))
- return V;
- // A splat of a single element is a SPLAT_VECTOR if supported on the target.
- // Do this late as some of the above may replace the splat.
- if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand)
- if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) {
- assert(!V.isUndef() && "Splat of undef should have been handled earlier");
- return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V);
- }
- return SDValue();
- }
- static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT OpVT = N->getOperand(0).getValueType();
- // If the operands are legal vectors, leave them alone.
- if (TLI.isTypeLegal(OpVT))
- return SDValue();
- SDLoc DL(N);
- EVT VT = N->getValueType(0);
- SmallVector<SDValue, 8> Ops;
- EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
- SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
- // Keep track of what we encounter.
- bool AnyInteger = false;
- bool AnyFP = false;
- for (const SDValue &Op : N->ops()) {
- if (ISD::BITCAST == Op.getOpcode() &&
- !Op.getOperand(0).getValueType().isVector())
- Ops.push_back(Op.getOperand(0));
- else if (ISD::UNDEF == Op.getOpcode())
- Ops.push_back(ScalarUndef);
- else
- return SDValue();
- // Note whether we encounter an integer or floating point scalar.
- // If it's neither, bail out, it could be something weird like x86mmx.
- EVT LastOpVT = Ops.back().getValueType();
- if (LastOpVT.isFloatingPoint())
- AnyFP = true;
- else if (LastOpVT.isInteger())
- AnyInteger = true;
- else
- return SDValue();
- }
- // If any of the operands is a floating point scalar bitcast to a vector,
- // use floating point types throughout, and bitcast everything.
- // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
- if (AnyFP) {
- SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits());
- ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
- if (AnyInteger) {
- for (SDValue &Op : Ops) {
- if (Op.getValueType() == SVT)
- continue;
- if (Op.isUndef())
- Op = ScalarUndef;
- else
- Op = DAG.getBitcast(SVT, Op);
- }
- }
- }
- EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
- VT.getSizeInBits() / SVT.getSizeInBits());
- return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops));
- }
- // Attempt to merge nested concat_vectors/undefs.
- // Fold concat_vectors(concat_vectors(x,y,z,w),u,u,concat_vectors(a,b,c,d))
- // --> concat_vectors(x,y,z,w,u,u,u,u,u,u,u,u,a,b,c,d)
- static SDValue combineConcatVectorOfConcatVectors(SDNode *N,
- SelectionDAG &DAG) {
- EVT VT = N->getValueType(0);
- // Ensure we're concatenating UNDEF and CONCAT_VECTORS nodes of similar types.
- EVT SubVT;
- SDValue FirstConcat;
- for (const SDValue &Op : N->ops()) {
- if (Op.isUndef())
- continue;
- if (Op.getOpcode() != ISD::CONCAT_VECTORS)
- return SDValue();
- if (!FirstConcat) {
- SubVT = Op.getOperand(0).getValueType();
- if (!DAG.getTargetLoweringInfo().isTypeLegal(SubVT))
- return SDValue();
- FirstConcat = Op;
- continue;
- }
- if (SubVT != Op.getOperand(0).getValueType())
- return SDValue();
- }
- assert(FirstConcat && "Concat of all-undefs found");
- SmallVector<SDValue> ConcatOps;
- for (const SDValue &Op : N->ops()) {
- if (Op.isUndef()) {
- ConcatOps.append(FirstConcat->getNumOperands(), DAG.getUNDEF(SubVT));
- continue;
- }
- ConcatOps.append(Op->op_begin(), Op->op_end());
- }
- return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, ConcatOps);
- }
- // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
- // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
- // most two distinct vectors the same size as the result, attempt to turn this
- // into a legal shuffle.
- static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) {
- EVT VT = N->getValueType(0);
- EVT OpVT = N->getOperand(0).getValueType();
- // We currently can't generate an appropriate shuffle for a scalable vector.
- if (VT.isScalableVector())
- return SDValue();
- int NumElts = VT.getVectorNumElements();
- int NumOpElts = OpVT.getVectorNumElements();
- SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT);
- SmallVector<int, 8> Mask;
- for (SDValue Op : N->ops()) {
- Op = peekThroughBitcasts(Op);
- // UNDEF nodes convert to UNDEF shuffle mask values.
- if (Op.isUndef()) {
- Mask.append((unsigned)NumOpElts, -1);
- continue;
- }
- if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
- return SDValue();
- // What vector are we extracting the subvector from and at what index?
- SDValue ExtVec = Op.getOperand(0);
- int ExtIdx = Op.getConstantOperandVal(1);
- // We want the EVT of the original extraction to correctly scale the
- // extraction index.
- EVT ExtVT = ExtVec.getValueType();
- ExtVec = peekThroughBitcasts(ExtVec);
- // UNDEF nodes convert to UNDEF shuffle mask values.
- if (ExtVec.isUndef()) {
- Mask.append((unsigned)NumOpElts, -1);
- continue;
- }
- // Ensure that we are extracting a subvector from a vector the same
- // size as the result.
- if (ExtVT.getSizeInBits() != VT.getSizeInBits())
- return SDValue();
- // Scale the subvector index to account for any bitcast.
- int NumExtElts = ExtVT.getVectorNumElements();
- if (0 == (NumExtElts % NumElts))
- ExtIdx /= (NumExtElts / NumElts);
- else if (0 == (NumElts % NumExtElts))
- ExtIdx *= (NumElts / NumExtElts);
- else
- return SDValue();
- // At most we can reference 2 inputs in the final shuffle.
- if (SV0.isUndef() || SV0 == ExtVec) {
- SV0 = ExtVec;
- for (int i = 0; i != NumOpElts; ++i)
- Mask.push_back(i + ExtIdx);
- } else if (SV1.isUndef() || SV1 == ExtVec) {
- SV1 = ExtVec;
- for (int i = 0; i != NumOpElts; ++i)
- Mask.push_back(i + ExtIdx + NumElts);
- } else {
- return SDValue();
- }
- }
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0),
- DAG.getBitcast(VT, SV1), Mask, DAG);
- }
- static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG) {
- unsigned CastOpcode = N->getOperand(0).getOpcode();
- switch (CastOpcode) {
- case ISD::SINT_TO_FP:
- case ISD::UINT_TO_FP:
- case ISD::FP_TO_SINT:
- case ISD::FP_TO_UINT:
- // TODO: Allow more opcodes?
- // case ISD::BITCAST:
- // case ISD::TRUNCATE:
- // case ISD::ZERO_EXTEND:
- // case ISD::SIGN_EXTEND:
- // case ISD::FP_EXTEND:
- break;
- default:
- return SDValue();
- }
- EVT SrcVT = N->getOperand(0).getOperand(0).getValueType();
- if (!SrcVT.isVector())
- return SDValue();
- // All operands of the concat must be the same kind of cast from the same
- // source type.
- SmallVector<SDValue, 4> SrcOps;
- for (SDValue Op : N->ops()) {
- if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() ||
- Op.getOperand(0).getValueType() != SrcVT)
- return SDValue();
- SrcOps.push_back(Op.getOperand(0));
- }
- // The wider cast must be supported by the target. This is unusual because
- // the operation support type parameter depends on the opcode. In addition,
- // check the other type in the cast to make sure this is really legal.
- EVT VT = N->getValueType(0);
- EVT SrcEltVT = SrcVT.getVectorElementType();
- ElementCount NumElts = SrcVT.getVectorElementCount() * N->getNumOperands();
- EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- switch (CastOpcode) {
- case ISD::SINT_TO_FP:
- case ISD::UINT_TO_FP:
- if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) ||
- !TLI.isTypeLegal(VT))
- return SDValue();
- break;
- case ISD::FP_TO_SINT:
- case ISD::FP_TO_UINT:
- if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) ||
- !TLI.isTypeLegal(ConcatSrcVT))
- return SDValue();
- break;
- default:
- llvm_unreachable("Unexpected cast opcode");
- }
- // concat (cast X), (cast Y)... -> cast (concat X, Y...)
- SDLoc DL(N);
- SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps);
- return DAG.getNode(CastOpcode, DL, VT, NewConcat);
- }
- // See if this is a simple CONCAT_VECTORS with no UNDEF operands, and if one of
- // the operands is a SHUFFLE_VECTOR, and all other operands are also operands
- // to that SHUFFLE_VECTOR, create wider SHUFFLE_VECTOR.
- static SDValue combineConcatVectorOfShuffleAndItsOperands(
- SDNode *N, SelectionDAG &DAG, const TargetLowering &TLI, bool LegalTypes,
- bool LegalOperations) {
- EVT VT = N->getValueType(0);
- EVT OpVT = N->getOperand(0).getValueType();
- if (VT.isScalableVector())
- return SDValue();
- // For now, only allow simple 2-operand concatenations.
- if (N->getNumOperands() != 2)
- return SDValue();
- // Don't create illegal types/shuffles when not allowed to.
- if ((LegalTypes && !TLI.isTypeLegal(VT)) ||
- (LegalOperations &&
- !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT)))
- return SDValue();
- // Analyze all of the operands of the CONCAT_VECTORS. Out of all of them,
- // we want to find one that is: (1) a SHUFFLE_VECTOR (2) only used by us,
- // and (3) all operands of CONCAT_VECTORS must be either that SHUFFLE_VECTOR,
- // or one of the operands of that SHUFFLE_VECTOR (but not UNDEF!).
- // (4) and for now, the SHUFFLE_VECTOR must be unary.
- ShuffleVectorSDNode *SVN = nullptr;
- for (SDValue Op : N->ops()) {
- if (auto *CurSVN = dyn_cast<ShuffleVectorSDNode>(Op);
- CurSVN && CurSVN->getOperand(1).isUndef() && N->isOnlyUserOf(CurSVN) &&
- all_of(N->ops(), [CurSVN](SDValue Op) {
- // FIXME: can we allow UNDEF operands?
- return !Op.isUndef() &&
- (Op.getNode() == CurSVN || is_contained(CurSVN->ops(), Op));
- })) {
- SVN = CurSVN;
- break;
- }
- }
- if (!SVN)
- return SDValue();
- // We are going to pad the shuffle operands, so any indice, that was picking
- // from the second operand, must be adjusted.
- SmallVector<int, 16> AdjustedMask;
- AdjustedMask.reserve(SVN->getMask().size());
- assert(SVN->getOperand(1).isUndef() && "Expected unary shuffle!");
- append_range(AdjustedMask, SVN->getMask());
- // Identity masks for the operands of the (padded) shuffle.
- SmallVector<int, 32> IdentityMask(2 * OpVT.getVectorNumElements());
- MutableArrayRef<int> FirstShufOpIdentityMask =
- MutableArrayRef<int>(IdentityMask)
- .take_front(OpVT.getVectorNumElements());
- MutableArrayRef<int> SecondShufOpIdentityMask =
- MutableArrayRef<int>(IdentityMask).take_back(OpVT.getVectorNumElements());
- std::iota(FirstShufOpIdentityMask.begin(), FirstShufOpIdentityMask.end(), 0);
- std::iota(SecondShufOpIdentityMask.begin(), SecondShufOpIdentityMask.end(),
- VT.getVectorNumElements());
- // New combined shuffle mask.
- SmallVector<int, 32> Mask;
- Mask.reserve(VT.getVectorNumElements());
- for (SDValue Op : N->ops()) {
- assert(!Op.isUndef() && "Not expecting to concatenate UNDEF.");
- if (Op.getNode() == SVN) {
- append_range(Mask, AdjustedMask);
- continue;
- }
- if (Op == SVN->getOperand(0)) {
- append_range(Mask, FirstShufOpIdentityMask);
- continue;
- }
- if (Op == SVN->getOperand(1)) {
- append_range(Mask, SecondShufOpIdentityMask);
- continue;
- }
- llvm_unreachable("Unexpected operand!");
- }
- // Don't create illegal shuffle masks.
- if (!TLI.isShuffleMaskLegal(Mask, VT))
- return SDValue();
- // Pad the shuffle operands with UNDEF.
- SDLoc dl(N);
- std::array<SDValue, 2> ShufOps;
- for (auto I : zip(SVN->ops(), ShufOps)) {
- SDValue ShufOp = std::get<0>(I);
- SDValue &NewShufOp = std::get<1>(I);
- if (ShufOp.isUndef())
- NewShufOp = DAG.getUNDEF(VT);
- else {
- SmallVector<SDValue, 2> ShufOpParts(N->getNumOperands(),
- DAG.getUNDEF(OpVT));
- ShufOpParts[0] = ShufOp;
- NewShufOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, ShufOpParts);
- }
- }
- // Finally, create the new wide shuffle.
- return DAG.getVectorShuffle(VT, dl, ShufOps[0], ShufOps[1], Mask);
- }
- SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
- // If we only have one input vector, we don't need to do any concatenation.
- if (N->getNumOperands() == 1)
- return N->getOperand(0);
- // Check if all of the operands are undefs.
- EVT VT = N->getValueType(0);
- if (ISD::allOperandsUndef(N))
- return DAG.getUNDEF(VT);
- // Optimize concat_vectors where all but the first of the vectors are undef.
- if (all_of(drop_begin(N->ops()),
- [](const SDValue &Op) { return Op.isUndef(); })) {
- SDValue In = N->getOperand(0);
- assert(In.getValueType().isVector() && "Must concat vectors");
- // If the input is a concat_vectors, just make a larger concat by padding
- // with smaller undefs.
- if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) {
- unsigned NumOps = N->getNumOperands() * In.getNumOperands();
- SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end());
- Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType()));
- return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
- }
- SDValue Scalar = peekThroughOneUseBitcasts(In);
- // concat_vectors(scalar_to_vector(scalar), undef) ->
- // scalar_to_vector(scalar)
- if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR &&
- Scalar.hasOneUse()) {
- EVT SVT = Scalar.getValueType().getVectorElementType();
- if (SVT == Scalar.getOperand(0).getValueType())
- Scalar = Scalar.getOperand(0);
- }
- // concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
- if (!Scalar.getValueType().isVector()) {
- // If the bitcast type isn't legal, it might be a trunc of a legal type;
- // look through the trunc so we can still do the transform:
- // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
- if (Scalar->getOpcode() == ISD::TRUNCATE &&
- !TLI.isTypeLegal(Scalar.getValueType()) &&
- TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
- Scalar = Scalar->getOperand(0);
- EVT SclTy = Scalar.getValueType();
- if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
- return SDValue();
- // Bail out if the vector size is not a multiple of the scalar size.
- if (VT.getSizeInBits() % SclTy.getSizeInBits())
- return SDValue();
- unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits();
- if (VNTNumElms < 2)
- return SDValue();
- EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms);
- if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
- return SDValue();
- SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar);
- return DAG.getBitcast(VT, Res);
- }
- }
- // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
- // We have already tested above for an UNDEF only concatenation.
- // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
- // -> (BUILD_VECTOR A, B, ..., C, D, ...)
- auto IsBuildVectorOrUndef = [](const SDValue &Op) {
- return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode();
- };
- if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) {
- SmallVector<SDValue, 8> Opnds;
- EVT SVT = VT.getScalarType();
- EVT MinVT = SVT;
- if (!SVT.isFloatingPoint()) {
- // If BUILD_VECTOR are from built from integer, they may have different
- // operand types. Get the smallest type and truncate all operands to it.
- bool FoundMinVT = false;
- for (const SDValue &Op : N->ops())
- if (ISD::BUILD_VECTOR == Op.getOpcode()) {
- EVT OpSVT = Op.getOperand(0).getValueType();
- MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
- FoundMinVT = true;
- }
- assert(FoundMinVT && "Concat vector type mismatch");
- }
- for (const SDValue &Op : N->ops()) {
- EVT OpVT = Op.getValueType();
- unsigned NumElts = OpVT.getVectorNumElements();
- if (ISD::UNDEF == Op.getOpcode())
- Opnds.append(NumElts, DAG.getUNDEF(MinVT));
- if (ISD::BUILD_VECTOR == Op.getOpcode()) {
- if (SVT.isFloatingPoint()) {
- assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch");
- Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
- } else {
- for (unsigned i = 0; i != NumElts; ++i)
- Opnds.push_back(
- DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
- }
- }
- }
- assert(VT.getVectorNumElements() == Opnds.size() &&
- "Concat vector type mismatch");
- return DAG.getBuildVector(VT, SDLoc(N), Opnds);
- }
- // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
- // FIXME: Add support for concat_vectors(bitcast(vec0),bitcast(vec1),...).
- if (SDValue V = combineConcatVectorOfScalars(N, DAG))
- return V;
- if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) {
- // Fold CONCAT_VECTORS of CONCAT_VECTORS (or undef) to VECTOR_SHUFFLE.
- if (SDValue V = combineConcatVectorOfConcatVectors(N, DAG))
- return V;
- // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
- if (SDValue V = combineConcatVectorOfExtracts(N, DAG))
- return V;
- }
- if (SDValue V = combineConcatVectorOfCasts(N, DAG))
- return V;
- if (SDValue V = combineConcatVectorOfShuffleAndItsOperands(
- N, DAG, TLI, LegalTypes, LegalOperations))
- return V;
- // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
- // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR
- // operands and look for a CONCAT operations that place the incoming vectors
- // at the exact same location.
- //
- // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled.
- SDValue SingleSource = SDValue();
- unsigned PartNumElem =
- N->getOperand(0).getValueType().getVectorMinNumElements();
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
- SDValue Op = N->getOperand(i);
- if (Op.isUndef())
- continue;
- // Check if this is the identity extract:
- if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
- return SDValue();
- // Find the single incoming vector for the extract_subvector.
- if (SingleSource.getNode()) {
- if (Op.getOperand(0) != SingleSource)
- return SDValue();
- } else {
- SingleSource = Op.getOperand(0);
- // Check the source type is the same as the type of the result.
- // If not, this concat may extend the vector, so we can not
- // optimize it away.
- if (SingleSource.getValueType() != N->getValueType(0))
- return SDValue();
- }
- // Check that we are reading from the identity index.
- unsigned IdentityIndex = i * PartNumElem;
- if (Op.getConstantOperandAPInt(1) != IdentityIndex)
- return SDValue();
- }
- if (SingleSource.getNode())
- return SingleSource;
- return SDValue();
- }
- // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find
- // if the subvector can be sourced for free.
- static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) {
- if (V.getOpcode() == ISD::INSERT_SUBVECTOR &&
- V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) {
- return V.getOperand(1);
- }
- auto *IndexC = dyn_cast<ConstantSDNode>(Index);
- if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS &&
- V.getOperand(0).getValueType() == SubVT &&
- (IndexC->getZExtValue() % SubVT.getVectorMinNumElements()) == 0) {
- uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorMinNumElements();
- return V.getOperand(SubIdx);
- }
- return SDValue();
- }
- static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract,
- SelectionDAG &DAG,
- bool LegalOperations) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue BinOp = Extract->getOperand(0);
- unsigned BinOpcode = BinOp.getOpcode();
- if (!TLI.isBinOp(BinOpcode) || BinOp->getNumValues() != 1)
- return SDValue();
- EVT VecVT = BinOp.getValueType();
- SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1);
- if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType())
- return SDValue();
- SDValue Index = Extract->getOperand(1);
- EVT SubVT = Extract->getValueType(0);
- if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT, LegalOperations))
- return SDValue();
- SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT);
- SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT);
- // TODO: We could handle the case where only 1 operand is being inserted by
- // creating an extract of the other operand, but that requires checking
- // number of uses and/or costs.
- if (!Sub0 || !Sub1)
- return SDValue();
- // We are inserting both operands of the wide binop only to extract back
- // to the narrow vector size. Eliminate all of the insert/extract:
- // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y
- return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1,
- BinOp->getFlags());
- }
- /// If we are extracting a subvector produced by a wide binary operator try
- /// to use a narrow binary operator and/or avoid concatenation and extraction.
- static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG,
- bool LegalOperations) {
- // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
- // some of these bailouts with other transforms.
- if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG, LegalOperations))
- return V;
- // The extract index must be a constant, so we can map it to a concat operand.
- auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
- if (!ExtractIndexC)
- return SDValue();
- // We are looking for an optionally bitcasted wide vector binary operator
- // feeding an extract subvector.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0));
- unsigned BOpcode = BinOp.getOpcode();
- if (!TLI.isBinOp(BOpcode) || BinOp->getNumValues() != 1)
- return SDValue();
- // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be
- // reduced to the unary fneg when it is visited, and we probably want to deal
- // with fneg in a target-specific way.
- if (BOpcode == ISD::FSUB) {
- auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true);
- if (C && C->getValueAPF().isNegZero())
- return SDValue();
- }
- // The binop must be a vector type, so we can extract some fraction of it.
- EVT WideBVT = BinOp.getValueType();
- // The optimisations below currently assume we are dealing with fixed length
- // vectors. It is possible to add support for scalable vectors, but at the
- // moment we've done no analysis to prove whether they are profitable or not.
- if (!WideBVT.isFixedLengthVector())
- return SDValue();
- EVT VT = Extract->getValueType(0);
- unsigned ExtractIndex = ExtractIndexC->getZExtValue();
- assert(ExtractIndex % VT.getVectorNumElements() == 0 &&
- "Extract index is not a multiple of the vector length.");
- // Bail out if this is not a proper multiple width extraction.
- unsigned WideWidth = WideBVT.getSizeInBits();
- unsigned NarrowWidth = VT.getSizeInBits();
- if (WideWidth % NarrowWidth != 0)
- return SDValue();
- // Bail out if we are extracting a fraction of a single operation. This can
- // occur because we potentially looked through a bitcast of the binop.
- unsigned NarrowingRatio = WideWidth / NarrowWidth;
- unsigned WideNumElts = WideBVT.getVectorNumElements();
- if (WideNumElts % NarrowingRatio != 0)
- return SDValue();
- // Bail out if the target does not support a narrower version of the binop.
- EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(),
- WideNumElts / NarrowingRatio);
- if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT))
- return SDValue();
- // If extraction is cheap, we don't need to look at the binop operands
- // for concat ops. The narrow binop alone makes this transform profitable.
- // We can't just reuse the original extract index operand because we may have
- // bitcasted.
- unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements();
- unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements();
- if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) &&
- BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) {
- // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
- SDLoc DL(Extract);
- SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL);
- SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
- BinOp.getOperand(0), NewExtIndex);
- SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
- BinOp.getOperand(1), NewExtIndex);
- SDValue NarrowBinOp =
- DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, BinOp->getFlags());
- return DAG.getBitcast(VT, NarrowBinOp);
- }
- // Only handle the case where we are doubling and then halving. A larger ratio
- // may require more than two narrow binops to replace the wide binop.
- if (NarrowingRatio != 2)
- return SDValue();
- // TODO: The motivating case for this transform is an x86 AVX1 target. That
- // target has temptingly almost legal versions of bitwise logic ops in 256-bit
- // flavors, but no other 256-bit integer support. This could be extended to
- // handle any binop, but that may require fixing/adding other folds to avoid
- // codegen regressions.
- if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR)
- return SDValue();
- // We need at least one concatenation operation of a binop operand to make
- // this transform worthwhile. The concat must double the input vector sizes.
- auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue {
- if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2)
- return V.getOperand(ConcatOpNum);
- return SDValue();
- };
- SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0)));
- SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1)));
- if (SubVecL || SubVecR) {
- // If a binop operand was not the result of a concat, we must extract a
- // half-sized operand for our new narrow binop:
- // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
- // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC)
- // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN
- SDLoc DL(Extract);
- SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL);
- SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL)
- : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
- BinOp.getOperand(0), IndexC);
- SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR)
- : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
- BinOp.getOperand(1), IndexC);
- SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y);
- return DAG.getBitcast(VT, NarrowBinOp);
- }
- return SDValue();
- }
- /// If we are extracting a subvector from a wide vector load, convert to a
- /// narrow load to eliminate the extraction:
- /// (extract_subvector (load wide vector)) --> (load narrow vector)
- static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) {
- // TODO: Add support for big-endian. The offset calculation must be adjusted.
- if (DAG.getDataLayout().isBigEndian())
- return SDValue();
- auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0));
- if (!Ld || Ld->getExtensionType() || !Ld->isSimple())
- return SDValue();
- // Allow targets to opt-out.
- EVT VT = Extract->getValueType(0);
- // We can only create byte sized loads.
- if (!VT.isByteSized())
- return SDValue();
- unsigned Index = Extract->getConstantOperandVal(1);
- unsigned NumElts = VT.getVectorMinNumElements();
- // The definition of EXTRACT_SUBVECTOR states that the index must be a
- // multiple of the minimum number of elements in the result type.
- assert(Index % NumElts == 0 && "The extract subvector index is not a "
- "multiple of the result's element count");
- // It's fine to use TypeSize here as we know the offset will not be negative.
- TypeSize Offset = VT.getStoreSize() * (Index / NumElts);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT))
- return SDValue();
- // The narrow load will be offset from the base address of the old load if
- // we are extracting from something besides index 0 (little-endian).
- SDLoc DL(Extract);
- // TODO: Use "BaseIndexOffset" to make this more effective.
- SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), Offset, DL);
- uint64_t StoreSize = MemoryLocation::getSizeOrUnknown(VT.getStoreSize());
- MachineFunction &MF = DAG.getMachineFunction();
- MachineMemOperand *MMO;
- if (Offset.isScalable()) {
- MachinePointerInfo MPI =
- MachinePointerInfo(Ld->getPointerInfo().getAddrSpace());
- MMO = MF.getMachineMemOperand(Ld->getMemOperand(), MPI, StoreSize);
- } else
- MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset.getFixedValue(),
- StoreSize);
- SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO);
- DAG.makeEquivalentMemoryOrdering(Ld, NewLd);
- return NewLd;
- }
- /// Given EXTRACT_SUBVECTOR(VECTOR_SHUFFLE(Op0, Op1, Mask)),
- /// try to produce VECTOR_SHUFFLE(EXTRACT_SUBVECTOR(Op?, ?),
- /// EXTRACT_SUBVECTOR(Op?, ?),
- /// Mask'))
- /// iff it is legal and profitable to do so. Notably, the trimmed mask
- /// (containing only the elements that are extracted)
- /// must reference at most two subvectors.
- static SDValue foldExtractSubvectorFromShuffleVector(SDNode *N,
- SelectionDAG &DAG,
- const TargetLowering &TLI,
- bool LegalOperations) {
- assert(N->getOpcode() == ISD::EXTRACT_SUBVECTOR &&
- "Must only be called on EXTRACT_SUBVECTOR's");
- SDValue N0 = N->getOperand(0);
- // Only deal with non-scalable vectors.
- EVT NarrowVT = N->getValueType(0);
- EVT WideVT = N0.getValueType();
- if (!NarrowVT.isFixedLengthVector() || !WideVT.isFixedLengthVector())
- return SDValue();
- // The operand must be a shufflevector.
- auto *WideShuffleVector = dyn_cast<ShuffleVectorSDNode>(N0);
- if (!WideShuffleVector)
- return SDValue();
- // The old shuffleneeds to go away.
- if (!WideShuffleVector->hasOneUse())
- return SDValue();
- // And the narrow shufflevector that we'll form must be legal.
- if (LegalOperations &&
- !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, NarrowVT))
- return SDValue();
- uint64_t FirstExtractedEltIdx = N->getConstantOperandVal(1);
- int NumEltsExtracted = NarrowVT.getVectorNumElements();
- assert((FirstExtractedEltIdx % NumEltsExtracted) == 0 &&
- "Extract index is not a multiple of the output vector length.");
- int WideNumElts = WideVT.getVectorNumElements();
- SmallVector<int, 16> NewMask;
- NewMask.reserve(NumEltsExtracted);
- SmallSetVector<std::pair<SDValue /*Op*/, int /*SubvectorIndex*/>, 2>
- DemandedSubvectors;
- // Try to decode the wide mask into narrow mask from at most two subvectors.
- for (int M : WideShuffleVector->getMask().slice(FirstExtractedEltIdx,
- NumEltsExtracted)) {
- assert((M >= -1) && (M < (2 * WideNumElts)) &&
- "Out-of-bounds shuffle mask?");
- if (M < 0) {
- // Does not depend on operands, does not require adjustment.
- NewMask.emplace_back(M);
- continue;
- }
- // From which operand of the shuffle does this shuffle mask element pick?
- int WideShufOpIdx = M / WideNumElts;
- // Which element of that operand is picked?
- int OpEltIdx = M % WideNumElts;
- assert((OpEltIdx + WideShufOpIdx * WideNumElts) == M &&
- "Shuffle mask vector decomposition failure.");
- // And which NumEltsExtracted-sized subvector of that operand is that?
- int OpSubvecIdx = OpEltIdx / NumEltsExtracted;
- // And which element within that subvector of that operand is that?
- int OpEltIdxInSubvec = OpEltIdx % NumEltsExtracted;
- assert((OpEltIdxInSubvec + OpSubvecIdx * NumEltsExtracted) == OpEltIdx &&
- "Shuffle mask subvector decomposition failure.");
- assert((OpEltIdxInSubvec + OpSubvecIdx * NumEltsExtracted +
- WideShufOpIdx * WideNumElts) == M &&
- "Shuffle mask full decomposition failure.");
- SDValue Op = WideShuffleVector->getOperand(WideShufOpIdx);
- if (Op.isUndef()) {
- // Picking from an undef operand. Let's adjust mask instead.
- NewMask.emplace_back(-1);
- continue;
- }
- // Profitability check: only deal with extractions from the first subvector.
- if (OpSubvecIdx != 0)
- return SDValue();
- const std::pair<SDValue, int> DemandedSubvector =
- std::make_pair(Op, OpSubvecIdx);
- if (DemandedSubvectors.insert(DemandedSubvector)) {
- if (DemandedSubvectors.size() > 2)
- return SDValue(); // We can't handle more than two subvectors.
- // How many elements into the WideVT does this subvector start?
- int Index = NumEltsExtracted * OpSubvecIdx;
- // Bail out if the extraction isn't going to be cheap.
- if (!TLI.isExtractSubvectorCheap(NarrowVT, WideVT, Index))
- return SDValue();
- }
- // Ok, but from which operand of the new shuffle will this element pick?
- int NewOpIdx =
- getFirstIndexOf(DemandedSubvectors.getArrayRef(), DemandedSubvector);
- assert((NewOpIdx == 0 || NewOpIdx == 1) && "Unexpected operand index.");
- int AdjM = OpEltIdxInSubvec + NewOpIdx * NumEltsExtracted;
- NewMask.emplace_back(AdjM);
- }
- assert(NewMask.size() == (unsigned)NumEltsExtracted && "Produced bad mask.");
- assert(DemandedSubvectors.size() <= 2 &&
- "Should have ended up demanding at most two subvectors.");
- // Did we discover that the shuffle does not actually depend on operands?
- if (DemandedSubvectors.empty())
- return DAG.getUNDEF(NarrowVT);
- // We still perform the exact same EXTRACT_SUBVECTOR, just on different
- // operand[s]/index[es], so there is no point in checking for it's legality.
- // Do not turn a legal shuffle into an illegal one.
- if (TLI.isShuffleMaskLegal(WideShuffleVector->getMask(), WideVT) &&
- !TLI.isShuffleMaskLegal(NewMask, NarrowVT))
- return SDValue();
- SDLoc DL(N);
- SmallVector<SDValue, 2> NewOps;
- for (const std::pair<SDValue /*Op*/, int /*SubvectorIndex*/>
- &DemandedSubvector : DemandedSubvectors) {
- // How many elements into the WideVT does this subvector start?
- int Index = NumEltsExtracted * DemandedSubvector.second;
- SDValue IndexC = DAG.getVectorIdxConstant(Index, DL);
- NewOps.emplace_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowVT,
- DemandedSubvector.first, IndexC));
- }
- assert((NewOps.size() == 1 || NewOps.size() == 2) &&
- "Should end up with either one or two ops");
- // If we ended up with only one operand, pad with an undef.
- if (NewOps.size() == 1)
- NewOps.emplace_back(DAG.getUNDEF(NarrowVT));
- return DAG.getVectorShuffle(NarrowVT, DL, NewOps[0], NewOps[1], NewMask);
- }
- SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) {
- EVT NVT = N->getValueType(0);
- SDValue V = N->getOperand(0);
- uint64_t ExtIdx = N->getConstantOperandVal(1);
- // Extract from UNDEF is UNDEF.
- if (V.isUndef())
- return DAG.getUNDEF(NVT);
- if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT))
- if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG))
- return NarrowLoad;
- // Combine an extract of an extract into a single extract_subvector.
- // ext (ext X, C), 0 --> ext X, C
- if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) {
- if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(),
- V.getConstantOperandVal(1)) &&
- TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) {
- return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0),
- V.getOperand(1));
- }
- }
- // ty1 extract_vector(ty2 splat(V))) -> ty1 splat(V)
- if (V.getOpcode() == ISD::SPLAT_VECTOR)
- if (DAG.isConstantValueOfAnyType(V.getOperand(0)) || V.hasOneUse())
- if (!LegalOperations || TLI.isOperationLegal(ISD::SPLAT_VECTOR, NVT))
- return DAG.getSplatVector(NVT, SDLoc(N), V.getOperand(0));
- // Try to move vector bitcast after extract_subv by scaling extraction index:
- // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index')
- if (V.getOpcode() == ISD::BITCAST &&
- V.getOperand(0).getValueType().isVector() &&
- (!LegalOperations || TLI.isOperationLegal(ISD::BITCAST, NVT))) {
- SDValue SrcOp = V.getOperand(0);
- EVT SrcVT = SrcOp.getValueType();
- unsigned SrcNumElts = SrcVT.getVectorMinNumElements();
- unsigned DestNumElts = V.getValueType().getVectorMinNumElements();
- if ((SrcNumElts % DestNumElts) == 0) {
- unsigned SrcDestRatio = SrcNumElts / DestNumElts;
- ElementCount NewExtEC = NVT.getVectorElementCount() * SrcDestRatio;
- EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
- NewExtEC);
- if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) {
- SDLoc DL(N);
- SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL);
- SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT,
- V.getOperand(0), NewIndex);
- return DAG.getBitcast(NVT, NewExtract);
- }
- }
- if ((DestNumElts % SrcNumElts) == 0) {
- unsigned DestSrcRatio = DestNumElts / SrcNumElts;
- if (NVT.getVectorElementCount().isKnownMultipleOf(DestSrcRatio)) {
- ElementCount NewExtEC =
- NVT.getVectorElementCount().divideCoefficientBy(DestSrcRatio);
- EVT ScalarVT = SrcVT.getScalarType();
- if ((ExtIdx % DestSrcRatio) == 0) {
- SDLoc DL(N);
- unsigned IndexValScaled = ExtIdx / DestSrcRatio;
- EVT NewExtVT =
- EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtEC);
- if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) {
- SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL);
- SDValue NewExtract =
- DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT,
- V.getOperand(0), NewIndex);
- return DAG.getBitcast(NVT, NewExtract);
- }
- if (NewExtEC.isScalar() &&
- TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, ScalarVT)) {
- SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL);
- SDValue NewExtract =
- DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT,
- V.getOperand(0), NewIndex);
- return DAG.getBitcast(NVT, NewExtract);
- }
- }
- }
- }
- }
- if (V.getOpcode() == ISD::CONCAT_VECTORS) {
- unsigned ExtNumElts = NVT.getVectorMinNumElements();
- EVT ConcatSrcVT = V.getOperand(0).getValueType();
- assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() &&
- "Concat and extract subvector do not change element type");
- assert((ExtIdx % ExtNumElts) == 0 &&
- "Extract index is not a multiple of the input vector length.");
- unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorMinNumElements();
- unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts;
- // If the concatenated source types match this extract, it's a direct
- // simplification:
- // extract_subvec (concat V1, V2, ...), i --> Vi
- if (NVT.getVectorElementCount() == ConcatSrcVT.getVectorElementCount())
- return V.getOperand(ConcatOpIdx);
- // If the concatenated source vectors are a multiple length of this extract,
- // then extract a fraction of one of those source vectors directly from a
- // concat operand. Example:
- // v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 -->
- // v2i8 extract_subvec v8i8 Y, 6
- if (NVT.isFixedLengthVector() && ConcatSrcVT.isFixedLengthVector() &&
- ConcatSrcNumElts % ExtNumElts == 0) {
- SDLoc DL(N);
- unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts;
- assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts &&
- "Trying to extract from >1 concat operand?");
- assert(NewExtIdx % ExtNumElts == 0 &&
- "Extract index is not a multiple of the input vector length.");
- SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL);
- return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT,
- V.getOperand(ConcatOpIdx), NewIndexC);
- }
- }
- if (SDValue V =
- foldExtractSubvectorFromShuffleVector(N, DAG, TLI, LegalOperations))
- return V;
- V = peekThroughBitcasts(V);
- // If the input is a build vector. Try to make a smaller build vector.
- if (V.getOpcode() == ISD::BUILD_VECTOR) {
- EVT InVT = V.getValueType();
- unsigned ExtractSize = NVT.getSizeInBits();
- unsigned EltSize = InVT.getScalarSizeInBits();
- // Only do this if we won't split any elements.
- if (ExtractSize % EltSize == 0) {
- unsigned NumElems = ExtractSize / EltSize;
- EVT EltVT = InVT.getVectorElementType();
- EVT ExtractVT =
- NumElems == 1 ? EltVT
- : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems);
- if ((Level < AfterLegalizeDAG ||
- (NumElems == 1 ||
- TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) &&
- (!LegalTypes || TLI.isTypeLegal(ExtractVT))) {
- unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize;
- if (NumElems == 1) {
- SDValue Src = V->getOperand(IdxVal);
- if (EltVT != Src.getValueType())
- Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src);
- return DAG.getBitcast(NVT, Src);
- }
- // Extract the pieces from the original build_vector.
- SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N),
- V->ops().slice(IdxVal, NumElems));
- return DAG.getBitcast(NVT, BuildVec);
- }
- }
- }
- if (V.getOpcode() == ISD::INSERT_SUBVECTOR) {
- // Handle only simple case where vector being inserted and vector
- // being extracted are of same size.
- EVT SmallVT = V.getOperand(1).getValueType();
- if (!NVT.bitsEq(SmallVT))
- return SDValue();
- // Combine:
- // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
- // Into:
- // indices are equal or bit offsets are equal => V1
- // otherwise => (extract_subvec V1, ExtIdx)
- uint64_t InsIdx = V.getConstantOperandVal(2);
- if (InsIdx * SmallVT.getScalarSizeInBits() ==
- ExtIdx * NVT.getScalarSizeInBits()) {
- if (LegalOperations && !TLI.isOperationLegal(ISD::BITCAST, NVT))
- return SDValue();
- return DAG.getBitcast(NVT, V.getOperand(1));
- }
- return DAG.getNode(
- ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT,
- DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)),
- N->getOperand(1));
- }
- if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG, LegalOperations))
- return NarrowBOp;
- if (SimplifyDemandedVectorElts(SDValue(N, 0)))
- return SDValue(N, 0);
- return SDValue();
- }
- /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles
- /// followed by concatenation. Narrow vector ops may have better performance
- /// than wide ops, and this can unlock further narrowing of other vector ops.
- /// Targets can invert this transform later if it is not profitable.
- static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf,
- SelectionDAG &DAG) {
- SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1);
- if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 ||
- N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 ||
- !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef())
- return SDValue();
- // Split the wide shuffle mask into halves. Any mask element that is accessing
- // operand 1 is offset down to account for narrowing of the vectors.
- ArrayRef<int> Mask = Shuf->getMask();
- EVT VT = Shuf->getValueType(0);
- unsigned NumElts = VT.getVectorNumElements();
- unsigned HalfNumElts = NumElts / 2;
- SmallVector<int, 16> Mask0(HalfNumElts, -1);
- SmallVector<int, 16> Mask1(HalfNumElts, -1);
- for (unsigned i = 0; i != NumElts; ++i) {
- if (Mask[i] == -1)
- continue;
- // If we reference the upper (undef) subvector then the element is undef.
- if ((Mask[i] % NumElts) >= HalfNumElts)
- continue;
- int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts;
- if (i < HalfNumElts)
- Mask0[i] = M;
- else
- Mask1[i - HalfNumElts] = M;
- }
- // Ask the target if this is a valid transform.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
- HalfNumElts);
- if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) ||
- !TLI.isShuffleMaskLegal(Mask1, HalfVT))
- return SDValue();
- // shuffle (concat X, undef), (concat Y, undef), Mask -->
- // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
- SDValue X = N0.getOperand(0), Y = N1.getOperand(0);
- SDLoc DL(Shuf);
- SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0);
- SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1);
- return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1);
- }
- // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
- // or turn a shuffle of a single concat into simpler shuffle then concat.
- static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
- EVT VT = N->getValueType(0);
- unsigned NumElts = VT.getVectorNumElements();
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
- ArrayRef<int> Mask = SVN->getMask();
- SmallVector<SDValue, 4> Ops;
- EVT ConcatVT = N0.getOperand(0).getValueType();
- unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
- unsigned NumConcats = NumElts / NumElemsPerConcat;
- auto IsUndefMaskElt = [](int i) { return i == -1; };
- // Special case: shuffle(concat(A,B)) can be more efficiently represented
- // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
- // half vector elements.
- if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() &&
- llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat),
- IsUndefMaskElt)) {
- N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0),
- N0.getOperand(1),
- Mask.slice(0, NumElemsPerConcat));
- N1 = DAG.getUNDEF(ConcatVT);
- return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
- }
- // Look at every vector that's inserted. We're looking for exact
- // subvector-sized copies from a concatenated vector
- for (unsigned I = 0; I != NumConcats; ++I) {
- unsigned Begin = I * NumElemsPerConcat;
- ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat);
- // Make sure we're dealing with a copy.
- if (llvm::all_of(SubMask, IsUndefMaskElt)) {
- Ops.push_back(DAG.getUNDEF(ConcatVT));
- continue;
- }
- int OpIdx = -1;
- for (int i = 0; i != (int)NumElemsPerConcat; ++i) {
- if (IsUndefMaskElt(SubMask[i]))
- continue;
- if ((SubMask[i] % (int)NumElemsPerConcat) != i)
- return SDValue();
- int EltOpIdx = SubMask[i] / NumElemsPerConcat;
- if (0 <= OpIdx && EltOpIdx != OpIdx)
- return SDValue();
- OpIdx = EltOpIdx;
- }
- assert(0 <= OpIdx && "Unknown concat_vectors op");
- if (OpIdx < (int)N0.getNumOperands())
- Ops.push_back(N0.getOperand(OpIdx));
- else
- Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands()));
- }
- return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
- }
- // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
- // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
- //
- // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
- // a simplification in some sense, but it isn't appropriate in general: some
- // BUILD_VECTORs are substantially cheaper than others. The general case
- // of a BUILD_VECTOR requires inserting each element individually (or
- // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
- // all constants is a single constant pool load. A BUILD_VECTOR where each
- // element is identical is a splat. A BUILD_VECTOR where most of the operands
- // are undef lowers to a small number of element insertions.
- //
- // To deal with this, we currently use a bunch of mostly arbitrary heuristics.
- // We don't fold shuffles where one side is a non-zero constant, and we don't
- // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
- // non-constant operands. This seems to work out reasonably well in practice.
- static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN,
- SelectionDAG &DAG,
- const TargetLowering &TLI) {
- EVT VT = SVN->getValueType(0);
- unsigned NumElts = VT.getVectorNumElements();
- SDValue N0 = SVN->getOperand(0);
- SDValue N1 = SVN->getOperand(1);
- if (!N0->hasOneUse())
- return SDValue();
- // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
- // discussed above.
- if (!N1.isUndef()) {
- if (!N1->hasOneUse())
- return SDValue();
- bool N0AnyConst = isAnyConstantBuildVector(N0);
- bool N1AnyConst = isAnyConstantBuildVector(N1);
- if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode()))
- return SDValue();
- if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode()))
- return SDValue();
- }
- // If both inputs are splats of the same value then we can safely merge this
- // to a single BUILD_VECTOR with undef elements based on the shuffle mask.
- bool IsSplat = false;
- auto *BV0 = dyn_cast<BuildVectorSDNode>(N0);
- auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
- if (BV0 && BV1)
- if (SDValue Splat0 = BV0->getSplatValue())
- IsSplat = (Splat0 == BV1->getSplatValue());
- SmallVector<SDValue, 8> Ops;
- SmallSet<SDValue, 16> DuplicateOps;
- for (int M : SVN->getMask()) {
- SDValue Op = DAG.getUNDEF(VT.getScalarType());
- if (M >= 0) {
- int Idx = M < (int)NumElts ? M : M - NumElts;
- SDValue &S = (M < (int)NumElts ? N0 : N1);
- if (S.getOpcode() == ISD::BUILD_VECTOR) {
- Op = S.getOperand(Idx);
- } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) {
- SDValue Op0 = S.getOperand(0);
- Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType());
- } else {
- // Operand can't be combined - bail out.
- return SDValue();
- }
- }
- // Don't duplicate a non-constant BUILD_VECTOR operand unless we're
- // generating a splat; semantically, this is fine, but it's likely to
- // generate low-quality code if the target can't reconstruct an appropriate
- // shuffle.
- if (!Op.isUndef() && !isIntOrFPConstant(Op))
- if (!IsSplat && !DuplicateOps.insert(Op).second)
- return SDValue();
- Ops.push_back(Op);
- }
- // BUILD_VECTOR requires all inputs to be of the same type, find the
- // maximum type and extend them all.
- EVT SVT = VT.getScalarType();
- if (SVT.isInteger())
- for (SDValue &Op : Ops)
- SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
- if (SVT != VT.getScalarType())
- for (SDValue &Op : Ops)
- Op = Op.isUndef() ? DAG.getUNDEF(SVT)
- : (TLI.isZExtFree(Op.getValueType(), SVT)
- ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT)
- : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT));
- return DAG.getBuildVector(VT, SDLoc(SVN), Ops);
- }
- // Match shuffles that can be converted to *_vector_extend_in_reg.
- // This is often generated during legalization.
- // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)),
- // and returns the EVT to which the extension should be performed.
- // NOTE: this assumes that the src is the first operand of the shuffle.
- static std::optional<EVT> canCombineShuffleToExtendVectorInreg(
- unsigned Opcode, EVT VT, std::function<bool(unsigned)> Match,
- SelectionDAG &DAG, const TargetLowering &TLI, bool LegalTypes,
- bool LegalOperations) {
- bool IsBigEndian = DAG.getDataLayout().isBigEndian();
- // TODO Add support for big-endian when we have a test case.
- if (!VT.isInteger() || IsBigEndian)
- return std::nullopt;
- unsigned NumElts = VT.getVectorNumElements();
- unsigned EltSizeInBits = VT.getScalarSizeInBits();
- // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
- // power-of-2 extensions as they are the most likely.
- // FIXME: should try Scale == NumElts case too,
- for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) {
- // The vector width must be a multiple of Scale.
- if (NumElts % Scale != 0)
- continue;
- EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale);
- EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale);
- if ((LegalTypes && !TLI.isTypeLegal(OutVT)) ||
- (LegalOperations && !TLI.isOperationLegalOrCustom(Opcode, OutVT)))
- continue;
- if (Match(Scale))
- return OutVT;
- }
- return std::nullopt;
- }
- // Match shuffles that can be converted to any_vector_extend_in_reg.
- // This is often generated during legalization.
- // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
- static SDValue combineShuffleToAnyExtendVectorInreg(ShuffleVectorSDNode *SVN,
- SelectionDAG &DAG,
- const TargetLowering &TLI,
- bool LegalOperations) {
- EVT VT = SVN->getValueType(0);
- bool IsBigEndian = DAG.getDataLayout().isBigEndian();
- // TODO Add support for big-endian when we have a test case.
- if (!VT.isInteger() || IsBigEndian)
- return SDValue();
- // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
- auto isAnyExtend = [NumElts = VT.getVectorNumElements(),
- Mask = SVN->getMask()](unsigned Scale) {
- for (unsigned i = 0; i != NumElts; ++i) {
- if (Mask[i] < 0)
- continue;
- if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale))
- continue;
- return false;
- }
- return true;
- };
- unsigned Opcode = ISD::ANY_EXTEND_VECTOR_INREG;
- SDValue N0 = SVN->getOperand(0);
- // Never create an illegal type. Only create unsupported operations if we
- // are pre-legalization.
- std::optional<EVT> OutVT = canCombineShuffleToExtendVectorInreg(
- Opcode, VT, isAnyExtend, DAG, TLI, /*LegalTypes=*/true, LegalOperations);
- if (!OutVT)
- return SDValue();
- return DAG.getBitcast(VT, DAG.getNode(Opcode, SDLoc(SVN), *OutVT, N0));
- }
- // Match shuffles that can be converted to zero_extend_vector_inreg.
- // This is often generated during legalization.
- // e.g. v4i32 <0,z,1,u> -> (v2i64 zero_extend_vector_inreg(v4i32 src))
- static SDValue combineShuffleToZeroExtendVectorInReg(ShuffleVectorSDNode *SVN,
- SelectionDAG &DAG,
- const TargetLowering &TLI,
- bool LegalOperations) {
- bool LegalTypes = true;
- EVT VT = SVN->getValueType(0);
- assert(!VT.isScalableVector() && "Encountered scalable shuffle?");
- unsigned NumElts = VT.getVectorNumElements();
- unsigned EltSizeInBits = VT.getScalarSizeInBits();
- // TODO: add support for big-endian when we have a test case.
- bool IsBigEndian = DAG.getDataLayout().isBigEndian();
- if (!VT.isInteger() || IsBigEndian)
- return SDValue();
- SmallVector<int, 16> Mask(SVN->getMask().begin(), SVN->getMask().end());
- auto ForEachDecomposedIndice = [NumElts, &Mask](auto Fn) {
- for (int &Indice : Mask) {
- if (Indice < 0)
- continue;
- int OpIdx = (unsigned)Indice < NumElts ? 0 : 1;
- int OpEltIdx = (unsigned)Indice < NumElts ? Indice : Indice - NumElts;
- Fn(Indice, OpIdx, OpEltIdx);
- }
- };
- // Which elements of which operand does this shuffle demand?
- std::array<APInt, 2> OpsDemandedElts;
- for (APInt &OpDemandedElts : OpsDemandedElts)
- OpDemandedElts = APInt::getZero(NumElts);
- ForEachDecomposedIndice(
- [&OpsDemandedElts](int &Indice, int OpIdx, int OpEltIdx) {
- OpsDemandedElts[OpIdx].setBit(OpEltIdx);
- });
- // Element-wise(!), which of these demanded elements are know to be zero?
- std::array<APInt, 2> OpsKnownZeroElts;
- for (auto I : zip(SVN->ops(), OpsDemandedElts, OpsKnownZeroElts))
- std::get<2>(I) =
- DAG.computeVectorKnownZeroElements(std::get<0>(I), std::get<1>(I));
- // Manifest zeroable element knowledge in the shuffle mask.
- // NOTE: we don't have 'zeroable' sentinel value in generic DAG,
- // this is a local invention, but it won't leak into DAG.
- // FIXME: should we not manifest them, but just check when matching?
- bool HadZeroableElts = false;
- ForEachDecomposedIndice([&OpsKnownZeroElts, &HadZeroableElts](
- int &Indice, int OpIdx, int OpEltIdx) {
- if (OpsKnownZeroElts[OpIdx][OpEltIdx]) {
- Indice = -2; // Zeroable element.
- HadZeroableElts = true;
- }
- });
- // Don't proceed unless we've refined at least one zeroable mask indice.
- // If we didn't, then we are still trying to match the same shuffle mask
- // we previously tried to match as ISD::ANY_EXTEND_VECTOR_INREG,
- // and evidently failed. Proceeding will lead to endless combine loops.
- if (!HadZeroableElts)
- return SDValue();
- // The shuffle may be more fine-grained than we want. Widen elements first.
- // FIXME: should we do this before manifesting zeroable shuffle mask indices?
- SmallVector<int, 16> ScaledMask;
- getShuffleMaskWithWidestElts(Mask, ScaledMask);
- assert(Mask.size() >= ScaledMask.size() &&
- Mask.size() % ScaledMask.size() == 0 && "Unexpected mask widening.");
- int Prescale = Mask.size() / ScaledMask.size();
- NumElts = ScaledMask.size();
- EltSizeInBits *= Prescale;
- EVT PrescaledVT = EVT::getVectorVT(
- *DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits),
- NumElts);
- if (LegalTypes && !TLI.isTypeLegal(PrescaledVT) && TLI.isTypeLegal(VT))
- return SDValue();
- // For example,
- // shuffle<0,z,1,-1> == (v2i64 zero_extend_vector_inreg(v4i32))
- // But not shuffle<z,z,1,-1> and not shuffle<0,z,z,-1> ! (for same types)
- auto isZeroExtend = [NumElts, &ScaledMask](unsigned Scale) {
- assert(Scale >= 2 && Scale <= NumElts && NumElts % Scale == 0 &&
- "Unexpected mask scaling factor.");
- ArrayRef<int> Mask = ScaledMask;
- for (unsigned SrcElt = 0, NumSrcElts = NumElts / Scale;
- SrcElt != NumSrcElts; ++SrcElt) {
- // Analyze the shuffle mask in Scale-sized chunks.
- ArrayRef<int> MaskChunk = Mask.take_front(Scale);
- assert(MaskChunk.size() == Scale && "Unexpected mask size.");
- Mask = Mask.drop_front(MaskChunk.size());
- // The first indice in this chunk must be SrcElt, but not zero!
- // FIXME: undef should be fine, but that results in more-defined result.
- if (int FirstIndice = MaskChunk[0]; (unsigned)FirstIndice != SrcElt)
- return false;
- // The rest of the indices in this chunk must be zeros.
- // FIXME: undef should be fine, but that results in more-defined result.
- if (!all_of(MaskChunk.drop_front(1),
- [](int Indice) { return Indice == -2; }))
- return false;
- }
- assert(Mask.empty() && "Did not process the whole mask?");
- return true;
- };
- unsigned Opcode = ISD::ZERO_EXTEND_VECTOR_INREG;
- for (bool Commuted : {false, true}) {
- SDValue Op = SVN->getOperand(!Commuted ? 0 : 1);
- if (Commuted)
- ShuffleVectorSDNode::commuteMask(ScaledMask);
- std::optional<EVT> OutVT = canCombineShuffleToExtendVectorInreg(
- Opcode, PrescaledVT, isZeroExtend, DAG, TLI, LegalTypes,
- LegalOperations);
- if (OutVT)
- return DAG.getBitcast(VT, DAG.getNode(Opcode, SDLoc(SVN), *OutVT,
- DAG.getBitcast(PrescaledVT, Op)));
- }
- return SDValue();
- }
- // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
- // each source element of a large type into the lowest elements of a smaller
- // destination type. This is often generated during legalization.
- // If the source node itself was a '*_extend_vector_inreg' node then we should
- // then be able to remove it.
- static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN,
- SelectionDAG &DAG) {
- EVT VT = SVN->getValueType(0);
- bool IsBigEndian = DAG.getDataLayout().isBigEndian();
- // TODO Add support for big-endian when we have a test case.
- if (!VT.isInteger() || IsBigEndian)
- return SDValue();
- SDValue N0 = peekThroughBitcasts(SVN->getOperand(0));
- unsigned Opcode = N0.getOpcode();
- if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG &&
- Opcode != ISD::SIGN_EXTEND_VECTOR_INREG &&
- Opcode != ISD::ZERO_EXTEND_VECTOR_INREG)
- return SDValue();
- SDValue N00 = N0.getOperand(0);
- ArrayRef<int> Mask = SVN->getMask();
- unsigned NumElts = VT.getVectorNumElements();
- unsigned EltSizeInBits = VT.getScalarSizeInBits();
- unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits();
- unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits();
- if (ExtDstSizeInBits % ExtSrcSizeInBits != 0)
- return SDValue();
- unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits;
- // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
- // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
- // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
- auto isTruncate = [&Mask, &NumElts](unsigned Scale) {
- for (unsigned i = 0; i != NumElts; ++i) {
- if (Mask[i] < 0)
- continue;
- if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale))
- continue;
- return false;
- }
- return true;
- };
- // At the moment we just handle the case where we've truncated back to the
- // same size as before the extension.
- // TODO: handle more extension/truncation cases as cases arise.
- if (EltSizeInBits != ExtSrcSizeInBits)
- return SDValue();
- // We can remove *extend_vector_inreg only if the truncation happens at
- // the same scale as the extension.
- if (isTruncate(ExtScale))
- return DAG.getBitcast(VT, N00);
- return SDValue();
- }
- // Combine shuffles of splat-shuffles of the form:
- // shuffle (shuffle V, undef, splat-mask), undef, M
- // If splat-mask contains undef elements, we need to be careful about
- // introducing undef's in the folded mask which are not the result of composing
- // the masks of the shuffles.
- static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf,
- SelectionDAG &DAG) {
- EVT VT = Shuf->getValueType(0);
- unsigned NumElts = VT.getVectorNumElements();
- if (!Shuf->getOperand(1).isUndef())
- return SDValue();
- // See if this unary non-splat shuffle actually *is* a splat shuffle,
- // in disguise, with all demanded elements being identical.
- // FIXME: this can be done per-operand.
- if (!Shuf->isSplat()) {
- APInt DemandedElts(NumElts, 0);
- for (int Idx : Shuf->getMask()) {
- if (Idx < 0)
- continue; // Ignore sentinel indices.
- assert((unsigned)Idx < NumElts && "Out-of-bounds shuffle indice?");
- DemandedElts.setBit(Idx);
- }
- assert(DemandedElts.countPopulation() > 1 && "Is a splat shuffle already?");
- APInt UndefElts;
- if (DAG.isSplatValue(Shuf->getOperand(0), DemandedElts, UndefElts)) {
- // Even if all demanded elements are splat, some of them could be undef.
- // Which lowest demanded element is *not* known-undef?
- std::optional<unsigned> MinNonUndefIdx;
- for (int Idx : Shuf->getMask()) {
- if (Idx < 0 || UndefElts[Idx])
- continue; // Ignore sentinel indices, and undef elements.
- MinNonUndefIdx = std::min<unsigned>(Idx, MinNonUndefIdx.value_or(~0U));
- }
- if (!MinNonUndefIdx)
- return DAG.getUNDEF(VT); // All undef - result is undef.
- assert(*MinNonUndefIdx < NumElts && "Expected valid element index.");
- SmallVector<int, 8> SplatMask(Shuf->getMask().begin(),
- Shuf->getMask().end());
- for (int &Idx : SplatMask) {
- if (Idx < 0)
- continue; // Passthrough sentinel indices.
- // Otherwise, just pick the lowest demanded non-undef element.
- // Or sentinel undef, if we know we'd pick a known-undef element.
- Idx = UndefElts[Idx] ? -1 : *MinNonUndefIdx;
- }
- assert(SplatMask != Shuf->getMask() && "Expected mask to change!");
- return DAG.getVectorShuffle(VT, SDLoc(Shuf), Shuf->getOperand(0),
- Shuf->getOperand(1), SplatMask);
- }
- }
- // If the inner operand is a known splat with no undefs, just return that directly.
- // TODO: Create DemandedElts mask from Shuf's mask.
- // TODO: Allow undef elements and merge with the shuffle code below.
- if (DAG.isSplatValue(Shuf->getOperand(0), /*AllowUndefs*/ false))
- return Shuf->getOperand(0);
- auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
- if (!Splat || !Splat->isSplat())
- return SDValue();
- ArrayRef<int> ShufMask = Shuf->getMask();
- ArrayRef<int> SplatMask = Splat->getMask();
- assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch");
- // Prefer simplifying to the splat-shuffle, if possible. This is legal if
- // every undef mask element in the splat-shuffle has a corresponding undef
- // element in the user-shuffle's mask or if the composition of mask elements
- // would result in undef.
- // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
- // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
- // In this case it is not legal to simplify to the splat-shuffle because we
- // may be exposing the users of the shuffle an undef element at index 1
- // which was not there before the combine.
- // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
- // In this case the composition of masks yields SplatMask, so it's ok to
- // simplify to the splat-shuffle.
- // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
- // In this case the composed mask includes all undef elements of SplatMask
- // and in addition sets element zero to undef. It is safe to simplify to
- // the splat-shuffle.
- auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask,
- ArrayRef<int> SplatMask) {
- for (unsigned i = 0, e = UserMask.size(); i != e; ++i)
- if (UserMask[i] != -1 && SplatMask[i] == -1 &&
- SplatMask[UserMask[i]] != -1)
- return false;
- return true;
- };
- if (CanSimplifyToExistingSplat(ShufMask, SplatMask))
- return Shuf->getOperand(0);
- // Create a new shuffle with a mask that is composed of the two shuffles'
- // masks.
- SmallVector<int, 32> NewMask;
- for (int Idx : ShufMask)
- NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]);
- return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat),
- Splat->getOperand(0), Splat->getOperand(1),
- NewMask);
- }
- // Combine shuffles of bitcasts into a shuffle of the bitcast type, providing
- // the mask can be treated as a larger type.
- static SDValue combineShuffleOfBitcast(ShuffleVectorSDNode *SVN,
- SelectionDAG &DAG,
- const TargetLowering &TLI,
- bool LegalOperations) {
- SDValue Op0 = SVN->getOperand(0);
- SDValue Op1 = SVN->getOperand(1);
- EVT VT = SVN->getValueType(0);
- if (Op0.getOpcode() != ISD::BITCAST)
- return SDValue();
- EVT InVT = Op0.getOperand(0).getValueType();
- if (!InVT.isVector() ||
- (!Op1.isUndef() && (Op1.getOpcode() != ISD::BITCAST ||
- Op1.getOperand(0).getValueType() != InVT)))
- return SDValue();
- if (isAnyConstantBuildVector(Op0.getOperand(0)) &&
- (Op1.isUndef() || isAnyConstantBuildVector(Op1.getOperand(0))))
- return SDValue();
- int VTLanes = VT.getVectorNumElements();
- int InLanes = InVT.getVectorNumElements();
- if (VTLanes <= InLanes || VTLanes % InLanes != 0 ||
- (LegalOperations &&
- !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, InVT)))
- return SDValue();
- int Factor = VTLanes / InLanes;
- // Check that each group of lanes in the mask are either undef or make a valid
- // mask for the wider lane type.
- ArrayRef<int> Mask = SVN->getMask();
- SmallVector<int> NewMask;
- if (!widenShuffleMaskElts(Factor, Mask, NewMask))
- return SDValue();
- if (!TLI.isShuffleMaskLegal(NewMask, InVT))
- return SDValue();
- // Create the new shuffle with the new mask and bitcast it back to the
- // original type.
- SDLoc DL(SVN);
- Op0 = Op0.getOperand(0);
- Op1 = Op1.isUndef() ? DAG.getUNDEF(InVT) : Op1.getOperand(0);
- SDValue NewShuf = DAG.getVectorShuffle(InVT, DL, Op0, Op1, NewMask);
- return DAG.getBitcast(VT, NewShuf);
- }
- /// Combine shuffle of shuffle of the form:
- /// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X
- static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf,
- SelectionDAG &DAG) {
- if (!OuterShuf->getOperand(1).isUndef())
- return SDValue();
- auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0));
- if (!InnerShuf || !InnerShuf->getOperand(1).isUndef())
- return SDValue();
- ArrayRef<int> OuterMask = OuterShuf->getMask();
- ArrayRef<int> InnerMask = InnerShuf->getMask();
- unsigned NumElts = OuterMask.size();
- assert(NumElts == InnerMask.size() && "Mask length mismatch");
- SmallVector<int, 32> CombinedMask(NumElts, -1);
- int SplatIndex = -1;
- for (unsigned i = 0; i != NumElts; ++i) {
- // Undef lanes remain undef.
- int OuterMaskElt = OuterMask[i];
- if (OuterMaskElt == -1)
- continue;
- // Peek through the shuffle masks to get the underlying source element.
- int InnerMaskElt = InnerMask[OuterMaskElt];
- if (InnerMaskElt == -1)
- continue;
- // Initialize the splatted element.
- if (SplatIndex == -1)
- SplatIndex = InnerMaskElt;
- // Non-matching index - this is not a splat.
- if (SplatIndex != InnerMaskElt)
- return SDValue();
- CombinedMask[i] = InnerMaskElt;
- }
- assert((all_of(CombinedMask, [](int M) { return M == -1; }) ||
- getSplatIndex(CombinedMask) != -1) &&
- "Expected a splat mask");
- // TODO: The transform may be a win even if the mask is not legal.
- EVT VT = OuterShuf->getValueType(0);
- assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types");
- if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT))
- return SDValue();
- return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0),
- InnerShuf->getOperand(1), CombinedMask);
- }
- /// If the shuffle mask is taking exactly one element from the first vector
- /// operand and passing through all other elements from the second vector
- /// operand, return the index of the mask element that is choosing an element
- /// from the first operand. Otherwise, return -1.
- static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) {
- int MaskSize = Mask.size();
- int EltFromOp0 = -1;
- // TODO: This does not match if there are undef elements in the shuffle mask.
- // Should we ignore undefs in the shuffle mask instead? The trade-off is
- // removing an instruction (a shuffle), but losing the knowledge that some
- // vector lanes are not needed.
- for (int i = 0; i != MaskSize; ++i) {
- if (Mask[i] >= 0 && Mask[i] < MaskSize) {
- // We're looking for a shuffle of exactly one element from operand 0.
- if (EltFromOp0 != -1)
- return -1;
- EltFromOp0 = i;
- } else if (Mask[i] != i + MaskSize) {
- // Nothing from operand 1 can change lanes.
- return -1;
- }
- }
- return EltFromOp0;
- }
- /// If a shuffle inserts exactly one element from a source vector operand into
- /// another vector operand and we can access the specified element as a scalar,
- /// then we can eliminate the shuffle.
- static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf,
- SelectionDAG &DAG) {
- // First, check if we are taking one element of a vector and shuffling that
- // element into another vector.
- ArrayRef<int> Mask = Shuf->getMask();
- SmallVector<int, 16> CommutedMask(Mask);
- SDValue Op0 = Shuf->getOperand(0);
- SDValue Op1 = Shuf->getOperand(1);
- int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask);
- if (ShufOp0Index == -1) {
- // Commute mask and check again.
- ShuffleVectorSDNode::commuteMask(CommutedMask);
- ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask);
- if (ShufOp0Index == -1)
- return SDValue();
- // Commute operands to match the commuted shuffle mask.
- std::swap(Op0, Op1);
- Mask = CommutedMask;
- }
- // The shuffle inserts exactly one element from operand 0 into operand 1.
- // Now see if we can access that element as a scalar via a real insert element
- // instruction.
- // TODO: We can try harder to locate the element as a scalar. Examples: it
- // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
- assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() &&
- "Shuffle mask value must be from operand 0");
- if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT)
- return SDValue();
- auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2));
- if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index])
- return SDValue();
- // There's an existing insertelement with constant insertion index, so we
- // don't need to check the legality/profitability of a replacement operation
- // that differs at most in the constant value. The target should be able to
- // lower any of those in a similar way. If not, legalization will expand this
- // to a scalar-to-vector plus shuffle.
- //
- // Note that the shuffle may move the scalar from the position that the insert
- // element used. Therefore, our new insert element occurs at the shuffle's
- // mask index value, not the insert's index value.
- // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
- SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf));
- return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(),
- Op1, Op0.getOperand(1), NewInsIndex);
- }
- /// If we have a unary shuffle of a shuffle, see if it can be folded away
- /// completely. This has the potential to lose undef knowledge because the first
- /// shuffle may not have an undef mask element where the second one does. So
- /// only call this after doing simplifications based on demanded elements.
- static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) {
- // shuf (shuf0 X, Y, Mask0), undef, Mask
- auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
- if (!Shuf0 || !Shuf->getOperand(1).isUndef())
- return SDValue();
- ArrayRef<int> Mask = Shuf->getMask();
- ArrayRef<int> Mask0 = Shuf0->getMask();
- for (int i = 0, e = (int)Mask.size(); i != e; ++i) {
- // Ignore undef elements.
- if (Mask[i] == -1)
- continue;
- assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value");
- // Is the element of the shuffle operand chosen by this shuffle the same as
- // the element chosen by the shuffle operand itself?
- if (Mask0[Mask[i]] != Mask0[i])
- return SDValue();
- }
- // Every element of this shuffle is identical to the result of the previous
- // shuffle, so we can replace this value.
- return Shuf->getOperand(0);
- }
- SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
- EVT VT = N->getValueType(0);
- unsigned NumElts = VT.getVectorNumElements();
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
- // Canonicalize shuffle undef, undef -> undef
- if (N0.isUndef() && N1.isUndef())
- return DAG.getUNDEF(VT);
- ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
- // Canonicalize shuffle v, v -> v, undef
- if (N0 == N1)
- return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
- createUnaryMask(SVN->getMask(), NumElts));
- // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
- if (N0.isUndef())
- return DAG.getCommutedVectorShuffle(*SVN);
- // Remove references to rhs if it is undef
- if (N1.isUndef()) {
- bool Changed = false;
- SmallVector<int, 8> NewMask;
- for (unsigned i = 0; i != NumElts; ++i) {
- int Idx = SVN->getMaskElt(i);
- if (Idx >= (int)NumElts) {
- Idx = -1;
- Changed = true;
- }
- NewMask.push_back(Idx);
- }
- if (Changed)
- return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask);
- }
- if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG))
- return InsElt;
- // A shuffle of a single vector that is a splatted value can always be folded.
- if (SDValue V = combineShuffleOfSplatVal(SVN, DAG))
- return V;
- if (SDValue V = formSplatFromShuffles(SVN, DAG))
- return V;
- // If it is a splat, check if the argument vector is another splat or a
- // build_vector.
- if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
- int SplatIndex = SVN->getSplatIndex();
- if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) &&
- TLI.isBinOp(N0.getOpcode()) && N0->getNumValues() == 1) {
- // splat (vector_bo L, R), Index -->
- // splat (scalar_bo (extelt L, Index), (extelt R, Index))
- SDValue L = N0.getOperand(0), R = N0.getOperand(1);
- SDLoc DL(N);
- EVT EltVT = VT.getScalarType();
- SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL);
- SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index);
- SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index);
- SDValue NewBO =
- DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR, N0->getFlags());
- SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO);
- SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0);
- return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask);
- }
- // splat(scalar_to_vector(x), 0) -> build_vector(x,...,x)
- // splat(insert_vector_elt(v, x, c), c) -> build_vector(x,...,x)
- if ((!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) &&
- N0.hasOneUse()) {
- if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && SplatIndex == 0)
- return DAG.getSplatBuildVector(VT, SDLoc(N), N0.getOperand(0));
- if (N0.getOpcode() == ISD::INSERT_VECTOR_ELT)
- if (auto *Idx = dyn_cast<ConstantSDNode>(N0.getOperand(2)))
- if (Idx->getAPIntValue() == SplatIndex)
- return DAG.getSplatBuildVector(VT, SDLoc(N), N0.getOperand(1));
- // Look through a bitcast if LE and splatting lane 0, through to a
- // scalar_to_vector or a build_vector.
- if (N0.getOpcode() == ISD::BITCAST && N0.getOperand(0).hasOneUse() &&
- SplatIndex == 0 && DAG.getDataLayout().isLittleEndian() &&
- (N0.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR ||
- N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR)) {
- EVT N00VT = N0.getOperand(0).getValueType();
- if (VT.getScalarSizeInBits() <= N00VT.getScalarSizeInBits() &&
- VT.isInteger() && N00VT.isInteger()) {
- EVT InVT =
- TLI.getTypeToTransformTo(*DAG.getContext(), VT.getScalarType());
- SDValue Op = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0),
- SDLoc(N), InVT);
- return DAG.getSplatBuildVector(VT, SDLoc(N), Op);
- }
- }
- }
- // If this is a bit convert that changes the element type of the vector but
- // not the number of vector elements, look through it. Be careful not to
- // look though conversions that change things like v4f32 to v2f64.
- SDNode *V = N0.getNode();
- if (V->getOpcode() == ISD::BITCAST) {
- SDValue ConvInput = V->getOperand(0);
- if (ConvInput.getValueType().isVector() &&
- ConvInput.getValueType().getVectorNumElements() == NumElts)
- V = ConvInput.getNode();
- }
- if (V->getOpcode() == ISD::BUILD_VECTOR) {
- assert(V->getNumOperands() == NumElts &&
- "BUILD_VECTOR has wrong number of operands");
- SDValue Base;
- bool AllSame = true;
- for (unsigned i = 0; i != NumElts; ++i) {
- if (!V->getOperand(i).isUndef()) {
- Base = V->getOperand(i);
- break;
- }
- }
- // Splat of <u, u, u, u>, return <u, u, u, u>
- if (!Base.getNode())
- return N0;
- for (unsigned i = 0; i != NumElts; ++i) {
- if (V->getOperand(i) != Base) {
- AllSame = false;
- break;
- }
- }
- // Splat of <x, x, x, x>, return <x, x, x, x>
- if (AllSame)
- return N0;
- // Canonicalize any other splat as a build_vector.
- SDValue Splatted = V->getOperand(SplatIndex);
- SmallVector<SDValue, 8> Ops(NumElts, Splatted);
- SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops);
- // We may have jumped through bitcasts, so the type of the
- // BUILD_VECTOR may not match the type of the shuffle.
- if (V->getValueType(0) != VT)
- NewBV = DAG.getBitcast(VT, NewBV);
- return NewBV;
- }
- }
- // Simplify source operands based on shuffle mask.
- if (SimplifyDemandedVectorElts(SDValue(N, 0)))
- return SDValue(N, 0);
- // This is intentionally placed after demanded elements simplification because
- // it could eliminate knowledge of undef elements created by this shuffle.
- if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN))
- return ShufOp;
- // Match shuffles that can be converted to any_vector_extend_in_reg.
- if (SDValue V =
- combineShuffleToAnyExtendVectorInreg(SVN, DAG, TLI, LegalOperations))
- return V;
- // Combine "truncate_vector_in_reg" style shuffles.
- if (SDValue V = combineTruncationShuffle(SVN, DAG))
- return V;
- if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
- Level < AfterLegalizeVectorOps &&
- (N1.isUndef() ||
- (N1.getOpcode() == ISD::CONCAT_VECTORS &&
- N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
- if (SDValue V = partitionShuffleOfConcats(N, DAG))
- return V;
- }
- // A shuffle of a concat of the same narrow vector can be reduced to use
- // only low-half elements of a concat with undef:
- // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask'
- if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() &&
- N0.getNumOperands() == 2 &&
- N0.getOperand(0) == N0.getOperand(1)) {
- int HalfNumElts = (int)NumElts / 2;
- SmallVector<int, 8> NewMask;
- for (unsigned i = 0; i != NumElts; ++i) {
- int Idx = SVN->getMaskElt(i);
- if (Idx >= HalfNumElts) {
- assert(Idx < (int)NumElts && "Shuffle mask chooses undef op");
- Idx -= HalfNumElts;
- }
- NewMask.push_back(Idx);
- }
- if (TLI.isShuffleMaskLegal(NewMask, VT)) {
- SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType());
- SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
- N0.getOperand(0), UndefVec);
- return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask);
- }
- }
- // See if we can replace a shuffle with an insert_subvector.
- // e.g. v2i32 into v8i32:
- // shuffle(lhs,concat(rhs0,rhs1,rhs2,rhs3),0,1,2,3,10,11,6,7).
- // --> insert_subvector(lhs,rhs1,4).
- if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT) &&
- TLI.isOperationLegalOrCustom(ISD::INSERT_SUBVECTOR, VT)) {
- auto ShuffleToInsert = [&](SDValue LHS, SDValue RHS, ArrayRef<int> Mask) {
- // Ensure RHS subvectors are legal.
- assert(RHS.getOpcode() == ISD::CONCAT_VECTORS && "Can't find subvectors");
- EVT SubVT = RHS.getOperand(0).getValueType();
- int NumSubVecs = RHS.getNumOperands();
- int NumSubElts = SubVT.getVectorNumElements();
- assert((NumElts % NumSubElts) == 0 && "Subvector mismatch");
- if (!TLI.isTypeLegal(SubVT))
- return SDValue();
- // Don't bother if we have an unary shuffle (matches undef + LHS elts).
- if (all_of(Mask, [NumElts](int M) { return M < (int)NumElts; }))
- return SDValue();
- // Search [NumSubElts] spans for RHS sequence.
- // TODO: Can we avoid nested loops to increase performance?
- SmallVector<int> InsertionMask(NumElts);
- for (int SubVec = 0; SubVec != NumSubVecs; ++SubVec) {
- for (int SubIdx = 0; SubIdx != (int)NumElts; SubIdx += NumSubElts) {
- // Reset mask to identity.
- std::iota(InsertionMask.begin(), InsertionMask.end(), 0);
- // Add subvector insertion.
- std::iota(InsertionMask.begin() + SubIdx,
- InsertionMask.begin() + SubIdx + NumSubElts,
- NumElts + (SubVec * NumSubElts));
- // See if the shuffle mask matches the reference insertion mask.
- bool MatchingShuffle = true;
- for (int i = 0; i != (int)NumElts; ++i) {
- int ExpectIdx = InsertionMask[i];
- int ActualIdx = Mask[i];
- if (0 <= ActualIdx && ExpectIdx != ActualIdx) {
- MatchingShuffle = false;
- break;
- }
- }
- if (MatchingShuffle)
- return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, LHS,
- RHS.getOperand(SubVec),
- DAG.getVectorIdxConstant(SubIdx, SDLoc(N)));
- }
- }
- return SDValue();
- };
- ArrayRef<int> Mask = SVN->getMask();
- if (N1.getOpcode() == ISD::CONCAT_VECTORS)
- if (SDValue InsertN1 = ShuffleToInsert(N0, N1, Mask))
- return InsertN1;
- if (N0.getOpcode() == ISD::CONCAT_VECTORS) {
- SmallVector<int> CommuteMask(Mask);
- ShuffleVectorSDNode::commuteMask(CommuteMask);
- if (SDValue InsertN0 = ShuffleToInsert(N1, N0, CommuteMask))
- return InsertN0;
- }
- }
- // If we're not performing a select/blend shuffle, see if we can convert the
- // shuffle into a AND node, with all the out-of-lane elements are known zero.
- if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
- bool IsInLaneMask = true;
- ArrayRef<int> Mask = SVN->getMask();
- SmallVector<int, 16> ClearMask(NumElts, -1);
- APInt DemandedLHS = APInt::getNullValue(NumElts);
- APInt DemandedRHS = APInt::getNullValue(NumElts);
- for (int I = 0; I != (int)NumElts; ++I) {
- int M = Mask[I];
- if (M < 0)
- continue;
- ClearMask[I] = M == I ? I : (I + NumElts);
- IsInLaneMask &= (M == I) || (M == (int)(I + NumElts));
- if (M != I) {
- APInt &Demanded = M < (int)NumElts ? DemandedLHS : DemandedRHS;
- Demanded.setBit(M % NumElts);
- }
- }
- // TODO: Should we try to mask with N1 as well?
- if (!IsInLaneMask &&
- (!DemandedLHS.isNullValue() || !DemandedRHS.isNullValue()) &&
- (DemandedLHS.isNullValue() ||
- DAG.MaskedVectorIsZero(N0, DemandedLHS)) &&
- (DemandedRHS.isNullValue() ||
- DAG.MaskedVectorIsZero(N1, DemandedRHS))) {
- SDLoc DL(N);
- EVT IntVT = VT.changeVectorElementTypeToInteger();
- EVT IntSVT = VT.getVectorElementType().changeTypeToInteger();
- // Transform the type to a legal type so that the buildvector constant
- // elements are not illegal. Make sure that the result is larger than the
- // original type, incase the value is split into two (eg i64->i32).
- if (!TLI.isTypeLegal(IntSVT) && LegalTypes)
- IntSVT = TLI.getTypeToTransformTo(*DAG.getContext(), IntSVT);
- if (IntSVT.getSizeInBits() >= IntVT.getScalarSizeInBits()) {
- SDValue ZeroElt = DAG.getConstant(0, DL, IntSVT);
- SDValue AllOnesElt = DAG.getAllOnesConstant(DL, IntSVT);
- SmallVector<SDValue, 16> AndMask(NumElts, DAG.getUNDEF(IntSVT));
- for (int I = 0; I != (int)NumElts; ++I)
- if (0 <= Mask[I])
- AndMask[I] = Mask[I] == I ? AllOnesElt : ZeroElt;
- // See if a clear mask is legal instead of going via
- // XformToShuffleWithZero which loses UNDEF mask elements.
- if (TLI.isVectorClearMaskLegal(ClearMask, IntVT))
- return DAG.getBitcast(
- VT, DAG.getVectorShuffle(IntVT, DL, DAG.getBitcast(IntVT, N0),
- DAG.getConstant(0, DL, IntVT), ClearMask));
- if (TLI.isOperationLegalOrCustom(ISD::AND, IntVT))
- return DAG.getBitcast(
- VT, DAG.getNode(ISD::AND, DL, IntVT, DAG.getBitcast(IntVT, N0),
- DAG.getBuildVector(IntVT, DL, AndMask)));
- }
- }
- }
- // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
- // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
- if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT))
- if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI))
- return Res;
- // If this shuffle only has a single input that is a bitcasted shuffle,
- // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
- // back to their original types.
- if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
- N1.isUndef() && Level < AfterLegalizeVectorOps &&
- TLI.isTypeLegal(VT)) {
- SDValue BC0 = peekThroughOneUseBitcasts(N0);
- if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
- EVT SVT = VT.getScalarType();
- EVT InnerVT = BC0->getValueType(0);
- EVT InnerSVT = InnerVT.getScalarType();
- // Determine which shuffle works with the smaller scalar type.
- EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
- EVT ScaleSVT = ScaleVT.getScalarType();
- if (TLI.isTypeLegal(ScaleVT) &&
- 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
- 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
- int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
- int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();
- // Scale the shuffle masks to the smaller scalar type.
- ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
- SmallVector<int, 8> InnerMask;
- SmallVector<int, 8> OuterMask;
- narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask);
- narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask);
- // Merge the shuffle masks.
- SmallVector<int, 8> NewMask;
- for (int M : OuterMask)
- NewMask.push_back(M < 0 ? -1 : InnerMask[M]);
- // Test for shuffle mask legality over both commutations.
- SDValue SV0 = BC0->getOperand(0);
- SDValue SV1 = BC0->getOperand(1);
- bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
- if (!LegalMask) {
- std::swap(SV0, SV1);
- ShuffleVectorSDNode::commuteMask(NewMask);
- LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
- }
- if (LegalMask) {
- SV0 = DAG.getBitcast(ScaleVT, SV0);
- SV1 = DAG.getBitcast(ScaleVT, SV1);
- return DAG.getBitcast(
- VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
- }
- }
- }
- }
- // Match shuffles of bitcasts, so long as the mask can be treated as the
- // larger type.
- if (SDValue V = combineShuffleOfBitcast(SVN, DAG, TLI, LegalOperations))
- return V;
- // Compute the combined shuffle mask for a shuffle with SV0 as the first
- // operand, and SV1 as the second operand.
- // i.e. Merge SVN(OtherSVN, N1) -> shuffle(SV0, SV1, Mask) iff Commute = false
- // Merge SVN(N1, OtherSVN) -> shuffle(SV0, SV1, Mask') iff Commute = true
- auto MergeInnerShuffle =
- [NumElts, &VT](bool Commute, ShuffleVectorSDNode *SVN,
- ShuffleVectorSDNode *OtherSVN, SDValue N1,
- const TargetLowering &TLI, SDValue &SV0, SDValue &SV1,
- SmallVectorImpl<int> &Mask) -> bool {
- // Don't try to fold splats; they're likely to simplify somehow, or they
- // might be free.
- if (OtherSVN->isSplat())
- return false;
- SV0 = SV1 = SDValue();
- Mask.clear();
- for (unsigned i = 0; i != NumElts; ++i) {
- int Idx = SVN->getMaskElt(i);
- if (Idx < 0) {
- // Propagate Undef.
- Mask.push_back(Idx);
- continue;
- }
- if (Commute)
- Idx = (Idx < (int)NumElts) ? (Idx + NumElts) : (Idx - NumElts);
- SDValue CurrentVec;
- if (Idx < (int)NumElts) {
- // This shuffle index refers to the inner shuffle N0. Lookup the inner
- // shuffle mask to identify which vector is actually referenced.
- Idx = OtherSVN->getMaskElt(Idx);
- if (Idx < 0) {
- // Propagate Undef.
- Mask.push_back(Idx);
- continue;
- }
- CurrentVec = (Idx < (int)NumElts) ? OtherSVN->getOperand(0)
- : OtherSVN->getOperand(1);
- } else {
- // This shuffle index references an element within N1.
- CurrentVec = N1;
- }
- // Simple case where 'CurrentVec' is UNDEF.
- if (CurrentVec.isUndef()) {
- Mask.push_back(-1);
- continue;
- }
- // Canonicalize the shuffle index. We don't know yet if CurrentVec
- // will be the first or second operand of the combined shuffle.
- Idx = Idx % NumElts;
- if (!SV0.getNode() || SV0 == CurrentVec) {
- // Ok. CurrentVec is the left hand side.
- // Update the mask accordingly.
- SV0 = CurrentVec;
- Mask.push_back(Idx);
- continue;
- }
- if (!SV1.getNode() || SV1 == CurrentVec) {
- // Ok. CurrentVec is the right hand side.
- // Update the mask accordingly.
- SV1 = CurrentVec;
- Mask.push_back(Idx + NumElts);
- continue;
- }
- // Last chance - see if the vector is another shuffle and if it
- // uses one of the existing candidate shuffle ops.
- if (auto *CurrentSVN = dyn_cast<ShuffleVectorSDNode>(CurrentVec)) {
- int InnerIdx = CurrentSVN->getMaskElt(Idx);
- if (InnerIdx < 0) {
- Mask.push_back(-1);
- continue;
- }
- SDValue InnerVec = (InnerIdx < (int)NumElts)
- ? CurrentSVN->getOperand(0)
- : CurrentSVN->getOperand(1);
- if (InnerVec.isUndef()) {
- Mask.push_back(-1);
- continue;
- }
- InnerIdx %= NumElts;
- if (InnerVec == SV0) {
- Mask.push_back(InnerIdx);
- continue;
- }
- if (InnerVec == SV1) {
- Mask.push_back(InnerIdx + NumElts);
- continue;
- }
- }
- // Bail out if we cannot convert the shuffle pair into a single shuffle.
- return false;
- }
- if (llvm::all_of(Mask, [](int M) { return M < 0; }))
- return true;
- // Avoid introducing shuffles with illegal mask.
- // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
- // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
- // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
- // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
- // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
- // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
- if (TLI.isShuffleMaskLegal(Mask, VT))
- return true;
- std::swap(SV0, SV1);
- ShuffleVectorSDNode::commuteMask(Mask);
- return TLI.isShuffleMaskLegal(Mask, VT);
- };
- if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
- // Canonicalize shuffles according to rules:
- // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
- // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
- // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
- if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
- N0.getOpcode() != ISD::VECTOR_SHUFFLE) {
- // The incoming shuffle must be of the same type as the result of the
- // current shuffle.
- assert(N1->getOperand(0).getValueType() == VT &&
- "Shuffle types don't match");
- SDValue SV0 = N1->getOperand(0);
- SDValue SV1 = N1->getOperand(1);
- bool HasSameOp0 = N0 == SV0;
- bool IsSV1Undef = SV1.isUndef();
- if (HasSameOp0 || IsSV1Undef || N0 == SV1)
- // Commute the operands of this shuffle so merging below will trigger.
- return DAG.getCommutedVectorShuffle(*SVN);
- }
- // Canonicalize splat shuffles to the RHS to improve merging below.
- // shuffle(splat(A,u), shuffle(C,D)) -> shuffle'(shuffle(C,D), splat(A,u))
- if (N0.getOpcode() == ISD::VECTOR_SHUFFLE &&
- N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
- cast<ShuffleVectorSDNode>(N0)->isSplat() &&
- !cast<ShuffleVectorSDNode>(N1)->isSplat()) {
- return DAG.getCommutedVectorShuffle(*SVN);
- }
- // Try to fold according to rules:
- // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
- // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
- // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
- // Don't try to fold shuffles with illegal type.
- // Only fold if this shuffle is the only user of the other shuffle.
- // Try matching shuffle(C,shuffle(A,B)) commutted patterns as well.
- for (int i = 0; i != 2; ++i) {
- if (N->getOperand(i).getOpcode() == ISD::VECTOR_SHUFFLE &&
- N->isOnlyUserOf(N->getOperand(i).getNode())) {
- // The incoming shuffle must be of the same type as the result of the
- // current shuffle.
- auto *OtherSV = cast<ShuffleVectorSDNode>(N->getOperand(i));
- assert(OtherSV->getOperand(0).getValueType() == VT &&
- "Shuffle types don't match");
- SDValue SV0, SV1;
- SmallVector<int, 4> Mask;
- if (MergeInnerShuffle(i != 0, SVN, OtherSV, N->getOperand(1 - i), TLI,
- SV0, SV1, Mask)) {
- // Check if all indices in Mask are Undef. In case, propagate Undef.
- if (llvm::all_of(Mask, [](int M) { return M < 0; }))
- return DAG.getUNDEF(VT);
- return DAG.getVectorShuffle(VT, SDLoc(N),
- SV0 ? SV0 : DAG.getUNDEF(VT),
- SV1 ? SV1 : DAG.getUNDEF(VT), Mask);
- }
- }
- }
- // Merge shuffles through binops if we are able to merge it with at least
- // one other shuffles.
- // shuffle(bop(shuffle(x,y),shuffle(z,w)),undef)
- // shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d)))
- unsigned SrcOpcode = N0.getOpcode();
- if (TLI.isBinOp(SrcOpcode) && N->isOnlyUserOf(N0.getNode()) &&
- (N1.isUndef() ||
- (SrcOpcode == N1.getOpcode() && N->isOnlyUserOf(N1.getNode())))) {
- // Get binop source ops, or just pass on the undef.
- SDValue Op00 = N0.getOperand(0);
- SDValue Op01 = N0.getOperand(1);
- SDValue Op10 = N1.isUndef() ? N1 : N1.getOperand(0);
- SDValue Op11 = N1.isUndef() ? N1 : N1.getOperand(1);
- // TODO: We might be able to relax the VT check but we don't currently
- // have any isBinOp() that has different result/ops VTs so play safe until
- // we have test coverage.
- if (Op00.getValueType() == VT && Op10.getValueType() == VT &&
- Op01.getValueType() == VT && Op11.getValueType() == VT &&
- (Op00.getOpcode() == ISD::VECTOR_SHUFFLE ||
- Op10.getOpcode() == ISD::VECTOR_SHUFFLE ||
- Op01.getOpcode() == ISD::VECTOR_SHUFFLE ||
- Op11.getOpcode() == ISD::VECTOR_SHUFFLE)) {
- auto CanMergeInnerShuffle = [&](SDValue &SV0, SDValue &SV1,
- SmallVectorImpl<int> &Mask, bool LeftOp,
- bool Commute) {
- SDValue InnerN = Commute ? N1 : N0;
- SDValue Op0 = LeftOp ? Op00 : Op01;
- SDValue Op1 = LeftOp ? Op10 : Op11;
- if (Commute)
- std::swap(Op0, Op1);
- // Only accept the merged shuffle if we don't introduce undef elements,
- // or the inner shuffle already contained undef elements.
- auto *SVN0 = dyn_cast<ShuffleVectorSDNode>(Op0);
- return SVN0 && InnerN->isOnlyUserOf(SVN0) &&
- MergeInnerShuffle(Commute, SVN, SVN0, Op1, TLI, SV0, SV1,
- Mask) &&
- (llvm::any_of(SVN0->getMask(), [](int M) { return M < 0; }) ||
- llvm::none_of(Mask, [](int M) { return M < 0; }));
- };
- // Ensure we don't increase the number of shuffles - we must merge a
- // shuffle from at least one of the LHS and RHS ops.
- bool MergedLeft = false;
- SDValue LeftSV0, LeftSV1;
- SmallVector<int, 4> LeftMask;
- if (CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, false) ||
- CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, true)) {
- MergedLeft = true;
- } else {
- LeftMask.assign(SVN->getMask().begin(), SVN->getMask().end());
- LeftSV0 = Op00, LeftSV1 = Op10;
- }
- bool MergedRight = false;
- SDValue RightSV0, RightSV1;
- SmallVector<int, 4> RightMask;
- if (CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, false) ||
- CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, true)) {
- MergedRight = true;
- } else {
- RightMask.assign(SVN->getMask().begin(), SVN->getMask().end());
- RightSV0 = Op01, RightSV1 = Op11;
- }
- if (MergedLeft || MergedRight) {
- SDLoc DL(N);
- SDValue LHS = DAG.getVectorShuffle(
- VT, DL, LeftSV0 ? LeftSV0 : DAG.getUNDEF(VT),
- LeftSV1 ? LeftSV1 : DAG.getUNDEF(VT), LeftMask);
- SDValue RHS = DAG.getVectorShuffle(
- VT, DL, RightSV0 ? RightSV0 : DAG.getUNDEF(VT),
- RightSV1 ? RightSV1 : DAG.getUNDEF(VT), RightMask);
- return DAG.getNode(SrcOpcode, DL, VT, LHS, RHS);
- }
- }
- }
- }
- if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG))
- return V;
- // Match shuffles that can be converted to ISD::ZERO_EXTEND_VECTOR_INREG.
- // Perform this really late, because it could eliminate knowledge
- // of undef elements created by this shuffle.
- if (Level < AfterLegalizeTypes)
- if (SDValue V = combineShuffleToZeroExtendVectorInReg(SVN, DAG, TLI,
- LegalOperations))
- return V;
- return SDValue();
- }
- SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
- EVT VT = N->getValueType(0);
- if (!VT.isFixedLengthVector())
- return SDValue();
- // Try to convert a scalar binop with an extracted vector element to a vector
- // binop. This is intended to reduce potentially expensive register moves.
- // TODO: Check if both operands are extracted.
- // TODO: Generalize this, so it can be called from visitINSERT_VECTOR_ELT().
- SDValue Scalar = N->getOperand(0);
- unsigned Opcode = Scalar.getOpcode();
- EVT VecEltVT = VT.getScalarType();
- if (Scalar.hasOneUse() && Scalar->getNumValues() == 1 &&
- TLI.isBinOp(Opcode) && Scalar.getValueType() == VecEltVT &&
- Scalar.getOperand(0).getValueType() == VecEltVT &&
- Scalar.getOperand(1).getValueType() == VecEltVT &&
- DAG.isSafeToSpeculativelyExecute(Opcode) && hasOperation(Opcode, VT)) {
- // Match an extract element and get a shuffle mask equivalent.
- SmallVector<int, 8> ShufMask(VT.getVectorNumElements(), -1);
- for (int i : {0, 1}) {
- // s2v (bo (extelt V, Idx), C) --> shuffle (bo V, C'), {Idx, -1, -1...}
- // s2v (bo C, (extelt V, Idx)) --> shuffle (bo C', V), {Idx, -1, -1...}
- SDValue EE = Scalar.getOperand(i);
- auto *C = dyn_cast<ConstantSDNode>(Scalar.getOperand(i ? 0 : 1));
- if (C && EE.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
- EE.getOperand(0).getValueType() == VT &&
- isa<ConstantSDNode>(EE.getOperand(1))) {
- // Mask = {ExtractIndex, undef, undef....}
- ShufMask[0] = EE.getConstantOperandVal(1);
- // Make sure the shuffle is legal if we are crossing lanes.
- if (TLI.isShuffleMaskLegal(ShufMask, VT)) {
- SDLoc DL(N);
- SDValue V[] = {EE.getOperand(0),
- DAG.getConstant(C->getAPIntValue(), DL, VT)};
- SDValue VecBO = DAG.getNode(Opcode, DL, VT, V[i], V[1 - i]);
- return DAG.getVectorShuffle(VT, DL, VecBO, DAG.getUNDEF(VT),
- ShufMask);
- }
- }
- }
- }
- // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
- // with a VECTOR_SHUFFLE and possible truncate.
- if (Opcode != ISD::EXTRACT_VECTOR_ELT ||
- !Scalar.getOperand(0).getValueType().isFixedLengthVector())
- return SDValue();
- // If we have an implicit truncate, truncate here if it is legal.
- if (VecEltVT != Scalar.getValueType() &&
- Scalar.getValueType().isScalarInteger() && isTypeLegal(VecEltVT)) {
- SDValue Val = DAG.getNode(ISD::TRUNCATE, SDLoc(Scalar), VecEltVT, Scalar);
- return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val);
- }
- auto *ExtIndexC = dyn_cast<ConstantSDNode>(Scalar.getOperand(1));
- if (!ExtIndexC)
- return SDValue();
- SDValue SrcVec = Scalar.getOperand(0);
- EVT SrcVT = SrcVec.getValueType();
- unsigned SrcNumElts = SrcVT.getVectorNumElements();
- unsigned VTNumElts = VT.getVectorNumElements();
- if (VecEltVT == SrcVT.getScalarType() && VTNumElts <= SrcNumElts) {
- // Create a shuffle equivalent for scalar-to-vector: {ExtIndex, -1, -1, ...}
- SmallVector<int, 8> Mask(SrcNumElts, -1);
- Mask[0] = ExtIndexC->getZExtValue();
- SDValue LegalShuffle = TLI.buildLegalVectorShuffle(
- SrcVT, SDLoc(N), SrcVec, DAG.getUNDEF(SrcVT), Mask, DAG);
- if (!LegalShuffle)
- return SDValue();
- // If the initial vector is the same size, the shuffle is the result.
- if (VT == SrcVT)
- return LegalShuffle;
- // If not, shorten the shuffled vector.
- if (VTNumElts != SrcNumElts) {
- SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N));
- EVT SubVT = EVT::getVectorVT(*DAG.getContext(),
- SrcVT.getVectorElementType(), VTNumElts);
- return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, LegalShuffle,
- ZeroIdx);
- }
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
- EVT VT = N->getValueType(0);
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- uint64_t InsIdx = N->getConstantOperandVal(2);
- // If inserting an UNDEF, just return the original vector.
- if (N1.isUndef())
- return N0;
- // If this is an insert of an extracted vector into an undef vector, we can
- // just use the input to the extract.
- if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
- N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT)
- return N1.getOperand(0);
- // Simplify scalar inserts into an undef vector:
- // insert_subvector undef, (splat X), N2 -> splat X
- if (N0.isUndef() && N1.getOpcode() == ISD::SPLAT_VECTOR)
- return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, N1.getOperand(0));
- // If we are inserting a bitcast value into an undef, with the same
- // number of elements, just use the bitcast input of the extract.
- // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
- // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
- if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST &&
- N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR &&
- N1.getOperand(0).getOperand(1) == N2 &&
- N1.getOperand(0).getOperand(0).getValueType().getVectorElementCount() ==
- VT.getVectorElementCount() &&
- N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
- VT.getSizeInBits()) {
- return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0));
- }
- // If both N1 and N2 are bitcast values on which insert_subvector
- // would makes sense, pull the bitcast through.
- // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
- // BITCAST (INSERT_SUBVECTOR N0 N1 N2)
- if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) {
- SDValue CN0 = N0.getOperand(0);
- SDValue CN1 = N1.getOperand(0);
- EVT CN0VT = CN0.getValueType();
- EVT CN1VT = CN1.getValueType();
- if (CN0VT.isVector() && CN1VT.isVector() &&
- CN0VT.getVectorElementType() == CN1VT.getVectorElementType() &&
- CN0VT.getVectorElementCount() == VT.getVectorElementCount()) {
- SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N),
- CN0.getValueType(), CN0, CN1, N2);
- return DAG.getBitcast(VT, NewINSERT);
- }
- }
- // Combine INSERT_SUBVECTORs where we are inserting to the same index.
- // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
- // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
- if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
- N0.getOperand(1).getValueType() == N1.getValueType() &&
- N0.getOperand(2) == N2)
- return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0),
- N1, N2);
- // Eliminate an intermediate insert into an undef vector:
- // insert_subvector undef, (insert_subvector undef, X, 0), N2 -->
- // insert_subvector undef, X, N2
- if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR &&
- N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2)))
- return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0,
- N1.getOperand(1), N2);
- // Push subvector bitcasts to the output, adjusting the index as we go.
- // insert_subvector(bitcast(v), bitcast(s), c1)
- // -> bitcast(insert_subvector(v, s, c2))
- if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) &&
- N1.getOpcode() == ISD::BITCAST) {
- SDValue N0Src = peekThroughBitcasts(N0);
- SDValue N1Src = peekThroughBitcasts(N1);
- EVT N0SrcSVT = N0Src.getValueType().getScalarType();
- EVT N1SrcSVT = N1Src.getValueType().getScalarType();
- if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) &&
- N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) {
- EVT NewVT;
- SDLoc DL(N);
- SDValue NewIdx;
- LLVMContext &Ctx = *DAG.getContext();
- ElementCount NumElts = VT.getVectorElementCount();
- unsigned EltSizeInBits = VT.getScalarSizeInBits();
- if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) {
- unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits();
- NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale);
- NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL);
- } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) {
- unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits;
- if (NumElts.isKnownMultipleOf(Scale) && (InsIdx % Scale) == 0) {
- NewVT = EVT::getVectorVT(Ctx, N1SrcSVT,
- NumElts.divideCoefficientBy(Scale));
- NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL);
- }
- }
- if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) {
- SDValue Res = DAG.getBitcast(NewVT, N0Src);
- Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx);
- return DAG.getBitcast(VT, Res);
- }
- }
- }
- // Canonicalize insert_subvector dag nodes.
- // Example:
- // (insert_subvector (insert_subvector A, Idx0), Idx1)
- // -> (insert_subvector (insert_subvector A, Idx1), Idx0)
- if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() &&
- N1.getValueType() == N0.getOperand(1).getValueType()) {
- unsigned OtherIdx = N0.getConstantOperandVal(2);
- if (InsIdx < OtherIdx) {
- // Swap nodes.
- SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT,
- N0.getOperand(0), N1, N2);
- AddToWorklist(NewOp.getNode());
- return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()),
- VT, NewOp, N0.getOperand(1), N0.getOperand(2));
- }
- }
- // If the input vector is a concatenation, and the insert replaces
- // one of the pieces, we can optimize into a single concat_vectors.
- if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() &&
- N0.getOperand(0).getValueType() == N1.getValueType() &&
- N0.getOperand(0).getValueType().isScalableVector() ==
- N1.getValueType().isScalableVector()) {
- unsigned Factor = N1.getValueType().getVectorMinNumElements();
- SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end());
- Ops[InsIdx / Factor] = N1;
- return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
- }
- // Simplify source operands based on insertion.
- if (SimplifyDemandedVectorElts(SDValue(N, 0)))
- return SDValue(N, 0);
- return SDValue();
- }
- SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- // fold (fp_to_fp16 (fp16_to_fp op)) -> op
- if (N0->getOpcode() == ISD::FP16_TO_FP)
- return N0->getOperand(0);
- return SDValue();
- }
- SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
- if (!TLI.shouldKeepZExtForFP16Conv() && N0->getOpcode() == ISD::AND) {
- ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1));
- if (AndConst && AndConst->getAPIntValue() == 0xffff) {
- return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0),
- N0.getOperand(0));
- }
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitFP_TO_BF16(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- // fold (fp_to_bf16 (bf16_to_fp op)) -> op
- if (N0->getOpcode() == ISD::BF16_TO_FP)
- return N0->getOperand(0);
- return SDValue();
- }
- SDValue DAGCombiner::visitVECREDUCE(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N0.getValueType();
- unsigned Opcode = N->getOpcode();
- // VECREDUCE over 1-element vector is just an extract.
- if (VT.getVectorElementCount().isScalar()) {
- SDLoc dl(N);
- SDValue Res =
- DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0,
- DAG.getVectorIdxConstant(0, dl));
- if (Res.getValueType() != N->getValueType(0))
- Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res);
- return Res;
- }
- // On an boolean vector an and/or reduction is the same as a umin/umax
- // reduction. Convert them if the latter is legal while the former isn't.
- if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) {
- unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND
- ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX;
- if (!TLI.isOperationLegalOrCustom(Opcode, VT) &&
- TLI.isOperationLegalOrCustom(NewOpcode, VT) &&
- DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits())
- return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0);
- }
- // vecreduce_or(insert_subvector(zero or undef, val)) -> vecreduce_or(val)
- // vecreduce_and(insert_subvector(ones or undef, val)) -> vecreduce_and(val)
- if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
- TLI.isTypeLegal(N0.getOperand(1).getValueType())) {
- SDValue Vec = N0.getOperand(0);
- SDValue Subvec = N0.getOperand(1);
- if ((Opcode == ISD::VECREDUCE_OR &&
- (N0.getOperand(0).isUndef() || isNullOrNullSplat(Vec))) ||
- (Opcode == ISD::VECREDUCE_AND &&
- (N0.getOperand(0).isUndef() || isAllOnesOrAllOnesSplat(Vec))))
- return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), Subvec);
- }
- return SDValue();
- }
- SDValue DAGCombiner::visitVPOp(SDNode *N) {
- if (N->getOpcode() == ISD::VP_GATHER)
- if (SDValue SD = visitVPGATHER(N))
- return SD;
- if (N->getOpcode() == ISD::VP_SCATTER)
- if (SDValue SD = visitVPSCATTER(N))
- return SD;
- // VP operations in which all vector elements are disabled - either by
- // determining that the mask is all false or that the EVL is 0 - can be
- // eliminated.
- bool AreAllEltsDisabled = false;
- if (auto EVLIdx = ISD::getVPExplicitVectorLengthIdx(N->getOpcode()))
- AreAllEltsDisabled |= isNullConstant(N->getOperand(*EVLIdx));
- if (auto MaskIdx = ISD::getVPMaskIdx(N->getOpcode()))
- AreAllEltsDisabled |=
- ISD::isConstantSplatVectorAllZeros(N->getOperand(*MaskIdx).getNode());
- // This is the only generic VP combine we support for now.
- if (!AreAllEltsDisabled)
- return SDValue();
- // Binary operations can be replaced by UNDEF.
- if (ISD::isVPBinaryOp(N->getOpcode()))
- return DAG.getUNDEF(N->getValueType(0));
- // VP Memory operations can be replaced by either the chain (stores) or the
- // chain + undef (loads).
- if (const auto *MemSD = dyn_cast<MemSDNode>(N)) {
- if (MemSD->writeMem())
- return MemSD->getChain();
- return CombineTo(N, DAG.getUNDEF(N->getValueType(0)), MemSD->getChain());
- }
- // Reduction operations return the start operand when no elements are active.
- if (ISD::isVPReduction(N->getOpcode()))
- return N->getOperand(0);
- return SDValue();
- }
- /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
- /// with the destination vector and a zero vector.
- /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
- /// vector_shuffle V, Zero, <0, 4, 2, 4>
- SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
- assert(N->getOpcode() == ISD::AND && "Unexpected opcode!");
- EVT VT = N->getValueType(0);
- SDValue LHS = N->getOperand(0);
- SDValue RHS = peekThroughBitcasts(N->getOperand(1));
- SDLoc DL(N);
- // Make sure we're not running after operation legalization where it
- // may have custom lowered the vector shuffles.
- if (LegalOperations)
- return SDValue();
- if (RHS.getOpcode() != ISD::BUILD_VECTOR)
- return SDValue();
- EVT RVT = RHS.getValueType();
- unsigned NumElts = RHS.getNumOperands();
- // Attempt to create a valid clear mask, splitting the mask into
- // sub elements and checking to see if each is
- // all zeros or all ones - suitable for shuffle masking.
- auto BuildClearMask = [&](int Split) {
- int NumSubElts = NumElts * Split;
- int NumSubBits = RVT.getScalarSizeInBits() / Split;
- SmallVector<int, 8> Indices;
- for (int i = 0; i != NumSubElts; ++i) {
- int EltIdx = i / Split;
- int SubIdx = i % Split;
- SDValue Elt = RHS.getOperand(EltIdx);
- // X & undef --> 0 (not undef). So this lane must be converted to choose
- // from the zero constant vector (same as if the element had all 0-bits).
- if (Elt.isUndef()) {
- Indices.push_back(i + NumSubElts);
- continue;
- }
- APInt Bits;
- if (isa<ConstantSDNode>(Elt))
- Bits = cast<ConstantSDNode>(Elt)->getAPIntValue();
- else if (isa<ConstantFPSDNode>(Elt))
- Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt();
- else
- return SDValue();
- // Extract the sub element from the constant bit mask.
- if (DAG.getDataLayout().isBigEndian())
- Bits = Bits.extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits);
- else
- Bits = Bits.extractBits(NumSubBits, SubIdx * NumSubBits);
- if (Bits.isAllOnes())
- Indices.push_back(i);
- else if (Bits == 0)
- Indices.push_back(i + NumSubElts);
- else
- return SDValue();
- }
- // Let's see if the target supports this vector_shuffle.
- EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits);
- EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts);
- if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
- return SDValue();
- SDValue Zero = DAG.getConstant(0, DL, ClearVT);
- return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL,
- DAG.getBitcast(ClearVT, LHS),
- Zero, Indices));
- };
- // Determine maximum split level (byte level masking).
- int MaxSplit = 1;
- if (RVT.getScalarSizeInBits() % 8 == 0)
- MaxSplit = RVT.getScalarSizeInBits() / 8;
- for (int Split = 1; Split <= MaxSplit; ++Split)
- if (RVT.getScalarSizeInBits() % Split == 0)
- if (SDValue S = BuildClearMask(Split))
- return S;
- return SDValue();
- }
- /// If a vector binop is performed on splat values, it may be profitable to
- /// extract, scalarize, and insert/splat.
- static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG,
- const SDLoc &DL) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- unsigned Opcode = N->getOpcode();
- EVT VT = N->getValueType(0);
- EVT EltVT = VT.getVectorElementType();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // TODO: Remove/replace the extract cost check? If the elements are available
- // as scalars, then there may be no extract cost. Should we ask if
- // inserting a scalar back into a vector is cheap instead?
- int Index0, Index1;
- SDValue Src0 = DAG.getSplatSourceVector(N0, Index0);
- SDValue Src1 = DAG.getSplatSourceVector(N1, Index1);
- // Extract element from splat_vector should be free.
- // TODO: use DAG.isSplatValue instead?
- bool IsBothSplatVector = N0.getOpcode() == ISD::SPLAT_VECTOR &&
- N1.getOpcode() == ISD::SPLAT_VECTOR;
- if (!Src0 || !Src1 || Index0 != Index1 ||
- Src0.getValueType().getVectorElementType() != EltVT ||
- Src1.getValueType().getVectorElementType() != EltVT ||
- !(IsBothSplatVector || TLI.isExtractVecEltCheap(VT, Index0)) ||
- !TLI.isOperationLegalOrCustom(Opcode, EltVT))
- return SDValue();
- SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL);
- SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src0, IndexC);
- SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src1, IndexC);
- SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags());
- // If all lanes but 1 are undefined, no need to splat the scalar result.
- // TODO: Keep track of undefs and use that info in the general case.
- if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() &&
- count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 &&
- count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) {
- // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) -->
- // build_vec ..undef, (bo X, Y), undef...
- SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT));
- Ops[Index0] = ScalarBO;
- return DAG.getBuildVector(VT, DL, Ops);
- }
- // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index
- return DAG.getSplat(VT, DL, ScalarBO);
- }
- /// Visit a vector cast operation, like FP_EXTEND.
- SDValue DAGCombiner::SimplifyVCastOp(SDNode *N, const SDLoc &DL) {
- EVT VT = N->getValueType(0);
- assert(VT.isVector() && "SimplifyVCastOp only works on vectors!");
- EVT EltVT = VT.getVectorElementType();
- unsigned Opcode = N->getOpcode();
- SDValue N0 = N->getOperand(0);
- EVT SrcVT = N0->getValueType(0);
- EVT SrcEltVT = SrcVT.getVectorElementType();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // TODO: promote operation might be also good here?
- int Index0;
- SDValue Src0 = DAG.getSplatSourceVector(N0, Index0);
- if (Src0 &&
- (N0.getOpcode() == ISD::SPLAT_VECTOR ||
- TLI.isExtractVecEltCheap(VT, Index0)) &&
- TLI.isOperationLegalOrCustom(Opcode, EltVT) &&
- TLI.preferScalarizeSplat(Opcode)) {
- SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL);
- SDValue Elt =
- DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcEltVT, Src0, IndexC);
- SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, Elt, N->getFlags());
- if (VT.isScalableVector())
- return DAG.getSplatVector(VT, DL, ScalarBO);
- SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO);
- return DAG.getBuildVector(VT, DL, Ops);
- }
- return SDValue();
- }
- /// Visit a binary vector operation, like ADD.
- SDValue DAGCombiner::SimplifyVBinOp(SDNode *N, const SDLoc &DL) {
- EVT VT = N->getValueType(0);
- assert(VT.isVector() && "SimplifyVBinOp only works on vectors!");
- SDValue LHS = N->getOperand(0);
- SDValue RHS = N->getOperand(1);
- unsigned Opcode = N->getOpcode();
- SDNodeFlags Flags = N->getFlags();
- // Move unary shuffles with identical masks after a vector binop:
- // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask))
- // --> shuffle (VBinOp A, B), Undef, Mask
- // This does not require type legality checks because we are creating the
- // same types of operations that are in the original sequence. We do have to
- // restrict ops like integer div that have immediate UB (eg, div-by-zero)
- // though. This code is adapted from the identical transform in instcombine.
- if (DAG.isSafeToSpeculativelyExecute(Opcode)) {
- auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS);
- auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS);
- if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) &&
- LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() &&
- (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) {
- SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0),
- RHS.getOperand(0), Flags);
- SDValue UndefV = LHS.getOperand(1);
- return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask());
- }
- // Try to sink a splat shuffle after a binop with a uniform constant.
- // This is limited to cases where neither the shuffle nor the constant have
- // undefined elements because that could be poison-unsafe or inhibit
- // demanded elements analysis. It is further limited to not change a splat
- // of an inserted scalar because that may be optimized better by
- // load-folding or other target-specific behaviors.
- if (isConstOrConstSplat(RHS) && Shuf0 && all_equal(Shuf0->getMask()) &&
- Shuf0->hasOneUse() && Shuf0->getOperand(1).isUndef() &&
- Shuf0->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) {
- // binop (splat X), (splat C) --> splat (binop X, C)
- SDValue X = Shuf0->getOperand(0);
- SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, X, RHS, Flags);
- return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT),
- Shuf0->getMask());
- }
- if (isConstOrConstSplat(LHS) && Shuf1 && all_equal(Shuf1->getMask()) &&
- Shuf1->hasOneUse() && Shuf1->getOperand(1).isUndef() &&
- Shuf1->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) {
- // binop (splat C), (splat X) --> splat (binop C, X)
- SDValue X = Shuf1->getOperand(0);
- SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS, X, Flags);
- return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT),
- Shuf1->getMask());
- }
- }
- // The following pattern is likely to emerge with vector reduction ops. Moving
- // the binary operation ahead of insertion may allow using a narrower vector
- // instruction that has better performance than the wide version of the op:
- // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z
- if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() &&
- RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() &&
- LHS.getOperand(2) == RHS.getOperand(2) &&
- (LHS.hasOneUse() || RHS.hasOneUse())) {
- SDValue X = LHS.getOperand(1);
- SDValue Y = RHS.getOperand(1);
- SDValue Z = LHS.getOperand(2);
- EVT NarrowVT = X.getValueType();
- if (NarrowVT == Y.getValueType() &&
- TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT,
- LegalOperations)) {
- // (binop undef, undef) may not return undef, so compute that result.
- SDValue VecC =
- DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT));
- SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y);
- return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z);
- }
- }
- // Make sure all but the first op are undef or constant.
- auto ConcatWithConstantOrUndef = [](SDValue Concat) {
- return Concat.getOpcode() == ISD::CONCAT_VECTORS &&
- all_of(drop_begin(Concat->ops()), [](const SDValue &Op) {
- return Op.isUndef() ||
- ISD::isBuildVectorOfConstantSDNodes(Op.getNode());
- });
- };
- // The following pattern is likely to emerge with vector reduction ops. Moving
- // the binary operation ahead of the concat may allow using a narrower vector
- // instruction that has better performance than the wide version of the op:
- // VBinOp (concat X, undef/constant), (concat Y, undef/constant) -->
- // concat (VBinOp X, Y), VecC
- if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) &&
- (LHS.hasOneUse() || RHS.hasOneUse())) {
- EVT NarrowVT = LHS.getOperand(0).getValueType();
- if (NarrowVT == RHS.getOperand(0).getValueType() &&
- TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) {
- unsigned NumOperands = LHS.getNumOperands();
- SmallVector<SDValue, 4> ConcatOps;
- for (unsigned i = 0; i != NumOperands; ++i) {
- // This constant fold for operands 1 and up.
- ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i),
- RHS.getOperand(i)));
- }
- return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
- }
- }
- if (SDValue V = scalarizeBinOpOfSplats(N, DAG, DL))
- return V;
- return SDValue();
- }
- SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1,
- SDValue N2) {
- assert(N0.getOpcode() == ISD::SETCC &&
- "First argument must be a SetCC node!");
- SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
- cast<CondCodeSDNode>(N0.getOperand(2))->get());
- // If we got a simplified select_cc node back from SimplifySelectCC, then
- // break it down into a new SETCC node, and a new SELECT node, and then return
- // the SELECT node, since we were called with a SELECT node.
- if (SCC.getNode()) {
- // Check to see if we got a select_cc back (to turn into setcc/select).
- // Otherwise, just return whatever node we got back, like fabs.
- if (SCC.getOpcode() == ISD::SELECT_CC) {
- const SDNodeFlags Flags = N0->getFlags();
- SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
- N0.getValueType(),
- SCC.getOperand(0), SCC.getOperand(1),
- SCC.getOperand(4), Flags);
- AddToWorklist(SETCC.getNode());
- SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
- SCC.getOperand(2), SCC.getOperand(3));
- SelectNode->setFlags(Flags);
- return SelectNode;
- }
- return SCC;
- }
- return SDValue();
- }
- /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
- /// being selected between, see if we can simplify the select. Callers of this
- /// should assume that TheSelect is deleted if this returns true. As such, they
- /// should return the appropriate thing (e.g. the node) back to the top-level of
- /// the DAG combiner loop to avoid it being looked at.
- bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
- SDValue RHS) {
- // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
- // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
- if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
- if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
- // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
- SDValue Sqrt = RHS;
- ISD::CondCode CC;
- SDValue CmpLHS;
- const ConstantFPSDNode *Zero = nullptr;
- if (TheSelect->getOpcode() == ISD::SELECT_CC) {
- CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
- CmpLHS = TheSelect->getOperand(0);
- Zero = isConstOrConstSplatFP(TheSelect->getOperand(1));
- } else {
- // SELECT or VSELECT
- SDValue Cmp = TheSelect->getOperand(0);
- if (Cmp.getOpcode() == ISD::SETCC) {
- CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
- CmpLHS = Cmp.getOperand(0);
- Zero = isConstOrConstSplatFP(Cmp.getOperand(1));
- }
- }
- if (Zero && Zero->isZero() &&
- Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
- CC == ISD::SETULT || CC == ISD::SETLT)) {
- // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
- CombineTo(TheSelect, Sqrt);
- return true;
- }
- }
- }
- // Cannot simplify select with vector condition
- if (TheSelect->getOperand(0).getValueType().isVector()) return false;
- // If this is a select from two identical things, try to pull the operation
- // through the select.
- if (LHS.getOpcode() != RHS.getOpcode() ||
- !LHS.hasOneUse() || !RHS.hasOneUse())
- return false;
- // If this is a load and the token chain is identical, replace the select
- // of two loads with a load through a select of the address to load from.
- // This triggers in things like "select bool X, 10.0, 123.0" after the FP
- // constants have been dropped into the constant pool.
- if (LHS.getOpcode() == ISD::LOAD) {
- LoadSDNode *LLD = cast<LoadSDNode>(LHS);
- LoadSDNode *RLD = cast<LoadSDNode>(RHS);
- // Token chains must be identical.
- if (LHS.getOperand(0) != RHS.getOperand(0) ||
- // Do not let this transformation reduce the number of volatile loads.
- // Be conservative for atomics for the moment
- // TODO: This does appear to be legal for unordered atomics (see D66309)
- !LLD->isSimple() || !RLD->isSimple() ||
- // FIXME: If either is a pre/post inc/dec load,
- // we'd need to split out the address adjustment.
- LLD->isIndexed() || RLD->isIndexed() ||
- // If this is an EXTLOAD, the VT's must match.
- LLD->getMemoryVT() != RLD->getMemoryVT() ||
- // If this is an EXTLOAD, the kind of extension must match.
- (LLD->getExtensionType() != RLD->getExtensionType() &&
- // The only exception is if one of the extensions is anyext.
- LLD->getExtensionType() != ISD::EXTLOAD &&
- RLD->getExtensionType() != ISD::EXTLOAD) ||
- // FIXME: this discards src value information. This is
- // over-conservative. It would be beneficial to be able to remember
- // both potential memory locations. Since we are discarding
- // src value info, don't do the transformation if the memory
- // locations are not in the default address space.
- LLD->getPointerInfo().getAddrSpace() != 0 ||
- RLD->getPointerInfo().getAddrSpace() != 0 ||
- // We can't produce a CMOV of a TargetFrameIndex since we won't
- // generate the address generation required.
- LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex ||
- RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex ||
- !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
- LLD->getBasePtr().getValueType()))
- return false;
- // The loads must not depend on one another.
- if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD))
- return false;
- // Check that the select condition doesn't reach either load. If so,
- // folding this will induce a cycle into the DAG. If not, this is safe to
- // xform, so create a select of the addresses.
- SmallPtrSet<const SDNode *, 32> Visited;
- SmallVector<const SDNode *, 16> Worklist;
- // Always fail if LLD and RLD are not independent. TheSelect is a
- // predecessor to all Nodes in question so we need not search past it.
- Visited.insert(TheSelect);
- Worklist.push_back(LLD);
- Worklist.push_back(RLD);
- if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) ||
- SDNode::hasPredecessorHelper(RLD, Visited, Worklist))
- return false;
- SDValue Addr;
- if (TheSelect->getOpcode() == ISD::SELECT) {
- // We cannot do this optimization if any pair of {RLD, LLD} is a
- // predecessor to {RLD, LLD, CondNode}. As we've already compared the
- // Loads, we only need to check if CondNode is a successor to one of the
- // loads. We can further avoid this if there's no use of their chain
- // value.
- SDNode *CondNode = TheSelect->getOperand(0).getNode();
- Worklist.push_back(CondNode);
- if ((LLD->hasAnyUseOfValue(1) &&
- SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
- (RLD->hasAnyUseOfValue(1) &&
- SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
- return false;
- Addr = DAG.getSelect(SDLoc(TheSelect),
- LLD->getBasePtr().getValueType(),
- TheSelect->getOperand(0), LLD->getBasePtr(),
- RLD->getBasePtr());
- } else { // Otherwise SELECT_CC
- // We cannot do this optimization if any pair of {RLD, LLD} is a
- // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
- // the Loads, we only need to check if CondLHS/CondRHS is a successor to
- // one of the loads. We can further avoid this if there's no use of their
- // chain value.
- SDNode *CondLHS = TheSelect->getOperand(0).getNode();
- SDNode *CondRHS = TheSelect->getOperand(1).getNode();
- Worklist.push_back(CondLHS);
- Worklist.push_back(CondRHS);
- if ((LLD->hasAnyUseOfValue(1) &&
- SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
- (RLD->hasAnyUseOfValue(1) &&
- SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
- return false;
- Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
- LLD->getBasePtr().getValueType(),
- TheSelect->getOperand(0),
- TheSelect->getOperand(1),
- LLD->getBasePtr(), RLD->getBasePtr(),
- TheSelect->getOperand(4));
- }
- SDValue Load;
- // It is safe to replace the two loads if they have different alignments,
- // but the new load must be the minimum (most restrictive) alignment of the
- // inputs.
- Align Alignment = std::min(LLD->getAlign(), RLD->getAlign());
- MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags();
- if (!RLD->isInvariant())
- MMOFlags &= ~MachineMemOperand::MOInvariant;
- if (!RLD->isDereferenceable())
- MMOFlags &= ~MachineMemOperand::MODereferenceable;
- if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
- // FIXME: Discards pointer and AA info.
- Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect),
- LLD->getChain(), Addr, MachinePointerInfo(), Alignment,
- MMOFlags);
- } else {
- // FIXME: Discards pointer and AA info.
- Load = DAG.getExtLoad(
- LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType()
- : LLD->getExtensionType(),
- SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr,
- MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags);
- }
- // Users of the select now use the result of the load.
- CombineTo(TheSelect, Load);
- // Users of the old loads now use the new load's chain. We know the
- // old-load value is dead now.
- CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
- CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
- return true;
- }
- return false;
- }
- /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
- /// bitwise 'and'.
- SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0,
- SDValue N1, SDValue N2, SDValue N3,
- ISD::CondCode CC) {
- // If this is a select where the false operand is zero and the compare is a
- // check of the sign bit, see if we can perform the "gzip trick":
- // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
- // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
- EVT XType = N0.getValueType();
- EVT AType = N2.getValueType();
- if (!isNullConstant(N3) || !XType.bitsGE(AType))
- return SDValue();
- // If the comparison is testing for a positive value, we have to invert
- // the sign bit mask, so only do that transform if the target has a bitwise
- // 'and not' instruction (the invert is free).
- if (CC == ISD::SETGT && TLI.hasAndNot(N2)) {
- // (X > -1) ? A : 0
- // (X > 0) ? X : 0 <-- This is canonical signed max.
- if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2)))
- return SDValue();
- } else if (CC == ISD::SETLT) {
- // (X < 0) ? A : 0
- // (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
- if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2)))
- return SDValue();
- } else {
- return SDValue();
- }
- // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
- // constant.
- EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
- auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
- if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
- unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1;
- if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) {
- SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
- SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt);
- AddToWorklist(Shift.getNode());
- if (XType.bitsGT(AType)) {
- Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
- AddToWorklist(Shift.getNode());
- }
- if (CC == ISD::SETGT)
- Shift = DAG.getNOT(DL, Shift, AType);
- return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
- }
- }
- unsigned ShCt = XType.getSizeInBits() - 1;
- if (TLI.shouldAvoidTransformToShift(XType, ShCt))
- return SDValue();
- SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
- SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt);
- AddToWorklist(Shift.getNode());
- if (XType.bitsGT(AType)) {
- Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
- AddToWorklist(Shift.getNode());
- }
- if (CC == ISD::SETGT)
- Shift = DAG.getNOT(DL, Shift, AType);
- return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
- }
- // Fold select(cc, binop(), binop()) -> binop(select(), select()) etc.
- SDValue DAGCombiner::foldSelectOfBinops(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- EVT VT = N->getValueType(0);
- SDLoc DL(N);
- unsigned BinOpc = N1.getOpcode();
- if (!TLI.isBinOp(BinOpc) || (N2.getOpcode() != BinOpc))
- return SDValue();
- // The use checks are intentionally on SDNode because we may be dealing
- // with opcodes that produce more than one SDValue.
- // TODO: Do we really need to check N0 (the condition operand of the select)?
- // But removing that clause could cause an infinite loop...
- if (!N0->hasOneUse() || !N1->hasOneUse() || !N2->hasOneUse())
- return SDValue();
- // Binops may include opcodes that return multiple values, so all values
- // must be created/propagated from the newly created binops below.
- SDVTList OpVTs = N1->getVTList();
- // Fold select(cond, binop(x, y), binop(z, y))
- // --> binop(select(cond, x, z), y)
- if (N1.getOperand(1) == N2.getOperand(1)) {
- SDValue NewSel =
- DAG.getSelect(DL, VT, N0, N1.getOperand(0), N2.getOperand(0));
- SDValue NewBinOp = DAG.getNode(BinOpc, DL, OpVTs, NewSel, N1.getOperand(1));
- NewBinOp->setFlags(N1->getFlags());
- NewBinOp->intersectFlagsWith(N2->getFlags());
- return NewBinOp;
- }
- // Fold select(cond, binop(x, y), binop(x, z))
- // --> binop(x, select(cond, y, z))
- // Second op VT might be different (e.g. shift amount type)
- if (N1.getOperand(0) == N2.getOperand(0) &&
- VT == N1.getOperand(1).getValueType() &&
- VT == N2.getOperand(1).getValueType()) {
- SDValue NewSel =
- DAG.getSelect(DL, VT, N0, N1.getOperand(1), N2.getOperand(1));
- SDValue NewBinOp = DAG.getNode(BinOpc, DL, OpVTs, N1.getOperand(0), NewSel);
- NewBinOp->setFlags(N1->getFlags());
- NewBinOp->intersectFlagsWith(N2->getFlags());
- return NewBinOp;
- }
- // TODO: Handle isCommutativeBinOp patterns as well?
- return SDValue();
- }
- // Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values.
- SDValue DAGCombiner::foldSignChangeInBitcast(SDNode *N) {
- SDValue N0 = N->getOperand(0);
- EVT VT = N->getValueType(0);
- bool IsFabs = N->getOpcode() == ISD::FABS;
- bool IsFree = IsFabs ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT);
- if (IsFree || N0.getOpcode() != ISD::BITCAST || !N0.hasOneUse())
- return SDValue();
- SDValue Int = N0.getOperand(0);
- EVT IntVT = Int.getValueType();
- // The operand to cast should be integer.
- if (!IntVT.isInteger() || IntVT.isVector())
- return SDValue();
- // (fneg (bitconvert x)) -> (bitconvert (xor x sign))
- // (fabs (bitconvert x)) -> (bitconvert (and x ~sign))
- APInt SignMask;
- if (N0.getValueType().isVector()) {
- // For vector, create a sign mask (0x80...) or its inverse (for fabs,
- // 0x7f...) per element and splat it.
- SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits());
- if (IsFabs)
- SignMask = ~SignMask;
- SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
- } else {
- // For scalar, just use the sign mask (0x80... or the inverse, 0x7f...)
- SignMask = APInt::getSignMask(IntVT.getSizeInBits());
- if (IsFabs)
- SignMask = ~SignMask;
- }
- SDLoc DL(N0);
- Int = DAG.getNode(IsFabs ? ISD::AND : ISD::XOR, DL, IntVT, Int,
- DAG.getConstant(SignMask, DL, IntVT));
- AddToWorklist(Int.getNode());
- return DAG.getBitcast(VT, Int);
- }
- /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
- /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
- /// in it. This may be a win when the constant is not otherwise available
- /// because it replaces two constant pool loads with one.
- SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
- const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
- ISD::CondCode CC) {
- if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType()))
- return SDValue();
- // If we are before legalize types, we want the other legalization to happen
- // first (for example, to avoid messing with soft float).
- auto *TV = dyn_cast<ConstantFPSDNode>(N2);
- auto *FV = dyn_cast<ConstantFPSDNode>(N3);
- EVT VT = N2.getValueType();
- if (!TV || !FV || !TLI.isTypeLegal(VT))
- return SDValue();
- // If a constant can be materialized without loads, this does not make sense.
- if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal ||
- TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) ||
- TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize))
- return SDValue();
- // If both constants have multiple uses, then we won't need to do an extra
- // load. The values are likely around in registers for other users.
- if (!TV->hasOneUse() && !FV->hasOneUse())
- return SDValue();
- Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()),
- const_cast<ConstantFP*>(TV->getConstantFPValue()) };
- Type *FPTy = Elts[0]->getType();
- const DataLayout &TD = DAG.getDataLayout();
- // Create a ConstantArray of the two constants.
- Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
- SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()),
- TD.getPrefTypeAlign(FPTy));
- Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
- // Get offsets to the 0 and 1 elements of the array, so we can select between
- // them.
- SDValue Zero = DAG.getIntPtrConstant(0, DL);
- unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
- SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
- SDValue Cond =
- DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC);
- AddToWorklist(Cond.getNode());
- SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero);
- AddToWorklist(CstOffset.getNode());
- CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset);
- AddToWorklist(CPIdx.getNode());
- return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
- MachinePointerInfo::getConstantPool(
- DAG.getMachineFunction()), Alignment);
- }
- /// Simplify an expression of the form (N0 cond N1) ? N2 : N3
- /// where 'cond' is the comparison specified by CC.
- SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
- SDValue N2, SDValue N3, ISD::CondCode CC,
- bool NotExtCompare) {
- // (x ? y : y) -> y.
- if (N2 == N3) return N2;
- EVT CmpOpVT = N0.getValueType();
- EVT CmpResVT = getSetCCResultType(CmpOpVT);
- EVT VT = N2.getValueType();
- auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
- auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
- auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
- // Determine if the condition we're dealing with is constant.
- if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) {
- AddToWorklist(SCC.getNode());
- if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) {
- // fold select_cc true, x, y -> x
- // fold select_cc false, x, y -> y
- return !(SCCC->isZero()) ? N2 : N3;
- }
- }
- if (SDValue V =
- convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC))
- return V;
- if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC))
- return V;
- // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (sra (shl x)) A)
- // where y is has a single bit set.
- // A plaintext description would be, we can turn the SELECT_CC into an AND
- // when the condition can be materialized as an all-ones register. Any
- // single bit-test can be materialized as an all-ones register with
- // shift-left and shift-right-arith.
- if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
- N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) {
- SDValue AndLHS = N0->getOperand(0);
- auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
- if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
- // Shift the tested bit over the sign bit.
- const APInt &AndMask = ConstAndRHS->getAPIntValue();
- unsigned ShCt = AndMask.getBitWidth() - 1;
- if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) {
- SDValue ShlAmt =
- DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS),
- getShiftAmountTy(AndLHS.getValueType()));
- SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
- // Now arithmetic right shift it all the way over, so the result is
- // either all-ones, or zero.
- SDValue ShrAmt =
- DAG.getConstant(ShCt, SDLoc(Shl),
- getShiftAmountTy(Shl.getValueType()));
- SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
- return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
- }
- }
- }
- // fold select C, 16, 0 -> shl C, 4
- bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2();
- bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2();
- if ((Fold || Swap) &&
- TLI.getBooleanContents(CmpOpVT) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) {
- if (Swap) {
- CC = ISD::getSetCCInverse(CC, CmpOpVT);
- std::swap(N2C, N3C);
- }
- // If the caller doesn't want us to simplify this into a zext of a compare,
- // don't do it.
- if (NotExtCompare && N2C->isOne())
- return SDValue();
- SDValue Temp, SCC;
- // zext (setcc n0, n1)
- if (LegalTypes) {
- SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC);
- if (VT.bitsLT(SCC.getValueType()))
- Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT);
- else
- Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
- } else {
- SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
- Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
- }
- AddToWorklist(SCC.getNode());
- AddToWorklist(Temp.getNode());
- if (N2C->isOne())
- return Temp;
- unsigned ShCt = N2C->getAPIntValue().logBase2();
- if (TLI.shouldAvoidTransformToShift(VT, ShCt))
- return SDValue();
- // shl setcc result by log2 n2c
- return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
- DAG.getConstant(ShCt, SDLoc(Temp),
- getShiftAmountTy(Temp.getValueType())));
- }
- // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
- // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
- // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
- // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
- // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
- // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
- // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
- // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
- if (N1C && N1C->isZero() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
- SDValue ValueOnZero = N2;
- SDValue Count = N3;
- // If the condition is NE instead of E, swap the operands.
- if (CC == ISD::SETNE)
- std::swap(ValueOnZero, Count);
- // Check if the value on zero is a constant equal to the bits in the type.
- if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) {
- if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) {
- // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
- // legal, combine to just cttz.
- if ((Count.getOpcode() == ISD::CTTZ ||
- Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) &&
- N0 == Count.getOperand(0) &&
- (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT)))
- return DAG.getNode(ISD::CTTZ, DL, VT, N0);
- // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
- // legal, combine to just ctlz.
- if ((Count.getOpcode() == ISD::CTLZ ||
- Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) &&
- N0 == Count.getOperand(0) &&
- (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT)))
- return DAG.getNode(ISD::CTLZ, DL, VT, N0);
- }
- }
- }
- // Fold select_cc setgt X, -1, C, ~C -> xor (ashr X, BW-1), C
- // Fold select_cc setlt X, 0, C, ~C -> xor (ashr X, BW-1), ~C
- if (!NotExtCompare && N1C && N2C && N3C &&
- N2C->getAPIntValue() == ~N3C->getAPIntValue() &&
- ((N1C->isAllOnes() && CC == ISD::SETGT) ||
- (N1C->isZero() && CC == ISD::SETLT)) &&
- !TLI.shouldAvoidTransformToShift(VT, CmpOpVT.getScalarSizeInBits() - 1)) {
- SDValue ASR = DAG.getNode(
- ISD::SRA, DL, CmpOpVT, N0,
- DAG.getConstant(CmpOpVT.getScalarSizeInBits() - 1, DL, CmpOpVT));
- return DAG.getNode(ISD::XOR, DL, VT, DAG.getSExtOrTrunc(ASR, DL, VT),
- DAG.getSExtOrTrunc(CC == ISD::SETLT ? N3 : N2, DL, VT));
- }
- if (SDValue S = PerformMinMaxFpToSatCombine(N0, N1, N2, N3, CC, DAG))
- return S;
- if (SDValue S = PerformUMinFpToSatCombine(N0, N1, N2, N3, CC, DAG))
- return S;
- return SDValue();
- }
- /// This is a stub for TargetLowering::SimplifySetCC.
- SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
- ISD::CondCode Cond, const SDLoc &DL,
- bool foldBooleans) {
- TargetLowering::DAGCombinerInfo
- DagCombineInfo(DAG, Level, false, this);
- return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
- }
- /// Given an ISD::SDIV node expressing a divide by constant, return
- /// a DAG expression to select that will generate the same value by multiplying
- /// by a magic number.
- /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
- SDValue DAGCombiner::BuildSDIV(SDNode *N) {
- // when optimising for minimum size, we don't want to expand a div to a mul
- // and a shift.
- if (DAG.getMachineFunction().getFunction().hasMinSize())
- return SDValue();
- SmallVector<SDNode *, 8> Built;
- if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) {
- for (SDNode *N : Built)
- AddToWorklist(N);
- return S;
- }
- return SDValue();
- }
- /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
- /// DAG expression that will generate the same value by right shifting.
- SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
- ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
- if (!C)
- return SDValue();
- // Avoid division by zero.
- if (C->isZero())
- return SDValue();
- SmallVector<SDNode *, 8> Built;
- if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) {
- for (SDNode *N : Built)
- AddToWorklist(N);
- return S;
- }
- return SDValue();
- }
- /// Given an ISD::UDIV node expressing a divide by constant, return a DAG
- /// expression that will generate the same value by multiplying by a magic
- /// number.
- /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
- SDValue DAGCombiner::BuildUDIV(SDNode *N) {
- // when optimising for minimum size, we don't want to expand a div to a mul
- // and a shift.
- if (DAG.getMachineFunction().getFunction().hasMinSize())
- return SDValue();
- SmallVector<SDNode *, 8> Built;
- if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) {
- for (SDNode *N : Built)
- AddToWorklist(N);
- return S;
- }
- return SDValue();
- }
- /// Given an ISD::SREM node expressing a remainder by constant power of 2,
- /// return a DAG expression that will generate the same value.
- SDValue DAGCombiner::BuildSREMPow2(SDNode *N) {
- ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
- if (!C)
- return SDValue();
- // Avoid division by zero.
- if (C->isZero())
- return SDValue();
- SmallVector<SDNode *, 8> Built;
- if (SDValue S = TLI.BuildSREMPow2(N, C->getAPIntValue(), DAG, Built)) {
- for (SDNode *N : Built)
- AddToWorklist(N);
- return S;
- }
- return SDValue();
- }
- /// Determines the LogBase2 value for a non-null input value using the
- /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
- SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) {
- EVT VT = V.getValueType();
- SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V);
- SDValue Base = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT);
- SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz);
- return LogBase2;
- }
- /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
- /// For the reciprocal, we need to find the zero of the function:
- /// F(X) = 1/X - A [which has a zero at X = 1/A]
- /// =>
- /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
- /// does not require additional intermediate precision]
- /// For the last iteration, put numerator N into it to gain more precision:
- /// Result = N X_i + X_i (N - N A X_i)
- SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op,
- SDNodeFlags Flags) {
- if (LegalDAG)
- return SDValue();
- // TODO: Handle extended types?
- EVT VT = Op.getValueType();
- if (VT.getScalarType() != MVT::f16 && VT.getScalarType() != MVT::f32 &&
- VT.getScalarType() != MVT::f64)
- return SDValue();
- // If estimates are explicitly disabled for this function, we're done.
- MachineFunction &MF = DAG.getMachineFunction();
- int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF);
- if (Enabled == TLI.ReciprocalEstimate::Disabled)
- return SDValue();
- // Estimates may be explicitly enabled for this type with a custom number of
- // refinement steps.
- int Iterations = TLI.getDivRefinementSteps(VT, MF);
- if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) {
- AddToWorklist(Est.getNode());
- SDLoc DL(Op);
- if (Iterations) {
- SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
- // Newton iterations: Est = Est + Est (N - Arg * Est)
- // If this is the last iteration, also multiply by the numerator.
- for (int i = 0; i < Iterations; ++i) {
- SDValue MulEst = Est;
- if (i == Iterations - 1) {
- MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags);
- AddToWorklist(MulEst.getNode());
- }
- SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags);
- AddToWorklist(NewEst.getNode());
- NewEst = DAG.getNode(ISD::FSUB, DL, VT,
- (i == Iterations - 1 ? N : FPOne), NewEst, Flags);
- AddToWorklist(NewEst.getNode());
- NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
- AddToWorklist(NewEst.getNode());
- Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags);
- AddToWorklist(Est.getNode());
- }
- } else {
- // If no iterations are available, multiply with N.
- Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags);
- AddToWorklist(Est.getNode());
- }
- return Est;
- }
- return SDValue();
- }
- /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
- /// For the reciprocal sqrt, we need to find the zero of the function:
- /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
- /// =>
- /// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
- /// As a result, we precompute A/2 prior to the iteration loop.
- SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est,
- unsigned Iterations,
- SDNodeFlags Flags, bool Reciprocal) {
- EVT VT = Arg.getValueType();
- SDLoc DL(Arg);
- SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);
- // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
- // this entire sequence requires only one FP constant.
- SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags);
- HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags);
- // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
- for (unsigned i = 0; i < Iterations; ++i) {
- SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
- NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags);
- NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags);
- Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
- }
- // If non-reciprocal square root is requested, multiply the result by Arg.
- if (!Reciprocal)
- Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags);
- return Est;
- }
- /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
- /// For the reciprocal sqrt, we need to find the zero of the function:
- /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
- /// =>
- /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
- SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est,
- unsigned Iterations,
- SDNodeFlags Flags, bool Reciprocal) {
- EVT VT = Arg.getValueType();
- SDLoc DL(Arg);
- SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
- SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);
- // This routine must enter the loop below to work correctly
- // when (Reciprocal == false).
- assert(Iterations > 0);
- // Newton iterations for reciprocal square root:
- // E = (E * -0.5) * ((A * E) * E + -3.0)
- for (unsigned i = 0; i < Iterations; ++i) {
- SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags);
- SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags);
- SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags);
- // When calculating a square root at the last iteration build:
- // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
- // (notice a common subexpression)
- SDValue LHS;
- if (Reciprocal || (i + 1) < Iterations) {
- // RSQRT: LHS = (E * -0.5)
- LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags);
- } else {
- // SQRT: LHS = (A * E) * -0.5
- LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags);
- }
- Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags);
- }
- return Est;
- }
- /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
- /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
- /// Op can be zero.
- SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags,
- bool Reciprocal) {
- if (LegalDAG)
- return SDValue();
- // TODO: Handle extended types?
- EVT VT = Op.getValueType();
- if (VT.getScalarType() != MVT::f16 && VT.getScalarType() != MVT::f32 &&
- VT.getScalarType() != MVT::f64)
- return SDValue();
- // If estimates are explicitly disabled for this function, we're done.
- MachineFunction &MF = DAG.getMachineFunction();
- int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF);
- if (Enabled == TLI.ReciprocalEstimate::Disabled)
- return SDValue();
- // Estimates may be explicitly enabled for this type with a custom number of
- // refinement steps.
- int Iterations = TLI.getSqrtRefinementSteps(VT, MF);
- bool UseOneConstNR = false;
- if (SDValue Est =
- TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR,
- Reciprocal)) {
- AddToWorklist(Est.getNode());
- if (Iterations)
- Est = UseOneConstNR
- ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal)
- : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal);
- if (!Reciprocal) {
- SDLoc DL(Op);
- // Try the target specific test first.
- SDValue Test = TLI.getSqrtInputTest(Op, DAG, DAG.getDenormalMode(VT));
- // The estimate is now completely wrong if the input was exactly 0.0 or
- // possibly a denormal. Force the answer to 0.0 or value provided by
- // target for those cases.
- Est = DAG.getNode(
- Test.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
- Test, TLI.getSqrtResultForDenormInput(Op, DAG), Est);
- }
- return Est;
- }
- return SDValue();
- }
- SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) {
- return buildSqrtEstimateImpl(Op, Flags, true);
- }
- SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) {
- return buildSqrtEstimateImpl(Op, Flags, false);
- }
- /// Return true if there is any possibility that the two addresses overlap.
- bool DAGCombiner::mayAlias(SDNode *Op0, SDNode *Op1) const {
- struct MemUseCharacteristics {
- bool IsVolatile;
- bool IsAtomic;
- SDValue BasePtr;
- int64_t Offset;
- std::optional<int64_t> NumBytes;
- MachineMemOperand *MMO;
- };
- auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics {
- if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) {
- int64_t Offset = 0;
- if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset()))
- Offset = (LSN->getAddressingMode() == ISD::PRE_INC)
- ? C->getSExtValue()
- : (LSN->getAddressingMode() == ISD::PRE_DEC)
- ? -1 * C->getSExtValue()
- : 0;
- uint64_t Size =
- MemoryLocation::getSizeOrUnknown(LSN->getMemoryVT().getStoreSize());
- return {LSN->isVolatile(),
- LSN->isAtomic(),
- LSN->getBasePtr(),
- Offset /*base offset*/,
- std::optional<int64_t>(Size),
- LSN->getMemOperand()};
- }
- if (const auto *LN = cast<LifetimeSDNode>(N))
- return {false /*isVolatile*/,
- /*isAtomic*/ false,
- LN->getOperand(1),
- (LN->hasOffset()) ? LN->getOffset() : 0,
- (LN->hasOffset()) ? std::optional<int64_t>(LN->getSize())
- : std::optional<int64_t>(),
- (MachineMemOperand *)nullptr};
- // Default.
- return {false /*isvolatile*/,
- /*isAtomic*/ false, SDValue(),
- (int64_t)0 /*offset*/, std::optional<int64_t>() /*size*/,
- (MachineMemOperand *)nullptr};
- };
- MemUseCharacteristics MUC0 = getCharacteristics(Op0),
- MUC1 = getCharacteristics(Op1);
- // If they are to the same address, then they must be aliases.
- if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr &&
- MUC0.Offset == MUC1.Offset)
- return true;
- // If they are both volatile then they cannot be reordered.
- if (MUC0.IsVolatile && MUC1.IsVolatile)
- return true;
- // Be conservative about atomics for the moment
- // TODO: This is way overconservative for unordered atomics (see D66309)
- if (MUC0.IsAtomic && MUC1.IsAtomic)
- return true;
- if (MUC0.MMO && MUC1.MMO) {
- if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
- (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
- return false;
- }
- // Try to prove that there is aliasing, or that there is no aliasing. Either
- // way, we can return now. If nothing can be proved, proceed with more tests.
- bool IsAlias;
- if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes,
- DAG, IsAlias))
- return IsAlias;
- // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if
- // either are not known.
- if (!MUC0.MMO || !MUC1.MMO)
- return true;
- // If one operation reads from invariant memory, and the other may store, they
- // cannot alias. These should really be checking the equivalent of mayWrite,
- // but it only matters for memory nodes other than load /store.
- if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
- (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
- return false;
- // If we know required SrcValue1 and SrcValue2 have relatively large
- // alignment compared to the size and offset of the access, we may be able
- // to prove they do not alias. This check is conservative for now to catch
- // cases created by splitting vector types, it only works when the offsets are
- // multiples of the size of the data.
- int64_t SrcValOffset0 = MUC0.MMO->getOffset();
- int64_t SrcValOffset1 = MUC1.MMO->getOffset();
- Align OrigAlignment0 = MUC0.MMO->getBaseAlign();
- Align OrigAlignment1 = MUC1.MMO->getBaseAlign();
- auto &Size0 = MUC0.NumBytes;
- auto &Size1 = MUC1.NumBytes;
- if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 &&
- Size0.has_value() && Size1.has_value() && *Size0 == *Size1 &&
- OrigAlignment0 > *Size0 && SrcValOffset0 % *Size0 == 0 &&
- SrcValOffset1 % *Size1 == 0) {
- int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value();
- int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value();
- // There is no overlap between these relatively aligned accesses of
- // similar size. Return no alias.
- if ((OffAlign0 + *Size0) <= OffAlign1 || (OffAlign1 + *Size1) <= OffAlign0)
- return false;
- }
- bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0
- ? CombinerGlobalAA
- : DAG.getSubtarget().useAA();
- #ifndef NDEBUG
- if (CombinerAAOnlyFunc.getNumOccurrences() &&
- CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
- UseAA = false;
- #endif
- if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && Size0 &&
- Size1) {
- // Use alias analysis information.
- int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
- int64_t Overlap0 = *Size0 + SrcValOffset0 - MinOffset;
- int64_t Overlap1 = *Size1 + SrcValOffset1 - MinOffset;
- if (AA->isNoAlias(
- MemoryLocation(MUC0.MMO->getValue(), Overlap0,
- UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()),
- MemoryLocation(MUC1.MMO->getValue(), Overlap1,
- UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes())))
- return false;
- }
- // Otherwise we have to assume they alias.
- return true;
- }
- /// Walk up chain skipping non-aliasing memory nodes,
- /// looking for aliasing nodes and adding them to the Aliases vector.
- void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
- SmallVectorImpl<SDValue> &Aliases) {
- SmallVector<SDValue, 8> Chains; // List of chains to visit.
- SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
- // Get alias information for node.
- // TODO: relax aliasing for unordered atomics (see D66309)
- const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple();
- // Starting off.
- Chains.push_back(OriginalChain);
- unsigned Depth = 0;
- // Attempt to improve chain by a single step
- auto ImproveChain = [&](SDValue &C) -> bool {
- switch (C.getOpcode()) {
- case ISD::EntryToken:
- // No need to mark EntryToken.
- C = SDValue();
- return true;
- case ISD::LOAD:
- case ISD::STORE: {
- // Get alias information for C.
- // TODO: Relax aliasing for unordered atomics (see D66309)
- bool IsOpLoad = isa<LoadSDNode>(C.getNode()) &&
- cast<LSBaseSDNode>(C.getNode())->isSimple();
- if ((IsLoad && IsOpLoad) || !mayAlias(N, C.getNode())) {
- // Look further up the chain.
- C = C.getOperand(0);
- return true;
- }
- // Alias, so stop here.
- return false;
- }
- case ISD::CopyFromReg:
- // Always forward past past CopyFromReg.
- C = C.getOperand(0);
- return true;
- case ISD::LIFETIME_START:
- case ISD::LIFETIME_END: {
- // We can forward past any lifetime start/end that can be proven not to
- // alias the memory access.
- if (!mayAlias(N, C.getNode())) {
- // Look further up the chain.
- C = C.getOperand(0);
- return true;
- }
- return false;
- }
- default:
- return false;
- }
- };
- // Look at each chain and determine if it is an alias. If so, add it to the
- // aliases list. If not, then continue up the chain looking for the next
- // candidate.
- while (!Chains.empty()) {
- SDValue Chain = Chains.pop_back_val();
- // Don't bother if we've seen Chain before.
- if (!Visited.insert(Chain.getNode()).second)
- continue;
- // For TokenFactor nodes, look at each operand and only continue up the
- // chain until we reach the depth limit.
- //
- // FIXME: The depth check could be made to return the last non-aliasing
- // chain we found before we hit a tokenfactor rather than the original
- // chain.
- if (Depth > TLI.getGatherAllAliasesMaxDepth()) {
- Aliases.clear();
- Aliases.push_back(OriginalChain);
- return;
- }
- if (Chain.getOpcode() == ISD::TokenFactor) {
- // We have to check each of the operands of the token factor for "small"
- // token factors, so we queue them up. Adding the operands to the queue
- // (stack) in reverse order maintains the original order and increases the
- // likelihood that getNode will find a matching token factor (CSE.)
- if (Chain.getNumOperands() > 16) {
- Aliases.push_back(Chain);
- continue;
- }
- for (unsigned n = Chain.getNumOperands(); n;)
- Chains.push_back(Chain.getOperand(--n));
- ++Depth;
- continue;
- }
- // Everything else
- if (ImproveChain(Chain)) {
- // Updated Chain Found, Consider new chain if one exists.
- if (Chain.getNode())
- Chains.push_back(Chain);
- ++Depth;
- continue;
- }
- // No Improved Chain Possible, treat as Alias.
- Aliases.push_back(Chain);
- }
- }
- /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
- /// (aliasing node.)
- SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
- if (OptLevel == CodeGenOpt::None)
- return OldChain;
- // Ops for replacing token factor.
- SmallVector<SDValue, 8> Aliases;
- // Accumulate all the aliases to this node.
- GatherAllAliases(N, OldChain, Aliases);
- // If no operands then chain to entry token.
- if (Aliases.size() == 0)
- return DAG.getEntryNode();
- // If a single operand then chain to it. We don't need to revisit it.
- if (Aliases.size() == 1)
- return Aliases[0];
- // Construct a custom tailored token factor.
- return DAG.getTokenFactor(SDLoc(N), Aliases);
- }
- // This function tries to collect a bunch of potentially interesting
- // nodes to improve the chains of, all at once. This might seem
- // redundant, as this function gets called when visiting every store
- // node, so why not let the work be done on each store as it's visited?
- //
- // I believe this is mainly important because mergeConsecutiveStores
- // is unable to deal with merging stores of different sizes, so unless
- // we improve the chains of all the potential candidates up-front
- // before running mergeConsecutiveStores, it might only see some of
- // the nodes that will eventually be candidates, and then not be able
- // to go from a partially-merged state to the desired final
- // fully-merged state.
- bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) {
- SmallVector<StoreSDNode *, 8> ChainedStores;
- StoreSDNode *STChain = St;
- // Intervals records which offsets from BaseIndex have been covered. In
- // the common case, every store writes to the immediately previous address
- // space and thus merged with the previous interval at insertion time.
- using IMap = llvm::IntervalMap<int64_t, std::monostate, 8,
- IntervalMapHalfOpenInfo<int64_t>>;
- IMap::Allocator A;
- IMap Intervals(A);
- // This holds the base pointer, index, and the offset in bytes from the base
- // pointer.
- const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
- // We must have a base and an offset.
- if (!BasePtr.getBase().getNode())
- return false;
- // Do not handle stores to undef base pointers.
- if (BasePtr.getBase().isUndef())
- return false;
- // Do not handle stores to opaque types
- if (St->getMemoryVT().isZeroSized())
- return false;
- // BaseIndexOffset assumes that offsets are fixed-size, which
- // is not valid for scalable vectors where the offsets are
- // scaled by `vscale`, so bail out early.
- if (St->getMemoryVT().isScalableVector())
- return false;
- // Add ST's interval.
- Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8,
- std::monostate{});
- while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) {
- if (Chain->getMemoryVT().isScalableVector())
- return false;
- // If the chain has more than one use, then we can't reorder the mem ops.
- if (!SDValue(Chain, 0)->hasOneUse())
- break;
- // TODO: Relax for unordered atomics (see D66309)
- if (!Chain->isSimple() || Chain->isIndexed())
- break;
- // Find the base pointer and offset for this memory node.
- const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG);
- // Check that the base pointer is the same as the original one.
- int64_t Offset;
- if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset))
- break;
- int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8;
- // Make sure we don't overlap with other intervals by checking the ones to
- // the left or right before inserting.
- auto I = Intervals.find(Offset);
- // If there's a next interval, we should end before it.
- if (I != Intervals.end() && I.start() < (Offset + Length))
- break;
- // If there's a previous interval, we should start after it.
- if (I != Intervals.begin() && (--I).stop() <= Offset)
- break;
- Intervals.insert(Offset, Offset + Length, std::monostate{});
- ChainedStores.push_back(Chain);
- STChain = Chain;
- }
- // If we didn't find a chained store, exit.
- if (ChainedStores.size() == 0)
- return false;
- // Improve all chained stores (St and ChainedStores members) starting from
- // where the store chain ended and return single TokenFactor.
- SDValue NewChain = STChain->getChain();
- SmallVector<SDValue, 8> TFOps;
- for (unsigned I = ChainedStores.size(); I;) {
- StoreSDNode *S = ChainedStores[--I];
- SDValue BetterChain = FindBetterChain(S, NewChain);
- S = cast<StoreSDNode>(DAG.UpdateNodeOperands(
- S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3)));
- TFOps.push_back(SDValue(S, 0));
- ChainedStores[I] = S;
- }
- // Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
- SDValue BetterChain = FindBetterChain(St, NewChain);
- SDValue NewST;
- if (St->isTruncatingStore())
- NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(),
- St->getBasePtr(), St->getMemoryVT(),
- St->getMemOperand());
- else
- NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(),
- St->getBasePtr(), St->getMemOperand());
- TFOps.push_back(NewST);
- // If we improved every element of TFOps, then we've lost the dependence on
- // NewChain to successors of St and we need to add it back to TFOps. Do so at
- // the beginning to keep relative order consistent with FindBetterChains.
- auto hasImprovedChain = [&](SDValue ST) -> bool {
- return ST->getOperand(0) != NewChain;
- };
- bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain);
- if (AddNewChain)
- TFOps.insert(TFOps.begin(), NewChain);
- SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps);
- CombineTo(St, TF);
- // Add TF and its operands to the worklist.
- AddToWorklist(TF.getNode());
- for (const SDValue &Op : TF->ops())
- AddToWorklist(Op.getNode());
- AddToWorklist(STChain);
- return true;
- }
- bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) {
- if (OptLevel == CodeGenOpt::None)
- return false;
- const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
- // We must have a base and an offset.
- if (!BasePtr.getBase().getNode())
- return false;
- // Do not handle stores to undef base pointers.
- if (BasePtr.getBase().isUndef())
- return false;
- // Directly improve a chain of disjoint stores starting at St.
- if (parallelizeChainedStores(St))
- return true;
- // Improve St's Chain..
- SDValue BetterChain = FindBetterChain(St, St->getChain());
- if (St->getChain() != BetterChain) {
- replaceStoreChain(St, BetterChain);
- return true;
- }
- return false;
- }
- /// This is the entry point for the file.
- void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA,
- CodeGenOpt::Level OptLevel) {
- /// This is the main entry point to this class.
- DAGCombiner(*this, AA, OptLevel).Run(Level);
- }
|