1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045 |
- //===--- SelectOptimize.cpp - Convert select to branches if profitable ---===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass converts selects to conditional jumps when profitable.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/BlockFrequencyInfo.h"
- #include "llvm/Analysis/BranchProbabilityInfo.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/ProfileSummaryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/CodeGen/TargetPassConfig.h"
- #include "llvm/CodeGen/TargetSchedule.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/ProfDataUtils.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/ScaledNumber.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Transforms/Utils/SizeOpts.h"
- #include <algorithm>
- #include <memory>
- #include <queue>
- #include <stack>
- #include <string>
- using namespace llvm;
- #define DEBUG_TYPE "select-optimize"
- STATISTIC(NumSelectOptAnalyzed,
- "Number of select groups considered for conversion to branch");
- STATISTIC(NumSelectConvertedExpColdOperand,
- "Number of select groups converted due to expensive cold operand");
- STATISTIC(NumSelectConvertedHighPred,
- "Number of select groups converted due to high-predictability");
- STATISTIC(NumSelectUnPred,
- "Number of select groups not converted due to unpredictability");
- STATISTIC(NumSelectColdBB,
- "Number of select groups not converted due to cold basic block");
- STATISTIC(NumSelectConvertedLoop,
- "Number of select groups converted due to loop-level analysis");
- STATISTIC(NumSelectsConverted, "Number of selects converted");
- static cl::opt<unsigned> ColdOperandThreshold(
- "cold-operand-threshold",
- cl::desc("Maximum frequency of path for an operand to be considered cold."),
- cl::init(20), cl::Hidden);
- static cl::opt<unsigned> ColdOperandMaxCostMultiplier(
- "cold-operand-max-cost-multiplier",
- cl::desc("Maximum cost multiplier of TCC_expensive for the dependence "
- "slice of a cold operand to be considered inexpensive."),
- cl::init(1), cl::Hidden);
- static cl::opt<unsigned>
- GainGradientThreshold("select-opti-loop-gradient-gain-threshold",
- cl::desc("Gradient gain threshold (%)."),
- cl::init(25), cl::Hidden);
- static cl::opt<unsigned>
- GainCycleThreshold("select-opti-loop-cycle-gain-threshold",
- cl::desc("Minimum gain per loop (in cycles) threshold."),
- cl::init(4), cl::Hidden);
- static cl::opt<unsigned> GainRelativeThreshold(
- "select-opti-loop-relative-gain-threshold",
- cl::desc(
- "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"),
- cl::init(8), cl::Hidden);
- static cl::opt<unsigned> MispredictDefaultRate(
- "mispredict-default-rate", cl::Hidden, cl::init(25),
- cl::desc("Default mispredict rate (initialized to 25%)."));
- static cl::opt<bool>
- DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden,
- cl::init(false),
- cl::desc("Disable loop-level heuristics."));
- namespace {
- class SelectOptimize : public FunctionPass {
- const TargetMachine *TM = nullptr;
- const TargetSubtargetInfo *TSI;
- const TargetLowering *TLI = nullptr;
- const TargetTransformInfo *TTI = nullptr;
- const LoopInfo *LI;
- DominatorTree *DT;
- std::unique_ptr<BlockFrequencyInfo> BFI;
- std::unique_ptr<BranchProbabilityInfo> BPI;
- ProfileSummaryInfo *PSI;
- OptimizationRemarkEmitter *ORE;
- TargetSchedModel TSchedModel;
- public:
- static char ID;
- SelectOptimize() : FunctionPass(ID) {
- initializeSelectOptimizePass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<ProfileSummaryInfoWrapperPass>();
- AU.addRequired<TargetPassConfig>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
- }
- private:
- // Select groups consist of consecutive select instructions with the same
- // condition.
- using SelectGroup = SmallVector<SelectInst *, 2>;
- using SelectGroups = SmallVector<SelectGroup, 2>;
- using Scaled64 = ScaledNumber<uint64_t>;
- struct CostInfo {
- /// Predicated cost (with selects as conditional moves).
- Scaled64 PredCost;
- /// Non-predicated cost (with selects converted to branches).
- Scaled64 NonPredCost;
- };
- // Converts select instructions of a function to conditional jumps when deemed
- // profitable. Returns true if at least one select was converted.
- bool optimizeSelects(Function &F);
- // Heuristics for determining which select instructions can be profitably
- // conveted to branches. Separate heuristics for selects in inner-most loops
- // and the rest of code regions (base heuristics for non-inner-most loop
- // regions).
- void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups);
- void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups);
- // Converts to branches the select groups that were deemed
- // profitable-to-convert.
- void convertProfitableSIGroups(SelectGroups &ProfSIGroups);
- // Splits selects of a given basic block into select groups.
- void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups);
- // Determines for which select groups it is profitable converting to branches
- // (base and inner-most-loop heuristics).
- void findProfitableSIGroupsBase(SelectGroups &SIGroups,
- SelectGroups &ProfSIGroups);
- void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups,
- SelectGroups &ProfSIGroups);
- // Determines if a select group should be converted to a branch (base
- // heuristics).
- bool isConvertToBranchProfitableBase(const SmallVector<SelectInst *, 2> &ASI);
- // Returns true if there are expensive instructions in the cold value
- // operand's (if any) dependence slice of any of the selects of the given
- // group.
- bool hasExpensiveColdOperand(const SmallVector<SelectInst *, 2> &ASI);
- // For a given source instruction, collect its backwards dependence slice
- // consisting of instructions exclusively computed for producing the operands
- // of the source instruction.
- void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice,
- Instruction *SI, bool ForSinking = false);
- // Returns true if the condition of the select is highly predictable.
- bool isSelectHighlyPredictable(const SelectInst *SI);
- // Loop-level checks to determine if a non-predicated version (with branches)
- // of the given loop is more profitable than its predicated version.
- bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]);
- // Computes instruction and loop-critical-path costs for both the predicated
- // and non-predicated version of the given loop.
- bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups,
- DenseMap<const Instruction *, CostInfo> &InstCostMap,
- CostInfo *LoopCost);
- // Returns a set of all the select instructions in the given select groups.
- SmallPtrSet<const Instruction *, 2> getSIset(const SelectGroups &SIGroups);
- // Returns the latency cost of a given instruction.
- std::optional<uint64_t> computeInstCost(const Instruction *I);
- // Returns the misprediction cost of a given select when converted to branch.
- Scaled64 getMispredictionCost(const SelectInst *SI, const Scaled64 CondCost);
- // Returns the cost of a branch when the prediction is correct.
- Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
- const SelectInst *SI);
- // Returns true if the target architecture supports lowering a given select.
- bool isSelectKindSupported(SelectInst *SI);
- };
- } // namespace
- char SelectOptimize::ID = 0;
- INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
- false)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
- INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
- false)
- FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); }
- bool SelectOptimize::runOnFunction(Function &F) {
- TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
- TSI = TM->getSubtargetImpl(F);
- TLI = TSI->getTargetLowering();
- // If none of the select types is supported then skip this pass.
- // This is an optimization pass. Legality issues will be handled by
- // instruction selection.
- if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
- !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
- !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
- return false;
- TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- if (!TTI->enableSelectOptimize())
- return false;
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- BPI.reset(new BranchProbabilityInfo(F, *LI));
- BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
- PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
- ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
- TSchedModel.init(TSI);
- // When optimizing for size, selects are preferable over branches.
- if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI.get()))
- return false;
- return optimizeSelects(F);
- }
- bool SelectOptimize::optimizeSelects(Function &F) {
- // Determine for which select groups it is profitable converting to branches.
- SelectGroups ProfSIGroups;
- // Base heuristics apply only to non-loops and outer loops.
- optimizeSelectsBase(F, ProfSIGroups);
- // Separate heuristics for inner-most loops.
- optimizeSelectsInnerLoops(F, ProfSIGroups);
- // Convert to branches the select groups that were deemed
- // profitable-to-convert.
- convertProfitableSIGroups(ProfSIGroups);
- // Code modified if at least one select group was converted.
- return !ProfSIGroups.empty();
- }
- void SelectOptimize::optimizeSelectsBase(Function &F,
- SelectGroups &ProfSIGroups) {
- // Collect all the select groups.
- SelectGroups SIGroups;
- for (BasicBlock &BB : F) {
- // Base heuristics apply only to non-loops and outer loops.
- Loop *L = LI->getLoopFor(&BB);
- if (L && L->isInnermost())
- continue;
- collectSelectGroups(BB, SIGroups);
- }
- // Determine for which select groups it is profitable converting to branches.
- findProfitableSIGroupsBase(SIGroups, ProfSIGroups);
- }
- void SelectOptimize::optimizeSelectsInnerLoops(Function &F,
- SelectGroups &ProfSIGroups) {
- SmallVector<Loop *, 4> Loops(LI->begin(), LI->end());
- // Need to check size on each iteration as we accumulate child loops.
- for (unsigned long i = 0; i < Loops.size(); ++i)
- for (Loop *ChildL : Loops[i]->getSubLoops())
- Loops.push_back(ChildL);
- for (Loop *L : Loops) {
- if (!L->isInnermost())
- continue;
- SelectGroups SIGroups;
- for (BasicBlock *BB : L->getBlocks())
- collectSelectGroups(*BB, SIGroups);
- findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups);
- }
- }
- /// If \p isTrue is true, return the true value of \p SI, otherwise return
- /// false value of \p SI. If the true/false value of \p SI is defined by any
- /// select instructions in \p Selects, look through the defining select
- /// instruction until the true/false value is not defined in \p Selects.
- static Value *
- getTrueOrFalseValue(SelectInst *SI, bool isTrue,
- const SmallPtrSet<const Instruction *, 2> &Selects) {
- Value *V = nullptr;
- for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
- DefSI = dyn_cast<SelectInst>(V)) {
- assert(DefSI->getCondition() == SI->getCondition() &&
- "The condition of DefSI does not match with SI");
- V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
- }
- assert(V && "Failed to get select true/false value");
- return V;
- }
- void SelectOptimize::convertProfitableSIGroups(SelectGroups &ProfSIGroups) {
- for (SelectGroup &ASI : ProfSIGroups) {
- // The code transformation here is a modified version of the sinking
- // transformation in CodeGenPrepare::optimizeSelectInst with a more
- // aggressive strategy of which instructions to sink.
- //
- // TODO: eliminate the redundancy of logic transforming selects to branches
- // by removing CodeGenPrepare::optimizeSelectInst and optimizing here
- // selects for all cases (with and without profile information).
- // Transform a sequence like this:
- // start:
- // %cmp = cmp uge i32 %a, %b
- // %sel = select i1 %cmp, i32 %c, i32 %d
- //
- // Into:
- // start:
- // %cmp = cmp uge i32 %a, %b
- // %cmp.frozen = freeze %cmp
- // br i1 %cmp.frozen, label %select.true, label %select.false
- // select.true:
- // br label %select.end
- // select.false:
- // br label %select.end
- // select.end:
- // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
- //
- // %cmp should be frozen, otherwise it may introduce undefined behavior.
- // In addition, we may sink instructions that produce %c or %d into the
- // destination(s) of the new branch.
- // If the true or false blocks do not contain a sunken instruction, that
- // block and its branch may be optimized away. In that case, one side of the
- // first branch will point directly to select.end, and the corresponding PHI
- // predecessor block will be the start block.
- // Find all the instructions that can be soundly sunk to the true/false
- // blocks. These are instructions that are computed solely for producing the
- // operands of the select instructions in the group and can be sunk without
- // breaking the semantics of the LLVM IR (e.g., cannot sink instructions
- // with side effects).
- SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices;
- typedef std::stack<Instruction *>::size_type StackSizeType;
- StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0;
- for (SelectInst *SI : ASI) {
- // For each select, compute the sinkable dependence chains of the true and
- // false operands.
- if (auto *TI = dyn_cast<Instruction>(SI->getTrueValue())) {
- std::stack<Instruction *> TrueSlice;
- getExclBackwardsSlice(TI, TrueSlice, SI, true);
- maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size());
- TrueSlices.push_back(TrueSlice);
- }
- if (auto *FI = dyn_cast<Instruction>(SI->getFalseValue())) {
- std::stack<Instruction *> FalseSlice;
- getExclBackwardsSlice(FI, FalseSlice, SI, true);
- maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size());
- FalseSlices.push_back(FalseSlice);
- }
- }
- // In the case of multiple select instructions in the same group, the order
- // of non-dependent instructions (instructions of different dependence
- // slices) in the true/false blocks appears to affect performance.
- // Interleaving the slices seems to experimentally be the optimal approach.
- // This interleaving scheduling allows for more ILP (with a natural downside
- // of increasing a bit register pressure) compared to a simple ordering of
- // one whole chain after another. One would expect that this ordering would
- // not matter since the scheduling in the backend of the compiler would
- // take care of it, but apparently the scheduler fails to deliver optimal
- // ILP with a naive ordering here.
- SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved;
- for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) {
- for (auto &S : TrueSlices) {
- if (!S.empty()) {
- TrueSlicesInterleaved.push_back(S.top());
- S.pop();
- }
- }
- }
- for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) {
- for (auto &S : FalseSlices) {
- if (!S.empty()) {
- FalseSlicesInterleaved.push_back(S.top());
- S.pop();
- }
- }
- }
- // We split the block containing the select(s) into two blocks.
- SelectInst *SI = ASI.front();
- SelectInst *LastSI = ASI.back();
- BasicBlock *StartBlock = SI->getParent();
- BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
- BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
- BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
- // Delete the unconditional branch that was just created by the split.
- StartBlock->getTerminator()->eraseFromParent();
- // Move any debug/pseudo instructions that were in-between the select
- // group to the newly-created end block.
- SmallVector<Instruction *, 2> DebugPseudoINS;
- auto DIt = SI->getIterator();
- while (&*DIt != LastSI) {
- if (DIt->isDebugOrPseudoInst())
- DebugPseudoINS.push_back(&*DIt);
- DIt++;
- }
- for (auto *DI : DebugPseudoINS) {
- DI->moveBefore(&*EndBlock->getFirstInsertionPt());
- }
- // These are the new basic blocks for the conditional branch.
- // At least one will become an actual new basic block.
- BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr;
- BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr;
- if (!TrueSlicesInterleaved.empty()) {
- TrueBlock = BasicBlock::Create(LastSI->getContext(), "select.true.sink",
- EndBlock->getParent(), EndBlock);
- TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
- TrueBranch->setDebugLoc(LastSI->getDebugLoc());
- for (Instruction *TrueInst : TrueSlicesInterleaved)
- TrueInst->moveBefore(TrueBranch);
- }
- if (!FalseSlicesInterleaved.empty()) {
- FalseBlock = BasicBlock::Create(LastSI->getContext(), "select.false.sink",
- EndBlock->getParent(), EndBlock);
- FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
- FalseBranch->setDebugLoc(LastSI->getDebugLoc());
- for (Instruction *FalseInst : FalseSlicesInterleaved)
- FalseInst->moveBefore(FalseBranch);
- }
- // If there was nothing to sink, then arbitrarily choose the 'false' side
- // for a new input value to the PHI.
- if (TrueBlock == FalseBlock) {
- assert(TrueBlock == nullptr &&
- "Unexpected basic block transform while optimizing select");
- FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
- EndBlock->getParent(), EndBlock);
- auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
- FalseBranch->setDebugLoc(SI->getDebugLoc());
- }
- // Insert the real conditional branch based on the original condition.
- // If we did not create a new block for one of the 'true' or 'false' paths
- // of the condition, it means that side of the branch goes to the end block
- // directly and the path originates from the start block from the point of
- // view of the new PHI.
- BasicBlock *TT, *FT;
- if (TrueBlock == nullptr) {
- TT = EndBlock;
- FT = FalseBlock;
- TrueBlock = StartBlock;
- } else if (FalseBlock == nullptr) {
- TT = TrueBlock;
- FT = EndBlock;
- FalseBlock = StartBlock;
- } else {
- TT = TrueBlock;
- FT = FalseBlock;
- }
- IRBuilder<> IB(SI);
- auto *CondFr =
- IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
- IB.CreateCondBr(CondFr, TT, FT, SI);
- SmallPtrSet<const Instruction *, 2> INS;
- INS.insert(ASI.begin(), ASI.end());
- // Use reverse iterator because later select may use the value of the
- // earlier select, and we need to propagate value through earlier select
- // to get the PHI operand.
- for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
- SelectInst *SI = *It;
- // The select itself is replaced with a PHI Node.
- PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
- PN->takeName(SI);
- PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
- PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
- PN->setDebugLoc(SI->getDebugLoc());
- SI->replaceAllUsesWith(PN);
- SI->eraseFromParent();
- INS.erase(SI);
- ++NumSelectsConverted;
- }
- }
- }
- static bool isSpecialSelect(SelectInst *SI) {
- using namespace llvm::PatternMatch;
- // If the select is a logical-and/logical-or then it is better treated as a
- // and/or by the backend.
- if (match(SI, m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
- m_LogicalOr(m_Value(), m_Value()))))
- return true;
- return false;
- }
- void SelectOptimize::collectSelectGroups(BasicBlock &BB,
- SelectGroups &SIGroups) {
- BasicBlock::iterator BBIt = BB.begin();
- while (BBIt != BB.end()) {
- Instruction *I = &*BBIt++;
- if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
- if (isSpecialSelect(SI))
- continue;
- SelectGroup SIGroup;
- SIGroup.push_back(SI);
- while (BBIt != BB.end()) {
- Instruction *NI = &*BBIt;
- SelectInst *NSI = dyn_cast<SelectInst>(NI);
- if (NSI && SI->getCondition() == NSI->getCondition()) {
- SIGroup.push_back(NSI);
- } else if (!NI->isDebugOrPseudoInst()) {
- // Debug/pseudo instructions should be skipped and not prevent the
- // formation of a select group.
- break;
- }
- ++BBIt;
- }
- // If the select type is not supported, no point optimizing it.
- // Instruction selection will take care of it.
- if (!isSelectKindSupported(SI))
- continue;
- SIGroups.push_back(SIGroup);
- }
- }
- }
- void SelectOptimize::findProfitableSIGroupsBase(SelectGroups &SIGroups,
- SelectGroups &ProfSIGroups) {
- for (SelectGroup &ASI : SIGroups) {
- ++NumSelectOptAnalyzed;
- if (isConvertToBranchProfitableBase(ASI))
- ProfSIGroups.push_back(ASI);
- }
- }
- static void EmitAndPrintRemark(OptimizationRemarkEmitter *ORE,
- DiagnosticInfoOptimizationBase &Rem) {
- LLVM_DEBUG(dbgs() << Rem.getMsg() << "\n");
- ORE->emit(Rem);
- }
- void SelectOptimize::findProfitableSIGroupsInnerLoops(
- const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
- NumSelectOptAnalyzed += SIGroups.size();
- // For each select group in an inner-most loop,
- // a branch is more preferable than a select/conditional-move if:
- // i) conversion to branches for all the select groups of the loop satisfies
- // loop-level heuristics including reducing the loop's critical path by
- // some threshold (see SelectOptimize::checkLoopHeuristics); and
- // ii) the total cost of the select group is cheaper with a branch compared
- // to its predicated version. The cost is in terms of latency and the cost
- // of a select group is the cost of its most expensive select instruction
- // (assuming infinite resources and thus fully leveraging available ILP).
- DenseMap<const Instruction *, CostInfo> InstCostMap;
- CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()},
- {Scaled64::getZero(), Scaled64::getZero()}};
- if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) ||
- !checkLoopHeuristics(L, LoopCost)) {
- return;
- }
- for (SelectGroup &ASI : SIGroups) {
- // Assuming infinite resources, the cost of a group of instructions is the
- // cost of the most expensive instruction of the group.
- Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero();
- for (SelectInst *SI : ASI) {
- SelectCost = std::max(SelectCost, InstCostMap[SI].PredCost);
- BranchCost = std::max(BranchCost, InstCostMap[SI].NonPredCost);
- }
- if (BranchCost < SelectCost) {
- OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", ASI.front());
- OR << "Profitable to convert to branch (loop analysis). BranchCost="
- << BranchCost.toString() << ", SelectCost=" << SelectCost.toString()
- << ". ";
- EmitAndPrintRemark(ORE, OR);
- ++NumSelectConvertedLoop;
- ProfSIGroups.push_back(ASI);
- } else {
- OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front());
- ORmiss << "Select is more profitable (loop analysis). BranchCost="
- << BranchCost.toString()
- << ", SelectCost=" << SelectCost.toString() << ". ";
- EmitAndPrintRemark(ORE, ORmiss);
- }
- }
- }
- bool SelectOptimize::isConvertToBranchProfitableBase(
- const SmallVector<SelectInst *, 2> &ASI) {
- SelectInst *SI = ASI.front();
- LLVM_DEBUG(dbgs() << "Analyzing select group containing " << *SI << "\n");
- OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI);
- OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI);
- // Skip cold basic blocks. Better to optimize for size for cold blocks.
- if (PSI->isColdBlock(SI->getParent(), BFI.get())) {
- ++NumSelectColdBB;
- ORmiss << "Not converted to branch because of cold basic block. ";
- EmitAndPrintRemark(ORE, ORmiss);
- return false;
- }
- // If unpredictable, branch form is less profitable.
- if (SI->getMetadata(LLVMContext::MD_unpredictable)) {
- ++NumSelectUnPred;
- ORmiss << "Not converted to branch because of unpredictable branch. ";
- EmitAndPrintRemark(ORE, ORmiss);
- return false;
- }
- // If highly predictable, branch form is more profitable, unless a
- // predictable select is inexpensive in the target architecture.
- if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) {
- ++NumSelectConvertedHighPred;
- OR << "Converted to branch because of highly predictable branch. ";
- EmitAndPrintRemark(ORE, OR);
- return true;
- }
- // Look for expensive instructions in the cold operand's (if any) dependence
- // slice of any of the selects in the group.
- if (hasExpensiveColdOperand(ASI)) {
- ++NumSelectConvertedExpColdOperand;
- OR << "Converted to branch because of expensive cold operand.";
- EmitAndPrintRemark(ORE, OR);
- return true;
- }
- ORmiss << "Not profitable to convert to branch (base heuristic).";
- EmitAndPrintRemark(ORE, ORmiss);
- return false;
- }
- static InstructionCost divideNearest(InstructionCost Numerator,
- uint64_t Denominator) {
- return (Numerator + (Denominator / 2)) / Denominator;
- }
- bool SelectOptimize::hasExpensiveColdOperand(
- const SmallVector<SelectInst *, 2> &ASI) {
- bool ColdOperand = false;
- uint64_t TrueWeight, FalseWeight, TotalWeight;
- if (extractBranchWeights(*ASI.front(), TrueWeight, FalseWeight)) {
- uint64_t MinWeight = std::min(TrueWeight, FalseWeight);
- TotalWeight = TrueWeight + FalseWeight;
- // Is there a path with frequency <ColdOperandThreshold% (default:20%) ?
- ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight;
- } else if (PSI->hasProfileSummary()) {
- OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front());
- ORmiss << "Profile data available but missing branch-weights metadata for "
- "select instruction. ";
- EmitAndPrintRemark(ORE, ORmiss);
- }
- if (!ColdOperand)
- return false;
- // Check if the cold path's dependence slice is expensive for any of the
- // selects of the group.
- for (SelectInst *SI : ASI) {
- Instruction *ColdI = nullptr;
- uint64_t HotWeight;
- if (TrueWeight < FalseWeight) {
- ColdI = dyn_cast<Instruction>(SI->getTrueValue());
- HotWeight = FalseWeight;
- } else {
- ColdI = dyn_cast<Instruction>(SI->getFalseValue());
- HotWeight = TrueWeight;
- }
- if (ColdI) {
- std::stack<Instruction *> ColdSlice;
- getExclBackwardsSlice(ColdI, ColdSlice, SI);
- InstructionCost SliceCost = 0;
- while (!ColdSlice.empty()) {
- SliceCost += TTI->getInstructionCost(ColdSlice.top(),
- TargetTransformInfo::TCK_Latency);
- ColdSlice.pop();
- }
- // The colder the cold value operand of the select is the more expensive
- // the cmov becomes for computing the cold value operand every time. Thus,
- // the colder the cold operand is the more its cost counts.
- // Get nearest integer cost adjusted for coldness.
- InstructionCost AdjSliceCost =
- divideNearest(SliceCost * HotWeight, TotalWeight);
- if (AdjSliceCost >=
- ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive)
- return true;
- }
- }
- return false;
- }
- // Check if it is safe to move LoadI next to the SI.
- // Conservatively assume it is safe only if there is no instruction
- // modifying memory in-between the load and the select instruction.
- static bool isSafeToSinkLoad(Instruction *LoadI, Instruction *SI) {
- // Assume loads from different basic blocks are unsafe to move.
- if (LoadI->getParent() != SI->getParent())
- return false;
- auto It = LoadI->getIterator();
- while (&*It != SI) {
- if (It->mayWriteToMemory())
- return false;
- It++;
- }
- return true;
- }
- // For a given source instruction, collect its backwards dependence slice
- // consisting of instructions exclusively computed for the purpose of producing
- // the operands of the source instruction. As an approximation
- // (sufficiently-accurate in practice), we populate this set with the
- // instructions of the backwards dependence slice that only have one-use and
- // form an one-use chain that leads to the source instruction.
- void SelectOptimize::getExclBackwardsSlice(Instruction *I,
- std::stack<Instruction *> &Slice,
- Instruction *SI, bool ForSinking) {
- SmallPtrSet<Instruction *, 2> Visited;
- std::queue<Instruction *> Worklist;
- Worklist.push(I);
- while (!Worklist.empty()) {
- Instruction *II = Worklist.front();
- Worklist.pop();
- // Avoid cycles.
- if (!Visited.insert(II).second)
- continue;
- if (!II->hasOneUse())
- continue;
- // Cannot soundly sink instructions with side-effects.
- // Terminator or phi instructions cannot be sunk.
- // Avoid sinking other select instructions (should be handled separetely).
- if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() ||
- isa<SelectInst>(II) || isa<PHINode>(II)))
- continue;
- // Avoid sinking loads in order not to skip state-modifying instructions,
- // that may alias with the loaded address.
- // Only allow sinking of loads within the same basic block that are
- // conservatively proven to be safe.
- if (ForSinking && II->mayReadFromMemory() && !isSafeToSinkLoad(II, SI))
- continue;
- // Avoid considering instructions with less frequency than the source
- // instruction (i.e., avoid colder code regions of the dependence slice).
- if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent()))
- continue;
- // Eligible one-use instruction added to the dependence slice.
- Slice.push(II);
- // Explore all the operands of the current instruction to expand the slice.
- for (unsigned k = 0; k < II->getNumOperands(); ++k)
- if (auto *OpI = dyn_cast<Instruction>(II->getOperand(k)))
- Worklist.push(OpI);
- }
- }
- bool SelectOptimize::isSelectHighlyPredictable(const SelectInst *SI) {
- uint64_t TrueWeight, FalseWeight;
- if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) {
- uint64_t Max = std::max(TrueWeight, FalseWeight);
- uint64_t Sum = TrueWeight + FalseWeight;
- if (Sum != 0) {
- auto Probability = BranchProbability::getBranchProbability(Max, Sum);
- if (Probability > TTI->getPredictableBranchThreshold())
- return true;
- }
- }
- return false;
- }
- bool SelectOptimize::checkLoopHeuristics(const Loop *L,
- const CostInfo LoopCost[2]) {
- // Loop-level checks to determine if a non-predicated version (with branches)
- // of the loop is more profitable than its predicated version.
- if (DisableLoopLevelHeuristics)
- return true;
- OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti",
- L->getHeader()->getFirstNonPHI());
- if (LoopCost[0].NonPredCost > LoopCost[0].PredCost ||
- LoopCost[1].NonPredCost >= LoopCost[1].PredCost) {
- ORmissL << "No select conversion in the loop due to no reduction of loop's "
- "critical path. ";
- EmitAndPrintRemark(ORE, ORmissL);
- return false;
- }
- Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost,
- LoopCost[1].PredCost - LoopCost[1].NonPredCost};
- // Profitably converting to branches need to reduce the loop's critical path
- // by at least some threshold (absolute gain of GainCycleThreshold cycles and
- // relative gain of 12.5%).
- if (Gain[1] < Scaled64::get(GainCycleThreshold) ||
- Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) {
- Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost;
- ORmissL << "No select conversion in the loop due to small reduction of "
- "loop's critical path. Gain="
- << Gain[1].toString()
- << ", RelativeGain=" << RelativeGain.toString() << "%. ";
- EmitAndPrintRemark(ORE, ORmissL);
- return false;
- }
- // If the loop's critical path involves loop-carried dependences, the gradient
- // of the gain needs to be at least GainGradientThreshold% (defaults to 25%).
- // This check ensures that the latency reduction for the loop's critical path
- // keeps decreasing with sufficient rate beyond the two analyzed loop
- // iterations.
- if (Gain[1] > Gain[0]) {
- Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) /
- (LoopCost[1].PredCost - LoopCost[0].PredCost);
- if (GradientGain < Scaled64::get(GainGradientThreshold)) {
- ORmissL << "No select conversion in the loop due to small gradient gain. "
- "GradientGain="
- << GradientGain.toString() << "%. ";
- EmitAndPrintRemark(ORE, ORmissL);
- return false;
- }
- }
- // If the gain decreases it is not profitable to convert.
- else if (Gain[1] < Gain[0]) {
- ORmissL
- << "No select conversion in the loop due to negative gradient gain. ";
- EmitAndPrintRemark(ORE, ORmissL);
- return false;
- }
- // Non-predicated version of the loop is more profitable than its
- // predicated version.
- return true;
- }
- // Computes instruction and loop-critical-path costs for both the predicated
- // and non-predicated version of the given loop.
- // Returns false if unable to compute these costs due to invalid cost of loop
- // instruction(s).
- bool SelectOptimize::computeLoopCosts(
- const Loop *L, const SelectGroups &SIGroups,
- DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) {
- LLVM_DEBUG(dbgs() << "Calculating Latency / IPredCost / INonPredCost of loop "
- << L->getHeader()->getName() << "\n");
- const auto &SIset = getSIset(SIGroups);
- // Compute instruction and loop-critical-path costs across two iterations for
- // both predicated and non-predicated version.
- const unsigned Iterations = 2;
- for (unsigned Iter = 0; Iter < Iterations; ++Iter) {
- // Cost of the loop's critical path.
- CostInfo &MaxCost = LoopCost[Iter];
- for (BasicBlock *BB : L->getBlocks()) {
- for (const Instruction &I : *BB) {
- if (I.isDebugOrPseudoInst())
- continue;
- // Compute the predicated and non-predicated cost of the instruction.
- Scaled64 IPredCost = Scaled64::getZero(),
- INonPredCost = Scaled64::getZero();
- // Assume infinite resources that allow to fully exploit the available
- // instruction-level parallelism.
- // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost)
- for (const Use &U : I.operands()) {
- auto UI = dyn_cast<Instruction>(U.get());
- if (!UI)
- continue;
- if (InstCostMap.count(UI)) {
- IPredCost = std::max(IPredCost, InstCostMap[UI].PredCost);
- INonPredCost = std::max(INonPredCost, InstCostMap[UI].NonPredCost);
- }
- }
- auto ILatency = computeInstCost(&I);
- if (!ILatency) {
- OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I);
- ORmissL << "Invalid instruction cost preventing analysis and "
- "optimization of the inner-most loop containing this "
- "instruction. ";
- EmitAndPrintRemark(ORE, ORmissL);
- return false;
- }
- IPredCost += Scaled64::get(*ILatency);
- INonPredCost += Scaled64::get(*ILatency);
- // For a select that can be converted to branch,
- // compute its cost as a branch (non-predicated cost).
- //
- // BranchCost = PredictedPathCost + MispredictCost
- // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb
- // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate
- if (SIset.contains(&I)) {
- auto SI = cast<SelectInst>(&I);
- Scaled64 TrueOpCost = Scaled64::getZero(),
- FalseOpCost = Scaled64::getZero();
- if (auto *TI = dyn_cast<Instruction>(SI->getTrueValue()))
- if (InstCostMap.count(TI))
- TrueOpCost = InstCostMap[TI].NonPredCost;
- if (auto *FI = dyn_cast<Instruction>(SI->getFalseValue()))
- if (InstCostMap.count(FI))
- FalseOpCost = InstCostMap[FI].NonPredCost;
- Scaled64 PredictedPathCost =
- getPredictedPathCost(TrueOpCost, FalseOpCost, SI);
- Scaled64 CondCost = Scaled64::getZero();
- if (auto *CI = dyn_cast<Instruction>(SI->getCondition()))
- if (InstCostMap.count(CI))
- CondCost = InstCostMap[CI].NonPredCost;
- Scaled64 MispredictCost = getMispredictionCost(SI, CondCost);
- INonPredCost = PredictedPathCost + MispredictCost;
- }
- LLVM_DEBUG(dbgs() << " " << ILatency << "/" << IPredCost << "/"
- << INonPredCost << " for " << I << "\n");
- InstCostMap[&I] = {IPredCost, INonPredCost};
- MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost);
- MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost);
- }
- }
- LLVM_DEBUG(dbgs() << "Iteration " << Iter + 1
- << " MaxCost = " << MaxCost.PredCost << " "
- << MaxCost.NonPredCost << "\n");
- }
- return true;
- }
- SmallPtrSet<const Instruction *, 2>
- SelectOptimize::getSIset(const SelectGroups &SIGroups) {
- SmallPtrSet<const Instruction *, 2> SIset;
- for (const SelectGroup &ASI : SIGroups)
- for (const SelectInst *SI : ASI)
- SIset.insert(SI);
- return SIset;
- }
- std::optional<uint64_t> SelectOptimize::computeInstCost(const Instruction *I) {
- InstructionCost ICost =
- TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency);
- if (auto OC = ICost.getValue())
- return std::optional<uint64_t>(*OC);
- return std::nullopt;
- }
- ScaledNumber<uint64_t>
- SelectOptimize::getMispredictionCost(const SelectInst *SI,
- const Scaled64 CondCost) {
- uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
- // Account for the default misprediction rate when using a branch
- // (conservatively set to 25% by default).
- uint64_t MispredictRate = MispredictDefaultRate;
- // If the select condition is obviously predictable, then the misprediction
- // rate is zero.
- if (isSelectHighlyPredictable(SI))
- MispredictRate = 0;
- // CondCost is included to account for cases where the computation of the
- // condition is part of a long dependence chain (potentially loop-carried)
- // that would delay detection of a misprediction and increase its cost.
- Scaled64 MispredictCost =
- std::max(Scaled64::get(MispredictPenalty), CondCost) *
- Scaled64::get(MispredictRate);
- MispredictCost /= Scaled64::get(100);
- return MispredictCost;
- }
- // Returns the cost of a branch when the prediction is correct.
- // TrueCost * TrueProbability + FalseCost * FalseProbability.
- ScaledNumber<uint64_t>
- SelectOptimize::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
- const SelectInst *SI) {
- Scaled64 PredPathCost;
- uint64_t TrueWeight, FalseWeight;
- if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) {
- uint64_t SumWeight = TrueWeight + FalseWeight;
- if (SumWeight != 0) {
- PredPathCost = TrueCost * Scaled64::get(TrueWeight) +
- FalseCost * Scaled64::get(FalseWeight);
- PredPathCost /= Scaled64::get(SumWeight);
- return PredPathCost;
- }
- }
- // Without branch weight metadata, we assume 75% for the one path and 25% for
- // the other, and pick the result with the biggest cost.
- PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost,
- FalseCost * Scaled64::get(3) + TrueCost);
- PredPathCost /= Scaled64::get(4);
- return PredPathCost;
- }
- bool SelectOptimize::isSelectKindSupported(SelectInst *SI) {
- bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
- if (VectorCond)
- return false;
- TargetLowering::SelectSupportKind SelectKind;
- if (SI->getType()->isVectorTy())
- SelectKind = TargetLowering::ScalarCondVectorVal;
- else
- SelectKind = TargetLowering::ScalarValSelect;
- return TLI->isSelectSupported(SelectKind);
- }
|